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’ ABSTRACT
A strong external dc maguetic field introduces a basic anisotrepy 1
r into incompressible megnetohydrodynamic turbulence. The modifications that this
is likely to produce in the properties of the turbulence are explored for the
[ high Reynolds number case. The conclusion is reached that the turbulent spec-
:
trum splits into two parts: an essentially two-dimensional spectrum with both
the veloecity field and magretic fluctuations perpendicular to the dec :magnetie
} field, and a generally weaker and more nearly isotropic spectrum of Alfvén waves.
l A minimal characterization of the spectral density tensors is given. Simileri-
i ties to measurements from the Culham-Harwell Zeta pinch device and the UCLA
3

Macrotor tokamak are remarked upon, as are certain implications for the Belcher

and Davis measurements of magnetohydrodynamic turbulence in the solar wind.
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I. INTRODUCTION

We now have in hand the beginnings of a theory of high-Reynolds-~

1-11

number megnetohydrodynamic turbulence that 1s at a level of description

that is as systematic and inclusive as the corresponding theory for fluid tur-

10
. bulence.l° A significent limitation of this body of theory is that it assumes

a high degree of symmetry in the statistics of the turbulent fields: spatial
homogeneity, rotational isotropy, and frequently, temporal stationarity and
mirror (reflection) invariance. It seems ¢lear, however, that much magnetohy-
drodynemic turbulence will not be so highly symmetrie, both in astrophysical
and laboratory situations.

The rotational isotropy assumption in particu%ar is limiting, because
meny of the most interesting cases involve an externally-imposed dec magnetic
fieid which selects a particular direction in space. Vvhile it may be reasonable
to assume rotational isotropy about the direction of the mean magnetic field,
it probably is not reassonable to assume it about the other two directions.
Moreover, while in ordinary fluid mechanics, turbulence isotropizes itselfla
at the smaller spatial scales, it is likeiy that anisotropy in megnetohydrody-
namics will persist over the full range of scales to which magnetohydrodynamics
is ayplicable.

The present paper is intended to propose a qualitative picture of
turbulent, homogenegus, incompressible, magnetohydrodynamic fluctuations in

the presence of a s¢trong dc magnetic field = B Here, strong implies that the

0

energy density associated with 50 is large compared to the sum of the fluctuating
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magnetic energy density and the kinetic energy density associated with the
fluid motions of the magnetofluid. We will be particularly concerned with
the differences between this case and the purely isotropic case in which there
is no preferred direction.

Convincing data on magnetohydrodynamic turbulence are still rare.
Probably the best measurements to date are those from the Culham-Harwell Zeta
toroidal pinch devz’.ce.1‘3’1“’:1‘5 Strikingly similar to some of the Zeta results
are some recent messurements reported for the UCLA Macrotor tokamak.l6’l7
There is not very much help yet from numerical simulations: most of the pub-
lished results are two-dimensional. Some recent three-dimensional isotropic
results have begun to be generated by the group at the Observatoire de Nice,B’18
but are not yet available as of the time of this writing. It appears that it
1s the case that existing megnetohydrodynamic turbulence computations are &ll
spectral-method (Galerkin approximation) computations, assuming rectangular
periodic boundary conditions and no externally-imposed magnetic field, and do
not fully address the issues addressed here. Previous analytical calculations
have addressed the subject of the anisotropies introduced by external dec mag-~
netic fields for the case of low magnetic Reynold=z num.‘oers.:w’20’2l

We rely on a mixture of perturbation theory, model caleulations, and
physically-informed guesswork to arrive at a picture of incompressible magneto-
hydrodynamic turbulence, homogeneous but anisobropic due to the presence of a
gtrong dc magnetic field go. The picture must be regarded as conjectural until
more experiments are done. It is, however, suggestive and compatible with what

