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ABSTRACT S z
The paper deals with a class of nulti- 50 Y = ¢ g; + G N
dimensional stochastic control problems with (2') t 1. ¢

noisy data and bounded controls encountered
in aerospace design. The emphasis is on sub-
optimal design, the optimality being taken
in cuadratic mean sense. To that effect the
problen is viewed as a stochastic version of
the Lurie problem known from nonlinear con=-
trol.theory., The main result’ %s a separation
theorem ({(involving a nonlinear Kalman-like
filter) suitahle for Lurie-tyne approximati-
ons {Theorem 30)., The theorem ailows for
discontinuous characteristics. As a bypro-
duct we prove the existence of strong solu-
tions to ¢ class of non-Lipschitzian stocha-
stic differential equations in n dimensions,

.

1 PROBLE! FORMULATION

In order to motivate as well as justify
the problem formulation (l)=(4) to be dealt
with in this paper, let us start by noting
the following particular case encountered in
flight control design., The longitudinal mo-
tion of an aircraft in turbulence can be
described (at some level of approximation)
by the eqpations

‘,\'e"ie"sce*rﬂe ’ =%
(1°*) ‘Cé .“SQt(V‘Pif‘)’ DcKc o,

where X, is a state vector (made of the angle
of attack, pitch attitude and pitch rate),
is the elevator deflection (scalar), -
V., is the control variable (scalar), the
state noise %, representing turbulence is
assurjed Gaussia with the spegiral density
k,/(w'+ ky ) : is a matrix, b, are
vectors, and Sat(.) denotes the standard sa-
turation function.
The admissible control policies are to be
based on the observation data only:

we: (37) V, € ” e {"feedﬁac)z functionals"of”™

a2,

o g e

[, sstl }»

where the data {Y} are generated by ™ ™

the egquations :

F'i‘ﬂélly we underline that

with suitable matrices C and G , and a vec-
tor valued Gaussian white noise {N,}
independent of {n,} .
The objective is to suppress the effects of
turbulence by choosing an admissible control
{%l such that

(41) = Min
frlev

Ix_a order to become amenable to modern

techniques, the ahove problem can be easily

recast within the framework of the following
canonical problem formulation:

(1) dX, = (AX, + bl;)dt +Fd¥, ,
(2)
(3)

T 2
E{( normal acceleration )dt

fUdeU = {{ul: U, adapted &/,

WGl s n ’
. L 3 .
J= _2 E(XSQXs)ds —> 51:2 u

vhere X, denotes a ney state vector, U,
a new control variable, {Wlis a vector valued

Wiener process, A,F,C,@,Q are suitable mat-
rices, a vector, M a positive bound.

It is implicit that we work on an underlving
probability space {£2, 8,P} with elements de-
noted by w ; the symbol @] in (30) denotes
the @ -algebra of events from # generated
by the data process {Y;, $£¢} .

Also the following technical conditions are
assunmed throughout:

(4)

X, is Gaussian, with CovX, >0, and
is independent of \!/t,t)o;

GG*= 1, Y 50;
U, is independent of {W-We,se2¢}.

e n R
the solutions to
stochastic differential equations arising in

(5)

- the above formulation and below are required

to be taken in the strong sense, i.e. causal
functionals of the given noise sample. The
absence of strong solutions rules out the
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feedback solutions to the control problem.

Notationai remark. The generic variablus
are suppressed from the notation; the
symbol I means the identity matrix; * means
the transpose; E{(.}, E(.|.) dencte the expec-
tation, resp. the conditional expectation;
the notation for random processes {W,}, {U:}>
etc.,is often shortened to just W, U, etc.

II SEPARATION

The separation principle has been so far
& key tool for solving stochastic control
problems with noisy observation data. It
enables us to transform the latter problem
into the one with complete observations of
the state =~ the separated problem (see for
instance [Won 1], ([Flel). In this section
we improve on the separation result of {Ru2}
by relaxing the assumption Dim X = Dim Y ,
Det C ¥ 0 in (1),(2). This assumption has
been a'subject of concern in the literature
on separation (see {Won 1l},[Da4], where an
approximate method of dealing with this prob-
lem has been suggested). By doing this we
at the same time establish a basis for the
development in Section IV,

In what follows we use the .notation con-
sistent with [Ru 2). Working with (1) = (5),
let{X,} ,{¥,1 , t 20 be defined by

(s) dig‘Aitd{*‘Fd\v‘, i.*X_.,

" dV, s K dt + GdAW, , ¥, =0,

and let 1Z be the set of controlg
~ . Y

(77 U £ {{y}:U, adspted &,

Iy, <« }.

