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ABSTRACT

The crystallinity of large-size ingots has been studied

as a function of the heat flow conditions at the bottom of

the ingot. the size of the ingot has an important effect on

crystallinity. The breakdown in crystallinity across the

bottom has been resolved to an area in the vicinity of the

melted-back seed. Generally. aomogeneous resistivity dis-
tribution has been achieved all over the ingot.

Electroplating of diamonds on one side of the wirepack

has an important effect on slicing per^ormance. However,

diamond electroplating must be carefully controlled to have a

good seat in the grooved rollers. An in-house electroplating

facility is now operational. Good performance was achieved

with the initial in-house electroplated wirepacks.

Projected add-on cost of HEM ingot casting process has

been carried out using IPEG analysis. The value that was

obtained is $8.65/m2 , well belcw the allocation of $18.15/m2

to meet the 1986 goal.
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SILICON INGOT CASTING --

HEAT EXCHANGER METHOD (NFld)

Emphasis during the last quartEr was on improving

crystallinity across the bottom of the ingot and casting

large-size ingots. Details of the experiments are shown in

Table I.

Experimentally it has been demonstrated that casting of

silicon crystals by HEM is very viable in preparing material

for solar cell applications. The crystals cast by HEM are

comparable to CZ grown crystals in solar cell performance.

Solar cells fabricated from HEM silicon have demonstrated

up to 15z (AM1) efficiency. Over 90X single crystallinity

has been achieved with ingot sizes up to 20-cm cube, weighing

16.5 kg. The size of ingots cast has been increased to 45 kg

with 34 cm x 34 cm cross -sections. Anew crucible has been

developed which has a square shape; this will have a signifi-

cant effect on the yield. The solidification cycle of the

process has been optimized to lower the total solidification

time. All these developments are expected to have a signifi-

cant effect on the total cost of the photovoltaic modules.

A cost analysis has also demonstrated that with the technique

the 70C/watt cost goal of DOE can be achieved.
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When the size of the ingot was increased, however, it

was found that the single crystal portion of the ingot is

lower than 90X. Crystallinity was not as goad as the smaller

size ingots, especially at the bottom of the ingot. Thie has

been attributed to the change of the heat flow conditions due

to the increased charge and crucible size. This effect on

beat flow must be studied in order to increase the single

crystallinity of the large-size ingots.

For this purpose a series of experiments have been carried

out to understand the solidification mechanism at the bottom,

runs 41-38 to 41-41. The heat flow was monitored by the minor

changes that have been made at the bottom lower portions of

the furnace. In run 41-38, a 20 cm x 20 cm cross-section

ingot weighing 15 kg was produced with good crystallinity

(Figure 1).

It can be seen that the breakdown in crystallinity is

in the areas at the bottom of the ingot approximately half-way

between the center of the boule and the edges. In these areas

nucleation occurs off the bottom of the crucible. Earlier

a number of grains nucleated across the whole bottom of the

crucibles; these grains grew towards the edges. By controlling

the heat flow spurious nucleation has been restricted to the

edge of the melted-back seed in contact with the crucible.

At this point high heat extraction is desired through the

heat exchanger while high temperatures are also desirable

4



r'i^;ure 1. Cross-section of ingot cost in run 91-3ri.
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to prevent nucleation off the crucible botttmn. Figure 1

also shows that in an area between the melted-back seed and

the edges of the cruclblen the orientation of the grains is

quite horizontal, thereby suggesting that if the breakdown in

crystallinity during initial growth is prevented single crystal

growth can be achieved across the bottom. Therefore, in order

to prevent breakdown in crystallinity a balance has to be

achieved between the superheat in the melt and heat extractioa

by the heat exchanger to produce temperature gradients con-

ducive to single crystal :orrnation. This balance is important

during the initial seeding stage.

Run 41-42C was carried out using standard operating

conditions. A 1.5 kg charge was solidified into a 20 cm x 2U cm

cross-section ingot in approximately 24 hours. In run 41-43C

the heat exchanger was raised into the heat zone. This would

increase the heat into the crucible and decrease the effect of

the heat exchanger, conditions necesFary for preventing break-

down during initial growth. It has also been the experience

that by raising the heat exchanger in the heat zone, the growth

time is prolonged and it may not be possible to solidify the

ingot all the way to the top surface. Therefore, to compen-

sate for this, the insulation around the heat exchanger was

changed so that single crystallinity can be achieved towards

the end of the growth cycle. Figure 2 shows the crystallinity

achieved in run 41-43C. It can be seen that there is breakdown

6
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in crystallinity near melted back seed; aowever, beyond that

very large grains were formed and their orientation is almost

horizontal.