13,1k4,15 16,17

is known from Zeta and Macrotor.
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We may start from the observation that if the external BO is strong
compared to the mean fluctuating field, more energy is required to bend and.
streteh field lines than to translate them, particularly at the larger spatjial
scales, This leads to the feeling, confirmed by the asymptotic analysis of
Sec, II, that a strong external,go suppresses spatial variations of the mag-
netic and velocity fields along the §0 disection., Also, the magnetic fluce-
tuations and electric field fluctuations are primarily in e direction perpen-
dicular to BO' The spectrum is conjectured, in Seec. III, to consist of a
highly anisotropic part of the geometryr just deseribed plus a smaller, more
nearly isctropic part which can properly be described as waves. The tendency
of a gtrong magnetic field to enforce two-dimensionality renders several

recent two-dimensional calculationsh’T and compuv;%ionss’b’g

more generally
applicable than they might otherwise be. Experimental comparisons are also
remarked upon, in Sec. III.

Turbulence which fulfills all four symmetries enumerated in the
first paragraph requires only one scalar function to characterize it.la When
the symmatries are relaxed, a more elaborate characterization is required.
Section IV iz devoted to presenting a framework in which homogeneous but aniso-
tropic and non-mirror-symmetric turbulence may be characterized. We restrict
ourselves in this gection to the case in which no net electric current flows
through the magnetofluid. Net currents precludea sratial homogeneity and
periodic boundary conditions, and are thus an additional complization in many
interesting cases; we postpone some considerations associated with situations

with net de¢ current fluxes to a laber paper. Section V summarizes our conelu-~

sioni.
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II. THE LIMIT OF LARGE BO

We consider an incompressible magnetofluld of uniform density. The
magnetic field is By + B(x,t) and the velocity field is v(%,t). The electric
current density is j(x,t) = V x B(x,t). Both y and B are solenoidal vectors.

Ye write the dynamical equations in a common set of dimensionless variables:

9B
=B+ Vr-v - VB+By W (1)
Bt ~ Aw ~ ) -~ ) ~
v
— .y Yr 4+ xB+Jx By - VB,
at -y -~ ~ ~ -~ -~ ik
=-v Y +B. V8- Vp+B. VB, (2)

Dissipative terms involviug viscosity and resistivity have been omitted for

+

convenience, but cen easily be reinserted. Py is the mechanical part cf the

.

pressure. p = p{x,t) is the tctal pressure, P, plus (

-
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termined by taking the divergence of Egq. (2) and using ¥ ¢ v = 0 to get the

Poisscon eguation

vp=9-{2-72-7v- vl {2)

v i3 the solution to Eq. (3) subjeet to whatever boundary conditions apply.

- 4

o

or rectansular pericdic gsomatry, p is a quadratic functional of

i

ote that

- . L . A, o . i . - o
2 andéd v. The znmbient megnetic field is assumed %o pe spatially unilorn, tem-
~ ~

: : 4 = 3 e on -
rorelly coastaent, and in the z-dirsction: B, =3, & . If £, has a spatial
- i) « o~ E

variation, i% i3z assumed slow compared to the cther length scales of interest.
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If we assume that the mean plasmea energy density, <v2> + <32>, is

small compered to Boe, we may try approximasting Egs. (1) and (2) by their

linearized versions:

OB _

5‘;"?.0"72 (4)
Ay !
;‘:éo'(]%' (5)

The general solution ta3 Eqs. (L) and (5) is & linear superposition

of Aifvén waves which heve both B and y varying us exp i(k * x * w %), where

~

w, = ko go. Thne equations (1) and {2) become intrinsically nonlineer, how-

{34

ever whenever k becomes nearly perpendicular to 0 The neglected nonlinear

terms become largsr then the linear ones. As X becomes mere nearly perpen-

dicular to §0’ the time scales associeted with the evolution are no longer
-l

~ (kEO) ~, but arz determined by the nonlinear processes ssscciated with the

quedratic terms in Egs. (1) and (2). Wormal modes can tell us nothing about

1 e

+

thess nearly perpendicular moitions, whose time sceles remsin finite even in
the limit of infinite BO' iinte tnat for strictly pervendicular spetial wvario-
tion, the terms involving B, drop out of Zgs. (1) and (2) altogesther.

