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1.0 SUMMARY 

This report presents the-results of a study of the Thermal Control
 
System for the initial and growth versions of the 25 kW Power System. The
 
long operating life and higher reliability requirements of the Power System.
 

impose new design criteria on the thermal control system, particularly the 
space radiator. Relatively large radiator areas will -be exposed to the
 

meteoroid hazard for five or more years resulting in high probabilities of 
fluid passage penetrations for conventional radiator designs.
 

Two major thermal control system design issues were addressed during
 

the study: (l) whether the space radiator should be a heat pipe or a pumped 
fluid design, and (2) whether the heat rejection should be centralized on the
 
Power System or distributed between the Power System and its payloads.- Con­

cepts for the thermal interface between the Power System and the payloads are
 
also evaluated. Finally, a preliminary design of the thermal control system, 
with emphasis on the radiator and radiator deployment mechanism, was conducted.
 

An advanced heat pipe radiator concept that provides a 15% weight
 

reduction over conventional heat pipe designs has been compared to "meteoroid
 

bumpered" pumped fluid radiator designs. 
 The trade study results indicate
 

that Tor heat rejection rates up to about 50 kW, the weight advantage of the
 

advanced heat pipe design over the bumpered pumped fluid design is less than
 

10%. A cost comparison of the advanced heat pipe, conventional heat pipe'
 

and bumpered pumped fluid designs shows a cost advantage far the pumped fluid 
-design. Based on this cost advantage, the bumpered pumped fluid radiator is 
recommended for the initial 25 kW Power System and intermediate growth versions 
up to 50 kW. For advanced Power Systems with heat rejection rates above 50 kW
 

the lower weight of the advanced heat pipe radiator offsets the higher cost
 

and this design is recommended.
 

The Power System/Payloads heat rejection allocation studies show
 
that a centralized heat redection system is the most weight and cost effective
 

approach. The Power System should provide all of the payload active cooling
 
requirements although some specialized payloads with unique cooling require­

ments may require payload kit radiators or may lend themselves to passive
 

cooling. The multiple launch requirements of the payload heat rejection
 
systems is the prinary driver in the selection of the centralized system.
 

* It is recommended that relocatable heat rejection modules that remain on
 

orbit to provide payload cooling be considered for advanced Power Systems.
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A concept for a contact heat exchanger that eliminates fluid 

transfer between the Power System and its payloads has been developed. 
Pressure drop and weight data for a unique flex hose reel design that pro­
vides multiple rotational capabilities for the payloads is also presented. 

The Thermal Control System preliminary design studies show that 
two Orbiter pumps operating inparallel can provide 6b6 lb/hr of R-21 
coolant flow with adequate pressure drop margin for design maturity. A 
thermally actuated flow control valve is used to regulate payload heat 
rejection and allow single or multiple payload cooling with over temperature
 

protection for the Power System. The nine panel radiator system is deployed
 
on orbit from a compact stack by a scissors arm mechanism driven by redundant
 

electric motors. The scissor arms have been sized to provide a: deployed
 

system natural frequency of 0.10 hertz to preclude interaction with the
 
Power System attitude control system.
 

Additional effort is recommended in the area of the panel and 
-

deployment system structural analysis and design. A breadboard test of the
 

thermal control loop components is recommended to identify design problems 
and provide verification of the component life.characteristics.
 

Areas iddntified for technology development include fluid swivels,
 
contact heat exchangers, space constructable radiators, redundant thermally
 

actuated temperature control valves, redundant fluid accumulators and 

reduced cost heat pipes.
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2.0 INTRODUCTION
 

The 25 kW Power System being developed by NASA Marshall Space Flight
 

Center will provide electrical power, attitude control, communications and
 

heat rejection to payloads on orbit. Figure 1 shows a Power System configura­

tion based on the NASA Reference Concept (Reference 1). The Power System
 

remains on orbit for at least 5 years to provide services to various attached 
payloads delivered and retrieved by the Space Shuttle Orbiter or to provide
 

services to the Orbiter payloads with the Orbiter docked to the Power System. 

The long life requirements and the transfer of heat from one space­

craft to another imposes unique design requirements on the Power System Thermal 

Control System (TCS). Previous radiator designs are not appropriate for 

long life systems. New radiator designs are required to prevent meteoroid 

penetration of the radiator fluid passages and loss of cooling capability. 

This report presents the results of a parametric trade study of heat 
pipe radiators and meteoroid protected pumped fluid radiators. Representative 

design configurations are established for each of the design concepts and 

paranetric weight and cost analyses are conducted to identify operating 

conditions for which the heat pipe or pumped fluid radiators are most 

effective.
 

Parametric trade data are presented for centralized heat rejection 

systems where the payload and Power System heat load is rejected 'by a central 

radiator system located on the Power System and a distributed heat rejection 

-system where the Payload and Power System have separate radiator systems. 

Concepts for the thermal interface between the Power System and the Payloads 

are also presented. The results of preliminary design studies of the Power 

System TCS for the concepts selected are presented and areas requiring
 

technology and hardware development are identified. 
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3.0 REQUIREMENTS, GUIDELINES AND CONSTRAINTS
 

Although the specific design requirements (heat load, temperature,
 
flowrates, structural loads, etc.) for the Power System Thermal Control System
 

are still evolving from design studies, several general requirements have
 

been established. Table 1 lists the design guidelines established jointly by
 
Vought and NASA MSFC to be used in the Thermal Control System (TCS) Study.
 

A high reliability (0.99 probability of success) TCS with a life of
 
five years is required. In addition to the overall system reliability a
 

radiator panel meteoroid reliability (probability of no meteoroid penetration)
 

of 0.99 is required. The meteoroid reliability applies only to the coolant
 

loop passages; penetration of heat pipes is allowed. The heat pipe radiator 
panels are oversized to allow for meteoroid penetration and random failure
 

and still provide full heat rejection capability at the end of-the mission.
 

Reference 2, NASA SF8013, "Meteoroid Environment Model - 1969 (Near Earth to 
Lunar Surface): is used for the meteoroid environment. The TCS should remain
 

operational after the first failure and the power processing equipment cooling
 
should be retained after the first failure.
 

On-orbit maintenance of the TCS is available with the Orbiter Remote
 
Maneuvering System or EVA. Replacement of the radiator panels is allowed
 

only as a contingency operation. Replacement of the other TCS components is
 
unscheduled maintenance, i.e., planned maintenance intervals are not desirable.
 

The Power System willbe transported to orbit by the Space Shuttle
 

requiring that the launch weight of the TCS be minimized. The Power System
 
radiator will be stowed in the Orbiter-cargo bay during launch and will re­
quire deployment on-orbit; the stowed volume and weight must be minimized.
 

A completely self-contained radiator deployment mechanism capable of partial
 
or full deployment and multiple deploy/retract cycles for quiscent operation
 
or reboost activities is required. A manual back-up capability for deployment/ 
retraction is desired and in the event the back-up capability fails, a
 
radiator jettison feature is included to allow the Power System to be retrieved
 

from orbit.
 

A stated design objective is to minimize cost. Development of new
 
concepts is to be considered only if existing technology cannot meet the
 

design objectives.
 

Heat rejection requirements are summarized in Table 2. The 25 kW
 
Power System heat load is 12 kW with the breakdown shown on Table 2. It is
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recognized that the battery heat loads and some power processing (chargers
 

and regulators) heat loads do not occur simultaneously. However, due to
 

the preliminary design phase of these components, the full 12 kW heat load
 
was selected for the trade studies as a representative heat load. Also shown
 
on Table 2 are the maximum allowable coldplate outlet temperatures for the 

Power System equipment.
 

Payload heat load will vary from partial up to 25 kW. The Power 
System coolant loop supply temperature to the payload heat exchanger is 35°F 
to provide a minimum payload coolant return temperature of 45 0 F. The maximum 
Power System coolant return temperature from the payload heat exchanger is 
1000 F. The thermal interface between the Power System and the payloads can 
incorporate either fluid quick disconnects and liquid-to-liquid heat exchangers 
or contact heat exchangers. Payload rotation relative to the Power System is 
not a firmly established requirement, but gimballed joints are to be considered. 
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4.0 HEAT PIPE/PUMPED FLUID TRADE STUDY 

The primary design driver for the Power System radiator is the 

survivability of the radiator in the meteoroid environment. Based on the 

penetration model suggested by NASA (Reference 2), a spherical meteoroid 

as small as 0.011 inch diameter (1.1 x 10- 8 lb) would penetrate an aluminum 

tube with a conventional wall thickness of 0.035 in. The specified meteoroid 

mass-flux model (Reference 2) would result in a mean time fluid tube pene­

tration rate of approximately 403 days for a 25 kW radiator with unprotected 

fluid tubes. The probability of such a conventional radiator surviving the 

meteoroid hazard for five years is 0.37. It is evident that new radiator 

designs are required to achieve the high reliability (0.99) specified for 

the Power System. 

The most obvious design improvement would be to provide protection
 

of the fluid passages from the impacting meteoroids. Leach and Stalmach
 

(Reference 3) have shown that meteoroid bumpers are the most weight effective­

'method as opposed to armor protection. The bumper is designed to fragment
 

the high velocity meteoroids and dissipate their kinetic energy., The bumper 
.isspaced at sufficient distances from the fluid tube to permit fragments 

from the meteoroid to spread out over a larger area, thus minimizing the 

damage. The design challenge for meteoroid bumper protected radiators is to 

provide a low cost, lightweight, thermally efficient bumper. 

The second radiator design concept involves the use of heat pipes 

to distribute the heat over the radiator surface rather than flow tubes. The 

heat pipe concept is attractive because meteorofd penetration of an individual
 

heat pipe will result in only minimal loss in total heat rejection due to a
 

localized reduction in fin effectiveness. This concept is-termed a hybrid
 

because a 'coolant loop is still required to collect the vehicle waste heat
 

and transport it to the radiator. The interface between the coolant loop 

and the heat pipes is on the radiator panel. The fluid passage at the inter­

face is vulnerable to the meteoroid hazard, but the exposed area is greatly 

reduced from the pumped fluid concept. The design challenge for the hybrid 

heat pipe concept is to obtain a low cost, lightweight, thermally efficient 

interface between the coolant loop and the heat pipe. 
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4.1 Thermal Control System Reliability Study
 

The design reliability requirement for the Power System Thermal 

Control System is a probability of success of 0.99 for five years. In order
 

to determine the design meteoroid reliability (probability of no meteoroid 

penetration of a fluid passage) for' the radiator panels, a study of coolant 

loop configurations was conducted to determine the required component redun­

dancy and/or maintenance. Figure 2 shows two coolant loop concepts and the 

components included in the reliability study. The first concept is a single
 

coolant loop (Figure 2a) with the option of redundant components and/or 

maintenance on the components to improve reliability. The second concept
 

(Figure 2b) utilizes a redundant standby loop with the option of redundant 

components and/or component maintenance in each loop to improve reliability.
 

Table 3 shows the range of component failure rates and the resulting 

probabilities of success for (1) single loops with no redundant components, 

(2) single loops with redundant components, (3) redundant loops with no redun­

dant components, and (4) redundant loops with redundant components in each 

loop. The probability of success (reliability) of the single loop was com­

puted by the Poisson distribution function. 

R= e ()
 

where A is the failure rate and t is the mission time. The reliability of 

the redundant standby pumps is given by 

-te A e - ,. ] (2)S -pt -(xp + xs)t 

S 

where A. is the failure rate of the pump and X. is the failure rate of the 

failure detection and switch system. The use of the Orbiter pumps will re­

quire the operation of two pumps in parallel with redundancy provided by a 

single standby pump. The reliability for this case is
 

-2Xpt 2A -2X t -(2kp.+x a)t( 
R= e +- [e P - e ~(3) 

S 
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A concept for a redundant temperature control valve is shown in 

Figure 3. Both temperature control valve elements "operate simultaneously. 

In case of-failure, any one of the elements'can-provide control. The elements 

are designed to close the bypass port in the failed position, thus allowing 

the remaining element to provide control. 

Figure 4 shows a redundant bellows fluid accumulator. The fluid and 

gas space are separated by two independent bellows. 'In the'event of failure of
 

either bellows, fluid ,or gas leaks into the area between the bellows and
 

accumulator shell and functional capability is retained. A second bellows 

failure is required before functional capability is lost. As in the redundant 

temperature control valve, both bellows operate simultaneously but only one 
is required.' No failure detection and switch system is required and the
 

reliability is given by
 

R 2e-At e-2At (4)'
 

Redundancy for the temperature sensors is accomplished by providing
 

.three sensors and utilizing the majority vote concept. If one of the three
 

indicated temperatures does not agree with-the other two, it 'isignored. The
 

reliability for the redundant temperature sensors is computed from 

R e-3Xt + 3e-2Xt (1-e-t "- (5)
 

It should be-noted that the temperature sensors are required for system health 

monitoring only. They'are not required for system operation per se, but if
 

an over or under temperature were indicated the system would be shutdown to
 

prevent equipment damages.
 

The redundant loop reliability is computed as the product of the 
reliability of'the active components and the dormant components.,
 

R = RARD (6)
 

Although the redundant loop is not operating, all components except the
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pump are exposed to their failure mechanism and are considered active for 

reliability calculations. The radiator tubes are exposed to the meteoroid 

hazard and the structure is exposed to space environment. The redundant 

loop fluid in the radiator, coldplates and heat exchangers goes through the 

same temperature fluctuations as the operating loop; thus the accumulator will 

be active. Temperature variations at the temperature control valve'in the 

redundant loop are likely not to be as severe due to the stagnint fluid and 

isolation from the active loop. However, for conservatism it is assumed that 

the valve is operating for reliability calculations.' Sinilarily, the tempera­

ture sensors in the redundant loop are assumed to be active. The reliability 

of the active components in the redundant loop is given by 

R= e e-At + e-Xst - -(EXA + %s)t - e-2ZAAt -1 (7)e .


The reliability of the dormant components (the pump) is found from equation 

(2). 

Figure 5 shows the effect of maintenance on the pumps and temperature 

sensor, the two highest failure rate e6mponents on the 6erall reliability. 

The reliability -study results indicate that the highest expected 

single loop reliability with redundant components and without maintenance is 

0.9385 (Table 3). Maintenance on the pumps and temperature sensor have a 

small effect on loop reliability since with redundancy the failure rate of 

these components is already small. Figure 5 shows that the single loop re­

liability is increased f om 0.9385 to approximately 0.953 for one.year main­

tenance period. Maintenance on the single loop without redundant components
 

has a more significant effect on the loop reliability as shown by Figure 5.
 

However, the highest obtainable single loop reliability with maintenance and 

with redundant components is below the design requirement of 0.99. Therefore, 

a redundant standby loop is required. Table 3 shows that the redundant 

standby loop reliability with redundant components in each loop has a relia­

bility range of 0.9903 to 0.9959. Thus the required reliability could be met 

with this concept. Maintenance on the redundant standby loop concept without
 

redundant components will not increase the reliability to the desired 0.99
 

(Figure 5). The selected concept is the redundant standby loop with redundant 

components. Maintenance will not be required but could provide some additional 
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margin on the loop reliability.
 

The failure rate data- of Tabld 3 shows an assumed radiator panel 
meteoroid penetration reliability of 0.99. In order to test the validity of
 

this assumption the effect of different meteoroid reliabilities on the Thermal
 

Control System reliability was determined. Figure 6 shows this effect for 
the redundant standby loop concept. 
Improving the meteoroid probability of
 
penetration from 0.01 to 0.001 (probability of no meteoroid penetration from
 
0.99 to 0.999) will have negligible effect on the Thermal Control System re­
liability. If there were no probability of meteoroid penetrations (reliability
 

= 1.0) the Thermal Control System reliability would increase from 0.99 to
 
0.990099. Thus radiator meteoroid penetration reliabilities greater than
 

0.99 are not required.
 

A third coolant loop concept involves the use of a heat collection
 

loop which interfaces with multiple heat rejection loops (Figure 7). The use
 

of multiple heat rejection loops offers two advantages. First, the radiator
 

meteoroid protection requirements are reduced for smaller independent radiator
 

loops. The meteoroid penetration rate varies directly with radiator area;
 
the -probability of no meteoroid penetration for given bumper configuration is 
a function of e -A The second advantage is that the system reliability can be 
increased above the individual heat rejection lo6p reliability by oversizing.
 