The definition of the separated problem is
as follows:

(8) Definition ( Separated problem correspon-
‘ ding to (1) - (4)).

N 2 - ° o
(9) dX, = (AKX +bU,)dt + PC*d2Zy, X = E{X]s

2
{Z;o ﬁa }... the innovation (Wieper)
process corresponding to X,Y;
) T [y N .
an T = JE(X'QK)ds — Min_ ;
. * Ued .
the matrix function F is given by

P = AR +RA +FE'-PC%pR , P=Cov X, .
¢t t t 4« 3

We have the following separation theorem

(11) Theorem, Consider (1) - (10).
(i) Assume the pair (C,A) is observable

Then
(12) Min J 2
veu

®. (ii) I moreover {Uoe! is the optimal
control for the separated problem, and if it
is adigfed to the & =algebra
— - "

where {Y*! denotes the data corresponding to
{Ues}: then [U, 1 is also optimal for the

Min, J
Vel

3

original problem, i.e, {Mwl € U,

Min J = J(%).
Ve
In this case %
Kbz X% = x%|af
(13) Xe = X E{x’16, 1

¢
zo e zes vE- feRds

The proof follows from Lemma 2,2 and Theoren
3.1 of [Ru 2] in the case Dim X = Dim Y,
Det C ¥ 0.The latter condition was needed to
justify the following implication:

v

y
For a # -adapted controlfu,}l let

a4 ceCkie7) ¥ ¢ e(51Q") wpt
then v
s) e 1el) = e(R16Y) wp.t.

This implication, however, can be seen to
hold under the much weaker assumption of ob=-
servability, as shown in the APPENDIX I.

IIXI SEPARATED PROBLEM

Theorem (11) calls for an optimal solu-
tion to the separated problem (8 ). This re-
latively simple Markovian problem has heen
approached by many techniques; none of then,
however, produged a solution, except for the
case when Dim ¥ = 1 (or ecuivalent).
Our approach has been via the sample path
optimality conditions, [Ru 2]:

Theoren,
(1 The optimal control to the se-
parated problem exists,
(ii)Assume Ue 40 is such that w.p.1l
U de T A%(s-t) = 2°
an g% B g (RN ds|® )40 aect
€

Then U is optimal iff

v v
Ue =-% ¢, /lg
(19) Special case: Dim X = 1. Using the
theorem it has been Shown in (Ru 1) that the
optimal U is given by A
L’f . - K signum X*

(16)

(18)

(20)

and that the resulting stochastic DE has a
strong solution. This control moreover satis-
fies the separation theorem of the previous
section ([(Ru 2]), and is therefore optimal
for the corresponding one-dimersional version
of (1) - (4).

(21) Multidimensional case: bang-bang cha-
racter of optimal control. This lesscr result
Tollows directly from the above Theorem (16)
by imposing essentially the controllability
of the pair (A,b). We need to show that with™
probability 1, @Y#0 on any interval of
positive length. To this end let us expand
the expression for X, as follows: '

;t - e.AtE(xJ + &?(&-S)bus dS + iteA(é‘S)eciAz: .
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Upen a substitution into (17), and usine the
jrovertice of stochantic intedrals,ve obtain

v * At it wAg
ge = bk e Je "RCTaz{ +
+ ahsolutely continuous nath,

wheore R{t) is uivog hy y
T A'(e-d s=t

Kt) = 1€ QeM )ds
If ¢ is svwvare and nonsinoular, then the
stechastio intooral above behaves ag a sea=
led doun rovnian rotion. I& in addition
L*R{t)YoxpAt is not identiecally zore on any
intorval ef positive lenath, then the whole
firse tore on the right is a scaled down
srounian natl and conserucntely @Y has the
dosired pronerte. How

PR e s 0 > BR() = © >

Als-t 2
= b'KE)b » 0 = Su»’“«e‘ blidsx0
’ L -]

> EeMo=ro =
> ki Ab,. o, AT b e Wllspae(Q) -

Phe latter can net hanyen if.9 0 0 oand 4f
tha mair (A,}) is controllalle. It dis likely
that the cendition on € could he relaxad;
but we dont pursue this any further,

0f course the lack of more specific cha-
racterization of the structure of optimal
control law inhibits the usefullness of the
separation theorem (11). As we have noted
above, other approaches have not fared bettex
we mention at this point

{22) Martinnale based ophimality criterion

of [ELIT, [oa 3

(23)
(24)

Comparison theorem method of ([Wal;

Baves formula approach of ([Ba);

(25) Dynamic programming, {Won 3).

