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EVALUATION OF ORBITS WITH INCOMPLETE KNOWLEDGE OF THE
MATHEMATICAL EXPECTANCY AND TPE MATRIX OF COVARIATION OF ERRORS

B. Ts. Bakhshiyan, R. R. Nazirov, and P. E. El'yasberg

Examined herein is the problem of selection of the optimal
algorithm of filtration and the optimal composition of measure-
ments, assuming that the precise values of the mathematical ex-
pectancy and the matrix of covariation of erroxs are unknown.

In this case, optimization is carried out from the condition of
attainment of a maximum guaranteed reliabiliky Hgar of decer-
mination of the scalar parameter. Hgar is understood to mean

the minimum value of reliability, with a given maximum error, in
a set of possible laws of distribution of the summary errors

of the utilized mathematical model of motion and measurements.
This set is determined by means of the application of some limi-
tations to the mathematical expectaricy and the value of the ele~
ments of the covariation matrix of errors. The expression for
Hgar may be utilized for obtaining the guaranteed evaluation of
the accuracy with determination of the orbits by a random linear-
szable algorithm of filtration. It is shown that the problem of
optimization of Hgar amounts to the solution of some problem of
quadratic programming. The optimal algorithm of filtration, ob-
tained in this case, may be utilized for making some parameters
more precise (for example, the parameters of the gravitational
fields) after preliminary determination of the elements of the
orbit by a simpler method of processing {for example, the method
of least squares).

l. Evaluation of accuracy of Determination of Orbits

The determination of the orbits amounts to the obtaining of
an evaluation of @ of some vector q={qT7qm}, which makes it
possible to calculate the motion in accordance with the given
mathematical model [l]. This evaluation is described as the
function

*Numbers in the margin indicate pagination in the foreign text.
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of the vector of the measurcments 5a{d1,dn}, which may be repre-
sented in the form

d=d(q)+&, (2)

where § is the vector of errcrs of the initial data, egqual to the
sum of the errors of the measurements and the model (2) [1l]. The
mathod of least squares (m.n.k.) is the most widespread algorithm
of evaluation, with which

é\ =arg 'm(i{‘n [c? _,_C;(q)]’l‘,(-l[g —d(q)] ‘ (3)

Here, K is the non-negatively determined matrix. The following
assumptions on the mathematical expectancy of error & and its
covariation matrix are usually utilized during the derivation of

the statistical properties of the evaluation of (3):
E(5)=0, D(&)=0%. (+)

With the assumptions in (4), the evaluation of (3), in many
cases, is justifiable [1l], i.e., with an increase in the number of
utilized measurements, it coincides, in probability, with the true

value of Ui gt of the parameters q:éilqigt with n—«, In reality,

the assumptions in (4) are never precisely fulfilled, and, with
sufficiently large n, the evaluation of the accuracy of detexr-
mination of the parameter ¢, obtained on their basis, proves to

be unjustifiably optimistic. Depicted in figure 1 is the dependence

of the root-mean-square value of o(f) of the evaluation ¢ of some
scalar parameter & on the number n of utilized measurements. In
this case, the theoretical dependence, which corresponds to the
assumptions in (4), is depicted by the dotted line, and the depen-



dence obtained in practice is depicted by the solid line. Such

a situation is inadmissible during the solution of problems of
navigation or determination of important physical constants, as
well as during the selection of the optimal strategy of determin-
ation of an orbii and its correction.

2, Guaranteed Approach in the Problem of Evaluation of Accuracy

In connection with what has been set forth, the problem
arises of obtaining reliable (although less precise) evaluations
of the accuracy of determination of the orbit parameters. Fox
this purpose, the problem of obtaining and optimizing the guaran-
teed evaluations of accuracy, with incomplete information on the
statistical characteristics of the errors in the inital data,
is examined in a number of studies [1l=f]. The present study is
a generalization and further development of the methods of oh-
taining and utilizing guaranteed evaluations of the accuracy.

In this case, the results, obtained earlier, may be viewed as
its partial cases.

Let the seté;rof possible functions of determination F(§) of
the error § be given

F(g)e s, (5)

and H (or o) is some scalar characteristic, to an increase (or
decrease) in which corresponds an increase in the accuracy of deter-
mination of the orbit. We will determine the guaranteed value of
these characteristics from the inequalities

) » N ©)
. € inqg#H (tyap = 80P w) ., :

gar * + -
F(E)E F(&)E
If equalities are achieved in (6), then we will state that
Hgar and agar are strict guaranteed characteristics. The charac-

teristics in (6) are determined for the given algorithm of filtra-
tion. It is natural to pose the problem of finding of the algorithm



which is optimal in the sense of an increase (or decrease) in
the guaranteed (desirably strict) characteristics, i.e., to
seek it in a set S of given algorithms of filtration

)

sgp Hyar or 'n;y L

In order to calculate the extremums in (6) and (7), it is
necessary to prescribe the setsé;rhnd S and the characteristics
of accuracy,.