Thus, a system made up of smaller less reliable heat rejection subsystems is 
potentially lighter weight than a single high reliability heat rejection system. 

The total thermal control system reliability is the product of the
 
heat collection subsystem reliability and the multiple heat rejection subsystem 
reliability. It is evident that both subsystems must have reliabilities greater 
than 0.99 to meet the overall reliability requirement of '0.99. A redundant 
heat collection loop with redundant pumps in each loop will yield probabilities 

of 0.9896 to.0.9949 (Table 4). The parametric weight studies were conducted 
with a collection subsystem probability of 0.995 and the heat rejection sub­
system oversized to yield a probability of 0.995. Thus total system probability 

is 0.99 (0.995 x 0.995) and the total systemweights can be compared directly
 

to the single-subsystem concept with no oversizing.
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TABLE 4 

HEAT COLLECTION LOOP RELIABILITY 

.0635 - .6184
Pumi 

Accumulator .00085 - .00389
 

Fill Drain .05 

Lines/Fittings .05
 

.16435 .72229
 

Single Loop .9928 .9689
 

Redundant Loop* .9949 - .9896
 

Switch System Reliability = .995 - .99 

of oversizing required to achieve a given system reliabilityThe amount 

is given by
 

-

PS = N, 1 "PS i-S) (8) 

i=r 

where: PS = system probability of success
 

PSS = subsystem probability of success
 

N = total number, of subsystems 

r = required number of subsystems 

(.) = N 

The pumped fluid radiator panels are designed with bumpered meteoroid 

protection of the fluid tubes and manifolds to pro-ide a reliability of 0.99. 

The hybrid panels are designed with bumpered meteoroid protection of the coolant 

Ii.
 



loop/heat pipe interface to provide a.reliability of 0.99. In addition,
 
the number of heat pipes are increased to allow for loss of heat rejection

capability due to meteoroid penetration of the heat pipes. The amount of
 
heat pipe oversizing is determined by equatioh (8)where the subsystem pro­
bability (Pss) is the probability of meteoroid penetration of each heat
 
pipe and r is the required number of heat pipes. 

4.2 Pumped Fluid Panel Design 
Representative panel tube/fin or heat pipe/fin cross section con­

figurations have been established to serve as the basis for the radiator
 
trade studies. 
Important considerations in evolving candidate configurations
 
were ease and cost of manufacturing, lightweight meteoroid protection, and 
thermal performance. 
An assessment of the candidate panel crossections for
 
both the pumped fluid and the heat pipe panels was made to select representative
 
designs that will produce meaningful trade results in the study. 
 -

Figure 8 
illustrates four tube/fin panel crossections considered
 
for the pumped fluid radiator. Concept A utilizes an extruded tube/bumper 

.design which is adhesively bonded or welded to the radiator fin. An I-beam 
type tube extrusion bonded to a fin is shown in Concept B with the meteoroid 
bumper provided by the top and bottom of the I and the fin. The fin could be 
eliminated from this concept and the I extrusions joined by welding or bonding. 
Concepts C and D are based on use of Orbiter technology in which tubes are
 
adhesively bonded 
in an aluminum honeycomb/facesheet layup. 

All four concepts'appear competitive on the basis of weight, thermal
 
performance, ease of manufacturing, and cost, except for Concept C which is
 
heavier and not as thermally efficient as the others. Concepts A and B may
require structural stiffening to withstand handling and Orbiter launch loads 
and could incur an additional weight penalty. Concept D was selected for 
the trade studies. This concept is known to have good stiffness, with minimum 
panel thickness (minimizes stowage volume) and the manufacturing processes and 
procedures are well established. The uniform panel surface also facilitates 
the application of the radiator thermal control coating. Figure 9 summarizes 
the pumped fluid panel design that is used for the trade studies. The panel

consists of an aluminum honeycomb panel with extruded aluminum flow tubes. 
The honeycomb and tube extrusions are bonded to an aluminum facesheet, 0.011 in. 
thick, on each side of the panel. The panel thickness is determined from the 
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extrusion height which results from the panel weight optimization of tube 

diameter and thickness. 

4.3 Hybrid Heat Pipe Panel Design
 

Figure 10 shows three concepts for the hybrid heat pipe panel cross 

section. These concepts have been evaluated by Alario and Haslett (Reference 

'4). Their test element data, reproduced in Table 5, indicates that the 
bonded honeycomb concept thermal performance compares favorably with the other 

concepts. It has the highest heat rejection per unit area which would mini­

mize the launch stowage volume and deployed area requirements for the Power 

System radiators. The heat rejection rate per unit weight for the honeycomb 

panel is also near the maximum.-


TABLE 5
 
COMPARISON OF HEAT PIPE PANETL CROSS-SECTION THERMALPERFORMANCE
 

T. = 380C
in
 

W/m W/kg 

Concept A (bonded fin) 297 67.5
 
Concept B (flanged extrusion) 339 63.1
 

Concept C (honeycomb) 394 67.2
 

The bonded fin and flanged extrusion concepts are likely to require additional­

structural stiffeners which would increase their weight. The bonded honey­

comb concept was selected for the radiator trade studies. This will provide
 

for structural consistency between the pumped fluid and. heat-pipe panels and 

should cause. other differences between the two concepts to become more-visible. 

The radiator panels for the hybrid concept contain the fluid-to-heat 

pipe, interface heat exchangers and the heat pipes which distribute heat from 

the fluid out onto the panels. The design of the fluid-to-heat pipe interface
 

heat exchanger to achieve good thermal performance while minimizing weight,
 

volime,-and cost is critical to the success of the hybrid approach. Two con­

cepts,have been selected for the radiator trade studies. These .are the
 

simple, low cost heat pipe with a compact heat exchanger shown in Figure 11
 

and a center core -wick heat pipe.with integral evaporator and manifold shown 

in Figure 12. 
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The simple heat pipe concept, Figure 11, consists of straight heat
 

pipes bonded into a 1.0. in. thick honeycomb panel. The heat pipes have a
 

flat surface on the side adjacent to the honeycomb facesheet to provide good
 

heat transfer to the fin. Heat pipe diameters are optimized in the trade
 

study. The heat exchanger contains two layers of 0.125 in. compact core
 

material for a total core thickness of 0.25 in. The fluid flow passage width
 

is varied in the radiator optimization. The heat exchanger is made with
 

"saddles" within which the heat pipes bondedare as shown in Section A-A of 

Figure 11. These "saddles" provide inherent meteoroid protection for the 

heat exchanger passages as well as inhancing the heat transfer. Each heat 

pipe interfaces both redundant flow passages so that either loop utilizes 

the entire radiator area. Honeycomb is included between the heat exchanger
 

core and the face sheets between the saddles. The design should be relatively
 

inexpensive since one bonding operation is required for the entire panel
 

layup including heat exchangers, honeycomb, heat pipes, and face sheets.
 

The integral manifold concept, shown in Figure 12, consists of a
 

heat pipe made in a "T" shape with the evaporator of the heat pipe around
 

the outside of the heat transport fluid manifold. This approach is thermally.
 

and weight efficient. The heat pipe surrounds the fluid heat exchanger and
 

acts as a meteoroid bumper. The heat pipe design is a center core wick,
 

aluminum heat pipe with the wick extending around the outside diameter of
 

the fluid manifold as shown in Figure 12. Thermal vacuum tests of a radiator
 

panel element incorporating the integral manifold design have been conducted
 

to verify this design concept.
 

The radiator panel test element (Figure 13) was made up of 0.5 in.
 

aluminum honeycomb (3.1 lb/ft3 ) with 0.011 in. aluminum facesheets bonded to
 

it. Orbiter bonding techniques were used to bond the condenser sections of
 

the heat.pipes. The heat pipes were made of Type 304 stainless steel. In
 

order to allow for the different thermal expansion coefficients of the heat
 

pipe and the radiator facesheet, each facesheet was split into 6 individual
 

sections to lessen the buildup of thermal stress. The heat pipes were charged
 

subsequent to the bonding of the panel because of the high vapor pressure of
 

ammonia at the bonding temperature. The panel was painted with White Velvet
 

401 paint to provide a known surface emissivity.
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The heat pipes and radiator were instrumented with a total of 17 

thermocouples as shown in Figure 14. In addition, 2 immersion thermocouples 

were installed in the heat exchanger inlet and outlet and a thermocouple was 

attached to the exterior of the heat exchanger between the two heat pipes. 

Four thermocouples were attached directly to each of the two heat pipes to 

allow accurate measurement of the condenser temperatures. Four thermocouples 

mounted on the facesheet directly over the heat pipes allowed determination 

of the heat pipe-to-facesheet temperature drop. All of the surface mounted 

thermocouples were welded to the test article.
 

The heat input into the heat pipes was provided by Freon 21 flowing 

through the spiral-finned heat exchanger at controlled temperatures and 

flowrates.
 

The fluid temperature drop through the heat exchanger was measured
 

with delta-connected, immersion, copper-constantan thermocouples. The
 

thermocouple output was measured with a digital multimeter with a resolution
 

of 0.001 my. This corresponds to a temperature resolution of 0.050F.
 

The absolute thermocouple readings were recorded on a Brown strip
 

recorder with a temperature range of 00F to 150'F. The estimated accuracy of 

the temperature readings is + 30F. ' 

TABLE 6 

INTEGRAL MANIFOLD THERMAL VACUUM TEST RESULTS 

1 2 3 
Flowrate, lb/hr 2000 .- 300 2000
 

Inlet Temp, OF 52.6 51.5 58.4
 

QREJ' BT/hr 400 369 427
 

QREJ' BTU/hr-ft2 37.1 34.2 39.6 

AT-Fluid-To-Heat Pipe, OF 8.8 19.3 14.1 

Predicted AT, OF 9.8 17.0 11.3 

UA Fluid-to-Heat Pipe, BTU/hr- 0 F 22.7 9.6 15.1 

"UA (Predicted), BTU/hr-0 F 17;8 9.6 17.6 

Table 6 summarizes the results of the integral manifold thermal 

vacuum tests. The measured fluid to heat pipe conductances are greater than
 

or equal to the calculated values in two out of the three test points. The
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measured 	value of test point 3 is approximately 14% lower than predicted. 
The average value of test points 1 and 3 which-should be approximately equal 

is 7% greater than the predicted conductance. Although the test data is
 

limited, 	the result tend to confirm the thermal performance of the integral
 

manifold 	heat pipe concept.
 

4.4 	 Parametric Weight Analysis of Concepts 

The radiator panels that resulted from the concept development dis­

cussed above must be optimized in order to obtain fair and meaningful trade
 

comparisons. Parametric data providing weight optimized panels for different 

radiator 	heat loads, operating temperatures and environment temperatures are 

required for each concept. Specialized computer routines were used for the 

parametric weight optimization of both the pumped fluid and hybrid concepts. 

The items included in the weight of the pumped fluid radiator are 

facesheets, honeycomb, bonding adhesive, panel thermal control coatings, flow
 

tube extrusions, manifolds, Freon 21 and equivalent pumping power penalty. 

The tube extrusion dimensions were determined based on a bumper distance 

(facesheet to tube outside surface) of 0.225 in. This basic dimension plus 

the computed tube inside diameter and tube thickness i equired for meteoroid 

protection determines the extrusion dimensions and the honeycomb thickness. 

The facesheet thickness that resulted in the minimum weight was also determined. 

A minimim thickness of 0.01 in. was specified for manufacturing ease and for
 

most cases this limit was used by the computer routine.
 

The hybrid panel weight included the facesheets, honeycomb, bonding 
adhesive, panel thermal control coating, heat pipe, heat pipe fluid, coolant 

loop manifold and heat exchanger, Freon 21 and equivalent pumping power penalty. 

Weights of aluminum-ammonia heat pipes with a wall thickness of 0.036 in. were 

used for all cases except the high operating temperatures. Aluminum-acetone 

heat-pipe weights were used for the high temperature (2500F) case.
 

In order 	to compare the single subsystem and the multiple subsystem 

with.oversizing, thermal control system components common to both subsystems
 

are included in the weight values rather than just radiator panel weight.
 

Multiple subsystems will require more, although smaller, pumps, accumulators,
 

and temperature control valves than the single subsystem. The multiple
 

subsystem weights also include the heat exchangers for heat transfer from
 

the collection loop to the heat rejection loops. The following algorithims 
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are used to estimate the TCS component weights:
 

Heat Exchanger Weight 2 lb/kW 

Pump = 5.5 lb 

Acciulator = .605 x fluid weight 

'Tubing = 40 lb (100 ft of 5/8" x .028" SS tube) 

Temperature Control Valve = 4 lb 

A study of heat pipe sizes indicated that smaller heat pipes are
 

more weight effective. Figure 15 shows the effect of heat pipe size on opti­

mized radiator panel weight. For the integral manifold concept it appears
 

that heat pipes below 0.25 in. diameter would further reduce panel weight.
 

However, center core wick heat pipes smaller than this were not considered
 

practical. Furthermore, the required capacity for the smaller heat pipes is
 

higher than is currently available. Figure 16 shows center core heat pipe 

capacity as a function of diameter. As indicated on Figure 15, a 0.25 in. O.D. 

heat pipe would require a capacity of 1528 watt-in, whereas the estimated 

capacity of existing center core wick designs for this diameter is 1000 watt-in. 

A 0.375 in. heat pipe for the optimized radiator panel weight would require a 

capacity of approximately 1800 watt-in.. This is close'to the.capacity of 

- existing designs and should be achievable. Therefore, the hybrid panels were 

optimized with 0.3T5 in. heat pipes.' Development of smaller sized higher
 

capacity center core wick heat pipes could potentially reduce the radiator
 

panel weight by approximately 10%.
 

the results of the radiator panel
Figures 17, 18 and 18a present 

The range ofweight optimizations for tle three concepts considered. 


parameters analyzed were:
 

Heat Load - 1-250 kW
 
= 


Operating Temperatures - Tin/Tout 40r/oc l000 F/400 F 
- and 2500F/130OF 

Environment Temperatures - -8 0F, 40F, -80 ° F 

-'In general, the integra3#manifold hat pipe panels are lighter than 

the compadt. heat exchanger-heat pipe panels by 10-15 percent. Exceptions are 

at the high radiator operating temperature (Tin/Tout = 2506F/130 0 F) where the 

difference-is 5 percent or less. The weight differences debrease 'at the low 

load conditions and there are cases of high temperature and low load where the 

compact heat exchanger-heat pipe panels are slighly lighter than the integral 
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manifold panels. 

The required radiator area has a large effect on the relative weight 
of the three radiator types. This dueeffect is to the direct relationship
 
between radiator area and meteoroid protection requirements. For relatively
 
small areas, whether due to low heat loads or a large difference in radiator
 
and sink temperatures, the pumped fluid panels are lighter than the heat pipe 
panels. At intermediate heat loads, radiator sink temperatures and area
 
requirements, the differences 
in weight of the two concepts are small. For
 
larger heat loads and high radiation sink temperatures the hybrid heat pipe
 
panels weigh significantly less than the pumped fluid panels. This is illus­
trated by Figure 19 which shows the regions (heat load and average radiator
 
temperature) for which the pumped fluid or heat pipe panels are weight optimum.
 
As indicated by Figure 19, there is a wide region in which there is less than
 
iO% difference in the weight of the two concepts. 
 The anticipated operating
 
region of the initial 25 kW Power System is seen to fall within this region. 
Above about 50 kW heat load the heat pipe panels show a definite weight advan­

tage.
 

Figures 20 and 21 show the effect of meteoroid probability on radia­
tor weight for 16 kW and 32 kW heat loads. As previously discussed (Figure 6 ), 
the radiator meteoroid probability can be reduced from 0.99 to 0.90 and the 
overall TCS reliability is reduced only from 0.99 to 0.98. Thus, it may be 
desirable to design to a lower radiator meteoroid probability. Figures 20 and 
21 indicate a radiator weight savings of approximately 50 lbs. for a 16 kW heat 
load and approximately 200 lbs. for a 32 kW-heat load for a 5 year life. Data 
are also shown for 10 year life radiators, showing more significant weight 

savings.
 

