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1. Introduction

Methods of cell separation based on the electrokinetic

properties of the cell membrane offer a degree of discrim-

ination among cell populations which is not available with

methods based on cell size or density alone. Functionally

homogeneous cell populations share a common surface topo-

graphy in terims of various receptors, antigenic determinants,

transport enzymes, etc., all of which possess numerous iono-

genic groups which together define the net surface charge

density of the cells at a given pH. Electrophoresis of a

mixture of cell ty pes should therefore allow separation

into the constituent functional sub populations, as a.

function of their differential, cellular electrophoretic

mobilities. In practice, numerous limitations apply to

electrophoretic separation of cells. Free cell suspensions

in isotonic media compatible with cell viability are mandat-

cry. Maintenance of isotonicity by dissolved salts at physio-

logical concentrations is not practical in electrophoretic

terms, since the resulting high ionic strength of the medium

compresses the electrokinetic double layer of the cells,

decreasing their surface charge density and hence the electro-

phoretic mobility; in addition, current flow exceeds the

capabilities of most electrophoresis power supplies. Media

are therefore supplemented with sucrose, Ficoll, or dextrose,

allows low ionic strength buffers to be used, but in turn

t	 ^
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may induce cell aggregation and loss of electrolytes from

the cell interior. A further limitation of free cell sus-

pensions is cell sedimentation and convective overturning

of the electrophoretic medium as a result of Joule's heating.

Both these effects are related to gravity, and partial correct-

ions can be made using density grAdients; total correction

necessitates a zero-gravity environment, such as pertains on

board orbiting space vehicles. The latter approach shows

great promise for high resolution, high yield electrophoretic

separations of cells, and it is towards this ultimate goal

that the present study is directed.

The greatest limitation to cell electrophoretic separat-

ions, however, is not susceptible to improved design of

electrophoresis apparatus or even provision of a zero-gravity

environment. mixtures of functionally distinct cell popul-

ations, each possessing a unique configuration of surface

groups, may nevertheless overlap to greater or lesser extents

in their electrophoretic mobility distributions. Such popul-

+ions areelectrophoretically inseparable. Only by select-

,ely modifying their surface charge density will cells of

.terest be susceptible to electrophoretic isolation.

The recent development of polymeric hydrophilic immuno-

crospheres has allowed this approach to be tested (1).

njugation of cell-surface specific antibodies to micro-

hexes and subsequent coupling of the microspheres to cells

2
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identifies or labels a specific cell population in a mixture.

Purthermore, it has been shown (2) that the presence of micm-

spheres on the cell surface significantly modifies the surface
charge density of the cell. This selective modification of

cell electrophoretic mobilities allows separation of other-

wise inseparable cell mixtures t using conventional free-flow

electrophoretic methods (2).

The present report summarizes studies conducted over the

past year aimed at extending the previously reported red cell

sepations using mcrospheres to purification of lymphocytes.

Human peripheral blood lymphocytes are known to exist in two

sub-groups, the thymus-derived T cells, and bursa-equivalent

derived B cells (3). Cell surface structures have been used

to identify the two sub-groups; T cells bear receptors for

sheep red blood cells (4), B cells bear surface immunoglobulin

(5) and complement receptor sites, and B and some T cells bear

eceptors for the Fc portions of immunoglobulins (6). These

urface differences between T and B lymphocytes have prompted

everal workers to exrlore the separability of the sub-groups

y electrophoresis (7-11) and isoelectric focusing (12, 13).

hile lymphocytes obtained from rodents were usually resolved

nto two peaks with considerable overlaps T cells showing

lightly higher mobility, results with human lymphocytes were

ess encouraging (9, 14, 15). Electrophoretic mobility distri-

utions sere urimodal, with only partial enrichment of B end

Y
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T cells at the tail of the distribution. A microelectro-

phoretic study of human lymphocyte mobilities (16) concluded

that T and B cells showed considerable overlap in their

surface electrokinetic properties and that a significant

degree of electrophoresic variability existed within individ-

uals and also from person to person. A successful separation

of B and T lymphocytes derived from human blood would have

obvious research potential and clinical diagnostic advantages.

The availability of highly specific antisera to the

surface immunoglobulns of human lymphocytes allowed us to

label these cells with microspheres, and to show reductions
in the electrophoresic mobility of lymphocyte suspensions so
treated. Llost significantly, selective labelling of the
surface membrane .munoglobulin (Smig)-bearing lymphocytes
(prospectively B cells) in preparations of peripheral blood
lymphocytes generated bimodal mobility distributions, whereas
untreated lymphocytes invariably showed unimodal distributions.
Free-flow electrophoresis of labelled lymphocyte preparations
resulted in partial separation of labelled from unlabelled
lymphocytes, the optimal conditions of microsphere composition,
cell labelling, and electrophoresis are under continuing inves-

tigation.
In the following sections of this re port, four phases of

the contract studies are presented. Firstly, the methodology
and results of analytical mobility measurement of microspheres

4



are discussed. Secondly, analytical electrophoresis results

with sheep red blood cells and their microsphere conjugates

is presented, followed thirdly by the methodolgy and results

of analytical and preparative electrophoresis of human lympho-

cytes. Finally, an account of recent experiments to produce

monoclonal antibodies to hog gastric macosal H*-e A!p-ase

is presented. It is believed that used in conjuction with

mic:vspheres, these antibodies may prove useful in an improved

purification of this enzyme by electrophoresis.

2. Microsuhere Studies

2.1. Electrophoretic TvIobility Measurement by Free-Flow

Electrophoresis

Since the lower limit of visibility of particles in the

cylindrical chamber micro ele ctrophore sis apparatus (Figure 5)
is 1 micron, free-flow electrophoresis was used for arability

measurement of microspheres in the size range 800-2000 R.
This method is characterized by a film of buffer flowing

through a direct current electric field placed normal to the

direction of flow. Charged particles injected into the buffer

film as a narrow streak are deflected towards one or other of

the electrodes, their migration distance depending on their

surface charge density, the electric field strength, and

buffer ionic stren th and flow rate. The outflowing buffer

film and deflected particles are directed through a multi

_5
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channel fractonator into collection tubes (Figure 1).

Under standard conditions of field strength, buffer composit-

ion, and flow- =gate, the lateral deflection of particles is

r ti
	 proportional to their electrophoretic mobility, which can be

estimated from calibration curves derived from free-flow
electrophoresis of red blood cells under similar conditions.

