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ABSTRACT

s-.
a

(2')	 y*	 C t̂ r	 Nt
3e	 _

with suitable matri,-es C and G , and a vec-
tor valued Gaussian white noise {NE}
independent of f1 J
The objective is 	 suppress the effects of
turbulence by choosing an admissible control

Nt } such teat
r

( 4 1 )	 E J( normal acceleration )df - Min
{villW

In order to become amenable to modern
techniques, the above problem can be easily
recast within the framework of the follo":ing
canonical problem formulation:

(1)	 'iXt - (AXt + bU{ ) dt + F dWt

( Z )	 dYt r CXt dt + G dove , o< tcT^oo)

(3) 1Ut1 C IL 3 { {Uj t : Ut ad&pted 63,

	

IUt l 5 K	 } ,

(4) J = ST E(xsQxs)4s --► Mtn u
where Xt denotes a new state vector, Ut
a new control variable, Ml is a vector valued
ktiener process, A,F, C',G, Q are suitable mat-
xices, b a vector, M a positive bound.
It is implicit that we work on an underlving
probability space {S2,4s with elements de-
noted by w ; the symbol ^t in (30) denotes
the 4r algebra of events from 13 generated
by the data process {Ys, Sit) 
Also the following technical conditions are
assumed throughout:

X. is Gaussian, with CovX. A. and
is independent of Wt r t > 0

(5) ttG0 = I ,, Y a 0 ;

Ut is independent of f W - Wr

Finally we underline that the solutions to
stochastic differential equations arising in
the above formulation and below are required
to be taken in the strong sense, i.e. causal
functionals of the given noise sample. The
absence of strong volutions rules out the

The paper deals with a class of multi-
dimensional stochastic control. problems with
noisy data and bounded controls encountered
in aerospace design. The emphasis is on sub-
optimal design, the optimality being taken
in Quadratic mean sense. To that effect the
problem is viewed as a stochastic version of
the Lurie problem known from., nonlinear con -
trol.theory. The main result'as a separation
theorem (involving a nonlinear Kalman-line
filter) suitable for Lurie.-tyre approximati-
ons (Theorem '30). The theorems allows for
discontinuous characteristics. As a bypro-
duct we prove the existence of strong solo
tions to class of non-Lipschitzian stocha-
stic differential equations in n dimensions.

I PROBLEM F0111ULATION

In order to motivate as well as justify
the problem formulation (1)-(4) to be dealt
with in this paper, let us start by noting
the following particular case encountered in
flight control design. The longitudinal no-
tion of an aircraft in turbulence can be
described (at some level of approximation)
by the equations

• d

K Sat N', — 0c K< QO;

where Xt is a state vector (made of the angle
of attack, pitch attitude and pitch rate),
{t is the elevator deflection (scalar),,-
Ve is the control variable (scalar), the
state noise ye representing turbulence is
assumed Gaussia with the spe ral density
k, /(wa + k=)	 ^ is a matrix, ?, tt are
vectors, and Sat(.) denotes the standard sa-
turation function.
The admissible control policies are to be
based on the observation data only:

(3') Vt F OV _ {" feedback funetionals `0f` **-
tY s s t7 } ,

"where the data Vet} are generated by ' `*
the equations
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feedback solutions to the control problem.

Notational remark. The generic variables
are suppressed from the notation; the

symbol I means the identity matrix; o means
the transpose = E(.;, E(.1.) denote the expec-
tation, resp. ikhe conditional expectation;
the notation for random processes JW♦j,{UJ.'
etc.,is often shortened to just W, U, etc.

II SEPARATION

The separation principle has been so far
a key tool for solving stochastic control
problems with noisy observation data. It
enables us to transform the latter problem
into the one with complete observations of
the state - the separated problem (see for
instance (Won 11, [Flel). In this section
we improve on the separation result of [Ru21
by relaxing the assumption Dim X = Dim Y
Det C 0 0 in (1),(2). This assumption has
been a•subject of concern in the literature
on separation ( see [Won 11,[Da 11_, where an
approximate method of dealing with this prob-
lem has been suggested). By doing this we
at the same time establish a basis for the
development in Section IV.

