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SUMMARY

Control of noise generated by aircraft propellers and rotors is important

to minimize annoyance or discomfort felt by community residents and aircraft

passengers. This paper describes recent NASA and NASA-sponsored research on

the prediction and control of propeller and rotor source noise, on the analysis

and design of fuselage-sidewall noise control treatments, and on the measure-

ment and quantification of the response of passengers to aircraft noise.
Source noise predictions are compared with measurements for conventional low-

speed propellers, for new high-speed propellers (propfans), and for a

helicopter. Results from a light aircraft demonstration program are described,
indicating that about 5-dB reduction of flyover noise can be obtained without

significant performance penalty. Sidewall design studies are described for

interior noise control in light general aviation aircraft and in large trans-
ports using propfan propulsion. The weight of the added acoustic treatment

is estimated and tradeoffs between weight and noise reduction are discussed.

A laboratory study of passenger response to combined broadband and tonal

propeller-like noise is described. Subject discomfort ratings of combined

tone-broadband noises are compared with ratings of broadband (boundary layer)
noise alonejand the relative importance of the propeller tones is examined.

INTRODUCTION

Noise generated by aircraft propellers and rotors can propagate into the

airport community and into the aircraft interior causing annoyance and discom-

fort of residents and passengers. The importance of control is indicated by

the large number of general aviation aircraft, the increasing use of fixed-wing

and rotary-wing business aircraft, and the increasing number of propeller-driven

commuter aircraft. In addition, the need to reduce fuel consumption has led
to the study of high-speed, large capacity, propeller-driven aircraft to be

used in scheduled airline service as alternates to current jet aircraft. While

developing noise control methods, it is also important to minimize the impact

of noise control on the aircraft performance and weight.

Control of the noise at the source can be expected to reduce the impact on

both community and passengers. This paper describes recent studies of the

prediction and control of source noise generated by conventional low-speed

propellers, by new high-speed propellers (propfans), and by helicopter rotors.

In addition to source noise reduction, noise control treatment is usually

required in the aircraft sidewall to provide a comfortable environment for

passengers. Recent studies of the analysis and design of acoustic treatment

for aircraft sidewalls are described for application to light general aviation

aircraft and to large transports using propfan propulsion. Approaches to



minimizing the added weight are also discussed. Minimizing the aircraft weight

or performance penalty while providing an acceptable environment requires a

detailed understanding of the responses of people to the noise. Therefore, the

final topic discussed in this paper is the measurement of passenger response

to noise and vibration environments, including a recent laboratory study using

combined broadband noise and tonal propeller-type noise. The paper summarizes

the objectives, recent results, and future trends of NASA and NASA-sponsored

research in the three areas, with specific attention to applications to

general aviation aircraft, helicopters, and advanced high-speed turboprop
aircraft.

Identification of commercial products in this report is used to adequately

describe the model. The identification of these commercial products does not

constitute official endorsement, expressed or implied, of such products or

manufacturers by the National Aeronautics and Space Administration.

PROPELLER AND ROTOR NOISE PREDICTION

The purpose of NASA's propeller and helicopter-rotor noise research

program is to provide a technology base for reducing noise with a minimum of

performance, weight, and economic penalties. Noise prediction technology

represents the most basic part of the program. The emphasis of this activity

is on the understanding and prediction of noise using basic principles of

physics. This requires a knowledge of the geometry, operating conditions, and

aerodynamic characteristics of the propeller/rotor.

Low-Speed Propellers

Examples of noise calculations for low-speed propellers using recently

developed technology (refs. 1-3) are shown in figures 1 and 2. Figure 1

shows a comparison of measured and calculated noise for a light, twin-engine

transport aircraft. The data, obtained during an extensive flight test

program (ref. l),were taken at a propeller-tip Mach number of approximately

0.85, at an airspeed of approximately 55 m/s, and with one engine shutdown.
The acoustic measurements were made in the plane of the propeller with a micro-

phone mounted on a boom on the aircraft wing. The noise calculations were

made using the two methods described in reference 3, both giving the same

numerical results. The good agreement shown is typical of the comparisons over

a range of flight conditions.