The above considerations as well as the
experience with the corresponding determini-
stic control problem point to a rather com-
plex nonlinear structure of optimal control
in more than one dimension ,thereby sugges -
ting to turn to approximations which could
be handled mathematically and which also
would he compatible with the nature of our
control problem:

{26) Sub-optimal control policies.

we will consider Markovian control policies
of the form o "
(27) U= x@(r* X)) 1 €RY

where @(f) are functions like saté , sign¢,
and similar. They are simple enough to instrum.
ment and to*deal with mathematically.

A sub-aptimal desigr of these "Lurie-type®
controls is described in [Won 3}, the opti-
mality being taken in quadratic mean sense.

The approach combines the dynamic programming
and statistical linearization technigues to

IR )

TRI<F

.

obtain a quadratic-form-type approximation to
the solution of the Bellman equation. Although
the statistical linearization is difficult to
justify and the approximation used for solving
Bellman equation is rather crude, the computa-
tional experience and experiments with simple
examples seem favorable,

A direct utilization of the statistical line-
arization for Lurie-type optimal stochastic
control has been reported in (Lim].

The Lurie-type policies are also strongly
suggested by taking a second look at the equ~
ation (1') of the aircraft problem statement:
with Vv(t) = k*X, (k being a vector) and £ =
= 0, (1') become the well known Lurie system

(28) Ky ~AX +BC, , § = k Sat(KK-8),

whose stability has been extensively studied
(see [Lef)). Some simple examples as well as
some rather deep investigations (see (Won 2])
indicate that a good stable system design of
the unperturbed mode of a stochastic systenm
with compiete observations will produce a

good stochastic control (quadratic ‘mean sense),

The aim of this paper is now to answer
the following : "
Consider the separated problem (9),(10) cor-
responding to the original problem (1) - (4).
Let {U,] “denote a sub-optimal Lurie-type
control process for the separated problem:
Rad

*X) e 4
Upg = P X,) €
such that

|J) - MnJ | < &
u

{1) Does this control law zealize a
feedback ¢ L.e. does the cor-
responding stochastic DE have a strong solu-
tion?

{i1) If so, is this control admissible
for the original problem {1) - (4), i.e.
is Ve ?

(1ii} If so, can we estimate the approxi-
mation error

[ Jw) = Hin J| 2

These questions are answered in the following
section,

v SEPARATION THEOREM FOR LURIE-TYPE
APPROXIMATIONS

Let us denote by & the class of functi-

§ = {9 : RN pb)=-9(§),

*
nondecreadsing

4
1PN £ W, 2V E

The separation theorem below is the main re
sult of this section - '
(30} Theorem. Consider the stochastic

control problem (1)-(4) and the related sepa-
rated prchlem (9), (10}, &st

U = ¢Cr &)

ons

(29)

(31)

e
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for some @6 ¢ and a vector 7 (® means
transpose) . Assume further

(32) (C,A) observable if ¢ is Lipschitz

or

(33) Det C ¢ 0, (DimX=DinY) ,if @ is
discontinuous .

Then ~

(34) Ug eUNn €

and hence ~ v

(35) IXf U 4is & -optimal in U (i.e. for

the separated problem), it is also
€ -optimal in U {i.e. for the original
control problem).

A
(1) Proof of Ued . The inclusion follows
feadlly Dy showiig that the Ito equation (9)
admits a strong solution. If @ is Lipschitz
then there is no problem and the standard Ito
theory applies, Otherwise we have the follo-
wing lemma, which is of interest on its own:

(36) Lemma. Consider the stochastic (Ito)
differential equation
(a1 dX = (F(X) + g(X)dt + F d%,

t & for'r-] ’
where Dim X, = n, jw,} is an n-dimensional
Wiener process,

(38) g: R’-+ 2" is a measurable, bounded and

monotone mapping, i.e.

