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ABSTRACT

The propagation of sound due to a line acoustic source in the
moving stream across a semi-infinite vortex sheet which trails from a
rigid plate is examined in a linear theory for the subsonic case. A
solution for the transmitted sound field is obtained with the aid of
multiple integral transforms and the Wiener-Hopf technique for both
the steady-state (time-harmonic) and initial-value (impulsive source)
situations. The contour of inverse transform and hence the decomposi-
tion of the functions are determined through causality and radiation
conditions. The solution obtained satisfies causality and the full
Kutta conditions. The transmitted sound field is composed of two waves
in both the steady-state and initial-value problems. One is the wave
scattered from the edge of the plate which is associated with the bow
wave and the instability wave. These bow waves and instability waves
exist in the downstream sectors. The other is the wave transmitted
through the vortex sheet which is also associated with the instability
wave. This instability wave exists in a downstream sector, but if the
line source is close to the rigid plate it is blocked by the plate and
does not appear. The transmitted sound field can be divided into three
regions. The first one is the region where the incident wave is shaded
by the plate and only the wave scattered from the plate edge exists.

In the second region there exist the waves transmitted through the



vortex sheet in addition to the scattered waves from the edge of the
plate. The third region is the transition region between the two

regions just described. In this region the waves transmitted through
the vortex sheet can be heard partially depending on its wave number.

The asymptotic nature of this region is the same as that of the second

region.
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CHAPTER 1

INTRODUCTION

The influence of a moving stream on the propagation of sound is a
problem of some practical importance and has attracted a number of
investigations in recent years. For the sake of analytical simplicity,
most theoretical investigations related to this problem have been
confined to the model study of two infinite two-dimensional, inviscid
fluid half-spaces in relative motion separated by a plane vortex sheet.
Sound waves emitted from impulsive (harmonic) line or point sources
will impinge on the vortex sheet and be reflected and transmitted to

the two half-spaces as reflected and transmitted sound fields.

For linearized theory, multiple-Fourier transform techniques are
most conveniently used to obtain the analytical solutions for these
sound fields. While it is almost trivial to find the transformed solu-
tions, the complexities of inverse transforms present much difficulty

in finding a solution in a form most suitable for practical applications.

Jones and Morgan and their associates [1-5] in a series of papers
investigated the problem of line and point sources. Aas they carried
out inverse transform with respect to wave number first along the real
axis, their solutions did not satisfy causality. To satisfy causality,
they had to add the homogeneous solution which corresponds to instability
waves. Chao [6] has indicated that if the inverse transform is carried

out with respect to frequency first, the proper deformation of contour



which brings the causal solution 1s obvious and the instability waves

are automatically included in the solution obtained.

In the real world a vortex sheet between two fluids in relatave
motion can only exist downstream of a plate which separates them. The
problem becomes a mixed boundary value problem and the Wiener-Hopf
technique [7-8] has to be used to find the transformed solution.

Orszag and Crow [9] have investigated this problem in which there are
no external sound sources and the flow is incompressible. Craghton [10]
has extended their analysis to compressible subsonic flow. Morgan [11]
and Crighton and Leppington [12] have investigated the reflected sound
field produced by a line source near a semi-infinite vortex sheet which
trails from a rigid plate where a line source is situated in the still

fluid.

All of these problems require the decomposition of a known function
into plus and minus functions which are analytic in the lower and upper
wave number plane, respectively. However, due to the fact that there
are poles whose location is frequency~dependent in such a way that it
w1ll move from lower half-plane to upper half wave number plane according
to the value of frequency, the determination of a common region of
analyticity and hence the contour of the inverse transform becomes a
rather complicated matter and consequently requires additional assumptions
to ascertain the desired contour of the inverse transform. Morgan has
enforced the condition that the slope as well as the displacement of the

vortex sheet are assumed to be zero at the plate edge (full Kutta condition).



Craighton and Leppington have decomposed the function by assuming a

large 1maginary part for the frequency. They both have shown that

their assumptions require a deformation of the contour of the inverse
transform and satisfy the criterion for causality established by Jones
and Morgan [13]. This criterion requires the analyticity of the solution
in the upper half frequency plane for causality and has been used suc-
cessfully by Morgan [14] and Munt [15] in their analysis of the cylin-

drical vortex sheet problem.

In Chapter 4 it is shown that the deformation of the contour, and
hence the common region of analycity can be determined through causality,
exponential decay of the functions, and radiation condition. In all

three of these approaches, the decomposition of the function is unique.

In Chapter 5 we determine the value of the entire function,
assuming the edge condition that the component of the disturbed velocity
in the stream direction is finite at the edge of the plate. This
assumption requires that the full Kutta condition be satisfied as a
result. Howe [16] has found that for a very low Mach number flow case,
the satisfaction of the Kutta condition requires that external forces
be present in the vicinity of the plate edge. Similar situations
certainly would occur for the present problem. The existence of this
external force probably can be traced to the viscous effect which should
not be neglected due to the large velocity gradient in the wvicinity of
the plate edge. A detailed study of viscous mixing at a trailing edge

by Daniels [17] suggests that the full Kutta condition is the logical



condition to apply at the plate edge. A further justification of the
Kutta condition may be found in the experimental work by Bechert and
Pfizenmaier [18]. Their work suggests that the full Kutta condition 1s
the correct condition to apply 1£f the shear layer 1is thin, which is the

case in our problem.

In Chapter 6 the solution is compared with that of the Sommerfeld
half-plane diffraction problem (without the flow). It is found that

the exaistence of the flow smooths the edge behavior of the solution.

In Chapter 7 the steady-state solution 1s calculated. The trans-
mitted sound field can be divided into three regions depending on how
the waves transmitted through the vortex sheet are shaded by the rigad
plate. In Region 1, the incident wave 1s shaded completely by the
plate and only the waves scattered from the plate edge exist. In
Region 2 the waves transmitted through the vortex sheet exist in addition
to the edge scattered waves. Region 3 1s the transition region between
the two where the part of the waves transmitted through the vortex sheet
exist depending on its wave number. The existence of Region 3 1s the
direct conclusion of the fact that the line source and observer are
located 1n the different mediums. It is expected that a similar situation
will occur if the speed of sound is different between the two mediums

even though the velocities of the flows in the two mediums are the same.

In Chapter 8 the asymptotic evaluation of the transmitted sound

field 1s carried out as far as possible. In the case where the line



source is situated close to the plate edge in comparison to the observer,
the asymptotic nature of Region 3 1s similar to that of Region 2, and in

the far field the boundary between Regions 2 and 3 vanishes.

In Chapter 9, the solution for the initial value problem is
calculated. The wave fronts of the diffracted waves are obtained

explicitly.



CHAPTER 2

FORMULATION OF THE PROBLEM

Consider the problem in which a moving fluid in the half-space y<0
is separated by a rigid plate and a vortex sheet from a still medium in
y > 0. The rigid plate occupies the half-plane y=0, x<0, the vortex
sheet occupies y=0, x>0 1n a Cartesian coordinate system and it is
assumed that the flow 1s in the direction of increasing x. A line source
of unit strength 1s situated in parallel to the x-axis through (xo,yo)
in the moving medium, so that y°< 0 (Figure 2-1). For the sake of
simplicity, the sound speed and density are assumed to be the same in
both fluids. Because of the symmetry of the problem all quantities are

independent of z.

Yy
A ® Observer
E Medium (I)
)
Risid Plate __:. Vortex Sheet %
— vt
v —> I Yo
I Medium (II)
—_— [ © Source

Figure 2-1 Sketch of the Model Geometry



Let 4)1 and ¢ 5 denote the velocity potentials of the small disturbed
motions in the two fluid spaces. Due to the excitation of the line

source, the governing differential equations for Cbl and ¢ , are:

2
] 9 2,2
(-a—g + V 3—}:—) ¢2 -a’V ¢2 = (S(X'Xo) é (Y'YO)(5 (t) (y<0)
2-1
32<bl 252 | |
__.._—av¢l=0 (Y>0)

at2

where a is the speed of the sound and V is the velocity of the moving flow.