A somevwhat more Tormal demonstration of the two-dimensionality of

the dynamics can e given cimply by essuming a well-tehsved perturbation series

solution %o Zgs. (1) and (2) es B, ~ ®. This result is sufficiently interest-

n

ng that it mey perhaps bes worth demonstrabting in detail., We introduce 2

s

formal expansicon parameter € © into the BO terms of

N

gs. (1) 2nd (2) and lcck
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4% the first few orders in the assumed perturbation series v = g(o) + ag(l) +
v 4 anag =80 4™ w22 4 ote tuat 58(0) 16 not the
same as B,. We demend that the time and space derivatives remein of 0(l1) as
Bo gets large. What is of interest is what kind of motions are enforced by
the very large wvelue of Bo, Note that what i3 being effected is essentially
an expansion of the equations of motion in powers of l/Bo.

The coefficients of successively higher powers of € are equated to
zero and we require that y, B, and j remein solenoidal at each order in the
expansion, For convenience, we invoke rectanguler periodic boundary conditions,

30 that all dvnamicul wvector fields are representable as Fourier series,

The 0(g™%) terms simply glve that

19 x5, =0 ()
and |
B 7% - ()
- ‘)
Bauation (3) implies that the zeroth-order curren® must flow aleong ga , J(O -
\ v
JEOi g, . B8ince V . Q(O) =0 and
{
jio) =7 J;O) Tx,t) expl(i 1:_ . .5}’ (8)

-

the non-vanishing Fourier ceoefficients must hava k veeclors perpendicular to 2 _.

[ 8]

Written in component notation,

e

o

»
n
g‘“) = (0,0, &7 {x,7,8)), enly. (9)

Fourier-trensformed versicn of ¥V x B

-~

0) 1{0)

merindlic boundery ccndibions, we have at once thet
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59 = 5 50 (k,t) exli  30)

(0) (., (0) (..
= (BX (x,y,t), B}' (X,Y,'ﬁ), 0) (10)

only, with ¥ * g(o)(g,t) = Q,

Equation (7) implies that By(o)/az = 0, or that

) = (vx(o)(x,y,c), v O ,y.8), ‘*'Z(O)(x,:ratl‘)» (12)

"

where

v (0) ov (@)

X " ¥ = Q. {

ax by

.6
S

} O

The gecmetry implied b, %gs. {9), {101, and {11), with all variaebles
independent of £ and the variable mognetic fleld perpendiculnr to EO’ nas

emerzad as a conseguencs of the aagumpticn

B - %, To get the dynamicael behavior of ¥

0 13

ot < g

(o)
o , .
‘*’:—3:"“ = “'v'{:}) .";'V(D) 4 ‘;&(‘J) % 3(’3)

{n)

¢ g wellebehuved expansion as

fAY
and B, we need to g0 0
“

151
t
Q

o each other gives

32(1)

)
(D‘ + e {lt}
0 9z -
f'a,) /a\ .
+ j\* =~ %3 - ??\ ! A {lu)

" =) ; N ] 4 2o i~y F Ll ) .
Twa Sdrat thres terms ol &4, {13) ars indepandent ¢l Z. Integrating

>

£13) avar ope pericdicify length in

£ g ke
autr and we are .8IT %
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a0 gy(0) | 4(0) gpl0) (25)

The x and y components of Eq. (15) are the induction equation for twe-
dimensional magnetohydrodynamics.h They are equivalent to the pointwisze con-
servation of the vector potential 560) = a(o)(x,y,t)az for the two-dimensional

motion of & fluid element:

Z+x 0 Dy =0 (26)

