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SUMMARY

Integrating matrices fore the basis of an efficient numerical proce-
dure for solving differential equitions associated with rotating beam
configurations. In vibration problems, by expressing the equations of
motion of the beam in matrix notation, utilizing the integrating matrix
as an operator, and applying the boundary conditions, the spatial depend-
ence is removed from the governing partial differential equations and
the resulting ordinary differential equations can be cast into standard
eigenvalue form. Previous derivations of integrating matrices have been
restricted to one spatial dimension. This report derives integrating
matrices based on two-dimensional rectangular grids with arbitrary grid
spacings allowed in one direction. The derivation of higher dimensional
integrating matrices is the initial step in the generali:zation of the
integrating matrix methodologv to vibration and stability problems

involving plates and shells.

INTRODUCTION

The equations of motion governing the vibration and stabilitv of
rotating structures have no closed-form solutions, and approximate
methods of analysis such as asymptotic techniques, finite-element
methods, or direct numerical integration must be emploved to effect a
solution. For the special case of beamlike (i.e. one-dimensional) struc-
tures, a numerical procedure based on the use of "one-dimensional"
integrating matrices (refs. 1, 2) nrovides a particularly efficient
procedure for solution (refs. 3-5). An integrating matrix provides a
means for intexrsting a function whose values are known on a grid composed
of increments in the independent variable. Such matrices can be derived
by approximating the integrand by an approprinte polwynomial (refs. 2, 5).
In beam vibration problems, for example, cxpressing the equations of
motion in matri: notation, utilizing the integrating matrix as an operator
and applying the boundary conditions remove Jependence on the single

spatial variakle. and the resulting ordinary differential equations can



be put into standard eigenvalue form. Solutions can then be determined by
standard methods.

The integrating matrix technique for numerically integrating a func-
tion defined by its values at a set of grid points separates data defining
the function at the grid points from data defining the structure of the
grid. For one-dimensional integrating matrices, i.e. matrices for inte-
gration with respect to a single space variable, data defining the grid
structure uniquely determine the elements of the matrix. Thus, as long
as the same grid points and same degree approximating polynomials are used,
the same integrating matrix may be used to integrate any number of dif-
ferent functions. This property allows the integrating matrix to be used
as an operator. This is in contrast to numerical integration schemes
based on interpolation or divided differences where the analogous quad-
rature formulas involve a combination of values of the function at the

grid points as well as data defining the structure of the grid.

Although the derivation and use of one-dimensional integrating
matrices has been treated in the literature (refs. 1-5), the derivation of
a ""two-dimensional" integrating matrix for integrating a function of two
variables whose values are known on a two-dimensional grid has apparently
not been addressed. The purpose of this report is to derive integrating
matrices based on two-dimensional rectangular grids with uniform spacing
in one of the two orthogonal directions. As in the one-dimensional
integrating matrix, the elements of the two-dimensional integrating matrix
depend only on the data detining the grid structure and the approximating

polynomials.
PRELIMINARY CONSIDERATIONS

Derivation of a two-dimensional integrating matrix is related to

numerical approximation of the multiple integral

A=ff fx,y) dx dy (1)
R
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where R 1is the rectangular region
R = [(x,y); a<x<b,c<y :_d]

and f(x,y) 1is a continuous function on R. Values of f{x,y) are

assumed known at the NM (= N x M) grid points

i=1, ..., N;j=1, ..., M
G = (xi, yj); 8 =X <X2 <. xS b
C=yp <yr < ... <y, =4d (2)

which lie at the intersection of lines dividing the region R into

(N-1) x (M- 1) rectangles. A portion of the grid is shown in figure

1. Grid spacing may be nonuniform in either the x-direction or y-direction,
but not both. In the present derivation, as shown in figure 1, non-

uniformity is allowed in the x-direction.