Define the Fourier transform of ¢i as:

o

©
¢ (k,y,w) = % f (x,Y,t)e-i(kx-wt)dxdt . (2-2)

-0

Then Egs. (2-1) reduce to the form:

-1kx
82?2 S -8 (y—yo)e
+ y.b, =
3y2 272 41T2a2
= (2-3)
L% -0
2 Y19y
Y
where

2
2w _ _ 2
Y, = (a Mk) k



\'
and M = ry 1s the Mach number of the lower medium. Let y=h(x,t)
indicate the equation of the vortex sheet. The boundary conditions on

the vortex sheet are the continuity of pressure, giving

3
9 3 _ 1 _
(a’é* VK)% =3t (2-4)

and the kinematic condition of the continuity of particle displacement

which implies

3¢ 3
d 2\ 5 23 _ _
{Bt * (V+8x )3;* Wi;} BEy.E) =0y (2-3)

where H(X,y,t) =y-h(x,t). Linearizing the equation, we have

el
] 39 2 9
(E+VK+FE) (y=h) =0
and

_a g Moy

ot dx  dy dy *
We get:

3

2=-§11-+Va—h. (2-5a)

3y ot ox

Samalarly, for medium (I)

3d>l

57 (2-5b)

vl



The boundary condition for x< 0 1is the vanishing of the normal velocaty

on the splitter plate whach implies

Define the half-range Fourier transforms of ¢l and h as:

3j_.{..(kIYrm) = / (x,y,t)e l(kx-wt)
-
h = _1_ -1 (lxt) o
h+ (k,w) = 2 ff (x,t)e
- 0
. _(k,y,w) = —1—2 / 6, Geoyitre I guar

Equations (2-4), (2-5a), (2-5b), and (2-6)

47

-0

9x

© 0
__1_2 /h(x,t) & LK) gae .
-0

1kx
(x,y,w) e

reduce to the form

dx = -ld$l+

(2-6)

(2-7a)

(2-7b)

(2-7c)

(2-74)

(2-8)



where

vk
a=1- m
Vi -
bt om By
x,y=0
= ©
3t — .
2+ = v oh(x,y,w) -ikx
Sy - iwh, + 2'rrf ™ e dx
0
o -]
_ = v — =-ikx = —ikx
= J.u)h++2_n_ he l +1k/he dx
0
= = 1wah+ . ‘ (2-9)
Here, we use the condition hl =i;| =0, because at the edge of the
x=0 x=0

plate, the vortex sheet must attach to the plate. Similarly,

9
1+ = -
. lwh+ (2-10)
and
3. 3.
1- . 2= = _ -
5y - 3y =0 h =0. (2-11)

Solutions to the set of the ordinary differential Eg. (2-3) can be

easily found as:

- 1Y,y -ivy
¢l = Al(k,m)e + Bl(k,m)e
. -ik 2-12
_ -1y, iy ikx . (2-12)
¢2 = Az(k,w)e +Bz(k,w)e - =55 51n[Y2(y-yo{]H(y-yo)
4T a Y,

10



where H{ ) is the Heaviside step function. The sign conventions of Y,
and Y2 are chosen such that the signs of their imaginary part are always

positive. Consequently, Al and A2 terms of the solution are finite at

infinity for all values of k and w. Bl and 82 must be set to zero.

Using the relation

39.
1 L=

3y = 47,9,
y= y=0

53} _ -1(kx°+Y2Y6)

3y = -iv,%, 42,2
y=0 y=0 ma

¢l = 1+ + 1=

and the boundary conditions (2-9), (2-10), and (2-11), we obtain

'—5 . wh+ = |
1+ Y, 1-
Y: y:
(2-13)
_ w&§+ _ . e-l(kx°+Y2Y°)
¢2+ ) Y, ) ¢2' ‘ v 41r2a2Y .
y=0 y=0 2

Substituting these into Eq. (2-8) gives the Wiener-Hopf equation as:

. _i(kxo+Y2yo)
= = — lYiCt e
wh+ =K <a¢2_’ - ¢1_| -Ll)- 4"2 2( ) az) (2-14)
y=0 y=0 a YZ Y1
where
Y,Y
K = 12 .
APRLSR

11



If we can decompose K into plus and minus functions as:

~

K =

14

Ky

we can rewrlite the Wiener-Hopf equation as:

=i (kxo+Y2y0)

- _ - i‘Ylot e K+

wh X =X <a¢2_| -9 _l - Ll) - XN . (2-15)
y=0 y=0 Y2 Yl

The last term of Eg. (2~15) can be decomposed into the sum of plus and

minus functions as:

-1(kx +Y.v )
1y e o 2% K,
F = =F +F , (2-16)
ar®a® (Y. +Y a?) * -
21
where F+, F_ are gaven as:
_ =1 F()\)
F+(k) T 2m f A=k dA
C+
(2-17)
_ 1 F(}A)
F_(k) = 3= / S5 9 -
C

The exponential decay of F(k) on the contour, since ImY2 >0, y6'<0
ensures that these integrals exist and that F+(k) =0(|kl-l) ¢ F_(k) =O(|k|-l)
as |k| + ©. The meaning of the plus and minus functions and the decompo-

sition will be discussed in the next chapter.

12



Substituting Eq. (2-16) into Eq. (2-15) completes the decomposi-

tion, to give:

The

K_ (a?)’z_l ) _, -Ll) - F,
y=0 y=

W
hK,_ +F,

ck) .

(2-18)

function C(k) defined by Eq. (2-18) is an entire function of k and

must be a regular function of k in the whole k-plane.

determined, wh+ is given as:

wh =§1—- (C(k)-F+) .
+

From Eq. (2-13)

- -C(k) +F+
1 Y1K+
-ikx
o [ ie °
A, = Ck) -F ]+————cost .
2 Y2K+ + 41T2a2Y2 2°0

solutions in the transformed region are determined.

13

If C(k) is

(2-19)

(2-20)



CHAPTER 3

DECOMPOSITION OF THE FUNCTIONS

First, let us construct the branch cuts of Yl and Y2 in the k-plane.
To do this, the sign of Imw has to be investigated. One of the ways to
determine the sign of Imw is to consider the wave equation with

dampang [8].

V¢ -——F-—==zFt=0, €>0. (3-1)

== / ¢ e1%Car , (3-2)

Eq. (3-1) reduces to:

2
VgL tET o, (3-3)

a

where W 1s assumed to be real. Alternatively, assuming w to be complex

as w=w, +1w.,, where w, and w

1 5 1 , are real and taking the wave equation

which does not have damping,

2

2
v - L28_,

at

1
) . (3-4)
a

14



Carrying out the Fourier transform, we obtain

wz-w2+2wmi
V25 + L 2212$=o. (3-5)

a

Comparing Eq. (3-3) and (3-5), it is concluded that assuming w is real
and considering the wave equation which includes damping is equivalent
to assuming that W is complex and considering the wave equation without

damping, if Imw >0. Therefore we should assume Imw >0.

The sign of Imw can also be determined through the causality
condition which requires that no disturbance should be present before
time t=0. In order to satisfy this, the contour of inverse transform
has to lie in the upper-half domain of the w-plane, which indicates that

Imw > 0. The causality condition will be discussed in Chapter 4.

Consideration of the radiation condition gives another way to
determine the sign of Imw. Consider the branch cuts of Yy in the k-plane.
For simplicity, assume Rew >0. ImYl must be positive according to the
commitment made in Chapter 2. Two kinds of branch cuts are possible as
shown in Figure 3-1. For the case Imn >0, ReYl is positive on the real

axis and considering the form of the inverse transform:

iY1y+1kx-imt
¢ = ﬂA(k,w)e dwdk , (3-6)

thais indicates the outgoing wave in y-direction. On the other hand, for
the case Imn <0, ReYl is negative on the real axis, which indicates the

incoming wave in y-direction. Therefore Imw should be positive.

15



* Imw >0 A Imn <0

@ w/a @ —w/a @ j@*

-w/a {[O o) -5 O] tv= [O]

HO

O indicates the argument of ‘/§+k

indicates the argument of ‘/ g-k

Figure 3-1 Branch Cuts of Y1 in k-Plane

In all these methods, the common i1dea is to set a direction in time

space, from the past to the future.

The poles of K are discussed in detail in Appendix A. The results

are as follows: When 2 >M, there are two complex poles at:

k =u(M)ko (3-7)
and
k =u(M) ko=u* (M)ko (3-8)

where u(M) indicates the complex conjugate of u(M) and

M+ M2+4—4 VM2+1

u(M) = ' (3-9)

2 VM2+1 -2

16



The poles k==u(M)ko, k==u*(M)k° are associated with instability of the
vortex sheet when M < ZVE'and play a prominent role in the solution of

the problem. They are therefore displayed explicitly by defining u(k) by

Yl(k)YZ(k)
uk) (k-u(M)ko) (k-u*(M)ko)

K(k) = . (3-10)

We seek the radiating acoustic solutions that decay like

-Imk le

o

e

or
~Imk_|x|/(1 +10)

e
as X * +», Thus, all plus functions, denoted by a subscript +, will be
analytic in the region

Imk

< o -
Imk i ’ (3-11)

while all minus functions, denoted by a subscript -, are analytic for k

in the region
Imk > -~ Imko . (3-12)
There 1s evidently a strip

Imk
o

1+

> Imk > - Imk° : Region A (3-13)

in which full-range transforms of ¢l' ¢2, and h are analytic functions

of k.