In what follows we use the.notation con-
sistent with [Ru 21. Working with ( 1) - (5),
let{ X+ j , 17+1 , t Lo be defined by

(6) d4 = AXt dt + FcM : X. - X• ,

dY^ • CX, dt + G dwe 1 ^• - o,
and let ZC be the set of controls

Y
(7) u s { {Uj I : 'Ut adapted

IUtI ^: H	 3

The definition of the separated problem is
as follows:

(8) Definition( Separated 9roblem corres on-
ding to 1	 4)).	

p

(9) dxt = (AX*+bUj )dt t IeC*dzt , X,= E IX. I
 e
(Z! , gtr } ... the innovation (Wier,),er)
r 

process corresponding to X17;

(10) s E(A*QXdds ­0 1"jin
*	 U eu ,

the matrix function. Pt is given by

P APt + P..A` + Fl:*- P1 CVCP. , P Cov X.

..	 .	 1

original problem, i .e. N4106 '1L

Min J ' J ( Uo
UfIR

In this case	 Yk

t^
z^ e z t• = Y" - S CXS As .

0

Theroof follows from Lemma 2.2 and Theorem
3.1 Eor7Ru 21 in the case Dim X = Dim Y,
Det C 0 O.The latter condition was needed to
justify the following implication:

ru
For a It -adapted controllUr1 let

(14) CE(Xt)Ob!) s e C E 	^tv) w.p i
then

(15) E(X+ t ) = E(A' B* ) W. P . I .

This implication, however, can be seen to
hold under the much weaker assumption of ob-
servability, as shown in the APPENDIX I.

III SEPARATED PROBLEM

Theorem ( 11) calls for an optimal solu-
tion to the separated problem (g ). This re-
latively simple Markovian problem has been
approached by many techniques; none of them,
however, produced a solution, except for the
case when Dim 'T = 1	 (or equivalent).
Our approach has been via the sample path
optimality conditions, [Ru 21:-

(16) Theorem.
(77 The optimal control to the se-

parated problem exists.
(ii)Assume U e ;M is such that w.p.l

(17) 42	 E( brt STe *(s-t,) 	dS1b + 0 a.e.t
E

Then U is optimal iff

(18) Ut = - K g c /a 2" 11

(19) Special  case: Dim X = 1. Using the
theorem i  has been shown in (Ru 11 that the
optimal U is given by

(20) Ut = - K aignurh Xi,

and that the resulting stochastic DE has a
strong solution. This control moreover satis-
fies the separation theorem of the previous
section ( [ Ru 21), and is therefore optimal
for the corresponding one-dimensional version
of (1) - (4) .

(21) Multidimensional cases ban -ban g cha-
racter of optimal control. This lesser result
follows  directly from the above Theorem (16)
by imposing essentially the controllability
of the pair (A,b). We need to show that wii"
probability 1, 240 0 o on any interval of
positive length. Tohis end let us expand
the expression for Xt as follows:

At 
t aAtE (XJ+

 ^t Kt-:) bUsds +SeA(^i)PC'^dZ}0

We have the following separation theorem

(11)Theorem.	 Consider _(I) - (10).
i Assume the pair (C,A) is observable

Then
(12) Min J	 Min-  J

' A	 (ii) It l moreover NotI
2  

is the optimal
control for the separated problem, and if it
is adapted to the ir -algebra

^t	 f Ys I c c f }
where tr'1 denotes the data corresponding to

JU,t;, then [U.j j is also optimal for the

I
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f

obtain a quadratic-form-type approximation to
the solution of the Hellman equation. Althouqh
the statistical linearization Is difficult to
justifynd the approximation used for solving
Bellman :quation is rather crude, the computh-
tional experience and experiments with simple
example seem favorable.
A direct utilization of the statistical line-
arization for Lurie-type optimal stochastic
control has been reported in (Lim).

The Lurie-type policies ore also strongly
suggested by taking a second look at the equ-
tion (1 1 ) of the aircraft problem statel^ tnt;

With V(t)Ze k*Rj (k being a vector) and f -
0, (1 1 )	 come the well known Lurie system

K sat ( ;^Tt - to.)

whose stability has been extensively studied
(see (Lef)). Some simple examples as well as
some rather deep inveotigations (see (Won 2))
indicate that a good stable system design of
the unperturbed mode of a stochastic system
with complete observations will produce a
good stochastic control (qua^Jl ratic mean sense).