Figure 2 shows the variation o#' migration distance of red

blood cells as a function of voltage gradient, and demonstrates

the linearity of the eloctrophoretic response over a substant-

ial voltage range. Figures 3 and 4 show the variatie<n in

migration distance of cells as a function of their electro-

phoretic mobility, determined independently by microelectro-
" phoresis.	 The linearity of this plot and iti	 extrapolation

to zero mobility at zero field strength emphasizes the validity
of mobility measurement by this means.

2licrospheres were washed three times in electrophoresis
buffer (Table 1) and resuspended in the same buffer at concen-

trations sufficient to give a well-defined sample streak in
F

the free-flow electrophoresis chamber.	 Using a millmeter

'. scale at the lower end of the chamber, micros ,phere migration

distances under standard electrophoretic conditions were

,- measured, and their mobilities estimated from Figures 3 and 4.

The validity of this analytical method was further established

e by measurement of identical mobilities for 14 micron micro-

'	 = spheres by cylindrical tube electrophoresis. 	 The advantage:
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of the method are ease of electrophoretic screening of sub-

microscopic particles, speed of mobility measurement, and

reproducibility of results. The disadvantages are lack of

precision owing to sample streak spreading, and the necessity

of applying milligram quantities of microspheres per deter-

mination.

.2. Operation of Free Flow Electrophoresis Apparatus

The FF 5 apparatus (De saga, Fie idelbe rg, W. Germany) vas used

for preparative separation of labelled and unlabelled red

blood cells and lymphocytes, and for analytical electrophoresis

of sub microscopic polygluteraldehyde and other microspheres.

The operation of the apparatus is given in detail essentia.

to reproducibility of results in both preparative and analyti-

cal studies.

The separation chamber was filled with 20 1/'0 ethanol, and replaced

after 10 minutes with 4 liters of distilled water passed through

the chamber by gravitational siphoning from the electrophoresis

buffer reservoir. The chamber was then: drained and refilled.

with 20 bovine serum albumin. Albumin reduces the zeta potent-

ial at the wells of the separation chamber, which otherwise

generates an electro-osmotic flour of buffer parallel to the

wall towards the cathode. Electro-osmosis leads to sample

streak cross-sectional distortion Which results in remixing

of separated fractions on collection (17). After 10 minutes,

1 ^1
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the albumin solution was replaced by electrophoresis buffer

flowing via the multi-channel peristaltic pump adjusted to

the experiment flow rate. The electrode buffer pump was then

switched on, taking care to eliminate air bubbles from the

electrode compartments. The cooling unit vices switched on,

and when the chamber temperature reached 7.50C, the electric

field was established and raised in increments of 100 volts

to the experiment voltage, ensuring that chamber temperature

did not rise above 8.50C. When voltage, current, and temp-

erature were stabilized, sample injection vias started at a

maximal flow rate of 2.5 mlAr. Following sample streak

stabilization for 10 minutes, fraction collection was init-

iated and the nul continued until the sample was exhausted.

The cooling unit was switched off, and when the chamber temp-

erature had reached 200C, the voltage was reduced to zero

by 00 volt decrements, keeping chamber temperature above 15oC.

Electrophoresis buffer flow was discontinued, and the chamber

flushed with 4 liters of distilled water. Electrode buffer

was replaced with distilled water, ensuring that the return

lines from the electrode compartments were fully immersed in

the reservoir to prevent siphoning and subsequent drying of

the ion-exchazige membranes. The separation chamber was drain-

ed and refilled with 1 S sodiuri dodecyl sulfate which was left

overnight in the chamber,  and then washed out with 4 liters

of distilled water. Following this, the apparatus was ready

12



for another cycle of operation.

2.3. Free-Flow Electrophoresis Buffers

Two buffer compositions were used in the present study# and

these are formulated in Table 1. The Tris-acetate buffer

has previously been found to be optimal for the preparative

free-flow electrophoretic separation of gastric membrane

vesicles with preservation of their ionic transport functions

(18). The phosphate buffer was formulated specially for

separation of red blood cells by continuous flow electro-

phoresis (19). In both cases, the buffer ionic strength is

substantially lower than physiological, in order to increase

the electrophoretic mobility of sample cell populations by

maximal extension of their electrophoretic double lasers.

Isotonicity of the buffers with biological cells was ensured

by incorporation of 0.25 I" sucrose. Both electrode buffers

were 10 times more concentrated than the respective electro-

phoresis buffers, to minimize generation of Joule heat in

the electrode chambers, and to minimize the voltage drop

between the electrodes and the separation chamber.

2.4. Processing of Microspheres

The several classes of microspheres used in the present

study were synthesized by Dr. Alan Rembaum at the Jet Pro-

pulsion Laboratory as described previously (20-22). Ehero-

i
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Table 1.

Phosphate Electrophoresis Buffer*	 Electrode Buffer*

11%HPO 47H20	 1.898	 13.99

KH2PO4	0.208	 2.Og

Na2EDTA.2H20	 0.57g	 5.65g

Sucrose	 342 g

PH=7.4

Tris-!acetate Electrophoresis Buffer** Electrode Buffer**

Trizma Base	 3.8g	 48.44g

Glacial acetic
acid	 1.928	 24.028

Sucrose	 342g

** Adjust PH to 7.4 with 2N NaOH

Both buffers are made up to 4 literflith distilled water.

14
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spheres, suspended in buffered aqueous media at concentrat-

ions of up to 20 mg/ml, were shipped to the Laboratory of

Membrane Biology via overnight air freight service, There

they were stored at '400 until needed. Low ambient temp-

eratures were maintained during shipping by wrapping the

sample tubes in commercially available ice-packs (Divajex,

Tustin, CA 92680). Microsphere samples were prepared for

mobility measurement and cell separation as follows. The

suspensions were vortexed vigorously for 30 seconds, soni-

cated for another 30 seconds (Model 112 SP 1T Ultrasoni cator,

Laboratory Supplies Co. Inc., Hicksville, N.Y.) and then

centrifuged at 10,OOOrpm for 1 minute (Eppendorf Hicrofuge
I.odel 3200). The supernatants were discarded, and the micro-

sphere pellets resuspended in electrophoresis buffer by

vortexing and sonication as above. Three washes in buffer
were necessary to ensure electrokinetic stability of the

microspheres; fewer washes resulted in disturbances of the

microsphere sample streak on entering the free-flow electro-
phoresis chamber, accompanied by irreproducible measurements

of electrophoresie mobility. Sonication was indispensable

for formation of highly disperse microsphere suspensions in
electrophoresis buffers of low ionic strength; microsphere

dispersion was difficult or impossible to achieve when 0.15

sodium chloride or phosphate buffered saline was used as the

suspension medium.
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2.5. E,lectrophoretic Mobilities of bticrosnheres