From the calculus, the double integral [eq. (1)] may be written as

an iterated integral

.A:_['d {J* ﬂxJ)dx}@' (3)
C a

Hence, if
b
F(y) = f(x,y) dx C))
f
then
A = [d F(y) dy (5)

The variable y 1is held fixed while performing the x-integration in equation

(4). Equations (4) ard (5) thus effectively split the multiple integral

into two single integrals of functions of one variable. This decomposition
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Figure 1. Portion of the grid G which divides the region R into (N - 1)
x (M - 1) rectangles. In this sample grid, the spacing is non-
uniform in the x-direction and uniform in the y-direction with
yj¢1 = yj + Ay where Ay = (d - ¢)/(M - 1),



L

M

suggests that two one-dimensional integrating matrices based on the x and

y grids
Gx: a =X} <Xy < ... <Xy = b (6a)
Gy: €=y <yz < ... <yy= d (6b)

might be used to nroduce a two-dimensional integrating matrix based on the
rectangular grid G. Before exploring this poassibility, it is necessary to

develop some ncotation.
Notation for Data arnd Integrals

To describe data defining f(x,y) at the grid points, let

= 1 = . 1 = .
fij f(xi, yj) i 1 ,..., N; j 1 ,..., (7)

Integrals with respect to x from a = x; to Xy for fixed v will now be

denoted by
xk.
FL () =_[ f(x,y) dx k=1,..., N (8)
1

These integrals play the role of F(y) in equation (4). Similarly, the
role of A in equation (5) will be played by NM integrals of the form

Y.
A= [ .
jk 1 Fk(y) dy j=1,...,M;k=1,..., N (9)
where y, = c. Combirning equations (8) and (9) gives
y. X .
k .
A = [ [ fx,y) dx gy (10)
Yi. Xi

The one-dimensional N by N integrating matrix based on the x grid
Gx will be denoted by [I}, while the one-dimensional M by M integrating

matrix based on the y grid Gv will be denoted by [J].



To approximate integrals of f(x,y) with respect to x for fixed
y, the N by N matrix [I] premultiplies the N by 1 column vector
{fﬁ} which, for the fixed y value y = Y, Say, contains data defining
f(x, yl) on Gx' The data required by [I] is shown in figure 2. In

particular, if the column vector {fl} is defined by

T

{fl} = (fll f?l « s le) (11)
and
T
(F 1 =((0 Faly)) Fa(y,) ... Fyly,)) (12)
then
[1] (£} = {F) (13)

To approximate integrals of Fk(y) with respect to y for fixed k,
the M by M matrix [J] premultiplies the M by 1 column vector {Hk}
which contains data defining Fk(y) on the grid Gy. The data required
by [J] 1is shown in figure 3. For fixed k = 1 ,..., N, defining the

column vector {Hk} by

) = (F o0 FO2 ... F Oy (14)
gives

[J1 () = (0 Aok Ask .. AMk)T (15)

A comparison of figures 2 and 3, or equivalently comparing equation
{(14) with the right-hand side of equation (13), shows that the output
from approximating an x integration is not, by itself, suitable input
for approximating a y integration. To obtain the data required to
form any of the vectors {Hk}, x integrations must be performed at all

M of the y levels, and the resulting values must be rearranged from
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(a,c)

Kb,c)

Figure 2. A grid G with N =6 and M = 4. Grid points marked with @
denote points at which data is required for computation of the

x-integrals Fy(y,) (k =1, ..., 6) using the integrating matri«
[I] based on the grid Gx'
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(a,d)

‘Y (b,d)

(a,c) —— (b,c)
X = x
Figure 3. A grid G with N =6 and M = 4, Grid points marked with @

denote points at which data is required for ‘integrating the

function Fy(y) with respect to y using the integrating matrix
[J] based on the grid Gy.
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grouping by grid row to grouping by grid column, tiiat is, data must be
rearranged from variable x-fixed y to fixed x-variable y. This places

a restriction on the format for presenting data defining f(x,y) at the
grid points. In particular, to derive a two-dimensional integrating

matrix on the rectangular grid G, the data for f(x,y) cannot be

given as an M by N matrix. This result was unexpected as the most 'natural"
way of representing data on an M by N rectangular grid is an M by N

matrix. While sequential application of [I] and {J] to an M by N

matrix of data does produce an M by N matrix [A] whose elements ap-

proximate A.. in equation (10), the resulting matrix [A] 1is not an

jk
integrating matrix. As this deviation of [A] provides motivation for
choosing the proper format of data defining f(x,y) at the grid points,

a brief account of its deviation will be given below.