17



We consider the case M<1l. In this problem the branch cuts of Yy
and Y2 should take the form as shown in Figure 3-2 to satisfy the
commitment that Im‘Y1 and ImY2 must be positive on the real axis. The
branch cuts of /i;:ﬁfif and Vi;:: lie 1n Region B and the branch cuts
of /ﬂ;:ﬁiri and VE;:E'lie in Region C even though w changes it value as

long as Imw >0, where Region B and Region C are defined as:

Region B: Imk < - Imko
Imko
: >
Region C: Imk im

Region C
k
1

A VA VA VA W VA VA VAN \ AN

TUL S SESTS LT region 2

ko -k
M-1
Region B

Figure 3-2 Branch Cuts and the Common Region of Analyticity

18



k=u(M)kq

k=u(M)ko in Region A
k=u*(M)ko in Region C

k=u(M)ko in Region
k=u* (M)k_, in Region C

k=u* (M) k
o

in Region

w-plane

in Region/C

k=u(M)ko in Region C
k=u*(M)ko in Region A

=u(M)k, in Region C
k=u*(M)k0 in Region B

Figure 3-3 The Position of the Poles in the k-Plane
According to the Value in the w-Plane

19



The functions u(k), v,, Yz are split into two parts such that:

1

uk) =y, k)/u_x) , Y1=Yl_/Yl+' Y2=Y2-/Y2+ )

From the branch cuts we made previously it is apparent that

o _ea-l/2
Y1+(k) = (ko k) \
_ 1/2
Y, 0 = (k#K)
> (3-14)
e v a-1/2
Yy, () = (k =Mk k)
L 1/2 /
Y, k) = (-Mk +10) 2

The calculation of u+(k) and ¥_(k) is presented in Appendix B. The
difficulty arises from the poles k==u(M)k° and k==u*(M)k°. As can be
seen in Figure 3-3, the position of the poles in the k-plane changes
according to the value of W. As a result, we cannot determine whether
the terms [k-u(M)ko], [k-u*(M)ko] work as a plus function or a minus

function.

20



CHAPTER 4

CAUSALITY AND RADIATION CONDITION

The causality condition requires that no disturbance be present
before time t=0. Let the transformed solution have two poles at
k==u(M)ko and k==u*(M)ko, which 1s the case in our problem. First,
consider the inverse transform with respect to w, assuming that k is
real. It is apparent that to satisfy causality, the contour must lie
above all the singularities in the w-plane. In other words, the contour
is deformed so that i1t always includes poles as shown in Figure 4-1.
Then the branch cuts are constructed so that the radiation condition
is satisifed along 1its contour; namely,

ImY1 >0 along the real axis and the position of the

pole enclosed by the deformed contour, (4-1a)

ReuvReY1 >0 along the real axis and the position of the
pole enclosed by the deformed contour. (4-1b)

x>0 % k<o }

w= ak ak

u* (M) u(M)
Contour ﬂ r Contour
-ak (M-1)hk T (D) ak (M+1)ak ak (M-1)ak -ak

‘w= ak
u (M) .
w= ak
u* (M)

Figure 4-1 Contour of Integration and Branch Cuts in w-Plane
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The condition (4-1lb) indicates that the solution leads to outgoing waves
in y>0. It is not easy to express the radiation condition for y <O
because of the moving fluid. However, one can determine the branch
cuts of Y2 in such a way that when M*0 they coincide with those of Yl'
These branch cuts are also shown in Figure 4-1. To obtain the final

result, integration i1s carried out with respect to k along the real axis.

Next, consider the inverse transform with respect to k, first

assuming that ® 1s real or has a very small positive 1maginary part.

fx,w) = / ?(k,w)eikxdk . (4-2)

x

If we integrate it along the real axis, ?(x,w) has singularities in the
w-plane when the poles k =u(M)ko, k =u* (M)ko hit the contour as w changes

its value as can be seen in Figure 4-2.

A

k-plane

POLE k =u(M) ko

—

POLE k = u* (M) ko

Figure 4-2 Movement of the Poles as w Changes from -o to ®
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There is no proper contour in the w-plane which satisfies causality because
of these sinqularities. To overcome this, the contour Ck is deformed in
such a way that after the pole hits the real axis in the k-plane, the
contour always includes this pole as shown in Figure 4-3 and as a

result the sinqularities disappear. The branch cuts in the k-plane

have already been made in Chapter 3 and along the real axis the
conditions (4-1) are satisifed. We have no choice in making the branch
cuts to satisfy conditions (4-1) at the position of the pole enclosed
by the deformed contour except for the geometrical relation between

the branch cuts and the poles. However, we have a choice in the defor-
mation of the contour. The contour may be deformed to include the pole
in the upper-half plane as shown in Figure 4-3(a), or the contour may

be deformed to include the pole in the lower-half plane as shown 1in

Figure 4-3(b).

+ Rew >0 *
=u(M)k ®*k=u(M)k
[¢] o

Contour Contour

= e —— L ot

e k=u* (M)k
° k=u* (M) ko

(a) (b)

Figure 4-3 Contour of Integration in k-Plane when Rew >0
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Consider the case Rew > 0. The relation between the two branch
cuts of Yl and two poles is as Case I or Case II shown in Figure 4-4(a).

According to the branch cuts defined in Chapter 3 at the pole k=u(M)ko

we have:
Case I
1/2 T ea ™
- = — 4 — i - > > -
arg(ko k) > + > with > ea o] (4-3a)
x_ +x)/2% = % ith —>8 >0 (4-3b)
argt®y ) wi 2~ b
and
w+6a+eb
= —_—_— 4-3
arg Yl > (4-3c)
> > (4-3d)
arg Yl 5
Case II
1/2 T ea
arg(ko -k) =-3 + > (4-4a)
3]
arg(k +x)/% =2 (4-4b)
o) 2
and
-n+eafeb
arg Yl = (4-4c)
0>argy, >- 2. (4-4d)
1l 2

Therefore at the pole k=u(M)ko, condition (4-la) is satisifed but (4-1b)
is not satisfied in Case I, and condition (4-1b) is satisifed but (4-1la)

1s not satisfied in Case II.
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Case I ‘ k=-v.1(M)ko
3
/@ i
5 —
ea
k=u* (M) k
o
Case II A u(M)k

!

—&

(a) Rew > 0

k=u* (M) ko Case I
8
Gc d
P
bc

k=u({M)k
o

/g

=y ®
k=u (M)ko

T

Y

k=u* (M) k Case II

25
Y

{(b) Rew < 0

Y

k=u (M) ko

Figure 4-4 Relation Between Branch Cuts and Poles



At the pole k =u(M) *ko, both Case I and Case II give:

<D

/72 _ T _Za -
arg(ko-k) =3 > (4-5a)
R V. (4-5b)
argts, ST
and
m-0_-0
a b
axrg Yl = (4-5c)
1 > arg Y >0 (4~-54d)
2 1 -

Therefore, at the pole k =u* (M)ko, Yl satisfies both conditions (4-1a)

and (4-1b).

Next, consider the case Rew <0. The relation between the branch
cuts and two poles is as shown 1in Figure 4-4(b). Similarly, according

to the branch cuts defined in Chapter 3 at the pole k =u¥* (M)ko we have:

Case I
arg(k -k)l/z—-e—c with =>9_ >0 (4-6a)
AN =72 2~ ¢ a
arg(xk +x)/? = %a with T >0,>L (4-6b)
fo) 2 a’” 2
and
6 _-6
4 c
arg Yl = > (4-6c)
T > a >0 4-64
2 rg Yl ’ ( - )
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Case II

8
2 _ < -
arg(ko k) =T 5 (4-7a)
k_+10%? = 2 (4~7b)
argtx, T2
and
2m-6_+6
c “d
arg Yl == (4-7c)
-3-Tl'>argY > (4-74)
2 1 :

At the pole k =u* (M)ko, condition (4-la) is satisfied but (4-1b) is not
satisfied in Case I, and condition (4~1b) is satisifed but (4-la) 1s not

satisifed in Case II.

At the pole k=u(M)ko, both Case I and Case II give:

0
172 _ "¢ _
arg(ko-k) =3 (4-8a)
1/2 ed
arg(k +k) =T = — (4-8b)
[¢] 2
and
2ﬂ+9c-9d
arg Yl = (4-8c)
T > argy, > = (4-84)
1 2°

Therefore, at the pole k=u(M)ko, Yl satisfies both conditions (4-1la)

and (4-1b).
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It 1s concluded that if we deform the contour so that all the
poles are above the contour, radiation conditions (4-1) are satisfied at
the position of the poles k==u(M)ko, k==u*(M)ko, as well as along the
real axas, whereas if we deform the contour so that all the poles are
below the contour, radiation conditions are not satisfied. Therefore,

the contour must be deformed to include all the poles above it.

It is obvious that the contour obtained here 1s also valid for the
infinite vortex sheet problem and i1t 1s easily shown that the contribu-
tion from these poles coincides with the homogeneous solution obtained

by Jones et al. [1-5].