Microsphere mobilities were measured as described in Section

2.1, at a field strength of 925 volts, 125 rLA, and phosphate

electrophoresis buffer flow rate of 9.3 ml/min. Hicrospheres

with diameters in excess of 1 micron were also analyzed by

microelectrophoresis in order to confirm the mobility value

estimated from free-flow electrophoresis. The data shown

in Table 2 illustrate the effects that differing ionogenic

groups at the surface of a microsphere have on the electro-

phoretic mobility. Thus, large unsubstituted polystyrene

microspheres showed very high negative mobilities; when

susbstituted with amino groups which are extensively -proton-

ated at pH 7.4, the mobility of these microspheres dropped

to -1.15 P sec-1 V-1 cm, reflecting decreased net surface charge

density. Small (2000 R) polygluteraldehyde (PGL) microspheres

showed a mobility of -1.75 jAsec-1 V-1 cm; when these micro-

spheres were coupled to the larger amino-substituted beads,

the ele ctrophoretic mobility of the hybrid was -1 .58),se a-1 V-1  cm.
The result suggests that the mobility of the hybrid is dic-

tated largely, but not exclusively # by the smaller microsphere.

Table 3 shows the effect of lysine and glutamic acid on the

mobility of PGL microspheres coated with goat anti-rabbit Ig

antibody. The results suggest that both agents, when included

in the polymerisation medium, have insignificant effects on

the mobility; however, when PGL microspheres were post-syn-

1ti
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Table 2. Effect of Amino Substitution and hiicrosp-here

Sample Monomer Diameter IdobilM.,
(microns) (fmse c	 V	 cm)

Polystyrene Styrene 11 —5.69
beads

Polystyrene- Amino-substituted
amine beads styrene 11 -1.15

DMI 207 gluteraldehyde
mi cro sphe re s 0.5k/v) 2 -1-75

Polyst rene-
aminet07
hybrd.beads 15 -1.53

17
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Table 3. Effect _ of L rsine and Glutam c Ac id_ on Nobility	•

Sample	 Additionto Polvmerization 	 Lysine	 Wobi}ity,
Number	 eac on Mixture: 	 Quench	 Be  v cm)

/!1a, wr, w w w	 T^wi ww

DOM 111	 -	 -	 -	 -1.54

DOM 160	 +	 -	 -	 -r .57

DOM 221	 -	 +	 -	 -1.65

DOM 162	 -	 -	 +	 -1.24

19
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thetical,ly quenched in lysine (1% w/v), a significant

decrease in mobility resulted, reflecting the acquisition

of positively charged groups which were not susceptible to

neutralization by antibody. Incorporation of fluorescein

isothio cyanate (FITG)-amine into PGL polymerization mixtures

resulted in a similar reduction in electrophoretic nobility

as a function of protonated amino groups at ph 7.4. The

results of increasing F=TC-amine concentration are shown in

Table 4 1 and .indicate ready saturation of the PGL microsphere

matrix with FITC, at least as reflected in mobility measure-

ments.

The effect of coupling goat anti-rabbit Ig antibody to

hydro;..-y-etl ►1-methacrylate/acrolein (HEVIAC) mi.crospheres on

the mobility is shown, in Table 5. The results show no con-

sistent effect of antibody on microsphere mobilities, suggest-

ing that the surface charge density of the microsphere conjug-

ates was determined principally by HEMAC-FITC ionogenic groups.

The anaomalous effect of FITG-amine in increasing the mobility

of HM-1111C mierospheres is at present unaccounted for, but may

be related to the greater susceptibility of HEIAAC beads to

swelling in aqueous media Increases in microsphere size

would in general increase their electrophoretic mobility,

particularly in low salt media if double layer thiclmess was

comparable to microsphere diameter (23).

Sample number DOM 253 (low salt) (Table 5) shoes the Lowest

19
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Table 4. Effect of Fluores

Sample	 Fluorescein Isothiocyanate	 1obility
Number	 in polymerization mixture	 ()Aged' Y" cm

DMI, 104 0 —1.92

109 113 5 —1.65

DOM 112 10 —1.54

DOM 111 15 -1.54

20
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Table 5•

Composition (5ov/v ) *	 Mobility _( so c"1 V-1 cm)

Sample HEIVIA AC TdA BA	 Native	 +FITC	 +FITC +

Numbe r	 antibody

DCM 245 40 60	 -	 - -1.13 -1.27 -1.35

DCM 246 20 80	 -	 - -1.13 -1.39 -1.39

DCM 247 30 70	 -	 - -1.13 -1.35 -'1.39

DMA 253 70 30	 -	 - -0.93 -1.23 -1.38

DCM 253 it -1.20
(low salt)

DCtfi 255 70 23	 5	 2 -1.04 -1.28 -1.38

DC14 255 it -1.28
(low salt)

DCM 229** 30 -	 10	 30 -1.43 -1.58 -1.50

* H MA = Hydroxy-ethyl-methacrylate
AC = Acrolein
MA = Methacrylic Acid
BA Bis-acrylamide

Also contains 30$ acrylamide.

21
i



electrophoretic mobility of any microsphere n-FITC-antibody

conjugate screened to date, and, is a promising candidate for,

future lymphocyte labelling and mobility modification.

3. Analytical CellElectrophoresis

Red blood cell and lymphocyte electrophoretic mobilities were

measured in a cylindrical tube apparatus fitted with silver/

silver chloride electrodes, immersed in a constant temperat-

ure water bath at 250C. A schematic diagram of the electro-

phoresis chamber is shown in Figure 5. The electrode compart-

ments were filled with 0.145 I'A NaCl, buffered to pH 7.2 ± 0.2

with 0.5 Iii NaHCO 3 (standard saline), thereby eliminating

problems due to KC1 diffusion into the sample chamber and

allowing samples to be reloaded several times without inter-

mediate washing of the system. The electrical length of the

electrophoresis chamber was measured in the usual way (24),

using 0.01 11 and 0.1 11 M.I. solutions o.4 known conductivity.