3. The set K

We will assume that the conditions which determine the set
égycontain the following limitations on the mathematical expec-
tancies E(gi) and the elements Dij of the covariation matrix of
D(g) (i,i=I7m)

gl =my

2

L) » ~ s, e .r (9)
Dij~vi, =Py sDy+vy, t#j, 05D <D+,

where Mi’ D;j, vij>0 are the elements of the given matrices M, D,

V of dimensions 1 x n, n x n, n x n. In addition, we will indicate

the results which take place for the case when, instead of (9),

similar limitations are given on the coefficients of correlation
kij=Dij//DiiDjj and dispersion: /6

. (10)

()

2 * . . 2 R
kl(f..—w“j ‘ki’-‘ﬁ;! +7(’"-j,‘#‘,; O," ‘D'1§A

where k;j, wij are the elements of the given matrices K*, W, in

which k;i=l, wii=0’ and i=1l,n.

In addition to conditions (8)-(10), which we will call the
basic conditions, the seté;;hay be determined by additional limi~-



tations as well, which can be placed on the function of distri-
butien of the errors (for example, the form of this function may
be prescribed).

We will give examples of the representation of the saté??
using (8)-(10). With M=0, V=0, we obtain the classic assumptions
in (4), on the basis of which we construct the evaluations of
the method of least squares [7]). If M0, D*=V=0, then the set
éﬁ&s characterized by the condit’ons |f;[¢M, (the "skirting"

scheme) [2]. The cases k1$kjj$kg, DiisAg, and lkijlzksl, Dy ;€A

[EMRN

are examined in [1,5,6].

4. Characteristics of Accuracy and Their Guaranteced Values

In the capacity of the characteristic of accuracy H, we will
take the probakility of the fact that the error

L - | (1)
Y4 =((<}?)-£(q)=£[fi£d)] -t(q)

of determination of some scalar parameter £{q) does not exceed
the given magnitude of u>0, according to the modulus, i.e.,

H=p(lot]<a). (12)

If H is given with reliability, then one can view a=a(H) as
the characteristic of accuracy. The solution of problems (6),
(7) for the introduced characteristics H and o, with the conditions /7
given below, are equivalent [l]. Therefore, we will subsequently
make use of the characteristic H.

We will calculate ngr for the algoriihms of filtration (1),

which satisfy the following conditions.

1. If £=0, then §2=0 for all g from the region of its possible
values. According to (1), (2), and (11), this condition may be



written in the form
?{q [d(q)]} =£(q). (13)

If (13) is fulfilled, then we will state that the algorithm of £il-
tration (1) possesses the property of unbilasedness,

2. The function £([q(d)] is linearizable at some prior known
point Ay il.e.,

. . (T4)
f’[q(d)] =e(¢t0) +.¥[d “d(QO)] ’

where X=(x),X ) is a matrix of dimensions 1l x n. Hence, taking
(13) into account, it is not difficult to obtain

I5
3¢ =X§ . %)

We will £ind Hgar for two cases.

A, In addition to conditions (8), (9), there is no additional
information on F(%), which makes it possible to find the law of
distribution of the error &%.

B. The distribution 82 may be considered normal. (Such an assump-
tion corresponds to the truth if, for example, the errors §{ satisfy
the conditions of the central limit theorem).

For case A, utilizing Chebyshev's inequality, we obtair the
following from (6) for the strict guaranteed characteristic:

H m‘ (T6)
¥ 2 2 \
where
\ 2 foed 2 . " = ‘ '.; > .' - ') ﬁ )
F(éf )gar mgar +‘Dgar‘ mgar ;‘g)\e!ﬁ(& 7], .Dgarl.v{g? e)(T?)



are strict guaranteed characteristics.

In case B, the reliability of (12) is equal to [l]

- _onft=m oL +m (T8)
H=Hlx%, m D) ,(p<“', ,)...qs(,f ‘ _,) ,
where

e = | E(68)], p=p(f), c})(X)z;-;‘.—;,_n §«~xp(- !é—z)dt..
. . Y
We will assume that a>m, since, in the opposite case,
H(x,m,D) 40,5, which is unacceptable in practical problems of
the determination of orxbits. Then, the derivatives of function
(18) , according to m and D, are negative, in virtue of which we

obtain

. ) D O - (’fg
;';lg;l&;‘ (o, tn, D) = Hgar"H (0%, mgar,ﬁgar) , (72)

where m ot D are found from (17).

ga gar

Thus, in both cases A and B, for the calculation of Hg1r'
it is necessary to find the strict guaranteed characteristics (17).
According to (8),

Myar =X 4M (20)

where X =(|x1|,[x_|). During the calculation of Dyypr it should
he taken into account that the acceptable matrices D(§) should
satisfy not only conditions (9), but should also be non-negatively
determined. In this connection

. T (1)
D, SXD'X +ayvxy

where the right-hand portion in (21) is the maximum of D(&), with
the conditions in (9).