[

n Ea. {16) and hereafter, subscripts "1 and "||" will mean ccomponents per-
= »

pendicular to and parallel to By regpectively,
* . - 1 L . 1 3 = {gx) !9” P ,,(l) =y
R Since Egs. (13) and (15) nold, we have 8y ~'/dz = U, or ¥ =
y(l)(x,y,t) oenly. The = component of Eq. {15) gives g(o) . Vv~(0> = 0., There
. ) / 2)
are two ways this can be achiasved., Elther vn(OJ = Q, or vn(g) = !Z(O)(a( )
(9) {3)

only, which i3 a statement that v, i3 o eonstant along & field line of

The % end y componants of Eq. (1b) give

()
L (0) (o) , (o) ., o(9) (1)
- =~ vl gt e B e B BT BT
3: ~.L' L—v ~ -~ : L - P
\.-‘-, 4
- G (l) ~ .,‘{0>
+ b; az g‘l. - f—:\'-: '

"erJ) Iu"')
34"' Y :’-\\ f\ﬁ\w
= v o I . o3 [~z
e L o Q: ’ r'd “r -4 - -:-Np—-—— hﬂf
. % -~ o =20




The left hand side of Eq. (18) is
period in 2z gives |

3yt ©)

ot ~1 L

which says that if & fluid element has a 2z

city will renain constant; no forces act in the z direction,

independent of z.

2

Integrating 1L over one

2. 4 (00 g (0) oy, (19)

-velocity to stert with, the veld-

Because of

Zq. (19), Eq. (18) implies that 3p'°)/3z = 0, or shat p'%) = p{®)(x,y,6) ouly.

4

We now use the fact that sll the terms in Eq. {17) except those

Applying 3/8z to Eq. (L7)

(21)

involvinglg(l) have been shown to be z-independent.
glvas
{(z)  ,2,(1)
v BSZ + 7R
L - 43~2
Since an(l)/az + YL . glfl) = 0, Eq. (20) implies
2o(1)
g9 2 IR
LL =L 3

Periodic boundary conditions are then inveked again i assert that g(l) iz

o super-position of linearly independent plane wave conbributions of the form

B exp(ik - x)withk + B = C.

E4

Il\
From Bg. 122) we can see thet %, and 3,°°

™

BEg. {82} are zere. Ve must exemine thess

o (L) _ A
= 0, then §.L = e

. "
not zers, than

ct
®
H
5
fi
I

Ez. {2L) implies shat

0. (22)
rallel 2y alze both terms in

o
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<ki+ k) k- ,_fcj'_) -0 (23)

which, since ka # 0, implies %L . §él) = 0, conbyrary to hypothesis., There-
L

fore both terms in ¥q. (22) vanish separatelv. TFor the first term to vanish,

elther ;L =0 ork ¢ gél) =0, Ifk =0, gﬁl) = 0 and g(l) is purely in the
=1 = ’
z-diraction and is a function only of z. This ~annct bte {g‘l) is solenoidal),

A

80 EL . g(l) ® 0 is the only possibility left. Thus implles kz = 3, 80 that
=1
gi}) can cnly be a function of x,r, und t. Returning to Iq. (17), the only

termg which surviwve the above conclusions are

)]
'&v‘mg-\ N F 15) (q) IS fa)
R SR L T R L ST AL LA AR ) {2k}
3% oyt 8 ; ,

o) 2 (o £%
whera 5‘“) = p(“) ~ By3 ' s 3till formally o presaure. It 1o not necessary
{2}

which reswlzs Srom taking the diverpgence of Za. {2%) and using

determines B

an (0}
> r ¢ -
' L - (‘3),17 . i:) M \J:‘.N o (3‘) £ ongey
- - LI ] L
8% ~ 1. Rt L e
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The procedure can be itersted to higher order in £, but the amusing
collapse of the geonmetry to two dimensional magnetohydrodynamics does net
change.