A Natural Derivation Which Does Not Yield
an Integrating Matrix

Let [D]T be the N by M matrix of data defining f(x,yv) on G, 1i.e.

T

the ijth entry of [DP] is The 2¢th column in the matrix [D]'r

ij -’
is thus the column vector {fg} (z=1,..., M) in equation (11), i.e.
values of f{x,y) on Gx for fixed y = Yo Hence, by equation (13),

the 2th column in the N by M matrix [E] defined by
T
(E] = [I] [D] (16)

is the column vector {Fi} in equation (12).

The matrix [E] contains data for the functions Fk(y), k=1,..., N
(i.e. x-integrals) on the grid Gy' As previously discussed, this data
must be rearranged into a form appropriate for y-integration using the
integrating matrix [J]. In particular, the kth column of the M by N
]T

matrix {E is the column vector {Hk} in equation (14) (k =1 ,..., N).

Consequently, if [A] 1is as previously defined, then
[A] = (9] [E]. (17)

Combining equation (17) with equation (16) now gives
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(A} = (91 (o) (° (18)

While equation (18) uses the two one-dimensional integrating matrices
[{I] and ([J]) to obtain ([A], it is clear that the right-hand side

of equation (18) cannot be recast to give the result desired, that is,
[A] = [P] [D] (19)

which would allow [P] to be interpreted as a two-dimensional integrating

matrix.

The above argument shows that data defining f(x,y) on G camot
be expressed as an N by M matrix [D]T if the desired end product of
the procedure approximating the multiple integral [eq. (1)] is to be a
two-dimensional integrating matrix. In the next section, it will be
shown that a column vector format for the data defining f(x,y) on G

will lead to a two-dimensional integrating matrix,
THEORY FOR TWO-DIMENSIONAL INTEGRATING MATRICES

Results from previous sections show that representing data defining
f(x,y) on G as an N by M matrix does not lead to an approximation to
the double integral [eqg. (1)] which can be interpreted as an integrating
matrix times the matrix of function data. In this section an alternate
approach is considered where data defining f(x,y) on G is represented

in column vector form.

Let {f} be the NM by 1 column vector of data obtained by "stacking"
the M, N by 1 column vectors (fg}, which by equation (11) give data
for fixed values of y = Ye (t=1,..., M), that is,

(FY = (£}, {f2), ..., {anT

(fll, f?l’ e e ey le, fl:, “aey fN:w_,

T

s fpe e i) (20

10



Similarly, let {H} be the N\M by 1 column vector obtained "y
"stacking" the N, M by 1 column vectors (Hm} in equation (14), that

is,

{H}

((H}, (Hp) ,..., (HHT

(FL), -os FiOy)s F2ln1), -.os F207y)s

S NCZO R Mo (21)

Note that each vector (f,} in the stacked vector {f} gives values of
f(x,y) at the fixed values y = Yq and, hence, is exactly the input
necessary to approximate the N x-integrals Fk(yl) (k=1,..., N).
Similarly, each stacked vector {Hm} in {H} for fixed m contains
data appropriate for approximating integrals of Fm(y) with respect to
y. As seen previously, going from {f} to {H} requires not only
integrations with respect to x for each fi. d y level, but also re-
arrangement of the resulting data Fk(yﬂ) from a row format to a column

format. In the present devivation, the integration with respect to x

for fixed y and the data rearrangement will be accomplished simultaneously

by multiplying {f} by an appropriate NM by NM matrix [T] so that
{H} = [T] {f} (22)

A key observation here is that Fk(yl) may be obtained from the N by N
integrating matrix [I] based on the grid Gx and the column vector
{fg} by taking the usual dot product of the kth row vector [ij of
[r] with ({f,}: that is,

X
F, (7,) =i(k £(x, y,) dx = [I] » (£} (23)

Hence, each vecter {Hm} in {H} has the form

CTORNEIK (8 SREINC SOMN ¢ S RCREE ) PRPRRIN | o

T
¢ £y} (24)

11
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(m=1,..., N), i.e., only the mth row of [I] enters here.
{H}

(24) and the stacked naiure of the vectors {f} and

Equation

now show

that the required NM by NM matrix |[T] in equation (22) may itself be

written as a ''stack" of N, M by NM matrices [Ts]

(s=1,...