Another approach to controlling heat flow was to increase

superheat in the melt and increase the cooling effect of the

heat exchanger by lowering it in the heat none. Run 4I-94C

Wass carried out with these conditions. A similar result with

crystallinity ( Figure 3) was achieved as with the earlier•

experiment.

In run 41-95 heat transfer from the crucible was reduced

by insulating it. Thus, heat extraction was intensifi.^d on

the heat exchanger. The heat exchanger position has been

optimized for grow ±:: time and solidification structure. The

structure that was obtained from this ingot is shown in

Figures 4. Good crysta111n:tt}f is seen in gencrral, ^=bpe^vially

at the bottom of the ingot where a considerable amount cif

impravement can also be detected. The major ciisturbancc^ c}f

crystallinity at the bottom arise=:^ irc>m thc^ contact area t^e-

tween the seed and thE^ crucible. Qtherwise verb • good

crystallinity is seen.	 In the area wht= rc^ brc^ukdown in ^:in^i^=

crystallinity occurred, the grain orientation was horizontal.

This is an indication of imprcwc^d hFat ^ > xtraction, the=rrt^^•

prPVenting spurious nucic=atic^n c,fi' the• k^uttcarn c^i thf= ^•ru^•it^le.

These experiments do show that the bre = akdown in sin^;if^

crystallinity has been reduced from thF^ entirc> t,ottc^m area

of the crucible t© the edge of the melted-back 5c^ed.

8



Figure 3. Cross-section of ingot cast in run 41-44
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Figure 4. Cross-section of ingot cast in run 41-45
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In run 41-41, a 35 kg ingot of 32 cm x 32 cm cross-

section was cast and sectioned, Figure 5. Crystallinity was

not as good as in 20 can x ?.4 cm cross -section ingots. More

experiments are planned to improve it for these larger sizes.

	

The resistivity of a slice of the silicon ingot grown 	
Î

i

	in run 41 -41, with grid arrangement, is shown in Figure 6. 	 1
I

The resistivity decreases along the ingot; however, the amount
s

is so low that in general the ingot can be considered having

homogeneous resistivity. This ingot was sent to JPL for fur-

ther characterization.

^.e^	
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MULTI-WIRE SLICING --

FIXED ABRASIVE SLICING TECHNIQUE (FAST)

During the last quarter emphasis was placed on blade

development for FAST. An is-house electroplating facility for

elec^roplating wirepacks was set up. Currently slicing

tests are being carried out with CSI electroplated wirepacks.

The experiments carried out are summarized in Table II.

In the first five experiments vendor-electroplated wirepacks

were used. A mixture of diamonds, 45 um and 30 um, was

electroplated on a 5 mil, 0.125 mm tungsten core wire, except

in run 444-SX. In the latter run, a 5 mil steel wire with a

O.I mil copper sheath was used. In-house electroplated

wirepacks (CSI-fabricated wirepacks) were used in the rest

of the experiments. In these, 5 mil, 0.125 mm tungsten core

wire was electroplated with 45 um diamonds.

In run 441-SX and 442-SX diamonu^ were fixed mostly

on the cutting edge. In these experiments the yield was in

the range of ?5 to 80 per cent, up to the last inch of cut.

During the last inch of cut, however, slicing performance

was not satisfactory because some wire wander occurred and

the yield dropped. This was due mainly to inconsistency in

the movement of the feed mechanism.

1.4
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The average cutting rates of 3.7 and 3.4 milalmin was

obtained in these runs. These values were still much higher

than the cutting rates obtained from the old cutting bladehead.

A plot of the data for these two runs is shown in Figure ?.

In runs 443-SX and 445-SX, where the diamonds were fixed

mostly in the cutting edge, high slicing rates were achieved.

The yield was also high; however, toward the end there was

significant wire wander and loss of wafer resulted. ?dicro-

scopic examination showed that there was Significant diamond

pull-out.

In run 444-SX a wirepack with 25 wires/em spacing was

used to slice a 10-cm diameter silicon ingot. Low feed forces

were used to start the wires into the workpiece. Significant

amount of chipping of the workpiece was observed. This w^^s

due to wire wander and dumping of the wires from the grooves

of the support rollers. The run was aborted.

The first CSI electroplated wirepack was used in run

446-SX. Diamonds were co -deposited on one side of the

bladepack. A high cutting rate, 3 . 8 mils /min, and 48z yield,

was obtained.

In the next CSI bladepack diamonds were fixed all over

the circumference of the wires. A yield of e1X was obtained

in this run. It was quite encouraging that high yields were

achieved so quickly with in-house electroplated wires.