Before and after each set of red cell or lymphocyte mobility

measurements, the accuracy f the apparatus was checked by

electrophoresis of fresh human red blood cells suspended in

standard saline. Only When consistent red cell mobilities

of -1.03 ± 0.03 )A sec -1V 1 em were obtained (25) was the appar-

atus regarded as accurate and raliable. Electrophoretic

observations %.,;ere carried out in standard saline or in the

electrophoresis buffers Nho%,,^ in Table 1. Cells to be mea -

22
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ured were washed twice in the approp riate buffer and resuspend-

ed in the same buffer at a concentration of 2 x 106 cells/Ml.

The applied field strength was 4.0 volts/cm. Only those cells

in focus at the stationary level with typically small lymph-

oid morphology or typical biconcave disc morphology in the

case of red cells were timed; larger cells similar to mono-

cytes or neutrophils were not timed. At least 50 individ-

ual cells were timed in both directions for each sample dis-

tribution, in order to eliminate convective or gravitation-

al drifts and to minimize electrode polarization effects.

Times of migration were recorded using a Micronta electronic

stop ~Match accurate to 0.01 seconds, and these times were

entered into a preprogrammed Compucorp 325 Calculator for

print-out of electrophoretic mobilities, coefficients of

variance, and standard deviations fron the mean. For each

sample distribution the electrophoretic mobilities were coll-

ated in frequency histogram form, showing the percentage of

cells in standard mobility intervals.

4. Sheep Reel Blood Cell Studies

4.1. Background

Modification of cell, electrophoretic mobility bw i=vjnQ,,?,peoific
coupling of'm crospheres to the cell plasma membrane is most

conveniently studied with red blood cells, which are readily

available in large quantities, are easily purified, can be

. _,	 _4__-_	 3	 ^'
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rendered osmotically insensitive by treatment of aldehydes

without loss of characteristic electrokinetic properties,

and to which highly specific cell surface binding antisera

are available. Sheep red blood cells were selected at the

Jet Propulsion Laboratory as a model cell population to

confirm the previously observed separability of human red

blood cells by means of microspheres (2), while analytical

mobility studies of derivatized SRBC were performed at the

Laboratory of I;!embrane Biology.

Three classes of microspheres were investigated for their
effects on the electrophoretie mobility of S?RBC. PGL micro-

spheres were synthesized in the presence or absence of lysine

in the polymerization mixture; the occurence of protonated

e-amino groups at pH 7.4 could be expected to) confer some

degree of positive surface charge to microspheres incorpor-

ating lysine, thereby lowering their net negative surface

charge density. Dlicrospheres were also incubated after syn-

thesis in 1;j lysine in an attempt to confer analogous reduct-

ions in electrokinetic net charge by adsorption of amino groups

to the surface and interstices of the PGL matrix. A third

group of microspheres was incubated after synthesis in 10

glutamic acid; the presence of free e-carboxyl groups could be
expected to increase the the net negative surface charge of

these microspheres. Corresponding modifications of ele ctro

phoretic mobility of SRDC labelled Nvith the three classes of

25
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microspheres were sought by microelectrophoresis.

4.1.1. SRBC Sensitization and Labelling

SRBC were storsd in sterile A1seve rs medium at 40C until used.

They were washed three times in phosphate buffered saline (PBS)

at pH 7.4 and resuspended at 109 SRBC/ml. To 1 ml of this

suspension was added 1 ml of a 1:20 dilution in PBS of rabbit

anti-SRBC antibody, followed by gentle agitation at 37 0C for

30 minutes. The cells were washed three times in PBS to re-

move unbound antibody, then resuspended and washed trice in

phosphate electrophoresis buffer to a final concentration of

2 x 108 cells/ml. To 2 ml of the suspension were added 2 ml

of a 2 mg/ml suspension of either lysine-incorporated, lysine-

quenched, or glutamic acid quenched PGL microspheres conjug-

ated to goat anti-rabbit Ig antibody. The cell suspensions

were incubated with gentle agitation at 25 0C for 1 hour, then

washed twice in electrophoresis buffer to remove unbound

microspheres. Control SRBC were prepared similarly with the

exception that PBS replaced rabbit anti-SRBC antibody in the

sensitization step.

4.2. Mobilities of Labelled and Unlabelled SRBC

Representative eleetrophoretic mobility distributions of

normal, sensitized, and microsphere labelled SRBC are shown

in Pigure 6. The mobilities of normal. and sensitized SP^BC
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were not significantly different, being -2.06 ± 0.15 and

-2.05 ± 0.12 rtsec 1V'"1 cm respectively. Labelling of sensit-

zed SRBC with glutamic acid quenched microspheres reduced

their mean mobility to -1.67 ± 0.16 t4see 1V-1 em p with emerg-

ence of a bimodal mobility distribution in contrast to the

unimodal distribution exhibited by normal or sensitized SRBC.

This electrophoretic splitting of the cells was unaccounted

far, but could be due to incomplete or differential derivat-

ization of the microspheres with glutamic acid, giving rise

to an electrophoretically heterogeneous microsphere populat -

ion.

SRBC labelled with lysine-incorporated or lysine quenched

microspheres showed unimodal mobility distributions, with mean

mobilities of -1.62 ± 0.15 and -1.51 ± 0.18^Asec ` i V-1 cm res-

pectively. These results confirmed that the greatest reduct-

ion in cell mobilities resulted from derivatization of micro-

A ^rres with e-amino groups. The fact that glut am c acid-

quenched microspheres reduced SRBC mobility despite the pres-

ence of negatively charged groups donated by the e-carboxyls

of glutamic acid suggested either that insufficient of these

had been bound, or that microsphere lonogenic groups were not

solely responsible in determining the net surface charge

density of labelled cells. The possibility that goat anti-

rabbit Ig antibody ionogenic groups contribute in some degree

to the surface change density cannot be excluded, although

28
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earlier results of microsphere mobility studies (Table 5)
indicated minimal differences in the mobilities of fresh and

immunoglobulin-conjugated microsph.eres of widely divevgaat

compositions.

