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Integrating matrices forr, the Oasis of an efficient numerical proce- 

dure for solving differential equations associated with rotating beam 

configurations. In vibration problems, by expressing the equations of 

motion of the beam in matrix notation, uti1i:ing the integrating matrix 

as an operator, and applying the boundary conditions, the spatial depend- 

ence is r ~ v e d  from the governing partial differential equations and 

the resulting ordinary differential equations can he cast into standard 

eigenvalue fom. Previous derivations of integrating matrices have been 

restricted to one spatial dimension. This report derives integrating 

matrices based on two-dimensional rectangular grids with arbitrary grid 

spacings allowed in one direction. The derivation of higher dimensional 

integrating matrices is the initial step in the geleralization of the 

integrating matrix methodology to vibration and stability problems 

involving plates and shells. 

The equations of motion governing the vibration and stability of 

rot:iting structures have no closed-form solutions. and approximate 

methods of analysis such as as-ptotic techniques, finite-element 

methods, or direct numerical integration must be employed to effect a 

solution. For the special case of 3eamlikc ji.e. one-dimensional) struc- 

tures, a numerical procedure based on thc use of "one-dimensional" 

integrating mJtriccs (refs. 1, 2 )  nrovid- :a particularly efficient 

procedure for solutjon (refs. 3-51. An integrating matrix provides 3 

means for inte,;;.~ting a function whose vali~cs arc known on a grid composed 

of increments in the independent variable. Such m;~trices can he derived 

hy approxinuiting thc integrand hy sn uppropri:?tc polytornia1 (refs. 2, S ) .  

In Iream vibration prL>hlems. for cxnmple. cxprcssing the equations of 

motion in matri. notation, utilizing thc integrating matris as an operator 

and applying t'rc boundary condit~ons rcmovc Jepundcnce on thc single 

spatial variable. and the result ing ordinary different ial equations can 



be put into standard eigenvalue form. Solutions can then be determined by 

standard met hods . 

The integrating mtrix technique for numerically integrating a func- 

tion defined by its values at a set of grid points separates data defining 

the function at the grid points from data defining the structure of the 

grid. For one-dimensional integrating matrices, i.e. matrices for inte- 

gration with respect to a single space variable, data defining the grid 

structure uniquely deterpine the elewnts of the matrix. Thus, as long 

as the same grid points and same degree approximating polynomials are used, 

the same integrating matrix may be used to integrate any number of dif- 

ferent functions. This property allows the integrating matrix to be used 

as an operator. This is in contrast to numerical integration schemes 

based on interpolation or divided differences where the analogous quad- 

rature formulas involve a combination of values of the function at the 

grid points as well as data defining the structure of the grid. 

Although the derivation and use of one-dimensional integrating 

matrices has been treated ia the literature (refs. 1-S), the derivation of 

a "two-dimensional" integrating matrix for integrating a function of two 

variables whose values are known on a two-dimensional grid has apparently 

not been addressed. The purpose of this report is to derive integrating 

matrices based on two-dimensional rectangular grids with uniform spacing 

in one of the two orthogonal directions. As in the one-dimensional 

inteprating matrix, the elements of the two-dimensional integrating matrix 

depend only on the data defining the grid structure and the approximating 

polynomials. 

PRELIMINARY CONSIDERATIONS 

Derivation sf a two-dimensional integrating matrix is related to 

numerical approximation of the multiple integral 



where R is the rectangular region 

and f(x,y) is a continuous function on R. Values of ffx,y) are 

assumed known at the NM (= N M) grid points 

which lie at the intersection of lines dividing the region R into 

(S - 1) (M - 1) rectangles. A portion of the grid is shown in figure 

1. Grid spacing nay be nonuniform in either the x-direction or y-direction, 

but not both. In the present derivstion, as shown in figure 1, non- 

uniformity is allowed in the x-direction. 