For D and V, the necessary and sufficient conditions may be
obtained so that in (21), with any X, the equality would be ful-
filled. It follows from them, specifically, that the conditions
of non~negative definiteness of the matrices D*+2 and V-Z are
sufficient with some value of the diagonal matrix Z, while the
non-negative definiteness of the matrix D*+V is necessary.

[&

Now, let the limitations on the covariations be given in the
form of (10), and, under these conditions, either wijalk;j], i%5,
or 8,=4,. In this case, we will adopt the designations A=
diag[Al,An],AD*BAK* . Then, one can show that the maximum of
D(%), with the conditions in (10), may also be written in the form
of the right-hand portion of (21), This makes it possible to
subsequently view only that case when tue conditions in (9) are
given, since similar results will occur with limitations in the
form of (10).

Sufficient conditions for the implementation of the equality
in (21) are fulfilled for all of the examples enumerated in
paragraph 3. Subsequently, we will also assume that these con-
ditions are fulfilled, and there is an equal sign in (21).

5. Optimization of the Guaranteed Reliability

Relationships (1l6)~-(2L) give strict guaranteed values of the
characteristic H for cases A and B from paragraph 4. Therefore,
in both variants, problem (7) is reduced to ma:xzi-mini optimization

max M . =max min H, | | (22)
X X FE)F

Here, the maximum is taken according to the line X, which,
according to (l4), determines the algorithm of filtration and
satisfies the condition of unbiasedness (13) of this algorithm.

We will assume that the functions d(q) and 2(gq), similar to
(L4) , are linear

N
=
o

|



4(4)=d(g3)4A(9-4,) ,
F(¢) =l (go)*C(2~90) .

whexe A and ¢ are known matrices of dimgissons n x m and 1 x n.
(14), and (23), we obtain that the condition of un~

From (11),
biasedness (13) takes on the form

XA =C . | (24)

For casec A, problem {22), according to (Jo¢) and the obtained
strict characteristics, amounts to f£inding

@;xurceamw min (XX T+X. (MM 1) X)L

Similar to that, as was done in [5), minimization in (25), by

. \ 3 » 3
means of substitution of the variables

¢ » ’ - ” y _—y 26
—!’i = X, ""x./' ’ "t{'ls‘rf +xi’) 'tl'l’xl' 20, (= "rn‘ ( )

is brought to the problem of gquadratic programming, the solution
of which satisfies the conditions xixgao, which are necessary for

the correctness of the substitution (26).
In order to £ind the maximnum

We will now switch to case B.
in (22), we will examine first the auxiliary problem

(27)

max H . ’
(24) and the additional limitation

(28)

with the conditions in
? .
ngar P L

where L is determined from (20), and u=const.

If the solution of this problem will be known for all of the



acceptable /1Ll

!?9)

H’El,"1o )‘n;k' 3 ’n(,: ?th m 7"‘{((‘ . L

YA=C

gar®

then the maximum (22} is found by means of unidimensional optimi-
zation azcording to u in the interval in (29). Since the deriva-
tive of Hgnr according to Dgar is negative, the maximization in

(27) amounts to the finding of

()= wain D =wmin (X0 X T+X. VXT} (%0)

with the conditions (24) and (28), Thus, problem (22), in casec B,
is reduced to unidimensional maximization, according to u, of

the function H(a,u,£(u)) in the inkerval {29) (see fig., 2). The
finding of the function £(u) in this segment, after the substi-
tution (26), amounts to the problem of quadratic programming with
the parameter u in the right=hand portion of condition (28). The
last problem is of the wery same order of cmmplexity as the prob-
lem of quadratic programming (8,9], During its solution, the
interval (29) is subdivided into a finite nuiber of segments,
inside of ecach of which the solution is achieved on one and the
same basis, and £(u) is an arc of a parabola. One can show

that, ir ecach of these segments, there is no more than one critical
point of the function H(wa,n,£f(u)), and this point is found by
means of a search of the roct of some incyeasing function £ (u)
(see fig. 2). A simple graphic method is developed along with
the described analytical method for finding the optimal u.