— - - bo

(X - x)"(g(x)-g(X)) <0 ,
£: R™>R"” is Lipschitz and satisfies
the growth condition

(X)) & const - (14 AXN)

F, is an (nx n)-matrix function,
nonsingular and continuous on [(0,T].

(3%)

(40)

Then (37) has a strong solution,
Por proof see APPENDIX 2.

In order to apply this lemma, we may assune

bw ~2in (9), (otherwise we take a nonsin-
gular transformation X = KX such that
K*Xb = - F ). It is easy to verify that

g(X) = —bp(b*X)
is monotone: - .
—(X-X)*b [@(b°X) -p*X )=
= - (X" - X*bj[P(X*b)-p(X*)] &
<0

Clearly f£(X) = AX and ¥, = P, C* also satisfy
the conditions of the lemma (see the hypothe-
sis of the theorem). '

Proof of Ve U. nt
un dX = (AK, + bp(g" X)) olt + RC*dZ} .

) ”
By (i) above there is a unique solution X¢
adapted the F-algebra ﬁ:‘ and so Uy = Plp*X,)

Consider .again (9),(31)

TP7-F
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€ U is well defined. Next for U e 11 we
have that (see (2.23) of [Ru 2})

dz{ = dY, - CX, dt
- dy, - cXdt,

is also a solution to

(42)

S
and hence X A

L) Q ‘a
(43) dx, = (A -?:C"C)xt dt +be(r'X. )+
+ RC*aY, .

We will now use this equation to verify that

3?‘ is in fact adapted 531 « This then will
imply that U, = @(g* X,) belongs to U .

If @ is Lipschitz, then ﬁ{-adaptedness is
immediate. Otherwise £, -adaptedness readily
follows from pathwise uniqueness of solutione
to (43), and that is shown the same way as in
(1) above ( we note that the lemma above ro-
mains in force for £ = £(t,X) such that the
properties {39) hold uniformly). The rest of
the argument is a technicality which we dele-
gate to APPENDIX 3.

(1i1) Proof of (35) is immediate from the
inequtlity {(12) of the theorem (ll1):

Let Ug be suci: that ‘
JWWE - MinJd  <c¢
By (12) !’
Min J £ Min J
and so au "

JWEH -Min J ¢ Jwh-MipJ 4 €,
W “w

V  SUMMARY

Assume the hypothesis of Theorem (30).
The sub-optimal stochastic control of Lurie
type for the control system (1) - (4) is ge=-
nerated by the following feedback structure:
dx, = (AX, + bU,)at + F cd,
aY, = CX,dt + G dw,
”~ -~ -~
ax, = [ - RC* )X, +bo(r* xt)] at +
+ B, C*dyY,
P = AR + P A* + FF* - B, C*CR,
A
U, = 9(7‘ X,)
The choice of 9 , 2 is Lased on the perfor-
mance of the auxiliary hypothetic system
(separated system in vhich{z:} is a Wiener
process)
- -~ ~ .
ax, = [AX, + bg (p* X,)]at + p, cecazy.

. e o . -
f‘ has the interpretation of the best mean
square estimate of the state X; given the past

-data Y5 ,s st. The performance of the system

is at least as good as that of the separated
system,

URIGINAL PAGE I3
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APPENDIX 1

Fix a © >0 and let us take the congi-
tional expectation given the c"-algebra M)
in (14); noting the relations (see [Ru 2]
(2.30),(3.7),(3.8) ),

v ®
uleu = 8 1pic o 4 6
¢ ¢ ¢ t % -
where 1l means independence and
T gE = e {zi-2h, surt],
{?:)us evaluate first the left hand side in
;‘1‘ H

c e(e(k,18D)le)) = ,
= C E( MER)+ _fe‘“'%c‘dz:]ﬁi)

= o 0 @

+- ~ ¢
cHrU e (R 180, vet.

The right-hand side of (14) becomes next
(v <t)

L (Y v -~ v
CE(E(XI00)IBY) = ¢ e(K|&Y) «

At ¢t Alt- v
ce(ertn + §“Fay | QY ) -

]

A(x-T) & v
= ¢ AR e .
Thus (14) becomes o v
¢ AT (R 1al) - B(RIRT))=0, al tor,

Next, taking derivatives with respect to t,
and putting t = € afterwards, we obtain

¢ ( e(&tﬁf.)- 6% 1ar))
A ( dtta Y=0

e 3 » \ s+ &

cA™'(

it
o)

ctto ) =

Therefore (15} follows if
Rank [C,CA, ...y CA"'] = Dim A,
that is,observability.