From the calculus, the double integral [eq. (I)] may be written as 

an iterated integral 

Hence. if 

then 

The variable y is held fixed while performing the x-integration in equation 

4). Equations (4) m d  (5) thus effectively split the multiple integral 

into two single integrals of functions of one variable. This decomposition 



Figure 1 .  Portion of the  grid  G which d i v i d e s  the  region R i n t o  I N  - 1 )  
(M - 1 )  rectangles .  In t h i s  sample gr id ,  t h e  spacing i s  non- 

uniform i n  the  x-direct ion and uniform i n  the  y -d irec t ion  with 
yj+l = y j  + Ay where Ay = id - c ) / (M  - 1 ) .  



suggests that two one-dimensional integrating matrices based on the x and 

y grids 

might be used to yoduce a two-dimensional integrating matrix based on the 

rectangular grid G. Before exploring this ~3ssibility, it is necessary to 

develop some notation. 

Notation for Data acd Integrals 

To describe data defining f (x,y) at the grid points, let 

Integrals with respect to x from a = x l  to x for fixed y will now be 
k 

denoted by 

These integrals play the role of F(y)  in equation (4). Similarly, the 

role of A in equation (5) will be played by NhI integrals of the form 

where yi. = c. Combi~ing equations (8) and (9 )  gives 

A = f(x,y) dxdy 
jk y~ x i  

The one-dimensional N by N integrating matrix based on the x grid 

G x  will be denoted by [I], while the one-dimensional M by M integrating 

matrix based on the y grid G will be denoted by [J]. 
?' 



To approximate integrals of f(x,y) with respect to x for fixed 

y, the N by N matrix [ I ]  premultiplies the N by 1 column vector 

Ifp} which, for the fixed y value y = yp say, contains data defining 

f(x, yE) on Gx. The data required by [I]  is shown in figure 2. In 

particular, if the column vector i f l )  is defined by 

and 

then 

To approximate integrals of F (y) with respect to y for fixed k, k 
the M by M matrix [J] premultiplies the M by 1 column vector {Hk) 

which contains data defining Fk(y)  on the grid G . The data required 
Y 

by [J] is shown in figure 3. For fixed k = 1 , . . . , N, defining the 
column vector { H k i  by 

gives 

A comparison of figures 2 and 3, or equivalently comparing equation 

(14) with the right-hand side of equation (13), shows that the output 

from approximating an x integration is not, by itself, suitable input 

for approximating a y integration. To obtain the data required to 

form any of the vectors 1 x integrations must he performed at all 

M of the y levels, and the resulting values must be rearranged from 



Figure 2. A grid G with N = 6 and M = 4. Grid points marked with 
denote points at which data is required for computation of the 
x-integrals Fk(ypj (k = 1, ..., 6) using the integrating matrix 
[I] based on the grid G x .  



Figure 3. A grid G with N = 6 and M = 4. Grid points marked with 0 
denote points at which data is required for 'integrating the 
function Fk(y) with respect to y using the integrating matrix 
[J] based on the grid G . 

Y 



grouping by grid row to grouping by grid column, t h t  is, data must be 

rearranged from variable x-fixed y to fixed x-variable y. This places 

a restriction on the format for presenting data defining f(x,y) at the 

grid points. In particular, to derive a two-dimensional integrating 

matrix on the rectangular grid G, the data for f(x,y) cannot be 

given as an M by N matrix. 'his result was unexpected as the most "natural1' 

way of representing data on an M by N rectangular grid is an M by N 

matrix. While sequential application of [I] and [J] to an M by N 

matrix of data does produce an M by N matrix [A] whose elements ap- 

proximate A in equation (lo), the resulting matrix [A] is not an 
j k 

integrating matrix. As this deviation of [A] provides motivation for 

choosing the proper format of data defining f (x,y) at the grid points, 

a brief account of its deviation will be given below. 