4.5 Parametric Cost Analysis of Concepts
 

Comparative costs of the three thermal control systems were obtained 
from the PRICE routine (Reference.5). This rout ne provides a consistent 
estimation of development and manufacturing costs of the radiator panels as 
well as the other components. Costs were obtained for both the single subsystem 
and multiple. subsystem concepts. Thus all thermal control system components 
are included in order to compare the single and multiple subsystem. The com­
ponents included in the cost analysis were:
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Radiator Panels 

Heat Pipes
 

Pumps 

Accumulators 

Temperature -Control Valve
 

Temperature Sensor 

Heat Exchanger 

Inter-panel Flex Hoses
 

Radiator Deployment Mechanism
 
Table 7 summarizes the PRICE input data. The engineering and manu­

facturing complexity factors 
input to PRICE for the radiator panels was based 
on historical cost for the Space Shuttle Orbiter radiator panels .produced by
 
Vought. Table 8 summarizes the complexity factors used for all components.
 
Heat pipe and pump cost data were obtained from vendors and input directly to
 
PRICE. 
Heat pipe costs based on data obtained from Hughes are sunxnrized in
 
Table 9. Pump costs- obtained from Sundstrand are summarized in Table 10. 

Figure 22 compares the cost of the three concepts as a function of 
heat load. The pumped fluid concept is seen to be the lowest cost system for 
heat loads up to 250 kW. The cost differential for the three concepts is not 
significant at the higher heat loads except for the multiple subsystem pumped 
fluid concept, This concept costs 17% less ($4,000,000) than the integral
 

manifold concept it 250 kW.
 

Table 11 shows a comparative cost breakdown of the three concepts
 
for a 25 kW system. 
The integral manifold heat pipe concept cost is $1,307,000
 
(18%) greater than the pumped fluid concept for a 25 kW heat rejection system.
 
The cost differential is due primarily td the cost of the heat pipes. 
This is
 
illustrated by Table 12 which compares the cost of the radiator panels only.
 
Development costs for the heat pipe panels are somewhat higher since manufac­
turing methods of incorporating charged heat pipes into the panel or charging 
the heat-pipes after assembly will have to be developed. The low technology 
heat pipe concept cost includes the cost of the compact heat exchangers, thus
 
production costs are slightly higher. 
The pumped fluid radiator panel cost
 
is $1,136,000 less than the weight competitive integral manifold heat pipe
 
radiator panel. The primary difference is the $897,000 cost of the heat pipes.
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5.0 

Tables 13 through 24 present comparative cost breakdowns of the 
three concepts for 25 kW, 50 kW, 100 kW and 250 kW heat rejection systems.
 
Data are included for both the single system and multiple heat rejection
 

subsystem concepts.
 

BODY MOUNTED ALL HEAT PIPE/PUMPED FLUID TRADE STUDY
 

Although the Power System body surface area is not sufficient for
 
total heat rejectiqn, use of this area would reduce 
 the deployed radiator area. 
Heat pipe radiators utilizing the Power System structure could provide cooling 
of the power processing equipment or batteries thus reducing the coolant loop
 
heat load and fluid requirements. Figure 23 shows two baseline candidate,
 

schematics and body mounted heat pipe radiator concepts. 
Use of the body 
mounted heat pipe radiators to cool the power processing equipment and the
 
Power System equipment results in the minimum deployed radiator area. Removal
 

of the batteries from the coolant loop reduces the heat load only by 3.5 kW
 

and does not allow the'radiator outlet td be increased since a low temperature 
is also required for the payload heat exchanger.
 

$.1 Heat Pipe Radiator Design
 

Figure 24 illustrates the body mounted heat pipe radiator concept. 
The cross-hatched area shown results in a total area availability of appro­
ximately 634 ft 2 . The available body area does not have a good view to space 
due to the solar arrays and the deployed radiators. Analysis indicates that 
the average radiation sink temperature of the body area is approximately 100 F 
with radiant interchange with the solar arrays aiid deployed radiators included. 
For the reference Power System attitude of X-axis perpendicular to the orbit 

plane and Z-axis parallel to the sun line, the sides of the Power System (Y-axis) 
will alternately face the earth and deep space resulting in a radiation sink 
temperature variation from -8 0 F to 460F. Table 25 shows the variation in
 
radiation sink temperature for all four sides of the Power System with orbit 
position. In order to provide environment averaging a perimeter or hoop heat
 
pipe arrangement as shown on Figure 24 is required. The reference 25 kW Power 
System skin will be load carrying panels of either honeycomb or skin and 
stringer design (Reference 1). This same basic skin could be used for radiator 
area by-integration of the heat pipes. Evaluation of the body mounted heat 
pipe radiators considered the additional weight of the heat pipes only. 

Utilizati6n of the existing skin as the radiator fin was assumed. 
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5.2 

An equipment mounting concept is shown in Figure 25. Six equipment
 

mounting locations or interface between the feeder heat pipes and the radiator 

panel are provided around the periphery. Variabte conductance heat pipes 

between the radiator and the equipment coldplate are used to provide temperature 

control and prevent low temperatures during equipment dormant periods. Five 

feeder heat pipes are used at each of the six interfaces, with only four re­

quired, to yield a reliability of 0.999. This is based on a heat pipe random
 

failure rate of 0.25 per 106 hours. For six sets of feeder heat pipes the
 

total feeder heat pipe reliability is 0.994. A radiator reliability of 0.996
 

will yield an overall system reliability of 0.99.
 

Body Mounted Heat Pipe Weight Analysis
 

Figure 26 shows the results of a parametric weight analysis of the 

body mounted all heat pipe concept. Weight data are presented for three dif­

ferent radiation sink temperatures and radiator operating temperatures. 

Comparative weight of a pumped fluid coolant loop is also shown for the 10'F 

heat pipe radiator sink temperature. The curves on Figure 26 end at the maximum 

heat rejection allowed based on the total available body area. 

.The weight of the body mounted all heat pipe system includes the
 

weight of the radiator heat pipes (but not the fin), the thermal control coating
 

(silver Teflon), the perimeter heat pipes and the variable conductance feeder
 

heat pipes. The number of radiator heat pipes for each combination of radiator
 

temperature and sink temperature which yielded a minimum radiator fin effective­

ness of -0.90 was determined to obtain the radiatbr panel heat pipe weight. An
 

axial grooved 0.25 inch ammonia/aluminum heat pipe was used for the radiator 

panel. The design limited the capacity of the heat pipe to 1600 watt-inbhes.
 

The perimeter heat pipes were sized to provide the maximum heat
 

transfer.from one face to another based on the radiation sink teiperatures of 

Table 25. An aluminum/ammonia, 0.5 inch heat pipe as shown in Details A and
 

B of Figure 24 was used. The perimeter heat pipes resulted in a weight of 

0.12 lb/ft2 of radiator area.
 

Variable conductance, 0.5 in., stainless steel/ammonia heat pipes 

were used for the feeder heat pipes with a weight of 0.25 lb/ft. Flanged heat 

pipes are used at the radiator/feeder heat pipe interfaces to provide appro­

ximately l 0 F temperature drop at the contact area. The feeder heat pipe weight 

included an allowance of 12 inches of adiabatic length between the contact 
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5.3 

interface and the equipment mounting coldplate, but did not include the cold­

plate or the heat pipe length in the coldplate since the fluid loop system
 

weights do not include the coldplates or the fluid in the coldplates. The
 

feeder heat pipe weight is 0.041 lb/watt.
 

Table 26 compares the weight of the body mounted heat pipe and re­

duced capacity pumped fluid loop to the all fluid loop weight. The weight
 

comparison is made for a total heat load of 25 kW representative of the
 

reference Power System. The body mounted heat pipe load was taken as 8.5 kW
 

representing maximum utilization of the available body area. The body mounted
 

heat pipe concept is seen to be heavier for all fluid loop concepts and
 

radiation sink temperatures except for the -40OF fluid loop radiator sink­

temperature and -10OF heat pipe radiator sink temperature with either the
 

pumped fluid or low cost hybrid radiator panels.
 

Body Mounted Heat Pipe Cost Analysis
 

The RCA PRICE routine (Reference 5) was used to determine the cost
 

of the body mounted heat pipe thermal control system. Estimated costs of the
 

heat pipes were input to the routine based on informal data from heat pipe
 

iendors. Heat pipe cost data are as follows:
 

Variable Conductance Feeder Heat Pipes - $1500 each 

Perimeter Heat Pipes - $ 300 each 

Radiator Heat Pipes - $ 150 each 

Figure 27 shows the body mounted heat pipe cost as a function of
 

heat load. The cost includes the development and manufacturing cost of the
 

body mounted radiator panels, feeder heat pipes," and perimeter heat pipes.
 

Inclusion of the entire cost of the radiator panels overstates the cost since
 

the cost of the skin panels will be eliminated if they are'replaced with'heat
 

pipe radiator panels. This cost difference will be partially offset by the
 

cost of development and integration of the heat pipes into the panel. Also,
 

the increased vehicle integration costs are not included in the PRICE analysis
 

of the all heat pipe system. The equipment mounting restrictions and feeder
 

heat pipe and perimeter heat pipe integration with the vehicle basic structure
 

will be more costly than installation and integration of fluid lines.
 

A lower limit of the body mounted heat pipe cost is obtained by
 

deleting the radiator panel cost as shown on Figure 27. Table 27 compares the
 

'cost of a fluid loop TCS supplemented by the body mounted heat pipe radiator
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to the all fluid loop TCS with a 25 kW heat load. The high and low range of 

the body mounted heat pipe radiator costs are included for comparison. The 

all fluid loop TCS is seen to be cheaper than the reduced capacity fluid loop 

supplemented by the body mounted heat pipe radiator for all fluid loop concepts. 

The 25 kW pumped fluid radiator results in a cost savings of $1,700,000 to
 

$4,300,000 over the body mounted heat pipe radiator concept.
 

5.4 All Heat Pipe/Fluid Loop Concept Selection 

The all fluid loop concept provides a weight and cost advantage over 

the concept of a reduced capacity fluid loop supplemented by a body mounted 

heat pipe radiator. The deployed radiator size is reduced by the body mounted 

heat pipe radiator. This has some potential advantages of reducing attitude 

control requirements and providing better payload viewing angles. However, 

the total radiator area is increased, requiring more surface area to have a­

thermal control coating. Plume contamination potential of the. thermal control 

coating during Orbiter docking and re-boost phases is also increased. Equipment
 

cooled by the body mounted heat pipe radiator will be restricted to locations
 

near the surface and must be equally distributed around the periphery of the 

Power System. The reference Power System configuration appears to be easily 

adapted to these restrictions.
 

The advantages of the body mounted heat pipe radiator appear to be 

limited; -due to weight and cost considerations the all fluid loop concept is 

selected for the Power System. 

6.0 POWER SYSTEM/PAYLOAD HEAT REJECTION ALLOCATION 

The Power System is required to support Orbiter sortie missions and 

attached payloads in the free flying mode by supplying power, heat rejection, 

attitude control and data communications. A nominal 25 kW of electrical power 

will be supplied to the payloads. Essentially, all of this power must be
 

dissipated as waste heat. Structural heat leaks or gains from the environment
 

will reduce or increase the payload heat load depending on the payload thermal
 

design, operating temperature and orbital attitude. It is anticipated that the 

payload heat load on the TCS will be 16 kW to25 kW. Processing of the payload 

power (battery charging and voltage regulation) and communication and attitude 

control equipment power dissipation results in a Power System equipment cooling 

requirement of approximately 9 kW to2.2 kW. Thus, the total heat load is in 
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the range of 25 kW to 37 kW. The objective of this study is to conduct 

parametric weight and cost studies of the effect of including portions or
 

all of the payload heat rejection on the Power System heat rejection system. 
The study does not include a payload heat rejection requirements investiga­

tion, but is parametric to allow evaluation of payloads heat loads up to a 

maximum 	 of 25 kW. 

Figure 28 illustrates a centralized heat rejection system in which 

all of the active heat rejection is contained on the Power System. Payloads 
docked to the Power System have no active heat rejection capability. All 

payload waste heat is transferred to the Power System and rejected via the
 

Power System radiator. Figure 29 shows a concept in which each payload has
 

its own independent heat rejection system. The radiators are transported to 

and from 	orbit with each payload launch. Thermal interfaces between the
 

Power System and the payloads are eliminated, but each payload must pay the 

radiator 	procurement cost and multiple launch costs of the radiator are in­

curred. 	 The radiator design is simplified since only a 90 day life (assumed 

payload mission duration) is required rather than the 5 year life of the 

Power System radiator. 

A concept for separate Power System and payload radiator systems
 

is shown on Figure 30. The payload radiator remains on-orbit, requiring only 

one procurement and launch. The thermal interface between the Power System 
and payloads is eliminated, but a thermal interface between the payload and 

the radiatbr system is still required.- The concept shown utilizes the 

Science and Applications Space Platform (SASP) structure for radiator mounting.
 

6.1 	 Centralized and Distributed TCS Weight Comparison 

Figure 31 compares the weight of a centralized and a distributed TCS 
utilizing the concept of Figure 30. Both the centralized and distributed TCS
 
are designed for a five year life. A Power System heat load of 12 kW was 

used for this analysis with a variable payload heat load. The centralized 

and distributed TCS weights are comparable if both systems have the same
 

operating temperatures, with the distributed TCS showing a slight weight 

advantage for higher payload heat loads. If the payload requirements allow a
 

high temperature radiator to be used, then the distributed system shows a 

definite weight advantage. The only high temperature payload anticipated for 

the Power System at this time is the Materials Experiment Carrier (MEC). 
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Thus a Power System dedicated solely to MEC, or a high temperature payload, 

should have a distributed TCS for weight effectiveness. 

The weight analysis shown on Figure 31 assumes that the total pay­

load heat load is rejected by the distributed system. It may be desirable 

to have a basic centralized system that rejects less than the full 25 kW 

payload heat load, but would accommodate a majority of payloads that have 

less than a 25 kW heat load. Figure 32 shows the TCS weight as a function 

of payload heat rejection where the total heat load is 37 kW. The effect of 

the high temperature payload is also shown along with the weight savings 

available with a 90 day payload radiator design. A centralized 37 kW TCS 

weight is also shown for comparison. Again, the high temperature payload 

distributed TCS provides a considerable weight savings over the centralized 

system. A high temperature, 5 year life, 10 kW distributed TCS saves 
approximately 450 lbs. and a 25 kW high temperature distributed TCS saves 

1000 lbs. over the centralized TCS. The 90 day distributed TCS weighs appro­

ximately 200 lbs. less than the 5 year distributed TCS with a payload heat 
rejection of 25 kW. The difference between the 90 day and 5 year high tem­

perature distributed TCS is less (85 lbs. at 25 kW) due to the smaller radia­
tor and the strong sensitivity of meteoroid protection to radiator area.
 

The reference Power System has three berthing ports and can con­

ceivably accommodate up to three payloads. Figure 33 shows the effect of 

multiple distributed TCS's. The total payload heat rejection is assumed to 

be equally divided between the 2 or 3 payloads in this analysis. Multiple 

distributed TCS's are seen to have a small effect on the distributed TCS 

weight (about 20 lbs. for the low temperature payload and 45 lbs. for the 

high temperature payloads) although they do decrease the distributed TCS 
weight advantage over the centralized TCS.
 

As previously discussed, the payload heat load may be less than
 

25 kW due to passive structural heat leaks. Figure 34 shows the effect of
 

lower heat rejection rates on the centralized and distributed TCS weight 

trades. As the total heat load is reduced by lower payload heat loads, the 

weight advantage of the distributed TCS is reduced. For a total heat load 

of 25kW (22 kW for power processing and 13 kW for the payload) the centralized 

and distributed TCS's have essentially the same weight. 

25
 



The centralized radiator is mounted on the Power System body in a 

manner that provides passive solar avoidance. Direct solar radiation on the
 

radiators is avoided by the Power System attitude which provides solar 

exposure of the solar arrays. A distributed system, especially the type 
shown on Figure 29, may not have a radiator environment as favorable as the 

centralized system. Figure 35 shows the effect of payload radiator sink
 

temperature on the TCS weight. All previous trade data has been for a 

radiator sink temperature of -40OF for both the centralized and the distri­

buted TCS. As indicated by Figure 35, the distributed TCS weight varies
 

considerably. The 25 kW distributed TCS weight ranges from 1820 lbs. to, 

2490 lbs. as the sink temperature increases from -80OF to -100F. It is
 

apparant that the payload radiator design should be restricted to mounting 

locations and deployment methods that prevent direct solar flux on the 

radiator. 