Figure 2 shows another comparison of measured and calculated results for

low-speed propellers (ref. 2). The measurements were made during the

evaluation of quiet propeller designs in an anechoic wind tunnel, as shown

in the schematic on the right side of the figure. The data are for a 1/4-

scale model of a light, single-engine aircraft propeller at an airspeed of

approximately 30 m/s. Noise data were measured with a microphone mounted in
the airstream 1 diameter from the center of propeller rotation. The acoustic

pressure time history is presented for approximately two revolutions of the

propeller. The almost perfect agreement is a result of very careful



acoustic measurements and accurate calculations of the propeller aerodynamic
characteristics.

High-Speed Propellers

High-speed propeller/rotor noise prediction technology is evolving

rapidly (refs. 3-7). It is a difficult problem because of the relatively high

tip Mach numbers, advanced blade geometry, and complex aerodynamic flow field.

In addition, there is little acoustic data available to evaluate the pre-

dictions because there are no high-speed acoustic facilities for testing
propellers.

A comparison of predicted and measured noise for a compromise test

condition (ref. 8) is shown in figure 3. These results are for a 0.61-m

diameter, two-bladed version of the high-speed propeller shown in the photo-

graph. This propeller was designed for a freestream Mach number of 0.8 and

was tested in an open-jet wind tunnel at a freestream Mach number of 0.3 with

the propeller rpm increased so that the tip Mach number was equal to the design

value of approximately 1.13. The noise measurements were made in an anechoic

chamber surrounding the free jet with corrections applied for the shear-layer

effects. The noise calculations were made using the method of reference 9,

which includes only the effects of blade thickness and loading. The agreement

for the lower harmonics is good; howeve$ there is a tendency to underpredict
the level of the fundamental.

This tendency to underpredict the fundamental is different from results

(ref. i0) obtained in a hard-wall wind tunnel at freestream Mach numbers
between 0.6 and 0.85. Reference I0 indicates that the noise level at the

fundamental frequency is nearly constant for tip Mach numbers above 1.07. At

a tip Mach number of 1.14, the noise level predicted by the method of

reference 9 is 5 to i0 dB higher than the values measured in the hard-wall
tunnel. It has not been established whether the differences between measured

and calculated noise are due to facility differences, measurement techniques,

or difficulty in modeling the aeroacoustic phenomena. This uncertainty may be

resolved during planned flight tests of the propellers used in the study
described in reference i0.

Helicopters

Helicopter noise is more difficult to predict than propeller noise because

of the complex aerodynamic environment in which the rotors operate. The noise

field is highly dependent upon aircraft geometry and aerodynamic environment,

and the dominant noise generating mechanism may change with flight condition
or observer locations.

Helicopter noise prediction methodology has been under development for

many years. In spite of significant advances (for example, ref. ii), there is

still no generally accepted method which can accurately predict helicopter

rotor noise. Efforts to develop better methods have been hampered by the



proprietary nature of helicopter noise prediction methods and a reluctance to

share noise data because of competitive pressure and pending noise regulations.

The absence of a high-quality and complete data base for a wide range of

helicopter configurations has had a negative impact on the development and
general acceptance of noise prediction theory.

Acquisition of a data base has also been hampered by the general lack

of ground facilities with capability for acoustic tests of helicopter models.

The only facility specifically designed for helicopter noise research is the

Army indoor hover facility at the Ames Research Center, which has proved to be
a valuable research tool. A number of other facilities have been used for

helicopter noise research including the Ames 40 x 80 wind tunnel, the Langley

V/STOL tunnel, and several smaller wind tunnels. Although each of these

facilities is limited to some degree by acoustic characteristics, model size,
or forward speed capability, some useful results can be obtained if care is

taken in the experiment design. This may entail measuring noise in the near

field, signal averaging to minimize background noise effects, or testing one

configuration relative to another. For a variety of reasons, it has proven

difficult to obtain good, absolute level data in the wind tunnel. It is this

absolute data which is required for verifying and developing better noise
prediction methods.

Flight tests may prove to be the best source of high-quality noise data.