It should be noted that, though p is an 0{1) quentity, the mechanicel
pressure p % p - SEQ%EIE containas formally both 0(e™) and 0(e™) terms. The
first of these mages ;o contrivution to me in BEq. (2), but the second muet be
checked in detail to ses that there is no 0(&“1) contribution, for consistency's

sake. This ig not difficult to do.
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TII, QUALITATIVE PICTURE OF THE SPECTRUM

5

For turbulence which ooveys spatial homogeneity (i.e., the statistics
of the fluctuating field are translation~invariant), the most basic variables

are the covariance tensors of the fields and their Fourier transforms, the

spectral densities. For example, for the fluctuating part of the magnetis

field, B, the covariance

<B(x,t)B(x+r,t+7)> = fak S(k,7t) exp(ikx),

where the spectral dencity tensor #{k,T) may also depend upen the time t in

non~steady situations, is the most phyoisnlly ve

vealing quantiiy to consider.
The trace of §(§,Q) ueasures the amount of magnetic energy per unit wavenumber

spaee, and various moments of it give auch covariances as <}-3> and <A+D> where

k¢

A is the vector potential for wideh 3 = ¥V x A, Compavable cpectral density

tensers exist for the correlation matrices <yy> and <yE>,
The physies of turbulence is most satlsfactorily discussed in terms
of the spectral densities, sueh az 3(k,0). These are always the result of o

balance among three competitive processes: (1) injection of exeitations due

to whatever iz driving the turbulence; (2) dissipation due to viscosity,
reaistivity, or other decay processes abt high wavenumvers; and (3) modal trans-

fer, due bto the nonlinear interactiuns, between one spatial mode and another

-a e

The range of injection or driving mechanisms is even greater for mognetohydro-

namiz turbulense than for WHavier-Stokes fluids, and the various possibllities
P
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for modal transfer are also greater; so, depending upon the situation, more
than one qualitative character for g may be expected. Nevertheless, the results
of Section II suggest a crmde qualitative pic?ure of the spectrua ;f the tluc-
tvations of homogeneous magnetrohydrodynamic turbulence with an anisotropy in-
troduced by a large value of BO‘ In Section LV we give a minimal characteriza—-
tion of this field without, however, being able to provide theoretically-
derived expressions for its elements, ,
We suggest that a typical turbulent B spectrum will consist of two
parts. First, the greater part of the energy in k space will reside near the
plane k-By = 0, will involve polarizations such that B(k):'B, = 0, and will ap-

proximate the conditions of two—dimensionalh’5’6’7’9

magnetohydrodynanic tur~
bulence. It will be non-oscillatory, with time scales which are determined by
the degree of nonlineerity with which the fields ére excited. A second pert

of the spectrum will Le more nearly isotropic sad can be properly called Alfvén
waves: their time scales will be, predominantly, their lersgth scales divided

by the Alfvén speed constructed from B As B, gets large, they will be

0
separated in frequency from the quasi-two-dimensional part of the spectrum
end will have a slower transfer rate, determined by the amplitude of the spec~
trum itself. In the quasi-two-dimensional part of the syectrum, an Alfvén-
wave-like motion can exist, in which the small-scale fluctuations run along
the local mean field lines provided by the larger spatial scale compqnents.gg
The dynamical role of these pseudo-Alfvén waves remains uncertain, but they

seem to be effective at enforcing equipartitionh’5’6 between magnetic and

kinetic energies at the small spatial scales. In any case, their frequency

I L

I
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scales, in the present situation, do not vary proportionately to BO’ and they
are to be sharply distinguished from the true Alfvén waves being alluded to
nere, which are basically the three-dimensional solutions of Eqs. (4) and (5).
For what we are calling Alfvén waves, these two linear equations are & good
approximation; for what we are calling the two-dimensional part of the spectrunm,
the linear terms in Egs. (4) and (5) are identically zero, and Egs. (24) and
(25) are required. Real life is also likely to involve a transition region,
with kB, small but non-zero, where linear end non-linéar effects will be of
comparable magnitude, The directicon of flow of exeitations in k space across
this tranzition region is one of the major unanswered gquestions remaining.