A Natural Derivation hhich Does Not Yield 

an Integrating Matrix 

Let [D]* be the N by M matrix of data defining f (x,y)  on G ,  i.e. 
T the ijth entry of [Dl is fij . The Pth column in the matrix [ D ] ~  

is thus the column vector {f , I -  ( t  = 1 , . . . , M) in equation (11) , i-e. 
values of f (x, y) on Gx for fixed y = yQ. Hence, by equation (13), 

the Lth calumn ir, the N by M matrix [El defined by 

is the column vector I F 1 }  in equation (12). 

The matrix [El contains data for the functions Fk(y), k = 1 ,..., N 
(i.e. x-integrals) on the grid G . As previously discussed, this data 

Y 
must be rearranged into a form appropriate for y-integration using the 

integrating matrix [J]. In particular, the kth column of the M by N 

matrix [ElT is the column vector {Hk) in equation (14) (k = 1 , . . . , N) . 
Consequently, if [Aj is as previously defined, then 

Combining equation (17) with equation (16) now gives 



While equation (18) uses the two one-dimensional integrating matrices 

[I] and [J] to obtain [A] ,  it is clear that the right-hand side 

of equation (18) cannot be recast to give the result desired, that is, 

which would allow [PI to be interpreted as a two-dimensional integrating 

matrix. 

The above argument shows that data defining f(x,y) on G camat 

be expressed as an N by M matrix [D]* if the desired end product of 

the procedure approximating the multiple integral [eq. (111 is to be a 

two-dimensional integrating matrix. In the next section, it will be 

shown that a column vector format for the data defining f(x,y) on G 

will lead to a two-dimensional integrating matrix. 

THEORY FOR TKO-DIMENSIONAL INTEGRATING MATRICES 

Results from previous sections show that representing data defining 

f(x,y) on G as an N by M matrix does not lead to an approximation to 

the double integral [eq. (I)] which can be interpreted as an integrating 

matrix times the matrix of function data. In this section an alternate 

approach is considered where data defining f (x,y) on G Is re,~rescnted 

in column vector form. 

Let i f )  be the M1 by 1 column vector of da t a  obtained by "stacking" 

the M, N by 1 column vectors i f k } ,  which by equation (11) give data 

for fixed values of y = y p  ( t  = 1 ,..., M I ,  that is, 



Similarly, let {HI be the NM by 1 column vector obtained '.y , 

"stacking" the N, M by 1 column vectors IHmI in equation (l4), that 

is, 

Note that each vector [ f e )  in the stacked vector if1 gives values of 

f (x, y) at the fixed values y = y, and, hence, is exactly the input 

necessary to approximate the N x-integrals F (y ) Ck = 1 , . . . , N )  . k II 
Similarly, each stacked vector IH,j in {HI for fixed m contains 

data appropriate for approximating integrals of F (y) with respect to m 
y. As seen previously, going from {fI to CHI requires not only 

integrations with respect to x for each fi. *d y level, but also re- 

arrangement of the resulting data F (y ) from a row format to a col~mn k a 
format. In the present devivation, the integration with respect to x 

for fixed y and the data rearrangement will be accomplished simultaneously 

by multiplying If) by an appropriate NN by NM matrix [TI so that 

A key observation here is that Fk(yQ) may be obtained from the N by N 

integrating matrix [I] based on the grid Gx and the column vector 

f by taking the usual dot product af the kth row vector LIkj of 

[I] with i f :  that is, 

Hence, each vectcr I 1 in { H I  has the form 
m 



(m = 1 ,..., N ) ,  i . e . ,  only the  mth row of [ I ]  en t e r s  here.  Equation 

(24)  and the  stacked naaure of t he  vec tors  1 and IH) now show 

t h a t  the  required NM by NM matrix [TI i n  equation ( 2 2 )  may i t s e l f  be 

writ ten as a "stack" of N. M by NM matrices [TI] ( s  = 1 ,..., N )  

where the  nonzero port ion of each row of [TS] i s  simply the  s t h  row 

vector [ I S ]  of the  N by N matrix [ I ] .  Symbolically, we have t h a t ,  

if 101 denotes t he  1 by N zero-row vec tor ,  t h tn  

and 

I t  i s  worth noting a t  t h i s  s tage t h a t  a s  \ I l ]  = L O ] ,  [Ti] is  simply 

the  d by MI zero matrix. Also, in  the stacked vector  I H } ,  the  e n t r i e s  

fo r  a l l  t = 1 ,..., M .  