Two efforts were recently initiated to assemble existing flight-test data and

use it to assess the status of current noise prediction methods. The data

being assembled consists of noise data and rotor-blade pressure measurements

for two helicopter configurations, as well as a complete set of flight

parameters, and will be prepared with complete documentation in a format

suitable for computer processing. These measured data are currently being used
to evaluate a new noise prediction method based on an extension of the computer

program described in ref. 9 and linear acoustic theory of reference ii. In

addition, calculated aerodynamic inputs are being used to determine the

sensitivity of the predicted noise to the quality of the input data.

One of the configurations being studied is shown in figure 4. It is in the

15 000-kg gross-weight range and has a 22-m diameter, six-bladed rotor with a

tip speed of about 216 m/s. Although the study is not complete, there have
been a number of preliminary comparisons between the predicted and measured

noise data. Figure 5 shows a comparison for a 49-m/s flyover at 152-m altitude.

The comparison was made using calculated rotor airloads for an observer on the

ground, 305 m ahead of the aircraft. The agreement between predicted and
measured noise levels is encouraging for the limited number of harmonics shown.

The agreement for greater observer distances is not as good. This is due, at

least in part, to the fact that only spherical spreading effects are included

in the current calculations. An additional concern is that the original

measured data contained ground reflection effects which were removed with a

relatively simple correction method. These effects will require further

investigation.



PROPELLER NOISE/PERFORMANCE DEMONSTRATION

The propeller noise/performance program is a joint NASA/EPA program to

demonstrate that propeller noise for general aviation aircraft can be reduced

in an economically reasonable manner. The goal of this effort is to reduce

light aircraft propeller noise by 5 dB(A) while maintaining or improving
propeller performance. The effort consists of (i) optimization studies to

assess the potential noise and performance benefits of various propeller

parameters, (2) wind-tunnel tests to verify design concepts, and (3) flight

tests to demonstrate the noise reduction technology. Parallel efforts are

being conducted at the Massachusetts Institute of Technology and the Ohio

State University.

The parameters which affect both noise and performance were analyzed to

determine the tradeoffs required to optimize the propeller. The results of

one such parameter variation are shown in figure 6. This figure shows the

calculated effect of varying the position of the peak of the radial load

distribution on both the propeller noise and efficiency. The significant point

is that the noise level can be reduced several dB(A) without a significant

effect on propeller efficiency. This change combined with several other

parameter changes can result in a significant noise reduction with little or no

performance penalty.

In order to test some of the concepts which were developed during the

parametric studies, two i/4-scale model propellers were tested in an anechoic

wind tunnel (ref. 2). The baseline propeller was a model of a standard

Cessna 172 propeller. A "quiet" propeller was also constructed which had a

slightly smaller diameter and a wider blade chord. The noise reduction was

achieved through a reduction in tip speed due to the smaller diameter and the

movement of the load distribution inboard on the propeller blade.

These propellers were tested over a wide range of conditions on a

propeller spinning rig with and without an afterbody to simulate an aircraft

fuselage. Figure 7 shows the test configuration in the acoustic wind tunnel

with a fuselage afterbody.

After demonstrating the noise reduction techniques in the wind tunnel,

full-scale propellers were designed for flight tests. Figure 8 shows the
standard and "quiet" propellers mounted on a Cessna 172 aircraft. The air-

craft was flown over a ground microphone array at 305-m altitude to determine

the noise reduction under FAA noise certification conditions. In addition,

aircraft rate of climb was measured over a range of airspeeds to determine the

relative performance of the two propellers. These noise and performance

results are also shown in figure 8. The "quiet" propeller consistently

produced a noise reduction of about 5 dB(A) while retaining climb performance

characteristics comparable to the standard propeller.



PROPELLER NEAR-FIELD NOISE

Design of acoustic treatment for an aircraft sidewall requires knowledge
of the exterior noise impinging on the sidewall and the interior noise level

desired, as well as knowledge of the basic sidewall structure. Impinging noise

has been defined for both low-speed and high-speed propeller_and sample results
are presented in figures 9 and i0.

Low-Speed Propeller

Impinging noise from a low-speed propeller is illustrated in figure 9.