The aim of this paper is now to answer
the following ;
Consider the separated problem (9),(10) car-
reuponding to the original problem, (1) - (4).
Let JUIJ denote a sub-optimal Lurie-type
contra process for the separated problem:

U 
T(r*0
	 .0

t:	
X	 It

such that
(U)	 J

(1) Does this control law :ealize a
feedback	 , i.e. does the cor-
responding stochastic Dc have a strong solu-
tion?

(ii) if so, is this control admissible
for the original problem (1) - (4), i.e.

U F. 11	 7
(iii) If so, can we estimate the approxi-

mation error

j(u) - Min J	 7
lu

These questions are answered in the following
section.

IV SEPARATION THEOREM FOR LURIE-TYPE
APPROXIMATIONS

Let us denote by 4P the class of functi-
ons	

S (k) V-o^	 0,(n

(29)(26) sub-optimal control policies.	 SP nondecrebsWO
We wilT consider Markovian, control policies
of the form
(27) U,	 r 

M	 The separation theorem below is the main re
where p(j) are functions like Satt , Sign(	 sult of this section

.^* *_and similar. They, are simple * ough to instru*A.. .	 11 ^*", A-- .w W,
meat and to'deal with mathematically.	 (30) Theorem. Consider the stochastic
A, sub-optimal desi.qr ,. of these Lurie type	 control -Problem (l)-(4) and the refated sepa-
controls is described in (Won 3), the opti c 	rated problem (9),(10), Let
mality being taken. in quadratic mean sense.
The approach combines the dynamic programing (31)	 Ut	 (T*x+

and statistical linearization techniques to

V.p(,n a stilstitutivn into (17), 4nO using thv
rorerti or 0! rtoclia-itic intoorali,wn ol,tain

At t' -As
b! 0) C	 C P. COdZ ' +

+ ahsolkltolv continuous ;oath,

whore ); (t) 
is 

tiivon bw
T A^(S_t)	 A(S-0

e	 4S

If (1, is o.ouary anO nonninaular, then tho,
stochastic intv=iral abovo behaver, as a ^;ea-
let' dvito	 . 1,rovnian notion. I! in 

additiot;
1, 11 1\(t)ox !,At is not itiontically tern on an,,,

a I ' 	 po .	 4110 10,J^ntork, ,	 v ,	 s i,tiva larinth, then the ^
first terr a on the right in a scaled down
2rnvnian	 and cons artier. te	 has the,
doniro,' -.rc­ort,^. ','ow

K 
eAl 1 0 

4 6*K(t)
T

"er,(+) b w 0 V> 	 S ilk" ̂ 	 blOsso

Af b 0 .>	
6

-2 

Ala,  • , I A7" 6 C- AwnsPa(C(Q)

'.'ho lattor onn not itivv,-en iC. 1 1 pt n oni %f,
mlvth ,_, 1 ,air (1,t ) in controlla'. Ia. it is like

t ,aat t ie condition on c could lee ralaxed;
but we dont pursue this any further.

of course the lack of more specific cha-
racterization of the structure of optimal
control law inhibits the usefullness of the
separation theorem (11). As we have noted
above, other approaches have not fared better-
We mention at this Point

(22) Martinq ale based optimality criterion
a'r7ral I , jDa ',I;

(23) Comparison theorem method of (Wal;

(24) Haves formula approach of (Bal;

(25) Dynamic programming, (Won 31.

The above considerations as well as the
experience with the correspondi"^ determini

-stic control problem point to a rather com-
plex nonlinear structure of optimal control
in more that one dim4nsion thereby sugges-
ting to turn to approximations which could
be handled mathematically and which also
would be compatible with the nature of our
control problem;

TP7-F
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(32) (C,A) observable if 5F is Lipschitz
or

`	 (33) Dot C 0 0,(Di.X-DimY),if f is
discontinuous.

Then	 N
(34) Ut E ex A U
and hence ,,

Xt = Xt	 E ( xt 16t ) .
ow

(35) If U is a -optimal in U (i.e. fo=
the separated problem), it is also
e -optimal in % (i.e. for the original
control problem).

(i) Proof of U E U .	 The inclusion follows
readiTy by • owi.tq that the Ito equation (9)
admits a strong solution. If ^V is Lipschitz
then there is no problem and the standard Ito
theory applies. Otherwise we have the follo-
wing lemma, which is of interest on its own:

(36) Lemma. Consider the stochastic (Ito)
differe'-ntaI`equation

(37) dX4 = ( f(x*) + 9(XE))di + F JWt

[O,T_j
where bin X4 - n, NJ is an n-dimensional
Wiener procesis,

(38) 9: Rr-t e is a measurable, bounded and
monotone !mapping, i.e.