The weight data presented on Figure 32 indicates that a distributed
 

TCS with 90 day payloads has a weight advantage over the centralized and
 

distributed 5 year TCS's. However, the total weight to orbit of the distri­

buted 90 day TCS is obviously much greater than a centralized or 5 year 

distributed TCS. Figure 36 shows that the 20 launches required of a 90 day 

payload during a 5 year period results in a total weight to orbit of 25,000-lbs. 

6.2 Centralized and Distributed TCS Cost Comparison 

A comparison of the centralized and distributed TCS costs indicates
 

a cost advantage for the centralized TCS. Figure 37 summarizes the cost trade
 

study results. The initial procurement cost of the centralized system is 

less since the distributed system requires the procurement of at least two 

separate systems and the burden of two development costs are incurred. It 

may be possible to share development costs of- the Power System and Payload
 

TCS's, but it is likely that the two systems will have different design require,
 

ments due to different life times, meteoroid-protection, sink temperatures,
 

operating temperatures, stowage volumes and deployment mechanism design.
 

The cost analysis assumes that the payload will have a coolant loop
 

for heat collection and transport to the Power System payload heat exchanger
 

for rejection from the centralized TCS. Thus, the additional cost incurred
 

by distributing the heat rejection to the Payload will include a radiator,
 

radiator-deployment system and a radiator temperature control valve. The
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6.3 

cost of a larger capacity accumulator to accommodate temperature changes 
in the radiator is not included-in the distributed system costs.
 

The parametric cost data generated in the heat pipe/pumped fluid 
trade studies have been utilized in the centralized and distributed TCS cost
 
study. Table 28 shows a cost breakdown for various payload heat rejection 
levels. 
As shown by Table 28, the development cost of the distributed TCS
 
is approximately $10 million regardless of the heat rejection allocated to 
the payload, whereas, the development cost of the centralized TCS is $7
 
million. Thus, there is a $3 million savings resulting from having to develop 
only one centralized TCS instead of two separate TCS's required for the 
distributed concept. If several unique payloads are used which require
 
unique TCS's, then the development cost advantage of the centralized TCS
 

will increase.
 

Production costs for the distributed TCS includes systems for two
 
payloads. 
As a minimum at least one payload will be exchanged each 90 days
 
requiring one payload TCS on orbit and one waiting for transfer to orbit.
 
Operational considerations and the use of multiple payloads could dictate
 
that additional payload TCS's be required. 
Production costs for the payload
 
TCS are dependent on the amount of heat rejection (radiator size) and ranges 
from approxinately $0.45 million for 5 kW to $1.0 million for 25 kW. 

Single launch costs for the centralized and distributed TCS are 
comparable with about a $0.2 million advantage for the distributed TCS due
 
to its weight advantage. The costs increase significantly for the multiple 
launches required by the distributed TCS. A $17.4 million launch cost is 
incurred for a 25 kW payload heat rejection system during the five year life 
of the Power System.
 

Centralized/Distributed TCS Concept Selection
 

Selection of the centralized or distributed TCS concept requires
 
consideration of the payload requirements, cost and weight and evolutionary
 

growth potential. 

Figure 38 summarizes the payload requirements which influences the 
centralized/distributed TCS selection. Although the payloads are expected
 
to use the Tull 25 kW of electrical power available, it is anticipated that
 
passive heat rejection will account for 20% to 40% of the total heat load
 
for many payloads. Passive heat rejection is dependent on the payload design
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and temperature control requirements of the individual components. Addi­

tional payload requirements studies are required to fully definitize the 

payload heat loads. 

As summarized on Figure 38, consideration of the science, space
 

construction, manned modules and materials processing payloads indicates 

that a centralized Power System heat rejection system providing 10-16 kW 

of cooling should satisfy essentially all of the early mission requirements. 

This heat rejection rate will also meet the Orbiter Sortie Mission require­

ments.
 

For those payloads requiring additional heat rejection a payload 

kit radiator (Figure 39) could be used. The payload kit radiators are 

designed to interface with the Spacelab Pallet or the SASP non-deployable 

truss and would be installed on the ground as a kit for particular payloads 

as required.
 

Trade studies indicate that the centralized TCS is the most weight
 

and cost effective system. Single launch weight differences between the
 

centralized and -distributed TCS's are small for low temperature payloads. 

The distributed TCS is significantly lighter for high temperature payloads 

(single launch), however there is only one high temperature payload
 

(Materials Experiment Carrier) presently planned for the Power System.
 

,Consideration of the multiple launch requirements for the distributed TCS 
shows a clear weight advantage for the centralized system (Figure 36).
 

Cost comparisons show that development costs for separate Power
 

System and Payload TCS's increase the initial procurement price of the
 

distributed system. If more than one payload TCS development is required 

the cost differential will be greater. Again the multiple launch requirements 

of the distributed TCS make the costs of this concept prohibitive (Figure 37). 
. The multiple launch penalties of the distributed TCS suggests the 

use of a heat rejection module for payload cooling that would remain on-orbit 

with the Power System. Two concepts for a relocatable heat rejection module 

are shown in Figure 40. 
Figure 41 summarizes the TCS growth scenario. It is recommended 

that the initial 25 kW Power System TCS be centralized. The heat rejection 

capability should meet the requirements of the majority of the payloads with 

consideration of the passive heat rejection capability. Specialized payloads 

may require kit radiators. Intermediate growth versions of the Power System 

28 



should utilize increased centralization with possible use of a relocatable
 

heat rejection module for specialized payloads. Long term growth versions
 

should be highly centralized and include thermal management of all energy
 

producers and users.
 

7.0 POWER SYSTEM/PAYLOAD THERMAL INTERFACE STUDY 

Figures 42-44 show three concepts for the thermal interface between 

the Power System and the payloads. There are three berthing ports on the 

reference Power System and a payload heat exchanger is located at each port. 

An alternative would be to have one central payload heat exchanger with 

fluid lines to each port. The central heat exchanger would be more complex 

due to the redundant coolant loops in the Power System and at least three 

independent loops for each of the payloads. Redundant coolant loops for the 

payloads would require eight independent flow loops in the central heat 

exchanger. Also the central heat exchanger design would be further restricted 

by the requirement of a 45 0F return temperature for all payloads. 

Any combination of the three payload heat exchangers, from one to 

three, may be used at the same time with any combination of heat loads. A 

thermally actuated flow control valve to provide this control is shown 

schematically on Figure 42. The three payload heat exchangers are flowed 

in parallel. The flow control valve immediately downstream of each heat' 

exchanger restricts flow to a trickle when the heat exchanger is not in use. 

Cold fluid from the radiator outlet flows through the heat exchanger to the
 

valve which is contracted'to restrict flow. If the heat exchanger is in use 

the fluid is heated and the valve expands to allow more flow to heat exchanger. 

At full capacity the heat exchanger outlet is restricted to 100 0 F. If the 

upper temperature limit is exceeded the valve expands against .a stop, 

restricting flow to the heat exchanger. Thus the valve insures that the 

maximum allowable return temperature is not exceeded and protects the Power
 

System loop from an over temperature condition. The burden of payload 

overtemperature protection is placed on the payload since the valve will 

terminate cooling if the payload overheats the Power System. 

If only one heat exchanger is in use then all flow is routed to 

it and full heat rejection capacity can be utilized by one payload. Heat 

rejection is automatically divided according to demand when two or three 

29
 



payloads are present. When no payloads are present, then all flow is routed 

to the parallel Power System equipment flow paths. 
The flow control valve is used to regulate the payload heat rejection 

with either a contact heat exchanger (Figure 42) or a fluid heat exchanger 

(Figure 43). The contact heat exchanger requires no fluid transfer between
 
spacecraft and would be leak-free. The payload TCS can be either a pumped
 
coolant loop, with or without a supplementary radiator, or an all heat pipe
 

TCS. 
The fluid heat exchanger concept requires fluid quick disconnects 

at the Power System/Payload interface. A pumped coolant loop is required
 

for the payload TCS. All payloads are required to use the same coolant and 
a small amount of fluid will be exchanged with each payload from the residual 
in the lines from the Power System/Payload interface to the payload heat 

exchanger. An accumulator or fluid expansion device will be required for
 

these lines.
 

Figure 44 shows a concept for a direct fluid coupling to the payload. 
An intermediate cooling loop is used to prevent payload damage or contamina­
tion of the Power System loop. The payload TCS would'not require a pump or 
loop controls but would include plumbing, coldplates and an accumulator.
 

Table 29 summarizes the advantages and disadvantages of the three 
thermal interface concepts. 

7.1 Contact Heat Exchanger Concept 

Figure 45 compares the weight of a contact heat exchanger to a con­

ventional liquid-to-liquid heat exchanger. It is seen that the contact heat 
exchanger weight is about 20 lbs heavier than the liquid-oto-liquid at moderate 
heat exchanger effectivenesses (below 0.90). At higher effectiveness the
 
weight differences are large with the fluid-to-fluid heat exchanger being 
much lighter. Since a 35 0F radiator outlet temperature will probably be 
required for battery cooling, a high effectiveness payload heat exchanger 
may not be necessary. The required 45OF payload heat exchanger outlet can 
be met with the contact heat exchanger for an approximately 20 lb weight 
penalty. Elimination of the fluid quick disconnects and the transfer of 
fluid between the payload and the Power System for a 20 lb weight penalty
 

would appear to make the contact heat exchanger an attractive alternative. 
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7.2 Rotating Joint Concepts 

Earth viewing payloads will require rotation relative to the Power 

System. Thus, it is desirable to provide fluid transfer across a rotating 

joint. This can be accomplished with a fluid swivel or, for limited rota­

tion, flexible hoses.
 

Figure 46 shows a four pass fluid swivel design that would allow 

redundant coolant loops in both the Power System and the payloads. The 

design features redundant seals between the fluid and the ambient and be­

tween the redundant loops. Single seals are used betweeh the supply and 

return since leakage is not critical at this interface. Stainless steel is 

used to minimize the heat transfer between the supply and return lines. 

Although the number of rotations and rotational speeds are modest 

compared to existing commercial fluid swivels, long life vacuum dynamic 

seal technology has not been proven. Flex hoses provide a proven alternate 

method of transferring fluid across a joint with limited rotational capa­

bility. Figure 47 shows a'drum and flex hose reel concept that would provide
 
several 3600 rotations. The hose unwinds from one drum, is routed across 

the rotating joint, and rewinds on the opposite drum. The drum is made up 

of a stack of four concentric reels to provide for an active and redundant 

loop supply and return. 

Figures 48 and 49 show the weight and volume of the hose reel 

mechanism. The weight is seen to increase rapidly with hose diameter and 

allowable revolutions. Figure 50 presents the device pressure drop. A hose 

diameter on the order of 0.75 inch is required'to yield reasonable pressure 

drops (10 psi, or less). Thus the weight penalty (Figure 48) will be 120 lbs 

to 250 lbs depending on the number of revolutions desired. A single revolu­

tion flex hose weight would be more competitive with the fluid swivel weight 

but would incur more operational constraints. 

Figure 51 illustrates the flex hose reel concept integrated with a
 

contact heat exchanger concept. A conical contact heat exchanger plug on
 

the payload is inserted into the receptacle on the Power System as the two
 

spacecraft are docked. The Power System receptacle is allowed to rotate
 

with the rotating joint on the Power System. Figure 52 details the contact 

heat exchanger interface. A jackscrew/guide is used for the initial contact
 

and retention. Final contact pressure between the mating heat exchanger
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surfaces is provided by a pressurized stainless steel diaphragm. Expendable 

nitrogen is used to pressurize the diaphragm after berthing and the nitrogen 

is vented to space for undocking. 

8.0 PRELIMINARY DESIGN STUDIES 

The parametric trade study results have been used to develop a
 

thermal control system preliminary design. Consideration has been given to
 
the flow and pressure drop of the TCS loop, the radiator thermal environment,
 

the thermal design of the radiator, and mechanical design of the radiator 
deployment mechanism including the dynamics of the-deployed panels. 

8.1 Coolant Loop Preliminary Design 

Figure 53 shows the coolant loop schematic. Redundant flow loops 

are used; one active and one standby to provide the desired reliability. 

The Power System equipment is located in four parallel flow paths with 

778 lb/hr in each leg. The batteries are located in the upstream position 
of each of the four legs to provide a maximum battery coldplate fluid outlet 

temperature of 50 0F. 

The payload heat exchangers are plumbed to form a fifth parallel 
leg with a flow of 3288 lb/hr. Each of the payload heat exchangers are 

flowed in parallel with the payload heat exchanger flow control valve, des­
cribed in Paragraph 7.0, controlling the flow to each heat exchanger. 

Figure 54 shows the approximate location of each component, as 

described in the Reference Concept (Reference 1), and the lines routing. 

The line sizes were weight optimized to minimize wet-weight and pumping power 

penalty. 

Coldplate pressure drop was based on the Spacelab coldplate data 
shown in Figure 55. At the design flow rate of 778 lb/hr, each coldplate 
has a pressure drop of approximately 0.12 psi. The highest pressure drop 

leg contains 16 coldplates in series with a flow of 778 lb/hr and 3 coldplates 
in series at a flow of 1556 lb/hr for a total pressure drop of 3.2 psi. 

Coldplate overall thermal-conductance at 778 lb/hr is approximately 
33 BTU/hr-ft2-OF (Figure 56).which will provide adequate performance. The 

maximum heat dissipation component is the 30 V regulator which has a heat 

removal requirement of 587 BTU/hr-ft 2 . A fluid-to-baseplate temperature 

difference of approximately 18'F is obtained and the maximum baseplate 
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temperature is below 1000 F. 
Two Orbiter pumps operating in parallel provide a total R-21 

flowrate of 640o lb/hr (3200 lb/hr each pump). A third pump is included 
in the pump package for redundancy. Thus, two pump failures are allowed 
before the standby loop is activated. Full capacity is still provided 
after three pump failures. Even after four failures, near full capability 
can be obtained by operating one pump in each loop and partial capability
 

is available from one pump in one loop.
 

The pressure head provided by the Sunstrand Orbiter pump is 64 psi
 
at 3200 lb/hr (Figure 57). Total system pressure drop is estimated as:
 

Component AP-PSI
 

Radiator 30.0 

TCV 6.o 
GSE H/X 3.0
 

Lines 8.8
 
Coldplates 
 3.2
 

51.0
 
.Thus, 
a 13.0 psi margin is available for design maturity. The redundant
 

thermally actuated temperature control valve and the payload heat exchanger 
control valve will require development and the preliminary design pressure
 

drop estimates for these components could change. 

8.2 Radiator Environment Studies 

Analyses have been conducted to determine the effective steady state 
design radiation sink temperature for the radiators.- The analysis includes 
the effect of the thermal mass of the panels and radiant interchange with 
the Power System including the solar arrays. An orbital heating and radiant
 
interchange model (Figure 58) was developed to determine the orbital tran­
sient heat flux on the radiator panels and Power System surfaces. The Space
 

Shuttle Orbiter docked to the Power System was included in the model as a
 
representative payload. 
The heat fluxes include the effect of blockage and
 

reflected energy.
 

The computed heat fluxes and radiation exchange factors are input
 
to a SINDA model for a transient temperature analysis. Adiabatic surface
 
temperatures are for the Orbiter and
computed Power System surfaces. The 

Orbiter radiator surfaces were held at a constant 700F. Transient temperatures 
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of the Power System solar arrays and radiator surfaces were computed. 

The radiator temperatures were calculated with no fluid flow and a 

radiator weight of 1 lb/ft 2 . The resulting orbital temperature varia­
tion is the effective radiator transient sink temperature. The maximum
 

orbital temperature yields the radiator effective steady state design sink 

temperature. Figure 59 summarizes the analysis results for the two orbits 
considered with variable Beta angles and solar absorptivity. A silver/ 

Teflon coating with a/s = .76/.11, was assumed for the radiator coating. 