The measurements were made on the fuselage of a twin-engine, light aircraft.
Noise was measured using an array of i0 flush-mounted microphones, seven of

which were located in a horizontal line, and four of which were in a vertical

line in the propeller plane. Minimum clearance between the sidewall and the

propeller tip was about 0.05 of the propeller diameter. Tests were run at
several rpm/power combinations in static conditions and for several forward

speeds in taxi tests. Extensive results are presented in reference 12; sample
results are shown at the right of the figure. The results indicate that the

empirical prediction agrees with results for static tests and the analytical

result agrees at low frequencies with measured data from taxi tests. The

analytical results were obtained using the computer program of reference 9 with

empirical corrections for the effects of the sidewall (ref. 12). The difference

between static and taxi test results is due to the ingestion of turbulence that

is generated by the propeller inflow interacting with the ground. The lower
noise levels associated with the taxi condition were obtained with a forward

speed of about 20 m/s or more. From this figure (in addition to figures 1 and

2), it can be concluded that prediction procedures are adequate for noise
levels of low-speed, general aviation propellers.

High-Speed Propeller

Near-field noise of a high-speed, propfan propeller is illustrated in

figure i0. Test data in this figure were obtained from reference 13. The test

setup is indicated in the sketch at the upper left of the figure. The

propeller tested (shown in figure 3) was a 0.61-m-diameter model of a swept-

blade propeller designed to operate at a forward speed of Mach = 0.8 at an

altitude of 10.67 km. The blade sweep is designed to reduce noise and maintain
aerodynamic performance. The tests were carried out in an anechoic chamber of

an acoustic wind tunnel having airflow capability at Mach = 0.3. At the power

conditions of the tests, the propeller was fully immersed in the airflow. To

compensate for the lower speed of the airflow, the model propeller was run at

increased rpm so the helical tip speed was the same on the model as the full-

scale design condition. A boilerplate cylinder was located at 0.8-propeller-

diameter clearance from the model propeller to simulate the aircraft fuselage,
and the impinging noise was measured with an array of microphones flush-

mounted in the cylinder.
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Contours of equal sound pressure level at the blade-passage frequency from
this test are shown (fig. i0) at the lower left and predicted contours (ref. 13)

are shown at the lower center of the figure. Comparing measured contours with

predicted contours shows that the highest level and its location ahead of the

propeller plane are in agreement. _¢hile the overall appearance of the contours

shows reasonable agreement, there are differences in the detailed shapes.

Improvements in the prediction procedures discussed earlier may improve

agreement. The same analytical procedure used to calculate the model results

was also used to predict impinging noise for full-scale flight conditions and

the results are shown at the lower right. For this flight condition, the

maximum noise occurs aft of the propeller plane. The figure indicates that the
highest level is 150 dB with a large area subjected to 148 dB.

THEORETICAL METHODS FOR INTERIOR NOISE REDUCTION

Light Aircraft

Theoretical methods for predicting interior noise levels in light aircraft

are under development (ref. 14). The methods are intended for use in designing
minimum-weight sidewall structures having sufficient noise transmission loss

to provide passenger comfort. A number of mathematical models of the sidewall

structure are being investigated to find the simplest model that provides
accurate results. Figure ii shows three sidewall models that are under

investigation. When using the flexible panel/rigid stiffener model or the

flexible panel/flexible stiffener model, an array of subpanels is assembled to
represent the complete sidewall area.

The graph indicates the sensitivity of interior noise to added weight for
three candidate noise control approaches. The measured noise used is A-

weighted dB to represent passenger comfort; these results were obtained using
the panel/rigid stiffener model. All three treatments consist of modifications

of the skin properties. Each treatment is applied separately to the structure.
The figure indicates that the curves for a given treatment tend to flatten out

as weight increases, suggesting a "diminishing returns" type of behavior.
Comparing the treatments shows that the damping provides the most interior

noise reduction for a given weight and that increasing skin thickness provides

comparatively small reductions. The reductions obtained by damping are
substantial; the original level of 104 dB(A) is uncomfortable while the level

of about 85 dB(A) is reasonably comfortable. The weight required (about

36 kg) is larger than desired but small compared to the aircraft weight/
payload.