The decomposition of the functions in the Wiener-Hopf technique 1is
slightly changed. As the contour of inverse transform must lie in the
common region of analyticity, the common region of analyticity has to be
deformed in a similar way. Plus functions are defined as the functions
which are analytic below the contour and minus functions are defined as
the functions which are analytic above the contour. Then the decompo-

sition of K(k) is determined uniquely as follows:

tal
t

= Vi Yo b, (K) {k-u(m)ko} {k -k} (4-9a)

K = Yi- Yoo u_(k) . (4~-9b)
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CHAPTER 5

THE CONDITIONS AT THE PLATE EDGE AND THE VALUE OF THE ENTIRE FUNCTION

The Wiener-Hopf equation is given in Chapter 2 as:

Wh K +F =K <a¢2_ - ¢l_l —Ll)- F_ = C(k)
y=0 y=0
where
Vk
e=l-%
o vi o=
Ly == Zmp ¢ (/W) :

x=0,y=0

(5~1)

C(k) is the entire function of k and plus functions and minus functions

are analytic below and above the contour determined in Chapter 4,

respectively. Near the edge of the plate at the origin.we assume:

Ei(x,w) -+ Cl(w) as x*+*-0 on y =
$é(x,w) =+ Cz(w) as x*-0 on y=
— _ 21

¢2(X,w) - ¢2(0,w) =0(x ") as x> +0 on y =
— 25

hix,w) = 0(x ) as x> +0 on y =

+0

+0

(5-2a)

(5-2b)

{(5-2c¢)

(5-24)

where 21 il, 12 >0. In these conditions, the expression x+-0, y=+0,

for example, means that x tends to zero through negative value of x on

the upper side of the plate. The Ci(w) are functions of w and need not

be known explicitly.
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The third condition indicates that the x-component of the disturbed
velocity 1s finite below the vortex sheet at the edge. The fourth
condition 1s the requirement that the vortex sheet should attach to the

edge of the plate.

Carrying out the half-range Fourier transform defined by Eq. (2-7),
the asymptotic behavior of the above functions can be calculated with

the aid of the Abelian theorem as:

E; (k,w) = O(lkl-l) as k7> 1n Imk >-Imk (5~-3a)
- o
= _1 .
¢2_(k,w) = 0(lkl ) as k+= in Imk>-Imko {5-3b)
_ 19, (0,w) -1-%,
¢2_(k,w) - o= O(Ikl ) as k*® in Imk >—Imko (5-3¢)
- -1-4, Imk
h, (k,0) = O(Ikl ) as k+® 1n Imk < 1+N? . (5-3d)
F+(k), F_(k) are given as follows:
_ =1 F(D)
F+(k) = o Sk dA (5-4a)
<,
_ 1 F(})
F_(k) = 53— _[ o 9 (5-4b)
C—
where (
-1|Ax +Y.(A)y -i{Ax +y,(A)y
iy, (Mae o2 °)K+ e myi MY, Nae (e o
F(A) = 2 2 TR - > 2 2
AT a (Yz(k)+yl(>\)oc ) 4m17a
(5-4c)
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Since F()) does not have a pole at A::u(M)ko nor X==u*(M)k°, the contour
C+ and C_ need not be deformed and lie in Region A defined in Chapter 3.
C+ passes above A=k while C_ passes below A=k. The exponential decay
of F()A) on the contour, since ImY2 >0, Y, < 0 ensures that these
integrals exist and that F+(k) =0 (|k|'l), F_(k) =0(|k|"’l) as k +® in
respective regions. The asymptotic behavior of u+(k), H_(k) is calculated

in Appendix B as:

Imk
u, G0 = o (]x[*?) as ke in Ink <3 (5-5a)
u_(k) = o(|k|'1/2) as k>® in Imk > - Imk . (5-5b)

Therefore, the asymptotic behavior of the known functions in the Wiener-

Hopf equation can be estimated as follows:

12 Imk

K, () = 0(]x|>*) as k>o in Imk < g2 (5-6a)

K_(k) = o(|k|1/2) as k> in Imk > - Imk (5-6b)
N Imk

F, () = 0o([x|™) as k> 1n Imk <2 (5-6¢)

F_(o) = o (x|™ as k>o in Imk >~ Imk_ . (5-64)
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First we calculate the value of minus functions:

Vi

17 7 2w “’2(0’“’)l

y=0

. -2
- %3 (k,m)‘ + o(|k| l) (5-7)
w 2
y=0

K_ (a?)’z_l -¢al_} -Ll)—F_=K_s$2_I -?kl +o<|k|
y=0 y=0 y=0 y=0

1/2'2l
= 0(|k[ ) as k> in Imk > - Imk_.
(5-8)
As 21 > 1, the value of the entire function C(k) must be identically

zero because of Liouville's theorem. Next, calculate plus functions

)

-> i <
as k-« in Imk 1

1/2—22) Imk

wh K +F = o(lkl . (5-9)

In order to make C(k) equal zero, %, > 1/2. If we set C(k) =0, then

2
-F Imk
= _ _+ _ -5/2 o)
b, = - - o(lx|™>"%) as k> i Imk < T2, (5-10)
which implies
— 3/2
h(x,w) = o(x ) , as x++0 on y=0 , (5-11)

and as a result the slope of the vortex sheet becomes zero at the edge
of the plate as well as the displacement of the vortex sheet (full Kutta

condition).
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CHAPTER 6

BEHAVIOR OF THE SOLUTION WHEN M TENDS TO ZERO

The behavior of the solution near the edge of the plate 1s different
from that of the Sommerfeld half-plane diffraction problem (without the
flow). Let us examine the y-component of the velocity on the vortex

sheet near the edge of the plate.

= - -11%
R, = Y)Y, 1,00 {k u(M)ko} {k wr k|
=Y., Y (Y +Y az)u (k) (6-1)
1+'2+\'27 11 - )
since
2
(y2+yla )u_ (k)
B+ (k) o= (k—u(M)k )(k-u*(m)k ) (6-2)
o o
The asymptotic behavior of Y_(k) is given in Appendix B as:
u_te) = o(u k|3 (6-3)
Hence
K, () = 0 {M-llkrl/z (1+M|k|+M2|k|2)}. (6-4)
The asymptotic behavior of F+(k) is given in Chapter 5 as:
-1 -1
F 0 = oMtk TH) . (6-5)
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Therefore in our problem

f

T ~1
=0 {lkrm (1+M|k1+ leklz) } (6-6a)
3% -1
332;+ =0 {[kl"l/2 (1+M|k|) (1+M|kl+ M2|k|2) } (6-6b)
since
3¢1+ = - imi
dy
iF
= X (6-7a)
K+
and
39
2+ L=
Sy - 1wah+
10F
= — (6-Tb)
K,
Here the dependence of the asymptotic behavior on M 1s displayed
explicitly. If M is finite
39
1+ -5/2
= o{lx]™%) (6-8a)
39,
2+ -3/2
= o(|x]|™%/%) (6-8b)
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Then the Abelian theorem implies

if_;- = o(x3/2) as x*+0 on y=+0 (6-9a)

% = o(xl/Z) as x++0 ony=-0 . (6-9b)
In the Sommerfeld problem

glng_%: o(lki'l/z) (6-10)
” ;gi = ;gé = o(x-l/z) as x> +0 on y=0. (6-11)

In these expressions the asymptotic behavior is calculated when ko in
the lower half-plane of the k-plane defined in each problem respectively.
If M+0 and Mk +0, the asymptotic behavior of the two problems coincides.
In other words, the existence of the flow smooths the edge behavior of

the solution. In fact, for the small Mach number

un 22 (6-12a)

u*(M)::lii (6-12b)
and

Yo mvat k. -k (6-13a)

Y, 00 & v, 00 = (k_-k) 7 (6-13b)

Yok =y, (k) = (ko +k)l/2 (6-13c)
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(k +k)-l/2
Bo(k) x (6-134d)
- M
(k -k)l/zM
Uk —2— (6-13e)
+ 2

Hence

Mk - u(M)ko) (k-u* (M)ko)
k) = (6-14a)
N 2,4 a

-i(Ax +y. (M)y Jax
F, (k) = - f a(xgez ( ° 1j2 0) (6-14b)
4 8Ta (ko-x) (A-k)M
-1 (Ax +y,(N)y ~kx-v, (k)y
K2a(\)e ( °© 27" 1 )d)\dk
9, (xy,0) = - 3 2 o12 2 1/2*
1 81°a (k -A) /2 (r-x)M (k-u(M)k )(k-u*(M)k )(k +k) /
Ck C+ o [e] [} o
(6~14c)
As M+0 and Mk -+>0,
o >l (6-15a)
and
M2 (kmuk_) (k-u*k ) 5
o =1+0° +2 . (6-15b)

o
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We have

-i (Axo+yl W)y, =kx=, (k) y)
- e drdk . (6-16)

¢, (x,¥,w) oma2 (ko')‘) 1/2 (k°+k) 1/2 (A-k)

Ck C+

The solution coincides with that of the Sommerfeld problem discussed in

Appendix C.
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CHAPTER 7

TRANSMITTED SOUND FIELD

The transmitted sound field is formally given by the equation

F+ (k) ikx-lu,\t+1yly :
$, = e dkdw (7-1)
1
c
w

Y.K
C, 1+

where Ck and Cm are the contours discussed in Chapter 4 and

_-l L E i
F, (k) = 2 e (7-2a)

.