4.3• Mobility of SRDQ-microsvhere Conj!U ates as Function

of ,
Separation of cells by isoelectric focusing has been describ-

ed by several authors (12, 13, 26). The method is based on

the electrophoretic migration of cells through a pH gradient,

established either by prefocusing of Ampholines (LKB, Bromma,

Sweden) or by means of a discontinuous gradient of appropriate

buffer ions. Since the electrophoretic mobility of cells is

a function of their surface charge density, or degree of diss-

ociation of membrane ionogenic groups, their mobility is close-

ly related, to the phi of the electrophoretic medium. At a cert-

ain usually low pH the net surface charge of a cell equals

zero, at which point it ceases to migrate electrophoretically.
Cell populations exhibiting heterogeneity in isoelectric point
are therefore in principle separable by isoelectric focusing,

since sub-populations with different isoelectric points will

concentrate in different regions of the pH gradient. In pract-

ice the separation is difficult to achieve because of aggreg-

ation and loss of viability of cells when exposed to their

isoelectric pH. The availability of microspheres, their

29
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ready and highly specific attachment to selected cell sub-

populations, and their significant modification of the cellfs

electrophoretic response, prompted us to investigate their

utility in cell separation by isoelectric focusing. It was

thought that cell labelling with microspheres may shift the

cell isoelectric point to a range which is less inimical to

cell viability, thereby extending the usefulness of-cell

focusing methods.

In preliminary experiments, sheep red blood cells were

labelled with PGL microspheres and their mobility subsequently

measured as a function of pH. SRBC were washed thoroughly in

PBS at pH 7.4 and resuspended in the same at a concentration

of 4 x 108 SRBC/inl. 0.5 ml of 1:100 dilution of rabbit anti-

SRBC antibody in PBS was added to 1 ml of cells, and incubat-

ed for 30 minutes at 3700. The cells were washed twice in

PBS then tw ce in phosphate electrophoresis buffer to a final

volume of 4 ml. 1 mg of lysine-quenchad PGL microspheres

(DC1.7 158), derivatized with goat anti-rabbit Ig antibody, and

suspended in 1 ml phosphate electrophoresis buffer, was then

added to the cells, and incubated for 1 hour at 250C. After

two final washes in electrophoresis buffer at pH 7.4, the cells

were resuspended to 8 ml and their mobility measured. Five

additional SRBC samples were treated similarly, exce pt that

the final washes were carried out in phosphate electrophoresis

buffers with pH adjusted to 6.3, 5.31 4.3, 3.3, and 2.4 res-

30
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pectively. Binding of the fluoreecent miarosphere Ls to the

SRBC was confirmed by fluorescence microscopy. fin the prep-

oration of control SRBC, the above protocal was followed,

except that in the cell sensitization step, the rabbit an-ti-

SPEC antibody was replaced with PBS. These cells showed no

binding of fluorescent microspheres. Control cell-o f electro-

phoretic mobilities were identical to those measured for

fresh SRBC suspended in electrophoresis buffers at all the

pHs tested.

The mobility dependency of SRBC and microsphere labelled

SRBC on pR is shown in Figure 7. The results indicated that

the isoelectric pH of normal cells was approximately 3.3,

while that of microsphere labelled cells was 3.8. Both

labelled and normal cells showed extensive aggregation at

pHs lower than 4.0. Nevertheless, the small shift in cell

isoelectric point suggests that microspheres could be effect-

ive in cell modification for isoelectric focusing separations,

although further studies are needed to clarify this point.

5. Lymphocyte Studies

5.1. BackrzrojInd

Human lymphocytes were labelled with microspheres by the

indirect antibody technique, whereby the cells were first

exposed to rabbit antiscra specific for lymphocyte plasma

membrane receptors, and then exposed to microspheres conjug-
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aced with goat anti-rabbit Ig antibody. Two groups of rabbit

antisera to human lymphocytes were used. The first group,

represented by rabbit anti-human lymphocyte antiser= (ALS),

showed reactivity against all human lymphocytes regardless

of cell ty-pa p being unable to distinguish between the T and

S cell sub-groups present i.n normal peripheral blood lympho-

cytes. The second class of antisera consisted of several

ammonium sulfate precipitated and affinity purified rabbit

antibodies showing specificity for either all human lympho-

cyte surface membrane immunoglobulins (Swig) or specific

classes of Smig such as IgT.i, IgG, IgD, IgB, and the kappa

or lambda light chain variants of these classes. Thus the

second group of antisera recognized lymphocytes belonging

to the B call sub-group. T lymphocytes are not labelled by

these antisera, an observation which forms the basis for

differentiating lymphocytes into T and B cell sub-groups (4 9 5).

Rabbit ALS was used in the present study to assese the

feasibility of modifying, the electrophoretic mobility of

lymphocytes by microsphere labelling, and to exploit the

mobility difference by separating labelled from unlabelled

lymphocytes. The anti-Emig antisera were used to modify the

electrophoretic mobility of the B lymphocytes alone, and to

assess subse quently the separability of the B cells from

peripheral lymphocytes by free-flow electrophoresis.

31
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5.2. PreRarat.ion of Dvmpllocytes

The separation of lymphocytes from whole blood was based

with slight modifications on the procedure of Boyum (27).

Human peripheral venous blood was collected from healthy

donors into sterile syringes containing 10 I.U. of heparin

per ml of blood. After gentle agitation to ensure mixing,

the blood was diluted with two volumes of Ca 2+ and IIdg2+ free

PBS in a siliconized Ehrlenmeyer flask. 7.5 ml of Ficoll-

Paque solution (Pharmacia, Uppsala, Sweden) was pipetted

into several 35 ml siliconized plastic centrifuge tubes, as

required. 11 ml of PBS-diluted blood was layered carefully

onto the Ficoll-Tagkxe solution , and the tubes were centri-

fuged at 400 g for 40 minutes at 25 0C (Sorvall GLC-2B, 1500

rpm). The interfacial cells were collected by Pasteur

pipette into 15 ml siliconized polystyrene centrifuge tubes,

and diluted %,,rith one-quarter their volume of Ca 2+ and Itlg2+

free Hank's balanced salt solution, followed by ceW.rifugation

at 100 g for 10 minu os (Sorvall, 1000 rpm) . The supernatants,

containing platelets, plasma., and Ficoll-Paque, were discard-

ed, and the lymphocyte pellets resuspended in 5 ml RPUI 1640

tissue culture medium (Grand Island Biological Co., N.Y.)

followed by centifugation at 100 g for 10 minutes. After one

more wash in PPII 1640, the lymphocytes were resuspended in

1 ml of the same medium and counted using an A0 Bright Line

hemocytometer (Scientific Instruments Division, Buffalo, X.Y.)
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Viability of the lymphocytes was estimated by trypan blue

exclusion, whereby a drop of the lymphocyte suspensio n was

mixed with one drop of 0.4^ trypan blue in saline, incubated

for 5 minutes under the hemocytometer cover slip, and exam-

ined by phase contrast microscopy at 400 x magnification.