(y - X)*(9(z)-g(X)) s 0

(w) f: R"•-i R n is Lipschitz and satisfies
the growth condition

11 f (X) 4 s const • 0 ,- M X 1)

(40) rd, 	 an (n x n)-matrix function,
nonsingular and continuous on (0,T].

Then (37) has a strong solution.
For proof see APPENDIX 2.

M	 •	 N

E U is well defined. Next for U E U we
have that (see (2.23) of (Ru 21)

dZe - dY4 - Cxt dt

(42) dYt - C7,dt,Y

and hence Xt is also a solution to

(43) dXt (A-PC"C)Xt dt bcy(r#x*)

+ PC*dYt .
We will now use this equation to verify thatn
Xt is in fact adapted 63t . This then will
imply that ut - v (.r * 7d belongs to *U .

If 9) is Lipschitz, then 49 -adaptedness is
immediate. Otherwise ft -adaptedness readily
follows from pathwiso uniqueness of solutione
to (43), and that is shown the same way as in
(i) above ( we note that the lemma above r^a-
mains in force for f - f(t,X) such that the
properties (39) hold uniformly). The rest of
the argument is a technicality which we dele-
gate to APPENDIX 3.

(ii?) Proof of (35) is immediate from the
inequllity (12) of the theorem (11);
Let Ut be suc?; that

J(U f) - Mein J <_ E

By (1;)
Ml n J < Min J

and so	 u

J(vE ) — M^n J c J(L)	 M^ J s E.

V SUMMARY

Assume the hypothesis of Theorem (30).
The sub-optimal stochastic control of Lurie
type for the control system (1) - (4) is ge-
nerated by the following feedback structure:

for some 9) a 4i and a vector r (* means
transpose). Assume further

r

dx ,	 (AXt + bU j) dt + F dWt
dYt - CXj dt + G dWt

d^ - [(A - Pt C *C) Xt + b 9) (a"* Xt )] dt +
+ Pt C*dYt

Pt - AP* + Pt A* + FF * - Pt C*Cpt
U. • 0) (r* Xt )

J.

The choice of g , r'is based on the perfor-
mance of the auxiliary hypothetic system	 I
(separated system in whichiz tj is a Wiener 	

1

process)!

dXt * LAXt + b 9 (r* Xt )j dt + Pt C*Cd2t .
Proof of Ut U	 Consider .again (9),,(31): .. 	 .

Xt has the interpretation of the best mean
(41) d)( ` ( A X4 + b4p # X;)) c(t + pC *dZt ,	 square estimate of the state Xt given the past	 =y

data Ys,s s t. The performance of the system
By (i) above there is a unique solution Xt-	 is at least as good as that of the separated;
adapted the e`-algebra 6S and no U*	 system.	

n
k

TP74	 ORIGINAL PAGE 13
OF K)OR QUALITY

In order to apply this lemma, we may assume
b . - 71r
	 r
in (9), (otherwise we take a nonsin-

gular transformation X - RX such that
R*Xb - - r ). It is easy to verify that

g(X) _ - bgp(b*X)
is monotone;

C
Clearly f (X) - AX and F^ 	 Pt C* also satisfy
the conditions of the lemma (see the hypothe-
sis of the theorem).
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APPENDIX 1

Fix a 'C > o and let us take the cons-
tional expectation given the o"'-algebra ru
in (14 ) ; noting the relations ( see (Ru 21
(2.30),(3.7),(3.8))

juj e % 4 St IL at S At. u 6;t
where 11. weans independence and

lnt us evaluate first the left hand side in
11 } s

C E(E(A,Ia;)
C EC eE(X,)+ St Alt" C.*

r
Ce

The right- :hand side of (14) becomes next
(^e<t)

C E f eAtxa St ACk - 
F dW^ ` (^^^ r

(A stronq solution of (37) is a s%mPle^-path
continuous process jX 4j adapted ^^ and such
that ( 37) holds w.p.1. )
The existence of wea k solution is now shown
as follows. Define

Xt '	 Fi dWs r

Y16	t" (f (94) + 9 cxk)1
(^t is clearly i3t -adapted and moreover

E C exp[ 1r0, IV, - (%/1)
as a consequence of 9P being bounded and f
satisfying the growth condition (39).
Therefo•j- we can use the Girsanov theorem and
conclu't , that there is a new Wiener procesx
0.1 on the probability space

( S?, I)r F's 6+

dP JP exp ► dW % S III{2dt)

such that.