APPENDIX 2 (Proof of (36)) .
The existence of strong solutions will

be verified via a device from [Ya], namely

by showing that

(a) a weak solution exists

and '
{b) the path-wise uniqueness holds.

(Por simplicity we take X, = 0.)

(a) Recall that by a weak solution of (37)
we mean a probabil_i_ty__lpace

(&, 8,F 061
and a pair of processes [X, }:iW,] .such that
ii}l is ﬁt-adapted, continuous path,
({ Wd ,E*) is a Hienef process,

@4) dX, = £(X,)at + g(X,)dt + § dW, ,w.p.l,
all t.

(A strong solution of (37) is a sample-path
continuous process {X,| adapted & and such
that (37) holds w.p.l,)

The existence of weak solution is now shown
as follows. Define

- ¢
X - S, Fod¥%,
Ve = B (FRD+9X).
¢ is clearly (37 -adapted Tand moreover
- T
E (exe[ {T¢, W4 - 0/2) (g, Iidt)) =1
as a consequence of ¢ being bounded and f
satisfying the growth condition (39).
Therefr=a we can use the Girsanov theorem and

conclu »* that there is a new Wiener process
{W, } on the probability space

(Q,6,F, &) _ roa
dP = dP exp [§paW -7 Syl at)
such that " —
[X/t - -gq‘;ds = W, .
The last equation can be rewritten as
dw, = B (FE) + g(R)ct + dF,
or

(Faw, =) dX, =[f(k)+g(X)dt + Fed¥,

which is (44).

{b) While weak existence follows essaentially
¥rom the growth of £ and boundedness of g,
the path-wise unigueness is a consequence of
£ being Lipschitz and g being monotone.

Assume that on some probability space (2,63 R
{3,) we have two pairs of processes (X, Jan
(Yo, W,) such that X, = X, = 0.and (W‘)Q‘)is
a Wiener process. Define _ ¢

Ze - xt had xé .
Then 2, is differentiable and we can write

Rlz % 2252, =
= (%-X (£ -FR)+a(x)-a(K))
Now by the Lipschitz property of £ - 2
(X =T M (F) - (X)) £ const || X-Xel

and by monotonicity of g const 2 0,
(X=X (gtX)-g(X)) €0 .,
2 , 2
£ 1z ¢ const lizg®, 02,00 =0

Thus 2, = 0 for all t w.p.l and path unigue-
ness follows.

Hence

APPENDIX 3 Y
(Proof that{Xx {of (43) is adapted & in
the case of non-Lipachitz ¢ .)

From (ii) of the proof of Theorem (30), the
~path-wise unigueness for (43) holds.

Let gt denote the set of all possible paths
of {X,{ restricted to the interval (0,t) and
“denote =D, . Then

2 e ﬁc"(o,'r)’ 9te ﬁc"(mt)‘

TP7-F
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where we have denoted by ﬁC"(O, 1) the

@ -algebra of Borel sets of the space of
n-dimensional continuous functions on (0,7)
resp. (0,t) = c"(0,T) resp. C"(0,t).
Define the mappings

f: D - CH<O;T)

f* H D“ -» C"(O,f)
by ”~” = $ o
FR)o 2 R-K- {a-Be)Ry - 91" K Yy
Clearly
fe = TCo,¢) f
where R(o,¢) denotes the restriction to
c"(0,t) = c™(0,t). By uniqueness, f and £,

are one-to-one mappings w.p.l, and hence the
inverses £, f;‘ exist snd

-l -1
fe = "":(o,u‘F .
Next £ and f, are measurable d%%or)/k%f?mTﬁ
. t
resp. éc"(o,t) qu for all t, hence by the

Kuratowski theorep of_ycasure theory the in-
verse mappings £~ , £/ are measurable,
Let Jtt denote the coordinate mapping; then

x f(E) + R'x CoM) — R
is measurable F X Bcng .y (Fis the o-algebra
of Borel sets on (0,T)), and moreover
o fT'(€) =y X(o,0,f ()
so that )
xéf-"'(f) is measurable ﬁc"(qt) .
The proof is fimished by taking

'g = Ef;f p) £¢ - gﬂ:C¥<*Y§~
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