-1 (Ax_+y, Wy )
w_y;_ Ay, Mae
F(A) = > (7-2b)
4T a

where C , passes above A =k. If we change the contour of the integration
so that C+ passes below A =k, the contribution from the pole A =k must

be added to the integration, which gives

1 F(})
2mi A-k

C
+

F, (k) F(k) - ax

F(k) - F_(k) . (7-3)
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The transmitted sound field ¢t due to F(k) 1s given as

ikx-1wt+iyly—ikxo-iY2yo

1Y, Y,.u (k)ae
1= 2% - dkduy
t 41r2a2 K
Yi&,

1kx-iwt+1yly-1kxo—iY2y°

-©-
I

dkdw , (7-4)

—
"3

4v2a2(Y2+Yla2)

which is exactly the same as the solution for a doubly infinite vortex
sheet problem without a rigid plate as can be shown i1n Appendix D.
Therefore, F_(k) 1s considered to indicate the effect of a semi-infinite

plate on the doubly infinite vortex sheet sound field.

In this chapter we carry out the integration (7-1) with respect
to k. The integration with respect to w is carried out in Chapter 9.
The advantages of integrating with respect to k first are:

(1) After the integration with respect to k, the time harmonic
solution 1s obtained. The time harmonic factor 1s assumed
_'t
to be e @ .
(11) The geometrical relation between the source and the
observer 1s more clearly investigated as will be shown

later.

Introducing the new parameters

([l
]

k/k

o
(7-5)

Ak

<
It
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the time harmonic solution of the transmitted field can be written as:

-1k (\)xo+w2 (V)y_-Tx-w, () y)

_ v_(w,_(Vw, (V) (1-tve  ©
¢1(X,Y,U’) =- /f 3 2 dvdz
& e, 8T a (v-C)(C-u(M))(C-u*(M)}wl_(c)w2+(C)v+(§)

(7-6)

where wl(C), wz(C), w., (T), w2+(;), v+(c), and v_(g) are the counterparts

1

of Yl(k), Yz(k), Yl_(k), Y2+(k), u+(k), and u_(k), respectively, and are
defined as:
W (D) = 1-¢7
W@ = amp’ - g2
w (@) = (et
_ _ -1/2
w2+(C) = (1-MZ-T)
(1-M%v?) |w, (V)]
1 T
-1 arxctan Iw (V)l -5
2nv_(g) = - 2nM(l+C)l/2—% f 2 dv
1 h
M-1

. fw, (@) 4w () (1-10) 2}y_(2) S
v (g) = . -7
+ (z=u) (g-u* ()

The branch cuts of wl(C) lie from -1 to -= and from 1 to » and the branch

1 1 .
cuts of wz(C) lie from Ty to -« and from Ml to © in the {-plane, which
iB

correspond to the branch cuts of Yl(k) from —ko to we and from ko to
if iB

k - k
we  , and the branch cuts of Yz(k) from ﬁ:% to e and from i:ﬁ-to e

iB

in the k-plane, where

B = arg ko . (7-8)
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Since this rotation of the branch cuts does not affect the radiation
condirtions as discussed in Chapter 4, this is permissible. The contours

of the integration Cy and C_ are shown in Figure 7-1. In the following

g
figures we draw two contours on the same plane because after the inte-
gration with respect to V, the pole V=17 is the contour of the next

integration and therefore their relation can be easily shown.

Let
x = -(l—Mz) r cosH
o o o
(7-9)
y = —(l—M2 l/2r sinf® .
o o o
r and 8 are given as:
o o
x2 y2
r = g 5 + 02 ro >0
° (1-4%)°  1-m
(7-10)
YOVI-MZ
8 = arctan ——— T>86_ >0.
o x o
o
c * T=u(M)

T =u*(M)

Figure 7-1 Branch Cuts and Integration Paths
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Deform the contour Cv into the curve Cvl defined by

cos (0 +iT)-M
o)

v = - (7-11)
1-M

where T is real and runs from -« to «, This curve 1s a branch of a
s

hyperbola with asymptotes v=e  © and has a vertex at

cosf -M
o

V= (7-12)
1-M

This vertex lies between the branch point v=-1 and v==i%§ if

coseo > M2-+M-l . (7-13)

Therefore, 1f Eq. (7-13) 1s satisifed, the contour can be deformed into
the hyperbola without cutting the branch lines and we restrict the
position of the line source in this region. The region expressed by
Eq. (7-13) depends on the Mach number M, and as 1s shown in Figure 7-2,
when M is small 1t covers almost all the moving flow and when M

approaches 1 1t is restricted to a small region.

Yy

A

Rigid Vortex
Plate Sheet

T

M=0.1
M=0.2

M=0.5

Figure 7-2 The Region Expressed by Eq. (7-13)
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The contour of integration CC is deformed in a similar way. Let

x = rcosf l
(7-14)
y = rsinf }
with r >0 and 7> 6 >0. Deform the contour CC into the curve CCl
z = cos(6+iT1) (7-15)

where Tl is real and runs from -« to «. This curve is a branch of a
: +ig
hyperbola with asymptotes [ =e and has a vertex at

z = cosH . (7-16)

This vertex lies between the branch points £ =-1 and [ - if

1+M
1
cosB < o - (7-17a)
If
1
cosf < I (7-17b)

the contribution from the branch cut must be added. In both deformations,

no contribution occurs from'the linking arcs at infinity. Then on the

contours the exponential part of the integration (7-6) becomes

-1ko(vxo+w2(v)yo-Cx-wl(C)y)==-1k°(—rocoshT+r°Mc056°-rcoshrl) . (7-18)

The integration takes a different form according to the geometrical
relation between the position of the line source and the observer as

follows.
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0.4

91=30

Rigard Plate Vortex Sheet

Source

0.6 0.4

0.2
= [}
61 60 0.8 o
el
Source
8, = 90° 0.2 0
0.4
0.6
e1
® Source

Figure 7-3 Region Expressed by Equation (7-21)
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Region 1

When
cosGO—M
cosf < —————??~ . (7-19)
1-M

Introducing the real geometric angle and length defined by:

X = -r cosf I

° 1 (7-20)

Y, = -r151n61 1
Eq. (7-19) can be written as:

> -

8 92 (7-21)

where
cosb
00592 = 1 - . (7-21a)

2
VI—M2 sin 61 (l-M2) 1-u

The restriction of the angle (7-13) ensures that Eq. (7-2la) always has
the root. The region expressed by Eq. (7-21) is shown in Fagure 7-3.

If Eq. (7-19) is satisifed

cosG° > cosB (7-22)
since
coseo-M
coseo > — (7-23)
1-M

is satisfied identically and hence

8 < 06. (7-24)
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As

< (7-25)

1s also satisfied identically

& — -
cosf Tem (7-26)

and hence no contrabution occurs from the branch cut. The relation of

the two contours is as shown in Figure 7-4.

The transmitted sound field Ei 1s given as:

o, (x,7,0) = 4(x,y,w) (7-27)
where
o ik rcosth
_ F_(De °
. = f dt (7-28)
d 2 2 1
o 4at°a (C—u)(C—u*)w1+(C)w2+(§)V+(C)

and
ik_r (coshT-Mcos® )
o

LF_(T) =

¥ v_w_(Ww,_(v) A-Mv)e
at. (7-29)

-0 27 (v=C) l-Mz

If C\)l and cl;l intersect as shown in Figure 7-4(b), which may occur when

8 = 62, the contribution from the pole V= must be added to give:

9, (xyy,w) = By (x,y,0) + 9 (x,y,w) (7-30)
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Fr1

vl

(a) \
CCl
‘n

)
and C\)l 0> 92

(b

Figure 7-4 Relation Between Cz;l
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where

by . 1k (rcoshT - x -w, (D)y_)
_ /l (1-MDw (D)e ooz
b = art
S x 4ﬂ2a2{w2(C)+w (Q)(l—MC)Z} 1
5 1
A ik (rcoshT -Tx -w, (Q)y
3 (l—MC)wl(C)e [¢] 1 o 2 o)
+ / > > dt, . (7-30a)
\ an’a {wz(«:)wl(c) (1-M2) }
4
Al' kz, K3, and X4 are the roots of
cos (0 +1T)-M
-————9—3————-= cos (8+1T ) (7-30b)
1-M
and
>\l > )\2 > }\3 > )\4 . (7-30c)
Let
cos(ec+iTl) = u(M) . (7-31)

. . m .
As shown in Appendix A, 93=Z. If e'<e3, the contribution from the poles

Z=u(M) and L =u*(M) must be added to give

By = By +H0,-01F,, (7-32)
where iko(Cx+wl(C)y)
F (De
Ty = - =5
Pl amal (tmutw (D, (D, (D)
C=u
1k (Tx+w (T)y)
FO(C)e © 1
- 3 (7-32a)
2Ta (C—u)wl_(C)w2+(C)v+(C)
C=u* ,

The relation between the poles and the contours is shown in Figure 7-5.
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0 <8 u(M) € vl

u* (M)

Figure 7-5 Relation Between the Poles
and Contours

Region 2

When

g < eo . (7-33)

The region expressed by Egq. (7-33) is shown in Figqure 7-6. If Eq.