The partition of the excitations between the two types of turbulence,
two~dimensional snd ALfvén wave, i3 bound to be situation dependent and will
depend upon the excitation mechanism for the turbulence. In laboratory experi-
ments on confined plasmas, the candidates for excitation mechanisms are very
pumerous. Literally hundreds of plasma instabilities (growing linear perturba-
tions about guiescent laminar states) have been catalogued; at & more elementary
level, the large radial grodientc that are maintained in such fundamental
parsietbers as tempersture end pressure, (and frequently, magnetic field, denaity,
and fluid velocity) loom immediately, to anyone familiar with fluid turbulence,
as potential drivers for turbulent motions. Because of the relatively rapid
variation of the rmean properties with the transverse coordinates, compared to
typically slower axial variations, one mey well imagine a selective excitation
of the two dimensional part of the spectrum. For many turbulence-producing

agents (impressed changes in the boundary conditions or electrical circuitry




the modes involved may be Alfvén waves with w = * kB

1A

supporting the system, for example) the time scrles will be finite and will

not speed up as the external magnetic field strength 1s made larger. One may
reasonably expect some matching between the time scales of the excited turbdu-
ler<e and the time scales of the processes which drive it. Likewise, it is
reasonable that the more rapidly varying components of the turbulence will
usually arise parasitically, as a result of nénlinear transfor from modes in-
volved in the low=-frequency (i.e. << the reciprocal of an Alfvén transit time)
part of the spectrum. In this ca;e, the Alfvén wave component will be regarded
as derived from the two-dimensional magnetohydrodynamic component.

One other reason for imagining the ALfvén wave component to be
wveaker or less energetic than the two-dimensional magnetohydrodynamic component
is that resonance condiltions mitigate against a rapid or effective transfer to
the Alfvén waves and among'the Alfvén waves.aa Bpeaking loosely for a moment,

two modes with wave numbers k,, ks, and frejuencies w,, w, transfer most ef-
Lo to

fectively to a third mede with wavenumber 53 and freguency Wy when modal |

matehing condicions are met:

Ky *ky T kg (27a)
Wy Wy = Wy (27b)

For Navier-Stokes turbulence and two~dimensional magnetohydrodynamic turbu-
lence, 8ll three of Wy s Wy, and ms are always zero, so every triad satisfying
(27a) is always "resonant". On the other hand, in three dimensions, some of
By» and (27b) tihen consid-
erably restricts the possibilities for transfer. In particular two two-

dimensional magnetohydrodynamic Fouriesr modes cannot combine resonantly

AR S AT T T T T S e ety — e e e e T e e A AR “ Y A
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; to feed an Alfvén wave with Wy = §~§0 # 0. Two Alfvén waves with Wy = Wy and

kKy'By = K4'B, can resonantly drain a two~dimensional magnetohydrodynamic mode

with wl = 0, but this is a higher-order process, and therefore a zlower one,

T, TR T e S T

than transfer among three two-dimensional magnetohydrodynamic modsz. Of course

»

these arguments from the "weak turbulence" perspective are less than rigorous,

T

and it is likely that higher-ordey processes will drain two-dimensional magneto-
hydrodynamic turbulence into the Alfvén wave part of the spectrum, Hevertheless,
thece seems'to be qualitabive reason to regard the Alfvén wave copupling to be
relatively weak.

To summarize the above plcture, we conjecture several features of
magnetohydrodynamic turbulent fields existing in a strong de megnetic field ?a:
(1) velocity~-field and magnetic-field fluctuations are perpendicular to §g’ or
nearly so; (2) the correlation lengths along §O are much longer than those
transverse to go, since the fluctuating components have little variation
along Byj (3) since the electriec field E = -y x By the electric field flue-
tw lons are also largely perpendicular to go; and (4) on top of the essentially
two~dimensional megnetohydrodynamic spectrum is superposed a weaker three-
dimensional Alfvén wave spectrum with frequency scales which scale as BD'

One may ingaire into the extent to whick the above predictions are
borne out by existing measurements. As far as laboratory measurements go, the
answer appears to be, rather well. Although the measurements perforned were
in neither case exactly what a theorist would have wished for, two rather dif-
ferent sebts of measurements on the Zeta toroidal Z pinchlS’lh’15 and the UCLA

16,17

Macrotor Tokamak substantiate the above picture in several respects.