In the last three experiments of this quarter life tests

17
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were carried out on CSI bladepacks. The bladepack where

diamonds sere co-deposited all around the wires produced SOX

yield in the first run, run 448-3x. Approximately the same

amount of yield was also achieved in the second run. In run

450-3X, where the third run was carried out, the yield was still

high in the first half of cutting. In the second half, however,

sudden wafer breakage was observed due to loosening of the

workpiece. The yield dropped to 38X. The yields obtained in

these three runs were quite high in comparison with previously

reported life test texperiments.

The cutting rates obtained in these runs were also above

average. In the first run average cutting rate was 3.7 mils/

min. However, it was dropped to 2.8 and 2.4 mils/min in the

second and third run, respectively. A plot of the data for

these three runs is shown in Figure 8.

Material Characterization

In order to characterize the electroplating of diamonds,

SEY examinations were carried out from different bladepacks.

Figure 9 shows the SEM picture of the wire used in runs 433-SX

through 435-SX after the third run was completed. Good diamond

concentrations and distribution are seen. Comparison with the

diamond distribution before the run (Figure 10) shows that

diamond concentration has not been changed after three runs.
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been puked out. Thus the drop in both the cutting rate and

yield cannot be explained by changes in the diamond concentra-

tion. Closer study o! the diamond morphology is necessary.

Figure 11 and iZ show e;iectropiated wires where no diamonds

are seen on sides, This bladepack hu been used !or only

0.5 hours because the cutting rate was so low due to the

lower concentration o! diamonds tewards the side.

Figure 18 shows the 9EIi picture o! an electroplated

wirepack before use. Not many dia®oads are seen because most

of them are buried in the nickel. This wirepack has been used

in rums 437-3X and 438-3X. Figures 1+t and iS, respectively,

show the dian^nd distribution after these runs. After the

first run, a high diaa^nd concentration and an even diamonds

distribution are seen, The same thing is observed also alter

the second run, Figure 15. It is felt that nickel is abraded

when the cut is is progress. By the appearance of sore diamond,

the cutting rate increases. The high cutting rate (4 to S

mils /min) that have been found in these experiments can be

attributed to this behavior.

The game high cutting rate and life was not obtained

cram run 441-$X where the SEY pi^:tures of the wire before

and alter use are seen in Figures 16 and 17, respectively.

Diamond concentration is not high after the run, Figure 1T,

and is a good indication that the diamonds have not been held

as successfully as previously plated wirepacks that have been

22
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Figure 13. SEri photograph of electroplated ^cire before
use in runs 437-SX and 438-SX showing
diamonds buried in nickel

Figure 14.	 SEht photograph of wire used in run
43?-SX showing high diamond concentration
and even diamond distribution

24



Figur 15. S 1 ph ogr. h of wir u d in run 
3 - X show' n hi~h di:lm( nd n(,pntI' tion 

and v n diam nd di tribution 
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Figure 16. SE11f photograph of wire before use in
run 141-SX, rotated 30°

Figure 17. SE^f photograph of wire after use in
run 441-SX showing loss of diamonds,
rotated 600

26



used in rune 437-$$ and 438-3%. These conclusions can also

be reached from the comparison of Figures 13 and 16.

The above experiments indicate that successful plating can

be achieved. However, it is necessary to improve this process

in order to have a reproducible bladepack.

Process Characterization

Slicing silicon crystals using the FAST technology has

produced high cutting rates (more than 5 mils/min) and high

yields (95X). Electroplating efforts of diamonds on one side

of the wirepack showed promising results in slicing performance.

However, some diamonds, even though they are in very low con-

centration, still get plated on the top surface of the wires.

During the slicing test these diamonds caused perturbations

for the support rollers and lowered the performance.

The experimental studies show in general that reproduci-

bility of the experiments is the main obstacle for the

commercialization of this process. The reason for this is

inconsistent diamond electrodeposition. The diamond concen-

tration changes from bladepack to bladepack. Diamonds do not

hold on the wires in the same way all the time. Masking during

selective electroplating forms a flat surface where wires

g	 cannot be seated in the grooved rollers. All of these indicate

that the electroplating process has to be improved upon

^	 through further development.
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For this purpose an in-house electrodeposition facility

funded by Crystal Systems has been planned and constructed.

A program was prepared to determine the effect of various

parameters important for good electroplating.

Blade Development

In order to slice effectively it is necessary to electro-

plate diamonds on wire at high concentration and with a good

bond. Initial work in the in-house facility was carried out

by plating on an experimental setup. Figure 18 shows SEI^

examination of a wire in which diamonds were electroplated

selectively in the cutting edge. The three views show that

the diamonds are on one side of the wire and at a high concen-

tration. This sample was the first experiment at electro-

plating carried out in-house.