Having derived the  matrix [TI which transforms thc  column vector  

I f }  of data  i n to  the  column vector I ,  i t  is  nolr a r e l a t i v e l y  easy 



matter to derive an NM by NU matrix LSJ which gives a column vector of 

double integrals, that is, 

where the NM by 1 column vector { A ?  is a stack of N, M by ; column 

vectors {Ap,) (m = 1 ,..., N) and 

A m  = (0, f 2  f(t,y) dx dy, ..., 
YI X l  

In pareiculsr, if [J] is the M by M one-dimensional integrating matrix 

based on the grid G then 
Y' 

Equations (28) and (30) now show that [S] will be a banded matrix with 

N integrating matrices [J] along its diagonal, i .e. , if [O] is an 

M by M zero matrix, then 

Combining equations (28) and (22) now shows that the required two-dimensional 

interating matrix [K], such that 



is the  NM by Mi matrix 

A s  [S] and [TI involve only [J] and t h e  row vec tors  of  [ I ] ,  i t  is  

c l e a r  t h a t  [K] w i l l  be indapendent o f  data def in ing  t h e  funct ion 

f ( x , y )  a t  t h e  g r id  p o i ~ t s .  

Sample matr ices  fo r  [s], [TI, and K assoc ia ted  with a 4 by 3 rectan- 

gular  g r id  a r e  given i n  appendix A. 

CONCLUDING REMARKS 

This repor t  documents the  der iva t ion  of tw-dimensional i n t eg ra t i ng  

matr ices  fo r  approximating in t eg ra l s  of a funct ion of two va r i ab l e s  on a 

rectangular  region. The ana lys i s  shows t h a t  da ta  def in ing  the  funct ion 

a t  po in ts  on a rectangular  g r id  which corresponds t o  t he  region must be used 

i n  a "stacked" column vector  format. An appropr ia te  two-dimensional i n t eg ra t i ng  

matrix is then obtained a s  the product of two a u x i l i a r y  matr ices  which a r e  

formed from the  one-dimensional i n t eg ra t i ng  matr ices  corresponding t o  t he  two 

orthogonal d i r ec t i ons  on the  gr id .  



APPENDIX A 

This appendix contains sample matrices [I], [J], [S], [TI, and 

[K] based on a 2-dimensional, rectangular grid G with 12 points 

(NM = 12, N = 4, M = 3). The x-grid G and y-grid G which define the 
X Y 

grid G are 

In these examples, the four hy four integrating matrix [I] on the one- 

dimensional grid G is based on qaadratic interpalsting pol!nomisls, while 
I 

the three by three integrating matrix [J] on the one-dimensional grid 

G is based on 1 inear intcrpolriting pol?noniinl~. 
Y 



Table Al. The four by four integrating matrix [ I ]  on the one-dimensional 
grid Gx based on quadratic interpolating pol!nomials. 



Table A 2 ,  The 12 by 12 matrix [TI formed from t h e  row vectors of the 
four by four matrix [I]. Row vectors of [I] are enclosed 
i n  boxes. 



Table A 3 .  The three by three integrating matrix [J] on the one-dimensional 
grid G based on linear interpolating polynomials. 

Y 



Table A4.  The 12 by 12 matrix (S] formed from the 3 by 3 integrating 
matrix [J] based on the grid G . 

y 



Table AS. The 12 by 12 integrating matrix [K] based on the two-dimensional 
rectangular grid G. 
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