The theoretical predictions have been verified using simple laboratory
panel/box tests (ref. 15). The models are being extended by inclusion of

acoustic treatments such as fiberglass wool and double walls, and the improved

model is to be used in an investigation of optimum treatment for a twin-engine,
light aircraft.



High-Speed Turboprop Aircraft

Theoretical studies have been carried out to determine the weight and

configuration of fuselage sidewall acoustic treatment required to provide an

80-dB(A) cabin noise level in propfan-powered aircraft (refs. 16 and 17).

Figure 12 summarizes the results. The study required the development of new,
comprehensive interior noise prediction methods and considered wide-body,

narrow-body, and executive aircraft flying at Mach = 0.8 at 9.14-km altitude.

The fuselage sidewall structure consisted of skin, stringers, and rings and

had dimensions and materials typical of current operational aircraft. The

studies indicated that additional acoustic treatment weight is required in

comparison with the treatment normally expected for turbofan powered versions

of the study aircraft. Added treatment is required along the fuselage from a

station slightly ahead of the forward propeller plane to the tail section and

circumferentially around the fuselage above the passenger floor. The sidewall
consists of the elements indicated in the sketch; however, the primary noise

control action is provided by the masses of the inner trim panel and outer

skin acting as a double-wall noise barrier. The weights required to provide

the 80-dB(A) interior noise level are shown at the right. In general, these

weights are less than 2.5 percent of gross weight. The shaded portion of the
bar indicates the range of results obtained from variations of sidewall

configuration and analysis methods. The weight penalty for the wide-body
aircraft from these studies is slightly less than the weight obtained from the

RECAT (reduced energy for commercial transportation) system study; thus, the

previous result (RECAT) is confirmed by the more extensive and in-depth recent

studies. The RECAT study showed that propfan-powered aircraft have a fuel-

saving and direct-operating-cost advantage over turbofan aircraft, even after

taking the acoustic weight penalty into account.

PASSENGER COMFORT

Comfort Prediction Model

A program at Langley Research Center has led to the development of a model

for predicting passenger discomfort (or acceptance) for existing or future

transportation vehicles. Input to the model, figure 13, is the passenger
vibration and noise environment for the vehicle and output of the model is the

total discomfort measured along a discomfort scale. Development of the model

has involved: (i) empirical estimation of discomfort due to sinusoidal and/or

random vibrations within single axes; (2) empirical estimation of the discomfort
due to vibration in combined axes; and (3) application of empirically determined
corrections for the effects of interior noise and duration of vibration. The

discomfort scale used to measure the output of the model is displayed in

figure 14. The scale is ratio in nature and anchored at discomfort threshold.

The figure shows the relationship between the discomfort scale (ordinate of

figure 14) and the corresponding percentage (abscissa of figure 14) of passen-

gers who would rate that discomfort level as being uncomfortable. A value of

unity along the discomfort scale corresponds to discomfort threshold, i.e.,
50 percent of the passengers would be uncomfortable. Details of the methods and

procedures used to derive this discomfort scale are given in references 18 and



19. A complete description of the relationship between vibratory inputs and
discomfort can be obtained from references 20 and 21. The extensive informa-

tion contained in these references has been incorporated in a computer program

for ease of calculation. For purposes of illustration, figure 15 provides a

comparison of various vehicles along the discomfort scale. The figure presents

the discomfort level produced by various air and surface transportation
vehicles, relative to discomfort threshold. The discomfort values for each

vehicle were obtained by using actual measured vibration/noise levels as input
to the ride comfort model. These results provide an estimate of absolute

discomfort as well as a quantitative comparison (and ranking) between

vehicles. For example, the commercial jet transport together with the Bay Area

Rapid Transit system and a full-sized automobile provided the best ride quality

(i.e., the discomfort levels of each are below discomfort threshold). The

various rail vehicles (including the German Bundesbahn and magnetically

levitated vehicle) produced estimates of passenger discomfort that were
generally somewhat above discomfort threshold and discomfort was seen to