The results indicate that the design condition (highest sink temperature) 

is for a Beta angle of 00 with the Z-axis parallel to the sun line. Since 
the Power System is always oriented with the solar arrays toward the sun,
 

the radiators are always parallel to the sun's rays and receive only earth
 

albedo and solar reflected from the Power System surfaces. The effect of
 

higher solar absorptance coatings on the radiator sink temperature is also
 

shown on Figure 59 for the 0' Beta angle condition. It is seen that large
 

increases in a have a small effect on the radiator sink temperature due to 

the minimal solar flux. 

Figure 60 shows the effect of solar absorptivity on radiator per­
formance. Area requirements for a 25 kW heat load are shown along with the 

heat rejection, from a radiator designed for 25 kW with an a of 0.11, as a 
function of a. Increasing the a from O.1i to 0.20 results in only a 4.6% 
increase in radiator area requirements. For an a of 0.30 the area increase 

is 10.3%. Thus, it would appear that-cheaper thermal control coatings with
 

higher solar absorptancesare applicable to the Power System radiators.
 

For coarse solar alignment of the Power System the effect of a is 

more pronounced and low a radiator coatings or solar avoidance designs are 

beneficial. Figure 61 shows the radiator area savings resulting from an 
oriented radiator for various solar absorptances as a function of the solar 

misalignment angle. Considerible area savings are ewalized at high mis­

alignment angles and absorptivities by orienting the radiator out of the sun. 
This data is for the-X-axis parallel to sun line orbit. In the Z-axis parallel 

to sun -line orbit, the radiators are shaded by the Power System body and 

solar arrays and performance is not changed by the solar misalignment. 
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Another radiator orientation concept is shown in Figure 62. In
 
this concept the radiators are oriented to view the edge of the solar arrays
 
to minimize radiant heating and solar reflections from the arrays. The 
 area
 
savings are not a strong function of a because much of the radiator heating
 
from the 
array is in the infrared region. An area reduction of approximately 

100 ft 2 results from this re-orientation even at the lowest solar absorptivity. 
This appears to be an effective orientation for reducing radiator area, but 
requires 	that the radiators be re-oriented to the area allocated for the re­
boost propulsion system on the reference 25 kW Power System Concept.
 

8.3 	 Radiator Panel Design
 

The specific radiator design conditions resulting from the coolant
 
loop preliminary design and the radiator environment studies have been used
 
to determine the weight optimum radiator design. A centralized radiator with 
a total heat load of 28 kW was selected based on the study results of 
paragraph 6.0, Power System/Payload Heat Rejection Allocation. This provides 
for 12 kW cooling for the Power System equipment and 16 kW cooling for the 
payload. For 25 kW of electrical power provided to the payload, the passive 
payload heat rejection is 36%or 9 kW. The 16 kW payload cooling also meets 
the Power System/Orbiter sortie mission requirements.
 

The design conditions of:
 

Tin = 93.50F
 

T = 35OF
 
out 

o640
w = lb/hr R-21 

= 28kw 

Tsink= 	-570F
 

were input to the specialized computer routine described in Paragraph 4.4, 
for weight optimization of the radiator. Figure 63 shows the panel details.
 
A nine panel system flowed in parallel with a total area of 955 ft 2 is 
obtained. Since the manifold area incorporates bumpers for meteoroid pro­
tection and does not have good thermal contact with the manifolds or flow 
tubes, the effective radiation area is reduced. It is estimated that the 
45 ft2 of manifold area is approximately 50% effective; thus the effectiVe
 

radiation area of the panels is a] proximately 932.5 ft2 . Each panel weighs
 
137.16 lbs. 
The nine 	panel total weight is 1234.4 lb.
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8.4 Radiator Deployment System Design
 

Four radiator deployment concepts have been examined for application
 

to the Power System. The first concept involves the use of spring loaded
 

hinges to deploy the radiator from a panel stack as illustrated in Figure 64.
 
A drum and cable system controls the deployment and retraction. This concept 

requires only a single motor for deployment and retraction and has good
 
reliability and low mechanical complexity. A preliminary analysis of the
 
hinge line shear and torque generated by the Power System maneuvers is sum­

marized on Figure 65. The interface hinge at the base is required to have
 
a torque of 9213 in-lbs and exert a shear force of 23.5 lb. 
 It is estimated 

that a coil spring on the order of 6.5 inches in diameter with a wire diameter 
of 1.3 inches is required to provide this torque at the base. Furthermore, 

the spring constant required to obtain a natural frequency of 0.1 Hz is 

estimated to be 4000 in-lb/deg at the base. For a 900 deployment the base 
spring torque requirement is 360,000 in-lb resulting in an impractical spring 
size. Thus, the only feasible design is to utilize mechanical latches at 

the hinges to provide the required stiffness. The latches will require solenoid 
- activation/deactivation which tends to negate the mechanical simplicity and 

high reliability of the spring loaded hinge concept. 

The second deployment concept is a power hinge at each radiator panel. 
This concept is similar to the Orbiter payload bay door hinge and could. 

utilize Orbiter technology and hardware. An advantage of this concept is that 
each panel could be deployed individually as required and the other panels 

would remain in the stack. The disadvantage is that electric motors are 
required at each hinge line, and system reliability is dependent on the 
reliability of multiple motors. The deployment of the baseline 9 panel
 
radiator system would require the operation of 9 electric motors. Growth
 

to more panels would require additional electric motors.
 

The third deployment concept is a scissors arm similar to the Skylab 
solar panel deployment mechanism. A single drive motor can be used for this
 
concept resulting in a high reliability. The scissors arms (Figure 66) provide
 

good structural stiffness and reduce the panel and hinge stiffness require­

ments of the other concepts.
 

Figure 67 shows a boom deployment concept. The radiator panels are
 
deployed from a folded stack by a telescoping boom. The boom supplies all
 

of the stiffness and the radiator panels can be a non-structural design.
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The mast is identical to the solar array mast used on the reference 25 kW
 

Power System described in Reference (1). It is estimated that the stowed
 

mast length would be approximately 78 inches and have a diameter of 26 

inches. 

Table 30 compares the characteristics of the four candidate
 

deployment concepts. Although the scissors deployment concept is heavier,
 

it will allow the use of minimum panel structure and should result in a total 

system weight savings. The power hinge and spring hinge concept will require 

additional panel stiffness to meet the natural frequency requirements of the 

deployed radiator system. The scissors concept is also the most reliable 

when the latch mechanism for the spring hinge concept is considered.
 

Another radiator deployment method involves the construction of the
 

radiator array on orbit by EVA or RMS activity. Figure 68 illustrates a 

space constructed radiator array for a large multi-kilowatt space station.
 

The radiator array is built up from 4 kW submodules which contain the fluid 

loops. The individual heat pipe radiator panels are inserted into the sub­

module and interface with the coolant loop through a cylindrical contact heat 

- exchanger. Figure 69 shows the submodule details. A nitrogen pressurization 

system is usedto supply the contact heat exchanger pressure. 

System weight for the space constructable radiator concept is shown 

in Figures 70 and 71. Figure 70 shows the system weight with the radiator 

panel length restricted to 45 ft. and Figure 71 shows the weight with the 

panel length optimized. Both curves show that a panel width of 6 in. is 

close to the optimum width. The space constructable -concept is not weight 

competitive with the mechanical deployment concepts for heat load below about
 

50 kW. For higher heat loads the weight savings are significant. However,
 

the constructable concept requires the development of a high capacity heat
 

pipe radiator and the contact heat exchanger. The concept is applicable to 

future high heat load Power Systems or Space Stations, but does not appear
 

feasible for the initial 25 kW Power System.
 

The scissors deployment concept is selected for preliminary design
 

analyses. A dynamics analysis of the deployed radiator has been conducted
 

to determine the fundamental vibration frequency.
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The radiator configtiration evaluated consists of 8 hinged panels 

which are actuated by means of a scissors linkage. The baseline individual 

panels are 6.7 feet by 16 feet bonded aluminum honeycomb-facesheet construc­
tion. Panel thickness is I inch. The aluminum actuation I-beams are hinged 

to the panels, and are sized in this analysis as 2 inch by 2 inch cross­

section with 0.3-inch flange and web. The transition sections between the 

base and the lower panel and beams are represented as plates equivalent to 

2-inch thick bonded aluminum honeycomb-facesheet panels. The transition 

section is assumed to be mounted to a rigid base.
 

Reactions to maneuver acceleration loads at the transition section 

base pivots are presented in Table 31. In addition, loads are presented in 

Table 32 for the lower linkage at its intersection with the transition sec­

tion, and with the first radiator panel. 

Vibration mode shapes are presented for the deployed configuration 

in Figures 72 - 75, and for the partially deployed configuration in Figures 

76 - 79. The fundamental mode for the deployed configuration is bending 

out-of-plane, and occurs at a frequency of 0.11 Hz which exceeds the criteria 

of 0.10 Hz. The fundamental mode for the partially deployed, configuration 

is an extension mode, and occurs at 0.12 Hz which also exceeds the criteria. 

It is concluded that the preliminary design has adequate stiffness. 

8.5 Preliminary Design Summary 

Figure 80 summarizes TCS preliminary design. The scissors deploy­

ment concept is used to deploy 9 radiator panels to provide 28 kW of heat 

rejection. A weight estimate of the panels and deployment mechanism yields 

a total weight of 1883 lb. Design layouts of the selected scissors deployment
 

mechanism and the radiator panels have been made and are presented in
 

Appendix A. The stowed and deployed configurations and interface with the
 

Orbiter are shown for the reference Power System configuration. The stack
 

height of the stowed 9 panels is 21 inches. In the deployed position the
 

radiator height is 843.5 in. The overall length of the panels and scissors
 

arms is 195.5 in. The layouts include the interpanel flex hose plumbing.
 

Panel fittings and flex hose arrangements have been designed to provide the
 

proper dynamic bend radius to accommodate multiple deployment/retraction 

cycles. Meteoroid protection of the flex hoses is provided by a multi-layer 
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9.0 

Teflon wrap. Figure 81 shows the Teflon thickness requirements as a function 

of reliability. A thickness of approximately 0.11 in. will provide a 

reliability of 0.995 (probability of puncture = 0.005). 

A one-tenth scale feasibility demonstration model of the deployment 
system has been built. Figures 82, 83 and 84 are photographs of the model in 

.the stowed, partially deployed and fully deployed positions. 
The preliminary design layouts and demonstration model have verified
 

that 	there are no major design problems associated with the deployment 

concept. Areas for design improvement include the reduction of the stowed 
panel stack height and increased deployed stiffness by weight/stiffness
 

optimization of the scissors arms and simplified interpanel plumbing design.
 

CONCLUSIONS AND RECOMMENDATIONS
 

Based on the study results the following conclusions are made:
 

(1) 	A pumped fluid radiator with meteoroid protection
 

should be used for the initial and intermediate 

growth versions of the Power System.
 

(2) 	All of the payload active heat rejection should
 

be provided by the Power.System with a bentralized
 

radiator.
 

(3) 	There are no major technical problems associated 

with the Power System Thermal Control System. 

Orbiter pumps and radiator technology can be 

effectively utilized by the Power System. 

(M-	Thermal Control System component life and operat­

ing 	characteristics need to be established through 

a early breadboard test program. 

A new heat pipe radiator concept has been developed and verified
 

by element testing. The advanced design provides a weight savings of 10-15% 

over 	existing heat pipe radiator designs. A pumped fluid radiator with 
meteoroid bumpers can insure a 99% probability of no meteoroid penetration
 

of the fluid passages for five years. The advanced heat pipe design also
 

has 	a weight advantage over the bumpered pumped fluid radiators for heat 

rejection tates greater than about 25 kW. In the range of 50 kW to 110 kW
 

the 	advanced heat pipe radiator is more than 10% lighter than the bumpered 
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pumped fluid radiator. Above 110 kW the pumped fluid radiator with multiple 

subsystems weight is again within 10% of the advanced heat pipe radiator 

design.
 

The cost of the advanced heat pipe radiator and the conventional
 

heat pipe radiator are greater than the bumpered pumped fluid radiator over 

the entire range of heat loads considered. The weight competitive advanced
 

heat pipe radiator cost is 17% to 25% greater than the pumped fluid radiator.
 

The bumpered pumped fluid radiator design is recommended for the
 

initial 25 kW Power System based on its cost advantage. The weight advantage
 

of the advanced heat pipe design becomes significant between 50'kW and 110 kW
 

and this concept is recommended for the 50 kW to 100 kW range. The bumpered
 

pumped fluid design with multiple subsystems is recommended for the 110 kW
 

to 250 kW heat rejection range.
 

The Power System/Payload heat rejection allocation studies have 

shown that a centralized heat rejection system which meets the Power System
 

and payload active cooling requirements is the most weight and cost effective
 

system. The single launch weight of the centralized heat rejection system is
 

comparable to the payload distributed system unless the payload radiator can 

operate at a much higher temperature. - Since only one'high tpmperature payload 

(Materials Experiment Carrier) has been identified this is not considered a 

design driver unless a Power System is dedicated for use entirely by the
 

Materials Experiment Carrier. Consideration of the multiple launch require­

ments of the distributed heat rejection system shows that the centralized 

system reduces the total weight to orbit requirement by 23,000 lbs for a 

fully distributed system. 

The cost of the distributed TCS involves the development and pro­

curement of the Power System heat rejection system and numerous payload
 

systems. Even with the optimistic assumption that each payload can utilize
 

the same heat rejection system design and that only two systems are required,
 

it has been shown that the centralized system cost is still 24% less than
 

the distributed system. A more realistic scenario with development costs 

for more than one system and procurement costs for more than two systems 

will significantly increase the cost advantage of the centralized system. 

It is recommended that the heat rejection system be centralized
 

and that the Power System provide all of the active heat rejection of the 

majority of the payloads. Occasional payloads with low passive heat rejection
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can be accommodated with payload kit radiators as required. A payload heat 
rejection requirements study is recommended to determine the design values 
for the Power System radiators. Consideration of relocatable heat rejection 
modules to meet evolving requirements is also recommended. The relocatable 
modules would remain on orbit to provide cooling for payloads located 
extended distances from the Power System to avoid long fluid transfer lines 
and associated penalties. 

Heat transfer between the Power System and its payloads is best 
accomplished through a fluid-to-fluid heat exchanger located on the Power 
System. Fluid transfer to the payload is accomplished through fluid quick 
disconnects. A flex hose reel design concept that provides up to 28 
continuous revolutions has been formulated to meet possible payload rotation
 
requirements. 
A concept for a contact heat exchanger that eliminates fluid
 

transfer between the Power System and payloads has been shown to be weight 
competitive with the fluid-to-fluid heat exchanger. 

It is concluded from the preliminary design studies that the Orbiter 
R-21 pumps can be effectively used in the Power System coolant loop. Two 
Orbiter pumps operating in parallel provide a total flow of 6400 lb/hr to 
meet the flow .and fluid temperature requirements of all components. Total 
loop pressure drop is 13 psi below the pump head at this flow. 

The preliminary design shown arestudies haye also that there no 
major design problems associated with the radiator deployment mechanism. 
The honeycomb panels and scissors arms are 
sized to provide adequate stiffness
 
with deployed vibration frequencies that will preclude interaction with the
 
attitude control system and still maintain a compact stowage volume consistent
 
with Orbiter launch requirements.
 

The study has identified several areas in whichtechnology develop­
ment is required for design improvement. The use of fluid swivels for
 
interpanel fluid transfer instead of flex hoses would provide a reduced
 
stowed volume, better meteoroid protection and design simplicity. Fluid
 
swivels are also applicable to the Power System/Payload interface to provide
 

payload rotation capabilities.
 

Contact heat exchanger development is also recommended. Elimination
 
of fluid transfer between the Power System and payloads is desirable to
 
reduce fluid leakage and aliviate the complexity of fluid line connect/ 
disconnect designs. A related technology involves the development of space 
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constructable radiators which utilize contact heat exchangers. Space
 

constructable radiators would provide for more flexible launch storage,
 

elivainate the deployment mechanism, allow on orbit replacement of panels
 

and enhance modular growth capabilities.
 

Redundant thermally actuated temperature control valves and redun­

dant fluid accumulators have been identified as desirable to meet the long
 

life high reliability requirements of the Power System. Development of
 

these components is recommended.
 