Wt - . 9), c15 = 't

The last equation can be rewritten as

dWt :: Ft Cf(wt. ) 4- 9{Xc)d' +- cl9,6

4

C 	 E(	
Y)
G).

Thus (14) becomes

C e
A(t-t)

(e , (6C)" E(^it l d3 V) ^ = 0 ^ all ter.

Next, taking derivatives with respect to t,
and putting t -,,r afterwards, we obtain

C	 ^( xr I (̂ r ) - e(XcI^^)^ = c
CA	 dttn	 p #

C4-1 (	 dtto	 O

Therefore (15) follows if

2ar.k CC7CAa ..., 
CA"_

'j r D im A

that is , observability.

APPENDIX 2 (Proof of (36) )

The existence of strong solutions will
be verified via a device from (Yal, namely
by showing that

(a) a weak solution exists
and '

(b) the path-wise uniqueness holds.
(For simplicity we take Xo	 0.)

(a)	 Recall that by a weak solution of (37)
we mean a probability_ space

and a pair of processes _JX, . N'+ 3 such that
Xf is A.-adapted, continuous path,
({ wd ,^j) is a wiener process,

(44) dXt 	f (X* ) dt + g (Xt ) dt + Ft dWt ,w.p.1,
all t.

or (,F, IW
#, -) C1 ' (x4,3 t 9(94)]dt + r+ -1

which is (44).
(b)	 'While weak existence follows essentially
rom the growth of f and boundedness of g,

the path-wise uniqueness is a consequence of
f being Lipschitz and g being monotone.

Assume that on some probability space (52,o,P,
we have two pairs of processes (K*,Y^^nd

( ^, ^/^) such that X p	 X^	 0,and (W) &)is
a Wiener process. Define

Zt - Xt K

Then Z t is differentiable and we can write
2.

AIIzi- 11	 2 Zt Z+

Now by the Lipschitz property of f
4

	

04 - Xc *(f(v-f(X*))	 cast II ~x^ ,
and by monotonicity of g 	 conrt P o,

( Xt - 94.)* ( 9 ( X*) ` 9 ( xt))	 0 -
Hence	

do
dt 4ZtA2 4 Con ic

 
1I Z*0 2 , llzQ ll - 0

Thus Z 4 =  O for all t, w.p.l and path unique-
ness follows.

APPENDIX 3
(Proof thatfX+(of (43) is adapted < in
the case of non-Lipschitz T .)

'From (ii) of the proof of Theorem (3q),, the
-path-wine uniqueness for (43) holds.
Let t denote the set of all possible paths
of ITj I restricted to the interval (0, t) and
denote 0

'
- 

Q)T 
. Then

2 a Ac,,Co r) J 9)t E 6eco,t) 1

TP74
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where we have denoted by 69Cn(01t) the

& .algebra of eorel sets of the space of
n-dimensional continuous functions on (0,T)
resp. (Ott) - C^(0,•T) reap. C"(O,t).
Define the mappings

f : .`d + C "(OOT)
C"(o, f)

by

fcx >(s) = 'XS -X,- S {(A-gC*C)Xjr — ^cr'z^>^a^
Clearly

ft ' (0, t) f
where it (, t) denotes the restriction to
C"(0, t) -^ Cn (0, t) . By uniqueness, f and fa
are one-to-one mappings w.p.l, and hence the
inverses f- 1 , ft 1 exist :.o

f; 1 = j1(0,*) f .1.	 /
Next f and ft are measurable 0C' 0^T) /Ole(o,r)
resp' 6 n c,t) Aft,,, for all t, hence by the
Kuratowski theorem of measure theory the in
verse mappings f - , f-1 are measurable.
Let JCt denote the coordinate mapping; then

Jtt f -^(t)	 R 1 x C"(o,T) --. Ri
is measurable .3"x #3Cn(0,,T) ( his the (Y-algebra
of Borel sets on (0,T)), and moreover

so . that
jrf f -1Cj) i's  mcasurabie 0G'C11(at) -

The proof is finished by taking

_lt )r	 s6sC*dYs .
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