First, the correlation lengths in the direction of the mean field (toroidal)

L N R R s 2 e e R s b o A S
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direction were measured to * At least an order of magnitule greater than the
correlation lengths in the two transverse (radial and poloidal) direetions,

for the magnetic field fluctuations, the electric field fluctunations

(g 2 -y x §0, so for the transverse components, these are essentially velocity-
field measurements), and the electrostatic potential fluctuations. Thus, a
high degree of two-dimensionality was indicated in all cases., Second, the

rms transverse magnetic fluctuationsa were slways larger than the torcidal
fluctuations: by more than an order of magnitude in the Macrotor measurements,
and by an uncertain factor in the heta experiments, partially because apparently
no distinetion was made between parallel fluctuations and toroidal fluctuations
(the poloidal wean field was large enowh in Zeta that it makes a difference).
Finally, the single-polnt frequency measurements for both the magnetic and
electric field flaetuations shoewed frequency ﬁpecira wvhich were rather feature-
less, were well £it by power laws, and fell off go steeply as to be essentially
zero below either the lon gyrofrequency or the reciprocal of the correlation
length divided by the toroidal ALfvén speed. This last fact indicates the
surprising result that not only is the higher-frequency Alfvén wave part of
the spectrum "weak'", as per oo~ conjecture, but that it is in effect nearly
aboent in these two situations. We have no satisfactory explanation for this
absence. In both sets of measurements, the received Tluctuabting signals were
Piltered of their first several kiloherts before any statistical processing

way carried oub, making an assessment of the absolute levels of the rms fluc-
tuations impossible, since the freguency spectra rise steeply towards zero

frequency.
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As far as space physics measurements are concerned, only some of the
above conjectures are testable, with data currently available. The bes)
measurements available are for solar wind magnetometer data; these are well

a3

exemplified by the work of Belcher and Davis and are summarized in the review

of Barnesau. Some ninety percent of the fluctuating magnetic energy is asso-
. ]

ciated with fluctuations perpendicular to the mean field,“3 but the one

25

measurement of parallel versus perpendicular correlation lengths ™ to date in-

dicates that the perpendicular correlation length is asbout a factor of two
greater than the parallel one. (The ensemble chosen was, admittedly, a rather
specialized one.) The solar wind situation is not as well fit by the above
analysis as the laboratory cne, however, since the mean field ic comparable

to the fluctuation level.
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IV. MINIMAL CHARACTERIZATION OF THE SPECTRA

If the turbulence were homogeneous, isotrople, ete., the apectral

density tensor in Eq. (20) would reduse at ©t = 0 to

65 ]

S(k) = §,0) = (3 = RR) B0/ (28)

24
Hi
‘YD

and would be chuaracterized by the single sealar function EB(R), the magnotic
energy spectrum. It Ls to the mechanical analoguela of this spectral function
that Kolmogoroff similarity arguméhts are usually applied, leading to the well-
xnown kf5j3 behavior. n case the gymuetries are suspended, & more elaborate

set of dependences uren k is necessary.

-

' For Sid(g), the ijth element of §, homogeneity and reality alone give

. #
the conditions §,,{k) = sdi(g) = Sji(”§)' From this it follows that the real

1
parts of the Sié(g) are even under g - =k, the imesinary parts of the @id\ée
are odd under k -+ -k, and the diagonal elements are real,

This restricts the nwiber of independent fumetionz invelved in 8(k)

considerably, but there are still several. It is clear that the most economical

choices are desirable in order to represent g(g), since any future theory, such
as o generalization of the RKolmogoroff similarity-wvarisble arguments, will
probably be done on the elements of g.