Cells staining blue were considered to be non-viable.

In routine use, the above procedure yielded suspensions

of mononuclear cells with characteristic small lymphoid

morphology, with yields froth whole blood of approximately

50o and viability in excess of 95%. When suspended in RPUI

1640 tissue culture medium at 40C at concentrations of 106

cells/ml, the viability of the lymphocytes was 90^ after

24 hours, although after 36 hours the viability had decreased

to 50%. Consequently, further lymphocyte manipulations such

as analytical mol l.ity measurement, sensitization with ant -

bodies, microsphere coupling, or free-flow electrophoresis,

were carried out immediately after their separation from blood,

generally at 40C whenever practical.

5.2.1. l mph_o_cyte Sensitization

Lymphocytes were centrifuged at 1000-rpm for 10 minutes, and

the supernatants discarded. 10 ul of undiluted rabbit AZS or

rabbit anti-Smig antibody was added to the moist lymphocyte

pellet for every 106 cells present. All antisera, were centri-

fuged at 120,0100 g for 20 minutes in an ultracentrifuge (Airfuge,

.f r



Heckman Instruments Inc., CA 94304) immediately before use

to remove aggregated Igr. This precaution was found to give

more reproducible labelling and to minimize agglutination

of lymphocytes. The cells were kept on ice with occasional

tapping of the cell pellet to ensure mixing of the tube con-

tents. After 30 minutes, the cells were diluted with 5 ml

of TOZI 1540 and centrifuged at 100 g for 10 minutes. Super-

natant was discarded, and the cells washed twice more in

RRU 1540 to ensure removal of unbound antibody. Rxami.nation

of the cells by fluorescent microscopy was carried out to

estimate the relative numbers of labelled and.unlabelled

lymphocytes. In those cases where lymphocytes were sensit-

ized with non-fluorescent antibodies, control, cells were

labelled with the identical antibody coupled to fluorescein

isothiocyanate in order to confirm,; and quantitate lymphocyte

labelling.
Lymphocytes were then transferred to Tris-acetate or

phosphate electrophoresis buffers by gradual two-stage replace-

ment of the RPIJI 1540 by centrifugal gashing at 100 g for 10

minutes. This step was essential prior to labelling of cells

with microspheres, otherwise the high salt concentration of

RPT• 11640  would cause immediate and extensive aggregation of

microspheres and lymphocyte-rzicroopher€: conjugates.

Table 5 shows • he percentage of hi San lymphocytes labelled

with fluorescent rabbit ALS and anti-Smig antisera using the

3

..... 4



y

f

Table 6. Surface Staining of Human ;gMphocytei3
with uorescen _	 Anti-Sera.

FITO-Antisera ^ Lymphocytes stained

1. Anti-lymphocyte serum (ALS) 75-30

2. Anti-human 1g (light chain, lambda)	 3

3. Anti-human Ig (light chain, kappa)	 10

4. Anti-human IgM ( ^L chain) 9-10

5. 1;1 mixture of antisera 2 and 3
above (rabbit anti-Sm.g)* 16-20

* Smig = Surface membrane immunoglobulin.
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above protocol.

5.2.2. Lymphocyte Labelling with Yicrosrheres

Microspheres used for cell surface labelling were conjugated

with goat anti-rabbit Ig antibody at the Jet Propulsion Lab-

oratory as described previously (20-22). PGL microspheres

were derivatized by simple incubation with antibody followed

by blocking of unreacted sites with glycine, while HE14C beads

were derivatized by carbodiimide bridging with the antibody.

The microspheres were then washed twice and resuspended in

electrophoresis buffer at appropriate concentrations deter-

mined as follows.

The surface area of a lymphocyte is approximately 200 um2,

and the cross-sectional area of a single microsphere is about

0.03 um2 . Therefore, assuming complete coverage of the cell

surface, 6 1 600 microspheres will label one cell, or 6.6 x 109

microspheres per million ce.l1 s . One mg of microspheres com-

prises approximately 1012 microspheres, so that 10 ug micro-

spheres should be sufficient to label 10 6 cells. In practice,

100 ug microspheres were used per 106 lymphocytes in order to
ensure maximal binding to the cells.

Equal volumes of lymphocytes and microspheres, 'both sus-

pended in electrophoresis buffer, the former at concentrations

not exceeding 107 cells/ml, were combined and incubated with

frequent gentle vortexing for 1 hour at 4°C. The eelT-.micro-

sphere suspension was then washed twice in electrophoresis



LC

buffer at 80 g for 7 minutos; more extensive centrifugation

tended to precipitate unbound mcrospheres and promote aggreg-

ation of labelled lymphocytes. After the final Nash, the

lymphocytes were resuspended at 107 cello/nil in electrophoresis

buffer, small aliquots were taken for examination by flvores-

cence microscopy to determine exter,'it of labelling, and the

remainder used immediately for mob,flity measurements or free-

flow electrophoresis.

The relative proportions of microsphere labelled and

unlabelled lymphocytes as estimated by fluorescence micros-

copy correlated closely with the relative proportions of

surface stained lymphocytes using the same FSTC-rabbit anti.

sera as used for microsphere coupling. However, some diffi-

culty was experienced in obtaining dispersed lymphocyte sus-

pensions following microsphere labelling in the low ionic

strength buffers essential to electrophoresis. Labelled cello

shoved considerable aggregation and pronounced loss of via-

bility especially after free-flow electrophoresis. The aggreg-

ation may be caused in part by activation of lymphocytes

triggered by indirect antibody labelling, with release of

endogenous antibodies followed by cell rupture. An alter-

native approach currently under investigation is direct anti-
body labelling of lymphocytes, whereby microspheres couple"

to anti-Smig antibody interact directly with lymphocyte

membrane receptors. It is hoped that this technique may
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alleviate cell agglutination and provide the added benefit

of simplifying lymphocyte labelling.

5.3. Lym ho cy t Ble ct mho re si ss

5.3.1. Blectr2phoretic Mobilities

The electrophoretic mobility of lymphocytes was measured as

described in Section 3. Figure 8 is a composite of four

lymphocyte mobility distributions showing that sensitization

of lymphocytes with either rabbit ALS or rabbit anti-Smg

antibody had no significant effect on cell electrophoretic

mobility. Similarly, non-sensitized lymphocytes exposed to

PGL microspheres conjugated with goat anti-rabbit Zg antibody

showed no change in mobility, indicating absence of non -

specific binding of microspheres to the cells.