(7-33) 1s satisfied, then
cosf -M
cos > —=— . (7-34)
1-M

The relation between the two contours is as shown in Figure 7-7. When
we deform the contour CC to cCl the two contours intersect and the pole
L =V brings another sound field 6; which 1s the same as the solution for
the doubly infinite vortex sheet problem. In the calculation of E; we
are free to deform the contour if there 1s no contribution from the
linking arcs at infinity as long as Cv lies in the left of C_.,. We

1 Tl
calculate Eé along the stationary path Z(o) which has its saddle point
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=0

6. = 30°

Rigid Plate Vortex Sheet

Source

= -]
61 60

All Values of M

6 ¢ Source

Figure 7-6 Region Expressed by Equation (7-33)
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- i <
Figure 7-7 Relation Between CVl and cCl ) 80

between -1 and —l—-on the real axis and has its asymptotes [ =

1+M

where:

2 2
-1ty '
6, = arctan .
4 x-xo

The character of £ (0) is discussed in detail in [1]. Then

® ik g(0)

- _ i(1-Mg)e ° az
b = f 22 A a0 -
4T7a {wz(E)Wl(C)(l-MC) }

Qu

where

glo) = —Cxo-wz(c)yo+Cx +wl(C)y Img(0) =0 .
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If L (0) captures the poles u{(M) and u*(M), another sound field EPZ must

be added.
1k _(Txtw (©)y=Cx -, (@)y_)
3’ . (1-MT)e ( 1 o 2 o
P2 2 a4 2
2ma E{wz(r,)ml(z;) (1-Mz;)} L
ik | CTx+w. (Tly-Cx-w_(T)y
. (1-MD)e o( 1 o 2 o)
2 d 2
2ma? & {w, @ @ D ?h (7-37)
¢P2 does not appear when Go < 65 where
cos (6 _+1T_)-M
5 _ 5 L . (7-38)

1-M

The relation between the contours and the poles 1s as shown in Figure

7-8. 1If 6<66, where

cos8 = 1+ "L, (7-39)

the contribution from the branch cut $bl must be added.

V1 c
0 > 85 g (o) vl

6 <0 z (o)
u (M) o 5 u(M)*

u* (M) N\ 1% (M)e

Figure 7-8 Relation Between the Poles and the Contours
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ik rcoshT1

B 6 F_(D)e
7. = f — ary . (7-40)
an’a’ (g-w) C-u)w  @©)w,, )V, (@)

[£(t)]_=£(g+ie) - £(C - i€) is the discontinuity of £(%) across the

branch cut.

As a result, the transmitted sound field Ei in Region 2 is given as:

p2 (7-41)

—_ - T - —_ _
1= % +H(Z' e) Opy +H(O5=0) ) +0, +QM,x,y)H(B -6 )

where Q(M,x,y) is 1 when L (0) captures the poles and otherwise zero.
6;, $§2 are the solutions for the doubly infinite vortex sheet problem

(without rigid plate).

Region 3
When
B8 >8>0 |, (7-42)
2 o

Region 3 is between Region 1 and 2, and 1s shown in Figure 7-9.
The relation between the two contours is as shown in Figure 7-10. The

contribution from the pole ¢tl partially appears.

A 1k (rcoshrl-be-wz(C)yo)

_ f (1-M0)w, (Z)e °
2 4n2a2{w2(m+wl(c> (1—Mr,)2} !
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-;=° e—_'o
3 30 l60

Source

Figqure 7-9 Region Expressed by Equation (7-42)

‘21

Cvl

Figure 7-10 Relation Between Cv and C

6. >0 > 8 1 cl
1 o

ls and AG are the roots of Eq. (7-30b), and

Ao > A A= <=2 . (7-43a)

the contribution from the branch cut ¢b must be added.

<
If 6<6 )

6’

_ 1k (rcoshT -Tx -w_(0)y )
1(6 96) (l—MC)wl(c)e 1 7o 2 o

©

= dT - (7-44)
b2 4n2a2{w2(c>+wl(c>(1-Mc>2} 1

Tr —
If © <Z-and 80 >65, the contribution from the poles ¢P2 appears. As a

result, the transmitted sound field Ei in Region 3 1s given as:
ry LI

_ T -_— — — —_ —
¢ = ¢4 +H(Z' 9) Opy THOL-0Yy,) +0,, +H(O,-0,, + H(4 e) B(6,-65) bp, -

(7-45)
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CHAPTER 8

ASYMPTOTIC EVALUATION OF FAR FIELD

The fields ¢d, ¢t, ¢tl’ ¢b1' and ¢b2 can be evaluated asymptotically
under the assumption that kor >> 1 and r >> ro. First consider the case
when 63>66. It is permassible to change the order of integration in

integrating (7-28) and (7-29) because Tl and T are real. Now assuming

ko is real and positive since T, =0 is the saddle point, a standard

1

stationary phase method is used to evaluate the integration to give:

ik r+Xj
_ F (e °
b, = — (8-1)
a4 23 13222 (L-u) (G-ut)w, , (D, (B)v, (D) /K E
+ 2+ + o
C=cos0 .
If 9'<66, cCl must be deformed to enclose the branch cut as shown in

Figure 8-1, and special care must be taken since w2+(C), wz(C), v+(C)
take the different values depending on from which side { approaches to

the branch cut.

Cl

Figure 8-1 Deformation of Cz;l When 6 <66
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T
1k rcosh 1

3 43 F (e
¢ / dr,
R 41T a (C-u) (C-u*)w (C)w2+(C)V+(C)
o ikorcoshT
F (C)e
+f 3 drl+o(lkor|'3/2)
2 4173 (lZ-u)(C-u*)wl+(C)w2+(C)V+(C)
1kr+%1
F_(De ©
av7 1/ 2(c W (G-u*)uy (VT
C=cosf
1 1 -3/2
{wz_'_(t‘;)v_'_(l;) MEAGEAL) l }* o (I zI72),
=-0+cosb C=+0+cosb
(8-2)
where for example, f(C)I means the value of £({) when [ approaches
g=+0+a,

a through positive value on the upper side of the branch cut. As 0=0

is the saddle point of integration (7-36), we have:

ﬂ{gW%%g@"W)%l
- 1(1-Mg)e © dg (8=3)

¢ =
t L5 2 2{w (8)+w, (T) (1) },/ko Nl e

=0 .

Since we assume ¥ >> ro, Tl=0 1s the saddle point of integration (7-43)
and the main contribution to the integration comes from this poaint.
Therefore, asymptotically it is permissible to deform CC1 to (o). We

have

o = .+ b . (8-4)
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It is concluded that Region 2 and Region 3 asymptotically have the same

character.

As we assume r >> o, both cCl and [ (0) have the same asymptotes

and for small Mach number the poles are not included in the deformation

T
from cCl to T(0) if B is not so close to 7 Therefore, we have:

— — 'IT —
0y + QUL X, IHB =00, = & + H(Z—G)H(eo'es)q’?z

— — T -
=Ty * O, * H(Z-e)n(eo-es)%z . (8-5)
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CHAPTER 9

THE IMPULSIVE PROBLEM

In this chapter inverse transform with respect to w 1s carried out
to obtain the solution for the impulsive problem. ¢l(x,y,t) 1s formally

given as:

¢l(x,y,t) = /al(x,y,w)e-lwtdw {9-1)

where integration 1is carried out along the real axis in the w-plane.