» N)

where the nonzero portion of each row of [TS] is simply the sth row
vector [Isj of the N by N matrix [I]. Symbolically, we have that,

if |0] denotes the 1 by N zero-row vector, then

14 (o] 10} |
0] Tl 101 .. o]
[TS]= : N N \\\
IR
o === ==-- Zloy gl
and
11, 1]
(T.]
(T] =

It is worth noting at this stage that as |I;] = [0],

the M by NM zero matrix. Also, in the stacked vector

X
Fily,) = jﬂ £x, y) dx =

X1

it
o

for all ¢ =1 ,..., M.

(Th]

{H},

(25)

(26)

is simply

the entries

27)

Having derived the matrix [T] which transforms the column vector

{f} of data into the column vector {H}, it is nov a relatively easy

12



matter to derive an NM by NM matrix |S] which gives a column vector of

double integrals, that is,
{A} = [S] {H} (28)

where the NM by 1 column vector {A} is a stack of N, M by i column

vectors {A'n} (m=1,..., N) and

] 2 Xy
{At = (0, jy j f(x,y) dx dy, ...,

Y1 Xi

JuL f0an axan’ = O A Asm,
Y1 1

T

e Ay (29)

In particular, if [J] is the M by M one-dimensional integrating matrix

based on the grid Gy’ then
1 =
{Am, {J] {Hm} (30)
Equations (28) and (30) now show that [S} will be a banded matrix with

N integrating matrices [J] along its diagonal, i.e., if [0} 1is an

M by M zero matrix, then

[S] = : h N ~

[0]- =~~~ [0] 1J] (31)

Combining equations (28) and (22) now shows that the required two-dimensional

interating matrix [K], such that

{A} = [K] if} (32)

13
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is the NM by NM matrix

[k} = [s] [T} (33)

As [S] and [T] involve only ([J] and the row vectors of [I], it is
clear that [K] will be indapendent of data defining the function
f(x,y) at the grid points.

Sample matrices for [S], {1], and (K] associated with a 4 by 3 rectan-
gular grid are given in appendix A.

CONCLUDING REMARKS

This report documents the derivation of two-dimensional integrating
matrices for approximating integrals of a function of two variables on a
rectangular region. The analysis shows that data defining the function
at points on a rectangular grid which corresponds to the region must be used
in a "stacked" column vector format. An appropriate two-dimensional integrating
matrix is then obtained as the product of two auxiliary matrices which are
formed from the one-dimensional integrating matrices corresponding to the two

orthogonal directions on the grid.

14

'
LU



e

APPENDIX A

This appendix contains sample matrices [I], [J], [S], [T]., and
[K] based on a 2-dimensional, rectangular grid G with 12 points
(N\M =12, N=4, M= 3). The x-grid G‘ and y-grid Gv which define the

grid G are

G‘ = {0., 12., 24., 36.}

and

In these examples, the four by four integrating matrix [I] on the one-
dimensional grid G‘ is based on quadratic interpolating polvnomials, while
the three by three integrating matrix [J] on the one-dimensional grid

Gv 1s based on linear interpolating polynomials,

15
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Table Al. The four by four integrating matrix ([I] on the one-dimensional
grid Gx based on quadratic interpolating polynomials.

] 0.0 __ 0.0 __ 9.2 0.0
1. 80 8.0 et 0.2

| 19,9 16,9 '._2.1_0

0.0

L1RaR 19,8 6.0 . S0
— —

16



Table A2, The 12 by 12 matrix [T] formed from the row vectors of the

four by four matrix [I]. Row vectors of [I] are enclosed
in boxes,

et

I [ . 7

[ﬁe,u e 90 a0 090 090 9,0 002 ¢80 e, 0,2 9,0

40 V.8 9,8 d.0)| 0.8 A8 9.9 o.0 | 8.0 9.0 9.0 9.0

0,3 0.0 _0f,0__0,0 3.8 &P 04 _.0,0 (9 e 2,0 0,9
[ S 0,9 1,0 40| 00 o0 9,0 0,0 €0 @0 9,0 0.0