In contrast, Figure 9 shows the effect of microsphe re

binding to the lymphocyte surface on the cell mobility distri-

bution. While the control mean electrophoretic mobility was

-1- 1 7 ± 0.07 psec -1V-1 cm (a), the value for lymphocytes sen-

sitized with rabbit ALS and then labelled with microspheres

was -0.89 + 0.1r Msec
-1 V-1 cm. The mean mobilities of cells

sensitized with rabbit anti-Smig antibody and labelled with

microspheres was -1.00 ± 0.23 #4sec - 1 V-1 cm. Of special inter-

est is the unimodal mobility distribution observed for un-

treated lymphocytes in Figures 8 and 9 1 compared to the bi-

modal distributions evident in microophere-labelled lympho-
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cytes. While the entire distribution of RLS sensitized,

andand microsphere labelled cells is shifted to lower mobility

(Figure 9, b and c), only a small fraction of the anti-Smig

sensitized cells show an equivalent shift, since presumably

only B cells were affected by the labelling procedure in the
latter case.

Figure 10 shows the mobility distributions for untreated

SRBC and lymphocytes suspended in the Trio-acetate buffer.

Both distributions were unimodal, and their mean mobilities

were -2.Oh ± 0.15 and 1.71 + 0.19µsec" 1 V-1 cm respectively.
When both cell types were sensitized with rabbit antibodies

then labelled with goat anti-rabbit lg conjugated PGL micro-

spheres, both mean mobilities were lowered, coinciding at

N -1.5)Asee -1 V-1 cm. This result suggested that the modifi-

cations of cell mobility induced by microspheres were gener-

ated by the surface charge density of the microsphere-anti-

body complex, with minimal contributions from the membrane

associated ionogenic groups of the cells themselves. This

interpretation is supported by the mobilities of PGL micro -

sphere —antibody conjugates, measured by free-flow electro-

phoresis, which range from —1.3 to —1.71Asec-1 V-1 cm.

5.3.2. Preparative Lymphocyte Electrophoresis

When untreated human lymphocytes were processed by free-flow

electrophoresis,-there was no visible splitting of the sample
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streak in the electrophoresis chamber, and the cells were

collected in an essentially unimodal distribution spread

over ov14 fractions depending on the buffer flow rate and

electrical field strength. Fresh lymphocytes were sensit-

ized with rabbit ALS and then labellPrl with fluorescent PGL
m crospheres (DC14 1 58) with mobility = -1.58 µsec-lV-1 em.
Equal numbers of labelled and unlabelled lymphocytes were

combined in Tris-acetate buffer, washed once, and then

processed by free-flow electrophoresis at a buffer flow rate
of 6 ml/min. Parked splitting of the lymphocyte sample streak

was apparent as the cells traversed the length of the separ-

ation chamber; total and differential (fluorescent/non-fluor-

escent) lymphocyte counts of the collected fractions reveal-

ed the cells to be spread over 16 tubes, with the distribution

shown in Figure 11. Fluorescent lymphocytes, ie., those

labelled with microspheres, were found closer to the cathode

than untreated (non-fluorescent) lymphocytes, indicating

slower electrophoretic mobilities among the labelled cells,
in accordance with the findings of microelectrophoretic

analysis of lymphocyte mobilities discussed earlier. Approx-

imately 40 of the recovered labelled lymphocytes were con-

taminated with unlabelled lymphocytes, and showed fairly
extensive aggregation , unlike the untreated cells which were

recovered in monodisperse form. The remaining labelled lympho-

cytes were free of untreated cells, but also showed extensive
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clumping and 80% loss of viability.

In another experiment, lymphocytes were sensitized with

rabbit anti-Smig antibody, and subsequently labelled with

fluorescent PGL microspheres (DCM 111) showing an electro-

phoretic mobility of -1.54J,Aseo" i V-1 cm. The lymphocytes

were processed as before (120 volts/cm, 6 ml/min buffer

flow rate) and the results of total and differential cell

counts of recovered fractions are shown in Figure 12

Labelled cells constituted ry 13go of the total lymphocyte

count, and about 50o of these were recovered free of untreat-

ed lymphocytes. Once again, labelled cells showed a high

degree of aggregation and loss of viability.

The experiment was repeated, using DCIT 158 fluorescent

PGL microspheres, at a buffer flow rate of 10 ml/min. The

faster flow rate diminished the residence time of cells in

the electric field, and thus exposure of cells to electro-

phoresis buffer; in addition, processed cells were collected

in 2 nil RPMI 1640 tissue culture medium, and washed once in

this medium before analysis. The distribution shown in Figure

13 was obtained, which indicates labelled lymphocytes occupy-

ing the cathodic side of the cell distribution with consider-

able enrichment of those cells in fractions 46, 47, and 43.

Labelled cells showed less aggregation than in previous

experiments, with lymphocyte viabilities in excess of 6CI%

Figure 14 shores the lymphocyte distribution in two further
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free-flow electrophoresis experiments. Lymphocytes were

sensitised with rabbit anti-Swig antibody and an aliquot of

tha cells run on the FF 5 (solid line). The remaining cells

were con3ugated with fluorescent PGL microapheres showing

an electrophoretic mobility of -1.341Asec" 1 V-1 em, 0.2 units
lower than microspheres previously used for lymphocyte label-

ling. Following free-flow electrophoresis, the distribution
shown by the broken line in Figure 14 was obtained. Fractions

38 through 42 contained both fluorescent and non-fluorescent

lymphocytes; fractions 43 chrough 48 contained fluorescent

lymphocytes only, with few aggregated cells and viability in

excess of 6Yp in. all six fractions.