The heat pipe/pumped fluid radiator trade studies showed that the
 

cost of the heat pipes is the primary drawback to the use of heat pipe
 

radiators. A weight advantage for small diameter high capacity heat pipes
 

was also shown. It is recommended that radiator heat pipe technology
 

development be directed towards reduced cost, small diameter high capacity
 

heat pipes.
 

Recommended future effort for the Power System TCS includes detailed
 

thermal and structural optimization of the radiator panel and deployment
 

mechanism. Further studies are needed in the selection of the radiator
 

thermal control coating including long term degradation due to solar and
 

plume impingement from multiple reboost and Orbiter docking activities.
 

Transient coolant loop/radiator analysis in a wider range of orbits is
 

recommended to insure that all operational requirements are met by the
 

design. 

A breadboard test of the thermal control loop components is recom­

mended to verify system and component operating characteristics and design
 

requirements. An early adsessment of the component life characteristics
 

is essential to the successful development and design which will insure a
 

reliable five year system operation.
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TABLE 1
 

THERMAL CONTROL SYSTEM REQUIREMENTS, GUIDELINES AND CONSTRAINTS
 

RELIABILITY 

- TOTAL SYSTEM - 0.99 for 5 YRS. 
- PROBABILITY OF NO MICROMETEOROID FLUID PASSAGE 

PENETRATION - 0.99 FOR 5 YRS. 
- HEAT PIPE RADIATOR PANELS OVERSIZED TO ALLOW 

FOR RANDOM FAILURE 
- FAIL OPERATIONAL 
- RETAIN POWER PROCESSING COOLING AFTER FIRST 

FAILURE 

ON-ORBIT MAINTENANCE
 

- EVA OR ORBITER RMS CAPABILITY 
- REPLACEMENT OF RADIATOR PANELS IS CONTINGENCY 

MAINTENANCE I 
- REPLACEMENT OF OTHER COMPONENTS IS UNSCHEDULED 

MAINTENANCE 

STOWAGE VOLUME
 

- STORAGE REQUIREMENTS CONSISTENT WITH ORBITER 
LAUNCH 

- MAXIMUM RADIATOR PANEL STOWED LENGTH 32 FT.
 

RADIATOR DEPLOYMENT 

- SELF CONTAINED CAPABILITY FOR-PARTIAL OR FULL
 
DEPLOYMENT OR RETRACTION 

- MANUAL (EVA) BACKUP FOR DEPLOYMENT/RETRACTION 
- JETTISON FEATURE 

MI CROMETEOROID ENVIRONMENT 

- NASA SP 8013 

COST
 
- TRADE PARAMETER OF MAJOR IMPORTANCE. CONSIDER 

EXISTING TECHNOLOGY. COST TO ORBIT $700/LB
 

WEIGHT
 

- MINIMIZE WEIGHT 

GENERAL
 

- MINIMIZE OBSTRUCTION OF PAYLOAD EARTH, SOLAR 
AND STELLAR VIEWING­

- MINIMIZE AERODYNAMIC DRAG 
- MINIMIZE MOMENTS OF INERTIA
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HEAT 

TABLE 

REJECTION 

2 

REQUIREMENTS 

* 25 kW POWER SYSTEM EQUIPMENT 

BATTERIES 3.5 
POWER PROCESSING EQUIP 6.5 
COMMUNICATIONS EQUIP 2.0 

12.0 kW 
MAX BATTERY COLDPLATE TEMP = 50'F 
ALL OTHER EQUIPMENT = 90 0 F 

* PAYLOAD 

PARTIAL TO TOTAL HEAT REJECTION BY 
SYSTEM (25 kW MAXIMUM) 

PAYLOAD COOLANT RETURN TEMPERATURE 

POWER 

= 45 0 F 

HEAT EXCHANGER INTERFACE 

-
-

CONTACT 
LIQUID-TO-LIQUID 

•CONSIDER GIMBAL JOINTS 

* TOTAL SYSTEM 

QUISCENT OPERATION, PUMPS ONLY 0.7 kW 

NOMINAL (12 kW PS + 16 kW P/L) 28 kW 

MAXIMUM (12 kW PS + 25 kW P/L) 37 kW 

CONSIDER GROWTH VERSIONS TO 250 kW 
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TABLE 3
 
FLUID LOOP RELIABILITY CHARACTERISTICS
 

REDUNDANT COMPONENT 
FAILURE RATE FAILURE RATE 

COMPONENT- X x 106 RES X x 106 HRS 

Bad Panel Struct Integrity .8- 1.6
 
(8 Panels) 

Bad Panel Meteoroid .23
 

Pump/Motor/Inverter 1.39 - 4.48 .0439* - .4082*
 

Accumulator/Filter .14 - .30 .00085 - .00389
 

Temp Control Valve .34 - .52 00498 - .0116
 

Fill Drain Valve, Pair .05
 

Temp Sensor** 1.50 .27
 

Lines/Fittings .05
 

4.5 - 8.73 1.450 - 2.625 

Single Loop Probability of Success .8211 - .6822 .9385 - .8916 
_('5 Years) 

Redundant Loop Probability of .9811 - .9523 .9959 - .9903 
Success* 

Switch System Po = .995 - .99
 

Required For Health Monitoring Only
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TABLE 7
 

ASSUMPTIONS FOR COST ANALYSIS
 
OF
 

POWER SYSTEM THERMAL CONTROL SYSTEM 

o 	 RCA PRICE ROUTINE USED
 

* 	 SCHEDULE FOR PROGRAM FOR ALL CASES
 

- DEVELOPMENT START JAN '81 
- PROTOTYPE COMPLETE JAN '82 

- DEVELOPMENT COMPLETE JAN '83 

- PRODUCTION START FEB '83 

- DELIVERY : AUG '84 

* 	 YEAR OF ECONOMICS 1979
 

* YEAR OF TECHNOLOGY 1981
 

* 
 TOTAL SYSTEM COST IS PRIME CONTRACTOR HARDWARE ACQUISITION
 

COST. 
NO VEHICLE LEVEL TESTS, FLIGHT SUPPORT OR MAINTENANCE
 

COSTS ARE INCLUDED.
 

* 	 COMPLEXITY FACTORS FOR PRICE ROUTINE DERIVED FROM HISTORICAL
 

COSTS WHERE AVAILABLE AND ROM QUOTES ON COMPONENTS.
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TABLE 8
 

PRICE COMPLEXITY FACTORS
 

* PRICE ROUTINE INPUTS 

ENGINEERING MANUFACTURING PLATFORM
 
COMPONENT COMPLEXITY COMPLEXITY 
 FACTOR
 

RADIATOR PANELS 
 1.5 
 7.2 2.5*
 
HEAT PIPES 
 4 VENDOR ROM 

PUMP/MOTOR 4 VENDOR ROM 

ACCUMULATOR 1.566 5.4 2.5 
TEMP CONTROL VALVE .866 9.1 2.5 
TEMP SENSORS 1.37 6.1 2.5 
HEAT EXCHANGER 
 0.865 9.1 2.5
 
*FLEX HOSES 
 1.633 
 5.2 2.5
 
DEPLOYMENT MECHANISM 
 1.361 6.1 
 2.5
 
INTEGRATION & TEST 
 1.162 7.020 
 2.5
 

*PLATFORM OF 2.5 IS MANNED SPACE 



TABLE 9 

HEAT PIPE COSTS 

DEVELOPMENT UNIT PRODUCTION 

COST COST 

LOW TECHNOLOGY HEAT PIPE $100,000 $375/HEAT PIPE 

INTEGRAL MANIFOLD HEAT PIPE $600,000 $550/HEAT PIPE 
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TABLE 10 

SUNDSTRAND PUMP ROM COSTS 

NON-RECURRING 
(SPECIAL DATA NON-RECURRING ROM PRICE 

PUMP QTY AND INSPECTION) (DEVELOPMENT) EACH 

2500 in/hr, Dual 12 $175,000 0 $35,000 
Centrifugal Motor 36 $175,000 0 $30,000 
Driven, Based on 
Sundstrand Model 60 $175,000 0 $25,000 
145660-300 

5000 lb/hr Dual 
Centrifugal MotorDeniml toDriven Similar to 

30 
40 

$175,000 
$175,000 

$750,000 

$750,000 

$35,0.00 

$32,000 
-

Model 145660-300 $175,000 $750,000 $30,000 

10,000 lb/hr Dual 20 $175,000 $850,000 $40,000 
Centrifugal Motor 30 $175,000 $850,000 $37,500 
Driven Similar to 
Model 145660-300 40 $175,000 $850,000 $35,000 
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TABLE 11 

25 kW THERMAL CONTROL SYSTEM COST COMPARISON
 

COMPONENT 

Radiator Panels 

DEV. 

2196 

PUMPED FLUID 

PROD 

406 

THOUSANDS 

TOTAL 

2603 

OF 1979 DOLLARS 

LOW TECH HEAT PIPE 

DEV. PROD TOTAL 

2567 519 3086 

INTEGRAL MANIFOLD 
HEAT PIPE 

DEV. PROD TOTAL 

2439 403 2842 

Heat Pipes - - 100 189 289 600 297 897 

Pumps 925 140 1065 925 140 1065 925 140 1065 

'n Accumulator 482 6 488 482 6 488 482 6 488 

Temp Control Valve 120 46 166 120 46 166 120 46 166 

Temp Sensor 70 10 80 70 10 80 70 10 80 

Flex Hoses 198 8 205 198 8 205 198 8 205 

Deployment Mechanism 1680 38 1718 1680 38 1718 1680 38 1718 

Integration & Test 884 44 928 

$7253 

1245 63 1307 

$8404 

1044 54 1099 

$8560 

VOUGHT 



CONCEPT 


Pumped Fluid
 
Radiator Panels 


Low Technology Heat Pipe
 

Radiator Panels 


Heat Pipes (505) 


Integral Manifold Heat Pipe
 

Radiator Panels 


heat Pipes (540) 


TABLE 12 VOUGIHT 
25 kW THERMAL CONTROL SYSTEM COST COMPARISON 

THOUSANDS OF 1979 DOLLARS 

DEVELOPMENT PRODUCTION SUBTOTAL 
 TOTAL
 

2196 406 2603
 
$2603
 

2567 519 3086
 

100 189 289
 
$3375
 

2439 403 2842
 

600 297 897
 

$3739
 



TABLE 13 25 kW PUMPED FLUID COST ANALYSIS
 

TIN - 100, TOUT = 40, TS = -40
0 F
 

COST-THOUSANDS OF DOLLARS
 

MULTIPLE (4,8.33 kW) SINGLE SUBSYSTEM 

SUBSYSTEMS 

COMPONENT DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL 

RADIATOR PANELS 2299 638 2938 2196 406 
 2603
 

HEAT PIPES --- _ 

HR LOOP PUMP 175 560 735 925 14o 1o65 
COLLECTION LOOP PUMP 14o 1065 

HR LOOP ACCUMULATOR 329 9 338 482 6 488 
COLLECTION LOOP ACCUM. 41o 5 415 

TEMPERATURE CONTROL VALVE 153 178 331 120 46 166 

TEMPERATURE SENSOR 89 16 105 70 10 8o 

HEAT EXCHANGER 4o5 496 901 

FLEX HOSES 198 12 210 198 8 205 

"DEPLOYMENT MECHANISM' 1191 84 1275 168o 38 1718 

INTEGRATION AND TEST 722 87 809 884 44 928 

9122 7253
 

VOUGHT
 



TABLE 14 50 kW PUMPED FLUID COST ANALYSIS
 

COMPONENT 


RADIATOR PANELS 


HEAT PIPES 

HR LOOP PUMP 

COLLECTION LOOP PUMP 


HR LOOP ACCUMULATOR 

COLLECTION LOOP ACCUM. 


TEMPERATURE CONTROL VALVE 


TEMPERATURE SENSOR 


HEAT EXCHANGER 


FLEX HOSES 


DEPLOYMENT MECHANISM-


INTEGRATION AND TEST 


TIN = 100, TOUT = 40, TS = -400 F 

COST-THOUSANDS OF DOLLARS 

MULTIPLE (7, 833 kW 
SUBSYSTEMS __ 

DEVELOPMENT PRODUCTION TOTAL 


2299 1022 3321 


175 980 1155 
1025 160 1185 

329 14 343 
613 9 622 

153 283 436 

89 18 107 

405 792 1197 

198 20 218 

1191 133 1324 

722 128 850 

10758 


SINGLE SUBSYSTEM
 

IDEVELOPMENT 


2131 

1025 


721 


120 


70 

198 


1680 


1627. 

PRODUCTION TOTAL 

873 3oo4 

16o 1185 

10 732 

46 166 

10 80 

17 215 

72 1752 

89 1716, 

8850 

VOUG1HT
 



TABLE 15 100 kW PUMPED FLUID COST ANALYSIS
 
T IN = 100, TOUT = 40, TS = -40*F
 

COST-THOUSANDS OF DOLLARS
 

MULTIPLE (9, 12.5 kW) SINGLE SUBSYSTEM 
SUBSYSTEMS 

COMPONENT DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL
 

RADIATOR PANELS 2690 1920 461o 2734 1865 4598 

-HEAT PIPES -

HR LOOP PUMP 175 o8o 1255 1125 280 1405 
COLLECTION LOOP PUMP 1125 280 14o5 

HR LOOP ACCUMULATOR 421 24 445 1050 17 lO67 
COLLECTION LOOP ACCUM. 893 15 908 

TEMPERATURE CONTROL VALVE 153 349 502 120 46 166 

TEMPERATURE SENSOR 89 19 108 70 10 80 

HEAT EXCHANGER 545 1400 1945 

FLEX HOSES 202 35 237 202 31 233 

DEPLOYMENT MECHANISM' 1216 167 1383 1730 152 1882 

INTEGRATION AND TEST 975 209 1184 3070 185 3256 

13902 12687 

VOUGHT
 



TABLE 16 250 kW PUMPED FL&UID COST ANALYSIS 

TIN = 100, TOUT = 40, TS = -40
0 F 

COST-THOUSANDS OF DOLLARS
 

MULTIPLE (21, 12.5 kW) SINGLE SUBSYSTEM-


SUBSYSTEMS
 

COMPONENT' DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL
 

RADIATOR PANELS 2690 3913 6604 3741 5821 9561 

-
HEAT PIPES .
 

HR LOOP PUMP 175 220o 2375 1225 'oo 1625 
COLLECTION LOOP PUMP 1225 400 1625 

HR LOOP ACCUMULATOR 421 35 456 1724 35 1759 
COLECTIO]N LOOP ACCUM. 1465 32 1497 

TEMPERATURE CONTROL VALVE. 153 707 861 120 46 166 

.TEMPERATURE'SENSOR 89 25 114 70 10 80 

HEAT EXCHANGER 545 864 3409 

FLEX HOSES 202 69 271 202 66 268 

-2566DEPLOYMENT MECHANISM 1216 340 1556 2260 306' 


INTEGRATION AND TEST 975 4o 1376 8087 579' 8666 

* 201244 24691 

VOUGHT
 



TABLE 17 25 kW INTEGRAL MANIFOLD HEAT PIPE COST ANALYSIS 
=
TIN = 100, TOUT 40, TS = -40

0 F
 

COST-THOUSANDS OF DOLLARS
 

MULTIPLE (4, 8.33 kW) SINGLE SUBSYSTEM-
SUBSYSTEMS I -


COMPONENT DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL
 

RADIATOR PANELS 2865 651 3516 2439 403 2842 

HEAT PIPES 6oo 418 lo18 6oo 297 897 

HR LOOP PUMP .175 560 735 925 140 1065 
COLLECTION LOOP PUMP 925 i4o 1o65 

HR LOOP ACCUMULATOR. 329 9 338 482 6 488. 
COLLECTION LOOP ACCUM. 41o 5 415 

TEMPERATURE CONTROL VALVE 153 178 331 120 46 166 

TEMPERATURE SENSOR 89 16 105 70 10 80 

HEAT EXCHANGER 405 496 901 

FLEX HOSES 198 12 210 198 8 205 

DEPLOYMENT MECHANISM-, 1191 84 1275 1680 38 1718 

INTEGRATION AND TEST 731 93 833 io4. 54 1099 

10742 8560
 

VOUGHT
 



TABLE 18 50 kW INTEGRAL MANIFOLD HEAT PIPE COST ANALYSIS
 

TIN = 100, TOUT = 40, TS -400 F 

COST-THOUSANDS OF DOLLARS 

COMPONENT 

MULTIPLE (5, 12.5 kW) 
SUBSYSTEMS 

DEVELOPMENT PRODUCTION TOTAL 

SINGLE SUBSYSTEM 

DEVELOPMENT PRODUCTION TOTAL 

RADIATOR PANELS 3260 1105 4365 2761 789 3550 

HEAT PIPES 

HR LOOP PUMP 
COLLECTION LOOP PUMP 

6oo 

175 
1025 

756 

700 
160 

1356 

875 
1185 

6oo 

1025 

589 

160. 