increase as vehicle speed increased. A typical city bus produces a relatively
large value of discomfort, although the most uncomfortable ride for which data

are available was estimated for a helicopter interior noise and vibration

environment. However, removal of the noise component of the helicopter ride

environment resulted in a discomfort level estimate slightly below discomfort

threshold, thus indicating that noise was the predominant source of passenger
dissatisfaction within the helicopter. The absolute levels of discomfort and

relative ranking of vehicles shown in the figure are in good agreement with

actual passenger experience and, hence, provide face validity of the NASA ride

comfort scale. Further, since the scale was developed as common to all types

and combinations of vibration and noise, it provides a simple and concise

index for comparing the individual/combined axis components of discomfort, as

well as a design tool for estimating the tradeoffs to passenger ride quality

of various noise/vibration vehicle inputs.

Combined Noise and Vibration

An important portion of this program has been directed at including in the

model the effects of combined noise and vibration on passenger comfort.
Figure 16 displays typical results of this research. The individual curves of

figure 16 indicate the D-weighted noise level, dB, and vibration acceleration,

grms' required to produce constant amounts of overall discomfort for combina-

tions of noise and vibration. (See ref. 22 for additional information about

development of the curves.) The solid curves of the figure represent subjec-

tive data for the range of physical factors investigated in these studies;

whereas, the dashed curves represent extrapolations over an extended range of

the physical factors. Although the extrapolations are felt to be reasonable,
caution should be exercised in the use of the extrapolated values. The

validity of the extrapolations remains to be verified by future research. As

shown in figure 16, constant discomfort curves were generated for discomfort

(DISC) values ranging from discomfort threshold (DISC = i) to values as high

as DISC = 6, corresponding to a very high degree of discomfort. The usefulness

of figure 16 lies in the fact that it represents a very important source of

information for determining the tradeoffs available between noise and vibration



in terms of passenger discomfort. For example, at high levels of discomfort

(e.g., DISC 5 or 6), variations of acceleration over the range shown result in

small changes of discomfort level, indicating that noise level is the dominant
factor in the determination of overall discomfort. For low levels of dis-

comfort, however, the noise levels must be reduced substantially with increases
of acceleration in order to maintain a constant degree of discomfort. This

indicates that at the lower degrees of discomfort, both noise and vibration,

contribute significantly to overall discomfort. Finally, it should be noted
that the threshold of noise discomfort for the combined environment is

approximately 75 to 78 dB, LD.

Passenger Response to Tones

Recent fuel conservation measures have led to proposals for development of

propeller-driven aircraft for use in commuter as well as high-speed, long-haul

applications. The increased fuel efficiency of these vehicles could be offset,

however, if passenger acceptance necessitates increased aircraft weight for

purposes of noise reduction. A noise characteristic typical of such propeller-
driven aircraft environments that may be critical to passenger comfort is the

low-frequency tonal content. Research within the NASA Langley program to this

point had not accounted for the effects of such noise on passengers. Conse-

quently, an exploratory study was conducted to examine subjective response to

propeller-type tone noises in combination with broadband (boundary layer) nois_

The study was conducted in the Passenger Ride Quality Apparatus (PRQA) at

Langley Research Center (ref. 23), shown in figure 17. The study involved a

total of 96 subjects who evaluated synthesized noises using a 9-point discomfort

category scale. The noises consisted of turbulent boundary layer noise
combined with propeller-type noises in a factorial combination of blade-

passage frequencies (50, 80, i00, 125, and 200 Hz), harmonic rolloff rates
(0 and i0 dB/harmonic), tone/noise ratios (0, i0, and 20 dB), and noise levels

(85, 90, 95, and i00 dB). The results of these tests indicated that noise

level and blade-passage frequency (tones) were the primary noise character-
istics that determine passenger reaction. The study results are summarized

in figure 18, which displays mean subject ratings of discomfort as a function

of A-weighted noise level. Mean subject rating was obtained by averaging the

ratings of the 96 subjects for each noise. The mean subject ratings for the
sounds with tones fell in the region between the dashed lines. For comparison,

the subjects rated a sound containing no tones; the mean ratings for this
sound are indicated by the solid line labeled "boundary layer noise" in the

figure. There is a complex relationship between discomfort and various tonal
characteristics (tone/noise ratio, fundamental frequency, and rolloff rate).