3,0 9,6 08 06| 3.0 §.0 1,0 o0& |90 o, e, 6,0

¥e¥ Ve . _R,0 .22 9,80 @,90_ 0.0 S.2 §.0 =1,.9 V.8

10,0 16,4 2,0 V0| 00 0,0 9,0 o,0 d@ 0,0 0,0 0,0

Jed 0o 0.8 Be0 |10,0 16,8 2,0 0.0 | 9.0 4.0 ¥.@ @A,

J N ¥, 0.9 8.9 o9 9.9 8.0 0.2 [1v.e 16,0 2.0 8,9

< .

ilm.w 15.0 0,9 9.0 .8 n.e 9.9 LAY 0,0 0,9 0.0 Q.9

9
8,0 @,9 9,0 Mo lto@ 159 6,0 S.0 | ¢ e e 0,0 9,
[

M9 0,0 0,8 a,0 [1¢,0 15,0 6,0 8.0

crmer

£
i



Table A3. The three by three integrating matrix [J] on the one-dimensional
grid Gy based on linear interpolating polymomials.

- - -
GOB 9.0 0.3
) ) 2.0 |
-~ 1409.._ _-.lne._____- 1 .e I
L -
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Table A4.

The 12 by 12 matrix [S]
matrix [J] based on the grid G .
y

4.@ 9.0 9,0

1.4 0,9 | 9,0

formed from the 3 by 3 integrating

9,0 e 0,9

g.¢ @8 (1.0

.0 @0 Ll

0.8 9.0 0.0
a0 0,0 0.9
Co . _ D 0. _0.0

e,a é.¢ a,.,9

0.8 0.0 9,0 °

8,0 9.8 8.0 @.8 ©.9 0.0 08,0 @,
9.9 9,0 9,2 v,8 9.0 0. 0,3 ¥
2.0 1.0 [ 9.8_ 9.0 9.0 €@ _0.8 Y.0 8.8 0.0 .0
a0 0.0 | 6.0 0,0 9.2 9 o0 0.0
Tie 69| 09 9.8 S0 P v AW
2,0 _1.0 | 0.0 0@ 20 0@ 3.0 a0
9,0 v.0 ] 0,0 9,0 9,9 | 06,0 d.0 ¥,0
"e,0 M0 |10 1,6 o0 0@ e 0,0
9.2 | 1.0 2.8 3.2 | 2.0 2.0 9.9
9,4 9,6 ©¢,0 a@ 9d.0 |00 9,0 9,0
2.8 9.0 9.0 2,0 9,0 | 1.0 1.0 2.0
.. a2 4¢3 li1,e 2.8 1,0

SR ¢ Q.0 _ 2.8 2.9 9.0

19
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Table AS. The 12 by 12 integrating matrix [K] based on the two-dimensional
rectangular grid G.

r‘”{\.v‘ a,q Q,2 ,9. 9,3 e,8 ?,9 .0 0,0 3,2 A.9 G.0~
a0 e 9,0 9.0 0,0 0.0 0,0 o6 ¢, 2.0 0.0 0,0
S0 8.0 0.0 8.4 2,8 2.2 0,0, 9.2. 9.2 8.0 . 9.8 8.0
o 9,8 e, @0 e 9,0 o0 00 9,0 00 e,0 0,9
5.0 8,2 1,0 9.0 8,8 8.0 1,0 0,8 ¢.0 0.0 0.2 0.0

5.0 ﬁ.n, -u .&Aﬂ.ﬂ--.lﬂ,ﬂ_..lh.e .2.9. 9.6 5.9 0.0 ol .9 e.o

4,4 0,90 4,9 a,9 e, 9.2 2.9 2,0 4,0 9,0 d.¢ 9,0

10,0 18.0 *2,0 0,2 39,0 16,0 1,0 0,8 ¢80 8.2 9.0 2.0
13,8 316.R _=2,9 __@.8 24,8 12,0 <=4.@ 0.8 19,8 16,0 =2.@ 9.9
“,0 e 0,8 09,8 0,0 0,0 0,8 20 v, ae A2 2,9

14,9 15,0 6.0 S.0 18,0 15,0 6,0 S,0 0,0 s.0 ¢.@ 9,

r——————-——m’-.M.
[
-
(-5

L

15,8 5,0 _ s.2 W0 30,8 12,0 10,0 19,0 1s.f 6.9 5,9
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