1189 

185 

HR LOOP ACCUMULATOR 
COLLECTION LOOP ACCUM. 

421 
613 

14 
9 

435 
62' 

721 10 731 

co TEMPERATURE 

TEMPERATURE 

CONTROL 

SENSOR 

VALVE 153 

89 

214 

17 

367' 

106 

120 

70 

46. 

10 

166 

80 

HEAT EXCHANGER 545 853 1398. -

FLEX HOSES 

DEPLOYMENT MECHANISM> 

INTEGRATION AND TEST 

198 

1216 

975 

14 

102 

203 

212 

1318 

1178 

198 

1680 

2080 

8 

72 

125 

205 

1752 

2205 

13417 11063 

VOUGHT
 



TABLE 19 100 kW INTEGRAL MANIFOLD HEAT PIPE COST ANALYSIS 

TIN 1 = = -40 0 F100, TOUT 40, 
TS 


COST-THOUSANDS OF DOLLARS
 

MULTIPLE (9, 12.5 kW) 	 SINGLE SUBSYSTEM, 
SINGLE SUBSYSTEM-,SUBSYSTEMS 


COMPONENT 	 DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL
 

RADIATOR PANELS 	 3260 1812 '5072 3041 	 1583 4624 

HEAT PIPES 	 6oo 
 1361 1961 - 6oo 	 1183 1.783 

HR LOOP PUMP 175 i080 1255 1125 280 1405 
COLLECTION LOOP PUMP 1125 i405280 

HR LOOP ACCUMULATOR 421 23 444 979 16 995 
COLLECTION LOOP ACCUM. 832 14 846 

TEMPERATURE CONTROL VALVE 153 349 502 120 	 46 166 

TEMPERATURE SENSOR 
 89 19 108 70 	 10 80 

HEAT EXCHANGER 	 545 14oo 1945 

FLEX HOSES 	 202 
 23 225 202 31 233 

DEPLOYMENT MECHANISM '1216 167 1383 168o 118 1798
 

INTEGRATION AND TEST 
 975 209 1184 3616 	 196 3812
 

16330 
 14896
 

VOUGIHT 



TABLE 20 250 kW INTEGRAL MANIFOLD HEAT PIPE COST ANALYSIS
 

TIN = 100, TOUT = 40, TS = -400 F 

COST-THOUSANDS OF DOLLARS 

MULTIPLE (21, 12.5 kW) 
SUBSYSTEMS SINGLE SUBSYSTEM 

COMPONENT DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL 

RADIATOR PANELS 3260 3694 6954 3235 4317 7551 

HEAT PIPES 600 3176 3776 6oo 3267 3867 

HR LOOP PUMP 175 2200 2375 1225 400 1625 
COLLECTION LOOP PUMP 1225 400 1625 

HR LOOP ACCUMULATOR 421 35 456 1724 35 1759 
COLLECTION LOOP ACCUM. 1465 32 1497 

TEMPERATURE CONTROL VALVE 153 707 861 120 46 166 

TEMPERATURE SENSOR 89 25 114 70 10 80 

HEAT EXCHANGER 545 2864 3409, 

FLEX HOSES 202 69 271 202 66 268' 

DEPLOYMENT MECHANISM 1216 340 1556 2240 292 2532 

INTEGRATION AND TEST 975 4o 1376 7290 546 7836 

24269 25684 

VOUGHT
 



TABLE 21 25 kW LOW TECHNOLOGY HEAT PIPE COST ANALYSIS 
TIN = 100, TOUT = 40, TS = -40OF 

COST-THOUSANDS OF DOLLARS 

MULTIPLE (4, 8.33 kW 
SUBSYSTEMS 

SINGLE SUBSYSTEM 
SINGLE SUSYTE 

COMPONENT DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL 

RADIATOR PANELS 3148 814 j962 2567 519 3o86 

HEAT PIPES 100 240 34o 100 189 289 

HR LOOP PUMP 175 560 735 925 14o 1065 
COLLECTION LOOP PUMP .925 14o 1o65 

* HR LOOP ACCUMULATOR 329 9 338 482 6 488 
H COLLECTION LOOP ACCUM. 41o 5 415 

TEMPERATURE CONTROL VALVE 153 178 331 120 46 166 

TEMPERATURE SENSOR 89 16 105 70 10 80 

HEAT EXCHANGER 405 496 9Ol 

FLEX HOSES 198 12 210 198 8 205 

DEPLOYMENT MECHANISM' 1191 84 1275 1680 38* 1718 

INTEGRATION AND TEST 863 101 964 1245 63 1307 

10641 84o4 

VOUGHIT
 



TABLE 22 50 kW LOW TECHNOLOGY HEAT PIPE COST ANALYSIS
 

COMPONENT 


RADIATOR PANELS 

HEAT PIPES 

HR LOOP PUMP 

COLLECTION LOOP PUMP 


HR LOOP ACCUMULATOR 

ON COLLECTION LOOP ACCUM. 


TEMPERATURE CONTROL* VALVE 

TEMPERATURE SENSOR 


HEAT EXCHANGER 

FLEX HOSES 

'DEPLOYMENT MECHANISM: 

INTEGRATION AND TEST 


TIN = 1i00, TOUT = 40, TS = -40OF 

COST-THOUSANDS OF DOLLARS 

MULTIPLE (5, 12.5 kW) 

SUBSYSTEMS 


DEVELOPMENT PRODUCTION TOTAL 

4102 1402 5504 

100 450 550 

175 700 875 
1025 16o 1185 

41 - 14 435 
613 9 622 

153 214 367 

89 17 106 

545 '853 1398 

198 14 212 

1216 102 13.18 

1123 154 1277 

13849 


SINGLE SUBSYSTEM
 
SNLSUSTE
 

DEVELOPMENT PRODUCTION 
TOTAL
 

2810 1012 3822 

100 476 576 

1025 160 1185 

721 10 
 731 

120 46 1 86 

70. 10 8o 

198 8 205 

1620 72 1692 

2166 113 2279
 

10736 

VOUGHT
 



TABLE 23 100 kW LOW TECHNOLOGY HEAT PIPE COST ANALYSIS
 

TIN = 100, TOUT = 40, TS = -400 F
 

COST-THOUSANDS OF DOLLARS
 

COMPONENT 


RADIATOR PANELS 

HEAT PIPES 


HR LOOP PUMP 

COLLECTION LOOP PUMP 

HR LOOP ACCUMULATOR 
COLLECTION LOOP ACCUM. 


TEMPERATURE CONTROL VALVE 

TEMPERATURE SENSOR 

HEAT EXCHANGER 

FLEX HOSES 

DEPLOYMENT MECHANISM 

INTEGRATION AND TEST 

MULTIPLE (9, 12.5 kW) 
SUBSYSTEMS 


DEVELOPMENT PRODUCTION 


4102 2302 


100 810 


175 1080 

1125 280 


421 23 

832 14 


153 349 


89 19 


545 1400 


202 23 


1216 167 


1123 235 


TOTAL 


6403 


910 


1255 

1405
 

444 

846
 

502 


108 


1945
 

225 


1883 


1358 


16784 


SINGLE SUBSYSTEM
 
INLSUYTM
 

DEVELOPMENT PRODUCTION TOTAL
 

3176 1961 5138
 

100 1079 1176
 

125 280 1405
 

979 16 995
 

120 46 166
 

70 10 80
 

202 31 233
 

1620 124 1744
 

3870 233 4103
 

15o4o
 

VOUGHT
 



,TABLE 24 250 kW LOW TECHNOLOGY HEAT PIPE COST ANALYSIS
 

TIN = 100, TOUT = 40, TS = -40 0 F 

COST-THOUSANDS OF.DOLLARS 

MULTIPLE (21, 12.5 kW) SINGLE SUBSYSTEM 
SUBSYSTEMS SNLSUSTE 

COMPONENT DEVELOPMENT PRODUCTION TOTAL DEVELOPMENT PRODUCTION TOTAL 

RADIATOR PANELS 4102 4698 8800 4529 4614 9143 

HEAT PIPES 100 1890 1990 100 3040 3140 

HR LOOP PUMP 
COLLECTION LOOP PUMP 

175 
1225 

2200 
400 

2375 
1625 

1225 4oo 1625 

HR LOOP ACCUMULATOR 421 35 456 1724 35 1759 
COLLECTION LOOP ACCUM. 1465 32 1497 
TEMPERATURE CONTROL VALVE 153 707 861 120 46 166 

TEMPERATURE SENSOR 89 25 114 70 10 8o 

HEAT EXCHANGER 545 2864 3409" 

FLEX HOSES 202 69 271 202 66 268 

DEPLOYMENT MECHANISM' 1216 340 1556 1620 180 1800 

INTEGRATION AND TEST 1123 451 1574 7803 503 8306 

24528 26287 

VOUGHT
 



TABLE 25
 

POWER SYSTEM BODY SINK TEMPERATURE
 

4
 

3
/ 


A
 

SINK TEMP -OF 

ORBIT SIDE
 
POSITION 1 2 3 4
 

=--.1
 
A -20 -8 - 3 - 8
 
B 
 11 
 46 -13 - 8


o3 550
 

270 N.M. C -55 - 5 -31 5
-
D -20 - 8 -34 46
 

DARK SIDE DESIGN TSINK= - 4°F
 

SUN SIDE = + 12°F
 

65
 



WEIGHT COMPARISON OF BODY 

TABLE 26 
MOUNTED HEAT PIPE AND FLUID LOOP TCS 

Total Heat Load 25 kW 
Tin = 1000F, Tout = 40OF 

Weight-Lb 

Sink Temperature ­0 F TCS FLUID LOOP CONCEPT 

-80 F Fluid Loop 

-100F BMHP 
16.5 kW Fluid Loop 

8.5 kW BMHP 

Pumped 
Fluid 

770 

495 

1265 

Low Cost 
Hybrid 

870 

495 

1365 

Int. Manifold 
Hybrid 

760 

495 

1255 

-80OF Fluid Loop 
100F BHHP 

16.5 kW Fluid Loop 
8.5 kW.BMHp 

770 
570 

1340 

870 
570 

1440 

760 
570 

1330 

-800F Fluid Loop 25 kW Fluid Loop 1160 1290 1110 

-40°F Fluid Loop 
-10OF BMHP 

16.5 kW Fluid Loop 
8.5 kW BMHP 

915 
495 

1410 

1040 
495 

1535 

930 
495 

1425 

-40 F Fluid Loop 
100 BHP 

16.5 kW Fluid Loop 
8.5 kW BMHP 

915 
570 

1485 

1040 
570 

1610 

930 
570 

1500 

-40OF Fluid Loop 25 kW Fluid Loop 1421 1549 1390 

VOUGHT 



TABLE 27 
COST COMPARISON OF BODY MOUNTED HEAT PIPE AND FLUID LOOP TCS 

COST - MILLIONS OF DOLLARS 

RADIATOR CONCEPT 
TCS Pumped Low Tech Int. Manifold 

Fluid Hybrid Hybrid 

16.5 kW Fluid Loop 6.40 7.45 7.65 
8.5 kW BMHP 5.15 - 2.56 5.15 - 2.56 5.15 ­ 2.56 

11.55 ­ 8.96 12.60 - 10.01 12.80 ­ 10.q1 

25 kW Fluid Loop 7.25 8.56 8.34 

VOUGHT
 



TABLE 28 CENTRALIZED-AND DISTRIBUTED TCS COST BREAKDOWN
 

PROCUREMENT COST 


CENTRALIZED TCS 

37 kW P/S 
DISTRIBUTED TCS 

12 kW P/S TCS

25 kWiP/ 
Rad Panels 

Rad Deploy 

TCV 


17 kW P/S TCS 


20 kW P/L
 
Rad Panels 

Rad Deploy 

TCV 


22 kW P/S TCS 


15 kW P/L
 
Had Panels 

Rad Deploy 

TCV 


27 kW P/L TCS 


10 kW P/L
Rad Panels 

Rad Deploy 

TCV 


32 kW P/S TCS 


5 kW P/L 
Rad Panels 

Had Deploy 

TCV 


. -


DEV 

7.o4 

6.03 


2.19 

1.68 

0.12 

o
10.02 


6.23 


2.15 

1.42 

0.12 

9.92 


6.43 


2.13 

1.26 

0.12 

9.94 


6.64 


2.11 

1.20 

0.12 


10.07 
6.84 


2.10 

-


0.12 

1 9.06 

PRODUCTION 


0.98' 


0.27 


0.812 

0.076 

0.092 

1.25 


0.47 


0.700 

0.064 


2 

1.326 


0.57 


0.56 

0.054 

000.21 

1.296 


0.71 


0.48 

0.044 

0.092 

1.326 


0.86 


0.36 

-


0.092 

1.312 


-M 

TOTAL 

8.02 


6.3 


3.00 

1.76
 
0.21
 

11.27 


6.70 


2.8.5 

1.48
 
0.21
 
1 


7.0 


2.69 

1.31
 

11.21 


7.35 


2.59 

1.24
 
0.21
 

11.39 
7.70 


2.46 


0.21
 
10.37 


LAUNCH 
SINGLE LAUNCH 

1.547 


o.476 


0.847 


1.323 


0.665 


0.672 


1.337 


0.847 


0.501 


1.348 


1.064 


0.340 


7 
1.302 


0.174 


1 .T7. 