In order to achieve high material utilization during

slicing and also reduce costs, it is necessary to produce

an electroformed wirepack. In this approach the diamonds are

selectively plated with a predetermined kerf. Under these

conditions it is possible to use larger diamonds and have more

than a single layer of diamonds in the cutting edge. Figure 19

shows an initial experiment at electroforming. The diamonds

were plated on wire at a kerf of almost the size of ±he wire.

Suitable fixtures are being fabricated to adopt the electro-

forming approach for electroplating wirepacks.
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ECONOMIC ANALYSIS

Projected add-on cost of HEY ingot casting process has

been carried out using IPEG analysis. Sensitivity of various

assumptions have also been analyzed.

The calculations have been made for a plant to produce

5 x 106 square meters of sheet per year. Oversized ingots

will be cast by HEY which will be sectioned to produce nine

10 cm x 10 cm x 30 cm bars. Production is on three shift

basis, 345 days per year. Labor is $9 per hour with 4.? per-

sons to cover the three-shift cycle. Power is assumed to cost

$0.06/kwh.

The following IPEG equation 2 was used:

Price = {(0.49 x EQPT) + (110.61 x SQ F'I') + (2.14 x SLAB)

+ (1.23 + MATS) + (1.23 x UTIL)f/QUANTITY

where	 EQPT = total equipment costs

SQFT working area in square feet

SLAB = direct labor costs

PATS direct materials costs

UTIL	 utilities costs

All dollar numbers are in 1980 dollars.

The calculations have been carried out in two steps:
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(i) HEY casting of ingots ( Table III), and ( ii) Band saw

sectioning into nine 10 cm x 10 cm x 30 cm bars ( Table IV).

TABLE III. IPEG ANALYSIS FOR ASSUMPTIONS AND
VALUE ADDED PRICE OF HEY CASTING

`^ Estimate

Equipment cost per unit, 	 = 35,000

Floor space per unit, sq.	 ft. 60

Labor, units/operator 10

Cycle time, hrs. 48

Expendables/run, $ 135

Material utilization, X 86

Average kw for cycle time 10

Conversion ratio, m 2 /kg 1

Add-or. Price,	 $/m2 $7.56

TABLE IV.	 IPEG ANALYSIS FOR ASSUMPTIONS AND
VALUE ADDED PRICE OF BAND SAW SECTIONING

Estimate

Equipment cost per unit, $ 20,000

Floor space per unit, sq.	 ft. 80

Labor, units/operator 1

Cycle timelboule, hrs. 2.5

Motor power, h.p. 3

Expendables / boule, $ 5

Conversion ratio, m 2 /kg 1

Add-on Price, $/m2 $1.08
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Therefore, the add-on price !or HEM solidified and sectioned

10 cm x 10 cm x 30 cm bars is it7.56 ♦ 1.09) Jm^ ^ i8.851m?.

The add-on price allocatioa 3 for HEY sheet is =38.30lm^

to meet 1980 goals. Assuming half the allocation is for slicing,

the HEY add-on allocation is therefore =18.1S1m2.

Sensitivity of Assumptions

Using the above analysis as a baseline and checking the

sensitivity of each assumption independently, a set of curves

can be generated. The parameters varied are:

(i) Equipment cost (Figure 20)

(ii) Expendableslrun (Figure 21)

(iii) Cycle time (Figure 22)

(iv) Weight of finished ingot (Figure 23)

In these analyses the band saw sectioning has been kept constant

at =1.08/m 2 . The baseline value and the allocation are also

shown on the curves. It can be seen that under all scenarios

the projected add-on cost of HE1! is well below the goal of

s1s.1S/m2.
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SUYYARY

1. Increase in the size of ingot affects the heat flow

conditions at the bottom of the ingot. Hence,

crystallinity of the structure is affected.

2. The breakdown in crystallinity across the bottom of HEY

ingots has been reduced to an area in the vicinity of

the melted-back seed.

3. In general, homogeneous resistivity has been found all

over the ingot.

4. Significant problems have been Pncountered with vendor

supplied wirepacks. These wirepacks have exhibited

poor plating and diamond pull-out.

5. basking of the wires to fix diamonds in the cutting edge

of the wires should be controlled in such a way that

wires seat wp11 in the grooved rollers.

6. Electroplating must be developed specifically for FAST.

A plating facility has been set up at Crystal Systems

to assure that this development takes place expeditiously.

?. High yield and cutting rate were obtained in slicing

with in-house electroplated wirepacks.

8. The yields obtained in life test runs with CSI wirepacks

were well above the values previously reported for life-

test runs.
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9. It is now possible to electroform the plated layer on

wire to a predetermined kerf.

10. Projected add-on cost of HEM casting is $8.65/m 2 , well

below the allocation of 518.15lm2 to meet the 1386

goal.
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