Thus, for the examined practically important cases A and B,
the solution of the problem of optimization of the guaranteed
reliability may be obtained using the well-developed algorithms
of quadratic programming.

6. Determination of the Radial Velocity According to Range
Measurements '

r\
=
N

In the capacity of an example, we will examine the case when

10



we must determine the radial veloclity v of a cosmic object at

a moment in time t=0, according tc measurements of the ranges

di from a measuring point at the mcmnent t;o In this case, it

is assumed “hat some prior dependence a(t) of the iadial velocity
on time is known. Then, relationship (2) has the form

5 I ‘ (31)
di=r+vr +{dt§ar)dr+E,, )
0 0

where r is the radius with t=0, and by is the sum of the error
of the measurements and the error evoked hy the inaccuracy of
knowledge of the radial acceleration, which we will assume is

a non-random magnitude, not exceeding the given number w. We
will also assume that the mathematical expectancy of errors of
the measurements and the coefficients of corxrelation between
them, for all errors, are limited according to the modulus

by the given magnitudes M»0 and X»0, and the dispersions do not
exceed o¢, Then, for the summary error &, we obtain

3?
15:(gi)gsM+wr‘.’/2 , D(E )< o?, IA',:,[-AR. (32)

We will assume that, at each moment ty repetition of measurements
is allowed, so that their total number would not exceed some n.

One can show that the optimal solution of problem (22), for
cases A and B, consists of the conduct, according to n/2, of
measurements at some moments t;=T and ts=-T. In this case,
max Hgar may be represented as a function of the dimensionless
parameters a=o/8, M=M/y, where Bz=m§nE(§22)gar
Given in figure 3 are the graphs of the dependences max Hgar(“)’
found for values of M=0,1,2; in this case, the solid lines corres-
pond to case A, and the dotted lines to case B. It is evident from
figure 3 that the switch from case A to case B involves a siight
decrease in the maximum error o (no greater than 17% with equal

H,gar‘; 0.999).

and y?=[(1-k)/n+kl/0c?., /13

11



Calculations were carried out for the examined example, which
showed that, with filtration of the method of least squares, with
equal weights in gome segment ['TMNK'TMNKJ' t.he obtained Hgar
only then differs little from its optimal valuve, when the valve of
TMNK is correctly selected. With other TyNE! the guaranteed
reliability decreases sharply with evaluation of the method of
least sguares.

7. Practical Utilization of the Optimal Algorithms of Filtration

The method, proposed in the present study, for constructing
the optimal algorithm of filtration makes it possible to increase
the guaranteed accuracy of determination of the orbit, as compared
with the results obtained using the classical algorithms, based
on the given values of the mathematical expectancy and the co-
variation matrix of errors. However, it possesses a number of
shortcomings. The basic of these are:

~considerably greater (as compared with classical algorithms)
labor consumption of calculations;

-dependence of algorithm on selection of parameter peing
evaluated;

~optimalness of algorithm only with linear posing of the
problem, leading to the necessity of solution of nonlinear prob-
lems by the method of iterations.

The indicated circumstances evidently limit the utilization
of the proposed optimal algorithm of filtration for the solution
of operational problems of determination of the parameters of
motion of a space vehicle. However, with secondary processing
of the data of trajectory measurements, in order to determine the
parameters which have independent scientific value (elements of
orbits of natural heavenly bodies, parameters of gravitational

fields of these bodies, and so on), the use of the indicated optimal

algorithm of filtration may prove advisable. In this case, the
following order of processing of the measurements may be proposed.

1. The preliminary orbit, which is utilized as the reference
orbit for construction of a linearized mathematical model (2), is

12



determined by one of the classical methods.

2. According to the results of the study of the utilized
measurement system and mathematical model, and also on the basis
of the correlation analysis of the discrepancies of the system of
conditional equations, obtained in the process of preliminary
determination of the orbit, one can find the possible limits of
change in the mathematical expectancy and the covariation matrix
of errors. According to these data, conditions are selected which
determine the setéﬁf and the exclusion of anomalous measurements
is carried out.

3. The value of cach of the interesting parameters 2 is
made more precise, using the corresponding optimal algorithm of
filtration, obtained from the solution of the problem of quadratic
programming.

4. The guaranteed characteristics of accuracy of the obtained

evalnations of % are determined according to formulas (20) and (21).

13
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FIG. 1

Theoretical and practical dependences of o (%) on the
number n of utilized measurements
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FIG. 2

Tllustration of analytical method of finding of max Hgar
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FIG. 3

Dependence of reliability of max H __ on the dimension-  _
less maximum error o with various ¥8lues of the parameter M.
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