In Region 1 we have

™
O =0 ¥ H(Z'e) %p1 (5-2)
5 - f\{_(\))wl_(\))wz_(v) (l-M\))c‘S{t- (rocosh'r-roMcoseo+rcoshT1)/a seae
5 -
JJ ana® Via? (v-0) (5w (Gunw ), (D, (D)v, (2) !
(9-3)

where the integration with respect to ®w has been performed. This can be

integrated with respect to either T, or T, but the remaining integration

1
cannot be performed explicitly. It i1s however clear that ¢d vanishes
for times at < ro-rchoseo-Fr. The arrival time of the wave front

becomes earlier or later depending on the position of the line source

due to the term rsMcoseo and hence the existence of the flow in the

lower half-plane.
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iw {t- (rocoshT-Mrocoseo+ux+wl (u) y) /a}

r m{(v)wl_(v)wz_(v)(l-Mv)e
¢p= - /:/ atdw
2 2

- 2o it az(v-u) 1-M (u—u*)wl_(u)w2+(u)v+(u)

; _ - * *
lw{t (rocoshr Mrocoseo+u x+wl(u )y)/a}

[ 2w (Vw, (V)(1-Mv)e
-/]- dtdw .
2

-0 =0 4w az(v-u*)\/l—M2 (u*—u)wl_(u*)w2+(u*)v+(u*)

(9-4)

It can be expressed in terms of the ultradistribution &(z), where z is

complex, as:

¢ =

_/.3 v_ (\))wl_ (V)wz_ (V) (l—M\))S{t-(rocoshT-Mrocoseo+ux+wl(u) y) /a}

dt
Pl 2 —‘—2
-0 21a” (V-u) Vl-M (u—u*)wl_(u)w2+(u)v+(u)
j v_ (\))wl_ (v)wz_ (v) (L-MV)§ {t— (rocosh‘r—Mrocoseo+u*x+wl (u*) y) /a}
- at .
~00 21ra2 (v-u*) \/l—M2 (u*-u)wl_ (u*)w2+(u*) v, (u*)
(9-5)
The ultradistribution §(z) has the property that
§(z) = I (i Im 2)™% ™ (Rez) /n! (9-6)

and since generalized function 5(n) (Rez) vanishes for Rez #0, ¢Pl indi-

cates the instability waves and vanishes for

at < ¥ - Mr cos6 + Reux + Rew, (u)y . (9-7)
o o o 1
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It is easily checked that Reu, Reu¥, Rewl(u), and Rewl(u*) are all
positive and these instability waves appear only in the downstream.
Therefore ¢Pl satisfies causality. On the other hand, 1f we deform
the contour in the k-plane so that the two poles are always below the
contour as discussed in Chapter 4, ¢Pl appears 1in the upstream and for

the certain value of negative x, ¢ can be heard £ <0 and causality 1is

pl

violated.

In Region 2 we have

T
&, = o +H(T-8)o . + H(B =010, + b, + QULx,¥IH(O_-05) 0 (9-8)

1 4

m:i9-66) v {(Mw, (Mw hn(l-Mv)G{t-(r coshT~-Mr cosf +rcoshT )/a}
- 1- 2- o o o 1
¢ . = — dTldT.
A ar?a? (v-0) V1-1? (-w) Gmut)w. (@), (D)v, (T) -
1+ 24 +

(9-9)

¢

L1 can be integrated once only, but 1t i1s clear that it vanishes for

times

at < ¥ - Mr cos® +rcos(6_-6) . (9-10)
o o e} 6

Since 1t is restricted to the region 9§ <66, it is also causal. As
indicated in Chapter 7, ¢t and ¢P2 are the solution for the doubly
infinite vortex sheet problem (without the rigid plate) which 1s calcu-
lated exactly and discussed in detail in [6]. The only difference 1is
that the instability waves ¢P2 are blocked and do not appear when 90 <65.
In Region 3 the integration cannot be performed explicitly for ¢t1 and

¢

b2 However, as shown in Chapter 8, 1ts nature 1s asymptotically the

same as that of Region 2.
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CHAPTER 10

CONCLUSIONS

The transmitted sound field ¢>1 satisfies the full Kutta condition

and causality condition.

The sound waves ¢d' ¢Pl’ and ¢bl can be heard first at the edge of

the plate at the time
t = (ro-Mrocoseo)/a (10-1)

which 1s the time that the emitted sound wave takes to travel from the
source point to the plate edge in the moving fluid. This arrival time

becomes earlier or later depending on whether the source is in the

T

2) or in the downstream of the plate edge (eo >-T-r-).

upstream (60 < >

The field ¢ a represents the field scattered from the edge of the
plate and can be heard everywhere in y>0. The wave front clearly

occurs on the circle
r = at=-r +Mr cosb (10-2)
o o o

and the time t = (r+ ro -Mrocoseo)/a is the time for a signal to travel,

via the edge, from the source to the observer.

¢b1 is the bow wave associated with q>d and can be heard in the

region 6 <66. Its wave front is expressed as:

at = r - r cosf +rcos(H_-0) . (10-3)
o] [o} o 6
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This 1s the straight line from x = (l+M)(at-rb-+Mr6coseo), vy=0, to
the point of contact with the cylindrical diffracted wave front. ®Pl
can be regarded as an instability wave triggered by the diffracted wave
at the edge and is restricted to the region 0 <Eﬁ It exists in the
triangular region bounded by the line x=y and Reux-bRewl(u)y =

at-Y +Mr cosf .
o o o

The transmitted sound fields can be classified depending on how
¢t wave 1s transmitted. ¢t and ¢P2 are the transmitted waves through
the vortex sheet and are i1dentical in the form to those found for the

infinite vortex sheet.

In Region 1, ¢t is completely shaded by the rigid plate. 1In
Region 2, ¢t 1s fully transmitted. Region 3 1s the transition region
between the two and ¢t 1s partially transmitted depending on 1ts wave

number.

If the observer is close to Region 1, ¢t 1s mostly shaded and if
the observer 1s close to Region 2, ¢t is mostly transmitted. If the
observer 1s far from the plate edge, the nature of the sound field is

the same as that of Region 2.

¢P2 1s another instability wave which occurs when T (0) captures
the poles. If the source is close to the rigid plate (8o <95), this

wave 1s blocked by the plate and does not appear.

If M tends to zero, the boundaries of Regions 1, 2, and 3 approach

the diffracted angle of the Sommerfeld problem (62-+61, 80'*61).
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APPENDIX A
POLES OF K
The poles of K are given as the roots of the equation
2
Y, (k) + v, (k)a" =0 . (a-1)
Introducing the parameter
z = ka/t , (A=-2)

Eg. (A-l) reduces to the form:

2
{# @ +u,@} {e 4w @u,@} = 0 (a-3)
where
wo(g) = 1-g2
., (a=4)
wy (@ = M2 -7

and to satisfy the sign convention of Yl and Yoo the imaginary part of
their counterparts Wy and v, must have the same sign as ko along the

real axis. Accordingly, the branch cuts in the 3-plane are as shown

in Figure A-l.

1w (D) Wy (D) =0 (a-5)
2. 2
W2 (2) = Wi (D)
1-22 = (1-up) 2 -2

(1-1+M3) (L+1-M3) =0

63



3-plane

V1-3

OF © .2
(@)

ojfjo

==
M:

1+3

indicates the
<:> arg. of v1-3

indacates the

arg of v1+3
Figure A-1(a) Branch Cuts of wl(3)
@ ' E AP /1 M3-3
I~
& =

o,

p) oot
Y1-M3+ L @) L
-M3+3 -2 M-1 1+M

<:> indicates the
arg. of v1-M3-3
indicates the
arg. of V1-M3+3

Figure A-1(b) Branch Cuts of w2(3)

Y
[}
(0

It is apparent that £ =0 is not the solution of Eq. (A-5). If M<2,
2
C==§'is situated on the right of £ =1 and cannot be the solution of

Eq. (A-5).
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1) ¢+ w QW (@) =0 (A-6)

4 2 2
L = Wl(C)wz(C)

1 -2Mg + (M—2)c:2 + 2M?;3 - M2C4 =0

(L-E- )2- M +1) =0
gz ¢

(C—lz--%- 1 -VE)(?- %- 1 +VM2+1)= 0
Vilrara Vil

242 V241

Vilia-a Vit

2 Vl+M2 -2

1+

-M

=
+

. —M+ VM2+4+4 01+M2 1 -M- ‘/M2+4+4 VM2+1
g = 1s between =0 and 7 = 1 L= >
242V M2+1 2+2 V1+M

is between £ =0 and T=-1. These two are not the solution of Eq. (A-6).

_ ME ‘/M2+4-4 V M2+l

2Vim2 -2

14241

2M

are the complex numbers which are situated above

4

and below [ = , respectively, when M < 2v/2 and are the solution

of Eq. (A-6).