The results of free-floe electrophoresis of labelled and

unlabelled lymphocytes showed the feasibility of enhanced

electrophoretic separation using microspheres. The fact that

increased resolution of surface immunoglobulin labelled lympho-

cytes was obtained with microspheres showing relatively slow

electrophoretic mobility ( -1.34^Asec-l V-1 cm) suggests that

higher resolution may be obtained using microspheres of even

lower mobility. The slowest microsphere currently available

is the HCP;IAC polymer DCRI 253 with a mobility of -1 .20jsec-1 V-1 cm
(Table 5); this microsphere has yet to be tested in free-flow
electrophoretic separations of lymphocytes. Further improve-

ment in recovery of mono-disperse microsphere labelled lympho-

cytes may result from direct; antibody labelling (Section 5.2.2).
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Figure 14, Free-flow electrophoretic distribution of
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anti —Smig then labelled with fluorescent PGL
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6. Gastric membrane Vesicles

6.1.  Background

In addition to exploring the feasibility of lymphocyte

separation using microspheres, an important objective of

the contract studies is to identify other cell populations

of interest to the biomedical community whose purification

is difficult or impossible using current separation tech-

nology, and to apply the concept of microsphere.enhanced

electrophoretic separation in such cases. A possible cand-

idate cell population consists of the parietal cells of

gastric epithelium. The function of the parietal cell is

to produce hydrochloric acid, requires in the stomach for

the activation of pepsinogen by cleavage of a small peptide

yielding the potent proteolytic enzyme pepsin. Secretion

of protons into the secretory carinaliculus of the parietal

cell is driven by adenosine triphosphate (ATP), and is med-

iated by a membrane bound ATP-ase incorporating selective

ionic transport channels for X and protons. The mechanism

by which the chemical energy of ATP is converted into an

electrochemical proton gradient of great steepness across

the membrane of the secretory cannaliculus is of major

current interest in mcmbranc bioenergetics.

Fundamental to an understanding of proton secretory

mechanisms in gastric epithelium is the aquisition of the

purified ATP-ase %^r th its associated ionic pumps. The most
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highly purified vesicular H4'Xt ATP-ase available today is

prepared by differential centrifugation of hohogenized hag

gastric mucosal scrapings, followed by zonal centrifugation

of the microsomal fraction on sucrose—Ficoll gradients (13)

Free-flow electrophoresis is used in the final purification

stop, which yields three fractions, one of which is greatly

enriched in ee ATP-ase activity. Significant levels of

activity are still found, however, in the other two fractions.

The concept of immunospecific microsphere enhancement of cell

separation could improve the yield and specificity of -ft enzyme

purification, simultaneously reducing the isolation procedure

to a single step, free.-flow electrophoresis of the mucosal

homogenate, rather than the three stage method currently

used.

6.1.2. Production of Monoclonal Antibodies

In order to effect a microsphere based electrophoretic iao-

lati,on of eX+ A.TP-ase-containing membrane vesicles, an anti-

body showing high specificity for the enzyme must be bound to

appropriately charged microspheres with no loss of antigen

specificity. Antibodies raised in the conventional manner

against ee ATP-asc by immunization of rabbits (2$) or mace

with purified vesicular preparations of the enzyme followed

by bleeding show a wide spectrumof activities, even across

species barriers, and in the case of the mouse, activity



against all three fractions of the free-flow electrophoretic

final step of the H+S+ATP-ase isolation procedure (29)

We have turned therefore to the producticAL of monoclonal

antibodies to the H+X+ ATP—ase by the technique of plasma

rcel.l. hybridization (30 -32)

Briefly, mice were immunised with purified hog ee ATP-ase

vesicles, their lymph none; excised, and the lymphocytes

fused in the presence of polyethylene glycol with a non-

immunoglobulin secreting line of mouse plasmacytoma cells

maintained in culture (33). After two weeks growth, in select-

ive medium which did not allow survival of unfused myeloma

cells or lymphocyteu, the culture supernatants of the fusion

products were screened for activity against H+K+ ATP-ase

vesicles by enzy-,uta•-linked immunoabsorbent assay. Several

positive hybrid cell lines were identified; these were sub-

cloned into fresh medium, and their supernatant activities

tested again after 14 days continued growth. Ten hybrid

clones showed positive reactions against the original anti-

gen. Figure 15 these hybridoma antibody activities against

three antigens $ gastric epithelial fractions derived from

hog, rabbit, and rat. Several of the antibodies show exten-

sive cross-reactions, but three are specifically active only

against the hog gastric mucosal ff+e ATP-ase. The clones

secreting; theaQ antibodies were sub-cloned again into frash

medium, and will subsequently be expanded firut into 35 ml.
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tissue culture flasks, and then injected as active secret-

ing plasmacytomas into the peritoneal cavities of host mice

for long term propagation.

This phase of research has already produced highly

specific antibodies to the H+K+ ATP—ase of interest, and

thus provides the basis for preliminary experiments to assess

the applicability of the microsphere concept to improved

purification of the enzyme. To this end, PGL mierospheres

will be incubated with selected monoclonal antibodies, and

the derivatized microspheres then used to label a homogenate

of the hog gastric mucosal scrapings. Free—flow electro-

phoresis of the homogenate may then allow quantitative re-

covery of those vesicles which incorporate the crucial H+K+

ATP—ase proton pump. These experiments will be actively

pursued in the coming year.

7. Summary

PGL and MITIAC Microspheres synthesized at the Jet Propulsion

Laboratory were screened electrophoretically to determine

their electrokinetic properties. These measurements were

accomplished by calibration of a preparative free-flour

electrophoresis apparatus; owing to the sub-microscopic

dimensions of the mierospheres, conventional cylindrical

tube microelectrophoresis could not be used. The results of

the microsphere studies shored minimal modification of mobil-
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ity by covalently bound antibody # and maximal depression

of mobility by post-synthetic quenching of microspheres in

lysine.

I»icroelectrophoretic studies of SRBC confirmed the depress-

ion of cell electrophoretic mobilities by conjugation with

PGL microspheresp and in addition revealed a small concom-

itant increase in cell isoelectric point as a result of

microsphere binding. The latter result may be of signifi-

cance in cell separation by isoelectric focusing.

Analogous microelectrophoretic studies of human lympho-

cytes correlated well with red cell analyses; lymphocyte

mobilities were depressed, albeit to a lesser extent than

SRBC, when microspheres were immunosDecifically bound to

the cell surface. Preparative free-flow separations shooed

a partial, enrichment of labelled lymphocytes which correlated

with the electrophoretic properties of the microspheres used

for cell surface labelling. It is expected that as micro-

spheres of lower mobility become available, the resolution

of lymphocyte sub-g-oup separation in free-flow electrophoresis

will improve.

.Finally, preliminary Studies were initiated on the prod-

uction of monoclonal antibodies to the Hr' ATP-ase of hog
gastric mucosa, with a view to utilization of these antibodies

as coupling agents in the labelling of active gastric membrane

vesicles with microspheres. Six Monoclonal antibody produc-
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ing hybridomas are currently being grown to mass culture,

and should prove useful in developing an improved purific-

ation of eX* ATP-ase based on microspheres. In addition,

these monoclonal antibodies will be of great value as molec-

ular probes in dissection of the structure and function of

the various sub-units of the enzyme.
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