After considerable trial and errvor, we have determined the most
eeonomical representation of 8(k) o be possible in a k-dependent set of basis

vectors. A set of gonfisuration-space elements of the tensor have been given

. 245 )
by Matthaeus and Smith,“o who elaborate several points beyond those consldered

o~

here. In partieular, if we choose a set of basis vectors 61, é?, 24, where

20

1
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the vector potential fluctuation for which B =V x A, is signalled by non~
zero imaginary perts of AlE' In fact, the magnetic helicity per unit wave

number space is

. 2
HM(}g) = (1/k%) €y aSay
= (1/k) (A, - A n)

= 2Im Am/k . (32)

Applying fik to the expression (32) gives thz megnetic helicity <A*B>. lon-

nelical but anisotropic turbulence is reprecented by real but unequal values

of A,.» and A,., with A,, = D. The mognetic modal energy spectrum oan
1.5‘ 22 e

b S
&LD
written as All + AEE‘

The correspending rapresentation of the scalars in x space is much

'

’
wore complicated, beeauss the differential equaticns whish resuliy fron the

.
4

sondition that the fields ve selenoiial have no obwious csluticns, Jenneetions

exist betwean the various configuration-space-dependent funetisns walch are

27,28

highly implieit {however, c¢f. Resd. 26).
S

N
5 ot

£

It must be regarded a3 an open questien a

~ ¥ 3 o ~ b 3 20 % D .
any universal anisobropic spesirum somparable to the Kolhoalrot Spectrun

-~ % . ) g 2 L} SRURPS B .
for the isctropic case. This is o3 trus for anisctropiz lavier-3tokas vurbda-

lence as it iz for magnetohydrodynamics, and it may be 2 long time b2fore tae

»

" - : . ? b} - o) ; y " :
exists, it will be ghresed in zerms o7 statements abous Ay, , Agns and Imd, ..
A oy onys-
.

I3 s 0 - N 2 PO
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1 counters which permit measurements of the velocity field y(y) permit measure-

ment of the covnriances matrices <v(x)B(x)> and <y(x)v(x)>. The two-point

B o

matrices <B(x)B(x+y)> are in geneval necessary to establish the spectral

,\ ‘ &
! densitins puch as S5(k), unless some version of Taylor's "frozen flow" hypaﬁhesial“
; 2

is applicable,

i
i
!
!
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V. SUM4ARY

Externally imposed de magnetic fields B, introduce a besic anisotropy

0
into homogeneous, incompresaible magnetohydrodynamic turbulence, In the limit
of large B,, the fluctuation spectrum splits into ah esgentially two dimensional

part with magnetic and velocity fluctuations nearly normal to B. and nearly

o
independent of the coordinate along ga, plus a more nearly isotropic, weaker,
higher-frequency Alfvén-wave part. For many imapinable turbulence-driving

mechanisms, the quasi~two dimensional part may be expected to dominate. Sueh

5,18
o gpectrurm seems to have characterized the zetals’l Tk pinch device, well in
AL aey
advance of any satisfactoery theory, a5 wall as the UCLA Macrotor tokamek.™ ™!

“he apectral density tencory of th« covariance nmatrices con be
characherized by at moot four independent scalar funetiens whieh, roushly
sreaking, oharacterize the turbulence by saying how enerrehic it i, how aniso-
tropde, and how helical, It is unknown ags to what oxtent limiting formo exiot
at hizh Reynolds nwrberp for these Aas funetions, as they ave velloved to
exist for isobropic Naviar-Stokes turbulence.

The most wseful futuve directicon for the sublect to take mipht well
be more thorsuph-going measurements of the kind that were carried out in DJeta.
Intuitive pictures, involving perhaps no more than dimencional considerations,

need to be developed for relating measured properties of the fluetuations to

PaTil

the AﬁS functians.“b Finally, the qualitative effects of the different kindg

¢f cpectral shapes upon such properties as transport need to be assesged. It

S SO P bty s b v Y ch o da
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may be that many of the observed particle confinement properties of toroidal
devices can be satiafactorily explained in terms of simple random-walk models
for the magnetic field lines, using measured fluctuation levels and correla-

tion lengths, and without reference to the underlying dynamics,

B i Wi datetelh v ot
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