Figure 18 indicates that the discomfort ratings of tonal noises range from

slightly less than boundary layer (the lower dashed line), to more discomfort

than boundary layer (the upper dashed line). The maximum difference between
tonal noises and boundary layer noise can be quantified by comparing the upper
dashed line with the solid line on the basis of equal subject rating, as

indicated by the horizontal line at a rating of four. The data on this
horizontal line indicate that the most uncomfortable tonal noise and the

boundary layer noise are rated equal in discomfort when the tonal noise is

i0



5 dB(A) lower in level than the boundary layer noise. Thus, to provide

comfort in a propeller aircraft that is equal to the comfort in a turbofan

aircraft, the noise level may need to be as much as 5 dB(A) less in the

propeller aircraft, depending on the specific values of parameters such as

tone/noise ratio, tone rolloff rate, and frequency of the fundamental tone.

Currently, research is being planned to further examine subjective response
and to develop a noise metric correction to account for the interior noise

environments of this type of vehicle.

CONCLUDING REMARKS

This paper describes recent results of NASA and NASA-sponsored research

on the prediction and control of noise from aircraft propellers and rotors.

Control approaches considered include reduction of the noise generated by the

propeller and reduction of the noise transmitted through the aircraft sidewall

to the interior. Applications to general aviation aircraft, high-speed

turboprop transports, and helicopters are reviewed, and an exploratory
laboratory study of passenger response to propeller-like tonal noises is
described.

Comparisons of predicted and measured noise from low-speed general

aviation propellers indicate that the noise can be predicted with satisfactory
accuracy provided sufficient effort is devoted to definition of detailed

aerodynamic pressure distributions. Current prediction methods were used along

with wind-tunnel model studies to develop a quiet propeller that was shown by

flight test to reduce flyover noise by about 5 dB(A) in comparison with the

standard propeller. Prediction of noise from high-speed propellers and

helicopter rotors is more difficult because of the complex blade shape and

aerodynamic flow field. However, fair agreement is obtained in the lower

frequency harmonics, and several features of the noise generating mechanisms
are under investigation to improve predictions. Theoretical studies have been

carried out to design sidewall acoustic treatments for general aviation and
high-speed turboprop aircraft. These studies indicate that sidewalls can be

designed to provide acceptable cabin noise levels, but that additional weight
is required. Passenger subjective ratings of tonal noises and comparison with

ratings of broadband (boundary layer) noise indicated that tonal noise ratings

range from slightly less uncomfortable to more uncomfortable than broadband,
depending on the particular values of tone/noise ratio, tone fundamental

frequency, and tone rolloff rate.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 30, 1981
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PRESSURE MICROPHONE

Figure i.- Measured and predicted noise of general

aviation propeller for light, twin-engine trans-

port aircraft.
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Figure 2.- Measured and predicted noise of low-speed general aviation
propeller models.
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Figure 3.- Harmonic noise spectrum of model
high-speedpropeller.Diameter= 0.61 m.

Figure 4.- Large helicoptertype used in flyovernoise tests.
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Figure 5.- Measured and predicted noise levels for helicopter in
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Figure 6.- Calculated effect of varying radial load distribution.
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Figure 7.- Acoustic tests of quiet generalaviationpropellers
in anechoicwind tunnel.
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Figure 8.- Noise and performanceflightdemonstration.
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Figure9.-Propellernoiseon fuselageof twin-engine,
lightaircraft.
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FigureI0.-Noisefrommodelhigh-speedpropelleron simulatedfuselage.
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Figure II.- Theoreticalstudiesof interiornoise control
by sidewalltreatmenton light aircraft.
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Figure 12.- Theoreticalstudiesof sidewallsfor interiornoise control
on high-speedturbopropaircraft.
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Figure 13.- Ride qualitymodel.
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Figure 17.- Passenger ride quality apparatus

at Langley Research Center.
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Figure18.- Subjectiveresponseto tonal interiornoise.
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