These two solutions can be written as:

T = cos (%- T+ ir) (a-7)

where T is the positive root of the equation

‘/ 2
1l +V1+M (a-8)

cosht = —mm——— |

V2 M
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APPENDIX B

CALCULATION OF (k) AND p_(k)

As u (k) does not have any zeros, W_(k) is defined by

-1 Ln u(\)
TS 5 dax {B-1)

€1

¢n u_(k) =

where Cl passes below A =k. Introducing the new parameters

z = k/k
° (-2)
v=2Ak,
Eg. (B-1) can be wraitten as
fn u(\)k )
n p_(k) = 2111 —_—adv . (8-3)

The branch cuts of wl (V) lie from -1 to =® and from 1 to * and the

. 1 1 .
branch cuts of Wy (V) lie from o1 to -® and from il to ® in the V-plane
as shown in Figure B-1 where wy (V) and v, (V) are the counterparts of

Y, (k) and Yo (k) and are defined by:

N

1-v2

w. (V)

}..a

(B-4)

N
N

1-m2-v?,

W, (V)

The contour C2 is distorted so that it is wrapped around the cut from
-1 to -, This process gives an additional contribution from the

semicircle of radius R.
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Figure B-1 Branch Cuts and Integration Paths

As l\)l +» in the upper half-plane, wl=—i\)+0(1), w =0(|\)|) and so

2

—im%y

k
o

uk) =

+ 0(1) . (B-5)

In the lower half-plane wl=i\)+0(l) . W =0(|\)|) and so

2

2
u(h) = 5—}’:—1+ 0(1) . (B-6)
o]

It follows that the contribution from the semicircle is:
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T . -8

2_ i 2_ 16
1 -iM Re 1 1M Re
-5 f n <—T—) (1+0 (1/R)) ao - oT f 2n<——]-<-———) (l+O (l/R)) ae

o o

T8 -
T 2 -8 2
-1 MR 2 [T MR, 1 ZnR
=== f !Lnk + (6 2) d6+f lnk +k (9+2> +0(R)
,n._B [0} o - o o
1 MzR 2nR
== % =+ O(T) . (B-7)

The discontinuity in &nu (k) across the cut is:

v, (V+ig) +wl (v+1€) ocz

Q.n{u (k+1£)/u(k-i€)} = >
v, (v-ig) +wl (v-1€)a

2n(-1) = T v<n—4°]—:T >(B'8)
—M Y Iw |1+|w I
( 5 ) —21arctan——-—M—v—L | ll ﬁ-<\)<—l )
-(1_M V2) Jwry [+ ]w, | v |
fnu_(k) can be given as:
1-M \)2) lwl[
il
-1 -1 arctan ——————lw | by
Pnu_(k) = -2 n M?- %f -2 f -~ dv
R ———
M-l
2
(l-M AV )lei -
5 -1 arctan IW | -3
1 MR 1 1 1 2
=--2—9,nT<-—-5,Q,n(—l—§)+52,n(-R) -z f V=T av
o
1
M~1

68



1/2 I
_ M(1+C) 21 2 _
= n —-————1/2 T f dv . (B-9)

The asymptotic behavior of u_(k) as Ikl-*m 1s easily found as
p_(k) = o(|k|'1/2) . (B-10)

The identity u+(k)==u(k)u_(k) can then be used to derive the corre-
sponding results for u+(k) as follows:
2
(v, +v0%)u_to)

n00 = (k-u(M)ko)(k-u*(M)ko) . (Bt

The asymptotic behavior of u+(k) 1s

B, (k) = 0(|k|1/2) . (B-12)
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APPENDIX C

SOLUTION FOR THE SOMMERFELD HALF-~-PLANE DIFFRACTION PROBLEM

Consider the case in which there 1s no flow in y<O0. The

governing equations are:

Carrying out the Fourier transform defined by Eq.

1]
o

reduces to the form:

2=
d ¢2

where

=N

Solutions

found as:

to the

’ k°= w/a .

set of ordinary differential Egqg.
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S (x xo)5(y Yo)5(t) y<o

(c-1)

v>0 .

(2"2) ’ Eq. (C"l)

(c-2)

(C-2) can be easily



1Y,y -iY,y

= _ 1
¢1 = Al (k,w)e +Bl (k,w)e
> (C-3)
. . -1kx
—_ -1Y1Y "J-Yly e o
¢2 = Az(k,w)e +B2(k,w)e --—3—5—-51nbi(Y‘Yo)]H(y-yoL
47 a Yl )

The sign convention of Yl is chosen such that the sign of its imaginary

part is always positive and therefore Bl and 82 must be set to zero.

The boundary conditions at y=0 are:

3¢ 9%

1.2 x>0 (continuity of ) (C-4a)
Y = 3t continuity of pressure a
3¢l 8¢2
praliall T x>0 (continuity of displacement) (C-4b)
3¢l 3¢2
= =0 x<0 (rigid plate condition) . (C-4c)
oy 9y

To express these conditions in the transformed region, carrying out

the half-range Fourier transform defined by Eq. (2-7) we obtain:

¢l+ = ¢2+
8¢1+ _ 3 2+ >(C-5)
dy oy
a?l_ a=2_
A )
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Using the relation

3 _

El_ =119

&;2 — _l(kxo+Ylyo) e

3y - W% T e ’

8751+
and eliminating all the unknown plus functions except for 3y we
obtain:
3314. = = e—l(kxowly) o
23y T w1y (3--5,) - T a2E }

The branch cuts of 'Yl are the same as those defined in Chapter 3. The

common region of analyticity is
Imk > Imk > - Imk_, (c-8)
o o

and Imw 1s kept to be positive. The function Yl 1s split into two

parts such that Yl = Yl—/Yl+ where

- )

{(c-9)
(ko +x)172, j

Y1+

Yy

Plus functions are analytic in the region Imk<ImkO and minus functions
are analytic in the region Imk3>—Ika. The Wiener-Hopf Eq. (C-7) can

be rewritten as:

+ — = = e
~3y_- = Vko+k (¢l_ - q)z_) -5 . (C-10)
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The last term of Eq. (C-10) can be decomposed into the sum of plus

and minus functions as:

e-l (kx°+‘Ylyo)
F. (k) = =F  (k)+F, (k) , (c-11a)
1 2.2 1+ 1-
4T a ‘/ko k
where Fl+' Fl- are given as:
_ =1 F(\)
Fl+(&) = 37 f A-k dA
C+
(C-11b)
L [
Fi k) = omp f x4 -

The contours C+ and C_ lie in the common region (C-8) and C+ passes
above A =k and C_ passes below A=k. The exponential decays of F(A)
on the contour, since ImY1 >0, yo<50, ensures that these integral

exist and that Fl+(k) =0 (|k|-l) ¢ F,_(k) =0 (|k|_l> as k**® in respective

1

regions.

The Wiener-Hopf equation now takes the form as:

+ Fp, o= iyfko+k (q)l_- ¢2_) - F_=C(k . (c-12)

The function C(k) 1s the entire function of k and must be a reqular

function of k in the whole k-plane. At the plate edge, we assume:
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3

1+ -1/2

5y - O(x / ) as x*+0 on y=+0 (C-13a)
Ei > Cl(w) as x> -0 on y=+0 (C-13b)
6; > Cz(w) as x*-0 on y=-0 - (C-13c)

Carrying out the half-range Fourier transform defined by Egq. (2-7),
the asymptotic behavior of the above functions can be calculated with

the aid of the Abelian theorem as:

36

3;+ = o([kl_l/z) as k *® in Imk < Imk (c-14a)

Eaﬁ = o(|k|—l) as k > in Imk >-Imko (C-14b)

3. =ollx|™? as k +® 1in Imk >-Imk . (C-14c)
2~ o

Hence from Egq. (C-12)

C(k) o(lkl"l) as k > in Imk < Imk_ (C-15a)

c(k) = o(lkl'l/z) as k > in Imk>-Imk_ . (C-15b)

C(k) is regular in the whole k-plane and tends to zero as k tends to
infinity in any direction. Hence from Liouville's theorem C(k) must be
identically zero. Therefore, we obtain:

94 B -\/ko"k Fr ()
dy 2

r (C-16)
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APPENDIX D

THE SOLUTION FOR THE INFINITE VORTEX SHEET PROBLEM

The governing differential equations are the same as Eg.

(2-1}.

The boundary conditions (2-4), (2-5a), and (2-5b) must be satisfied

throughout the vortex sheet. Instead of the half-range Fourier trans-

form, using the full-range transform, Egs.

can be written as:

o‘:3-2 =:$1
1) _
2 ~1woth
dy
a=

1 . =
-35,— = «jwh .

From Egs. (D-2) and (D-3) we obtain:

QR
°’| =)
5
I
°’| =)
N

o]
o]

From Eq. (2-12)
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(2-5a) , and (2-5b)

(D-1)

(D-2)

(D-3)

(D-4)



3¢1
By
=0

-ikx
e °cosY Y
270

= TR, - 3 2 .
4T a

3¢2

oy
y=0

(D-5)

Substituting Eq. (D-5) into Egs. (D-1) and (D-4) gives

-ikx
oe osin’Yzy°
oA, + = A

2 4“262Y2 1

> (D-6)
-ikxo
e cosY2y°

: /
4TT2a2

o = - -
1 YlAl 1Y2A2

Finally, from Eq. (D-6), Al and A2 are determined as:

-1kx -iY.y
10 e (o) 290 \

2 2 2
ar‘a (Y2+a Yl)
> (D-7)

-ikx . 2 .
ie ° lYZYo YZ.-a Yl -lYZYO
A, = ————— Je + ——¢
2 an 2 + o2 )
avy, Y70y,
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