COST ­
20 

$M 
LAUNCHES 

o.476
 

16.94
 

1776 

0.665
 

13.44
 

1 5 


0.847
 

10.01
 

10.857 


1.064
 

6.79
 

7.85 

1.302
 

3.472
 

4.7 


TOTAL COST - $M
 
SINGLE LAUNCH/20 LAUNCHES 

9.57/9.57
 

12.59/28.69
 

12.58/25.35
 

12.56/22.07
 

12.79/19.25
 

1.85/15.14
 

http:1.85/15.14
http:12.79/19.25
http:12.56/22.07
http:12.58/25.35
http:12.59/28.69
http:9.57/9.57


TABLE 29 

POWER SYSTEM/PAYLOAD FLUID INTERFACE CONCEPT SUMMARY 

CONCEPT 
 ADVANTAGES 	 DISADVANTAGES
 

DIRECT FLUID CONNECTION 
 e 	BEST THERMAL EFFICIENCY , LIMITS P/L RETURN 
o 	LIGHTEST WEIGHT TEMP TO 1000 F
 
* 	LOW COST 0 SOPHISTICATED HEAT 
* HIGH RELIABILITY ELIMI- REJECTION CONTROL 

NATES PUMPS * VARIABLE LOOP AP 

FLUID/FLUID HEAT EXCHANGER * 	 ALLOWS HIGH TEMP PAYLOADS 0 FULL CAPACITY REQD 
o 	SIMPLIFIED HEAT REJECTION 
 AT EACH PORT
 

CONTROL 	 e REQUIRES P/L PUMP 
* 	 THERMALLY EFFICIENT 
o 	STATE-OF-THE-ART TECH 
* 	 LIGHTWEIGHT 
* 	 ALLOWS INDEPENDENT P/L 

LOOP DESIGN 

CONTACT HEAT EXCHANGER 	 * ELIMINATES FLUID CONNEC- 0 HIGHER TEMP DROP 
TIONS & LEAKAGE POTENTIAL * FULL CAPACITY REQD 

* 	 ALLOWS ALL HEAT PIPE TCS AT EACH PORT
FOR PAYLOADS * REQUIRES DEVELOPMENT 

* 	 ALLOWS HIGH TEMP PAYLOADS 0 REQUIRES P/L PUMP 
* 	 SIMPLIFIED HEAT REJECTION e HEAVY 

CONTROL
 
* 	 ALLOWS INDEPENDENT P/L 

LOOP DESIGN 

VOUC31-IT
 



TABLE 30 RADIATOR DEPLOYMENT CONCEPT TRADE MATRIX
 

DEPLOYMENT CONCEPT 
POWER1 
HINGE- SCISSORS2 

SPRINg
HINGE 

TELESCOPING 
BOOM 4 

WEIGHT - LB 159 440 163 194 

SOLAR AVOIDANCE WT. 42 42 42 -

RETRACTED STACK HEIGHT - IN. 13.5 18.0 13.5 26.0 

ELECTRIC MOTORS REQUIRED 9 1 1 1 

MOTOR RELIABILITY WITH REDUNDANCY 0.9829 0.9995 0.9995 0.9995 

MECHANICAL COMPLEXITY* 6 7 3 8 

RELATIVE COST* 7 5 3 6 

COMMENTS: 

1 - . SIMILAR TO ORBITER DOOR/RAD DEPLOYMENT 
. ALLOWS ONE PANEL AT A TIME TO BE DEPLOYED/RETRACTED 
. RELIABILITY DECREASES FOR ADDITIONAL PANELS 

2 - . SIMILAR TO SKYLAB SOLAR PANEL DEPLOYMENT 
• CANNOT INCORPORATE SOLAR AVOIDANCE DUE TO INTERFERENCE WITH SOLAR ARRAYS 

3 - . SYSTEM NATURAL FREQUENCY LOWER THAN ESTIMATED 0.1 Hz ALLOWED 

4 - . SIMILAR TO SOLAR ARRAY MAST USED ON REFERENCE 25 kW POWER SYSTEM 
POSSIBLE USE OF COMMON HARDWARE 

• EXCESSIVE STOWAGE VOLUME
 

1 = LEAST, 10 = MOST
 



TABLE 31 BASE PIVOT ATTACHMENT LOADS FOR MANEUVER*
 

Fx FY MX my MZ 

LOCATION (LBS) (LBS) (LBS) (IN-LBS) (IN-LBS) (IN-LBS) 
FULLY DEPLOYED -136 -4 150 -405 -1060 - 409 

136 -4 .150 -405 1060 409 

Q 65 -3 -150 -408 473 1892 

PARTIALLY Q 
- 65 

9 

-3 

-4 

-150 

116 

-408 

354 

- 473 

308 

-1892 

10 
DEPLOYED - 9 -4 116 354 - 308 - 10 

Q - 12 -3 -116 350 170 - 279 

0) 12 -3 -116 350 - 170 279 

TABLE 32 SCISSORS I-BEAM BOLT ATTACHMENT LOADS FOR MANEUVER*
 

Fx Fy FZ Mx M y MZ
 

LOCATION (LBS) (LBS) (LBS) (IN-LBS) (IN-LBS) 
 (IN-LES)
 

FULLY DEPLOYED -30 146 
 24 0 33 541
 

6 30 -256 -47 0 -41 718
 
PARTIALLY Q 12 
 8 9 0 14 -552 
DEPLOYED 6 -13 -8 -19 0 -21 82
 

NOTE: 	ACCELERATIONS AT POWER
 
MODULE CG:
 

i = .Olg 

01DEG 
! x 

F1 "LOADS 	 ARE LIMIT. 

Ax
 



RADIATOR PANELS~5.3 x 16.2m 

FWD SECTION 
SOLAR ARRAY40.2 x 8.7m 

3.9 x 5.4 x 2.Om 
ELECTRICAL AND 

FIGTHERMALCONTROLEQUIPMENT 

~PAYLOAD rAFT SECTIONBERTHING PORTS 

1.6 x 4.0 x 2.0m 

MID-SECTION-
ATTITUDE CONTROL 

COMMUNICATIONS AND 
DATA HANDLING 

EQUIPMENT 
2.5 x 4.0 x 2.0m 

FIGURE' 1 25kW POWER SYSTEM REFERENCE CONCEPT 



FIGURE 2
 

FLUID LOOP CONCEPTS
 

TLOADEA---


SINGLE LOOP DUAL LOOP (ONE STANDBY)
 

REDUNDANT COMPONENTS 

PUMPS - 3, 2 REQD (ORBITER) 
2, 1 REQD 

TEMP SENSOR - 3 OPERATE, 2 REQD 
(MAJORITY VOTE)
 

TEMP CONTROL VALVE - 2 OPERATE, 1 REQD
 
ACCUMULATOR - 2 OPERATE, 1 REQD
 

MAINTENANCE 

PUMPS 
TEMP SENSOR 
TEMP CONTROL VALVE 
ACCUMULATOR
 



FIGURE 3
 

REDUNDANT, TEMPERATURE
 
CONTROL VALVE
 

TCV FILLED WITH 
WORKING FLUID 

RADIATOR -woj PAYLOAD INLET 

FROM RESERVOIR 
FAILURE RATE 0.00498/06 HRS 

Sundstrand Energy Systems L 



FIGURE 4 

REDUNDANT BELLOWS
 
ACCUMULATOR
 

I
FLUID SPACE 

.GASSPACELi [
 

FAILURE RATE = 0.00085/106 HRS
 

Sundstrand Energy Systems 



MAINTENANCE O' PUMPS AND TEMP SENSOR 

REDUNDANT LOOPS,4 REDUNDANT COMPONENTS 
1.0 EPQUIRED RELIABILITY 

---- NO REDUNDANT LOOPS 
.96- NO REDUNDANT COMPONENTS 

. .:-9523­

.92 . '. .* . . 

0 .84. 

.72 

. . U'- )" ,I J. . . '' . . i ."- SINGLE LOOP 
-----

:COMPON S 

•- -".:" \.82 -J"I.":I 

.68 

0 1 2 3 4 5 

MAINTENANCE PERIOD -YEARS 

FIGURE 5 EFFECT OF MAINTENANCE ON FLUID LOOP RELIABILITY 

"ORIGINAL PAGE 2
OF POOR QUAL 
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.020­

.019 

w .018- REDUNDANT COOLANT LOOPS 

-J 

.017­
U.l
 
0 

.016 
/
 

: 

Im .015­
0 
cc 
0­
2 .014­wI-.
 

(n .013­-Jo
 
cc 
z .012 
0 

~.011-

I
 

I- .010 

.DESIGN POINT
 
.009I
 

.0001 .001 .01 0.1 
PROBABILITY OF RADIATOR METEOROID PENETRATION 

FIGURE 6. EFFECT OF RADIATOR METEOROID RELIABILITY 
ON THERMAL CONTROL SYSTEM RELIABILITY VOU IHT 
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VOUGHT 
COOLANT LOOP CONFIGURATION 2
 

FOR HEAT PIPE/PUMPED FLUID
 
RADIATOR TRADES
 

TEMP 
CONTROL,
 

TPUMP 

-- HX- ----- --------

PHEAT COLLECTION SUBSYSTEM t r 

I ,,ACl 
I' 

I-L-- BAF r-i P/L r-. oPWR-PROqlEQUIP.­1 C/P HX -- EQUIR C/P 
-PS 

CP ___.1 

HEAT REJECTION SUBSYSTEM 
>-PO = 0.9931 -0.9830, OVERSIZED FOR PO 0.995 

HEAT COLLECTION SUBSYSTEM Po = 0.995 
TOTAL SYSTEM Po = 0.99 

MULTIPLE SUBSYSTEMS SCHEMATIC 

FIGURE 7 
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(a) 	 EXTRUDED BUMPERED TUBE (c) BONDED HONEYCOMB/TUBE
 
WITH BUMPER EFFECT
 

(b) 	 EXTRUDED TUBE/DOUBLE FIN (d) EXTRUDED TUBE/BONDED HONEYCOMB 
WITH. BUMPER EFFECT WITH BUMPER EFFECT 

FIGURE 8 

CANDIDATE PUMPED FLUID TUBE/FIN PANEL CROS-SECTIONS 

VOUGHT
 



VOUSIHIT 
LOWDENSITY 'BUMPER SPACING 	 FLUID TUBE 

FOAM 	 MAIODALUMINUM EXTRUSION 
MICROMETEOROIC HONEYCOMB

IIIII.111111111111
 
L0.28mm ALUMINUM 	FACE SHEET 

MANIFOLD ID C) B-B, PANEL DETAIL 

B) A-A, MANIFOLD DETAIL 

co 
10 

VOID - I0.635mm 

MANIFOLD TUBE----- \ E m 
PANEL THICKNESS I 

PANEL WIDTH FLOW_ ' I 
LENGTHD 

FLO 
TD DEPENDING-ON 

TUBE THICKNESS
T 

FREON 0.635mm L
 
21 A•
 
CONNECTORS 	 B 

D) EXTRUDED TUBE DETAILSMANIFOLD B A) PUMPED FLUID PANEL 

FIGURE 9 
PUMPED FLUID RADIATOR CONCEPT 



(a) HEAT PIPE/FORMED SHEET 

fb) HEAT PIPE EXTRUSION/FLAT SHEET 

(c)HEAT PIPE/BONDED HONEYCOMB 

- FIGURE 10 CANDIDATE HYBRID PANEL CROSS-SECTIONS
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VOUGHT
 

I V 

i I I''I 
T ri 

8) SECTION A-A 

HONEYCOMB C)SECTION B-B0.5m 

/ ~DR HOE MSECTION C-CHEAT PIPES AHONE 

FIGURE 11 

LOW COST HYBRID HEAT PIPE CONCEPT 

P2
 



VOUGHT
 

RADIATOR PANEL 

U)HEAT EXCHANGER HO E C M EAT PIPE 

.N RB-B5 PANEL DETAIL 

SCREEN CENTER COREWICK 
co EVPORATR HONYCOM

A-A. HEAT PIPE DETAIL 

(REDUNDANT FLOW PASSAGE SHOWN) 

FIGURE 12 

INTEGRAL MANIFOLD HEAT PIPE RADIATOR CONCEPT 



FIGURE 13 INTEGRAL MANIFOLD TEST ELEMENT
 



.89 mm WALLI THERMOCOUPLE NO. N J cm 6.D.,A 1.6 ALUMINUM/DTI 


FREON 21 IN -

HEAT PIPE EVAP ENN cs. B: 
*1 -, I , III '
 

, Is,', /'II I
 
, I/ o.4 "I 

WATT HEAT PIPE AMMONIA HEAT PIPE
 
(AMMONIA FILLED) I i
if 


I I
 

BRAZED JOINT BETWEEN I i I
 
EVAP AND MANIFOLD II
II 'a I'
 

SPIRAL FIN MANIFOLD 17 s.) II
li II
 
1.27 cm HONEYCOMB ii II
 

co PANEL "1

0__LC
oba 9 II II
 

IMMRSONII II
 
IMMERSION THERMOCOUPLE, DIFFERENTIAL & ABSOLUTE READOUTS 

x ABSOLUTE THERMOCOUPLE ON FACESHEET II II
ABSOLUTE. THROCOUPLE ON HEAT PIPEIII 
IfJ 

II -II 
II II
 

I .o. .. -armti, 

-FIGURE 14 HYBRID INTEGRAL MANIFOLD TEST ELEMENT DESIGN 



FIGURE 15 
EFFECT OF'HEAT PIPE DIAMETER 

ON RADIATOR WEIGHT 

lb kW HEAT LOAD, Tin = 100'F, Tout 40Fr, Ts -40 0' 

1100 (3779 Watt-in) 

1000 

Low Technology 

Heat Pipe 

a 

900 

800 
(2259) 

(3120) Integral Manifold 
Heat Pipe 

(1850 Watt-in) 

700 2)Design Point 

0.25 0.375 0.50 0.625 

Heat Pipe Diameter - Inches 

VOUGHT 



5 

V,. 

FIGURE 16 

TYPICAL CENTRAL CORE WICK HEAT PIPE CAPACITY 
V. I .> : DATA FROM HUGHES! . . .•' . 'r.­

...... +,..-­-: ,77,"7 
.... . .. :... . . I.L. . ..• h : 

.,-:.,,AMMONIA AT 45 C :' = --- .. - ::,I'"- = '|. 

;1.120 MESH SCREEN PUMPING 
F. . .. I :.' i : 

1-4 

_ 

F:. j 

.­1 :ir~j:: 

[ : .,: 

:. 

.. 
. ... 

E.....GRAVIT: 

rti 

... .. 

:1.: 1, 

S4 
.... ... . -:'F- F_ iON.. . ...•|'.. 

.. . . . . .F F.- ,. ,H 4 :4 ' -­' - --­-I j ',' 2 

FF i 
{:I 

Ft' FFFF 

.­,::REQUIRED 
~ ,,. I, ... 

PERFORMANCE OF 
::, T,: : 1iL..: 

HEAT PIPES 
,,~:.5F.l ~ 

. 

FIIL j~il~ , .1 4 2" .. .. .,'­

ii-0 I F * F F* & 

0.5 	 1.0 1.5 2.0 

HEAT PIPE DIAMETER INCHES 

0 
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------ PUMPED FLUID 
--- INTEGRAL MANIFOLD - HEAT PIPE 

COMPACT HEAT EXCHANGER - HEAT PIPE TIN, TOUT 

T SINK -220C 
N/ 38,4.4 

/ 
/

/ 
/ 

01 
/// //}121,54 

0 t 

// 

w0" / 

110 

HEAT LOAD -­kW 

100 1000 

FIGURE 17 *RADIATOR WEIGHT OPTIMIZATION, TSINK 

88 

=-22C 



VOUGHT
 

PUMPED FLUID TIN, TOUT 
INTEGRAL MANIFOLD - HEAT PIPE 

- COMPACT HEAT EXCHANGER - HEAT PIPE 
,"' l o4.4,-18 

TSINK ='-400C, 

104 / ' ,/ 38, 4.4 

/ 
- ,/Jh121,54 

I , // 

S103, 

102­

,I-


S/
0 / 

oa, 

// 

// 

.101- -e 

10 10) 1000 

HEAT LOAD -kW 

FIGURE 18 RADIATOR WEIGHT OPTIMIZATION, TSINK= -40oC
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VOUGIIT
 

....... 	 PUMPED FLUID 
INTEGRAL MANIFOLD - HEAT PIPE 
COMPACT HEAT EXCHANGER - HEAT PIPE' TIN, TOUT 

TSINK = -620C 	 .4.4,-18 

/1S 
} 38,4.4 

S/, 	 /// //ly // }"121,54"IIR 

/_ / 

//,,//,, 
-01 

f 	 /" 

0 	 / 

102 de ~ / 

10 100 1000 

HEAT LOAD -kW 

FIGURE 18a RADIATOR WEIGHT OPTIMIZATION, TSINK =-620c
 

go
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PUMPED FLUID REGION 
200 

160 ­

140AVERAGT 
RADIATOR 120 ±10% REGION 

TEMPERATURE INTEGRAL 
(OF) 100 MANIFOLD 

80 HEAT PIPE ±-0-RGO 
60 REGION - 10% REGION6o0- ///l- (.M.ULTIPLE _ 

PUMPED FLUID
25 kW POWER 

40 SYSTEM SUBSYSTEMSI1 /I " 

OPERATING ONLY)
20 REGION 

0 I I I I I I I 
0 20 40 60 80 100 120 140 160 180
 

HEAT LOAD (kW) 

FIGURE 19 
HEAT PIPE/PUMPED FLUID RADIATOR 

WEIGHT OPTIMUM OPERATING REGIONS 6 
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1,100 TIN = 1000 F,TOUT = 40°F, TS = -40 0 F 

5 YEAR LIFE 
.....---- YEAR LIFE 

1,000 

RADIATOR DESIGN POINT 

RADIATOR: t 
WEIGHT 900 - "
 

(LB) LTHP
 

",,4 

800 -'4 IM 

PF 

'700 1 
0.001.- 0.01 0.10 

PROBABILITY OF A METEOROID PENETRATION, (If-Po ) 

FIGURE 20
EFFECT OF METEROID PROBABILITY
 

ON RADIATOR WEIGHT
 
1'6kW HEAT LOAD
 

VOUGHT 

,92
 



2,000 

1,900 

1,800-


RADIATOR 
WEIGHT 

(18) 
1,700­

1,600 

1,5001"
 
0.001 

TIN = 1000 F,TOUT = 400 F,TS = -40OF 
5 YEAR LIFE 

10 YEAR LIFE
 

. 

-

IM
 

DESIGN POINT; 

0.01 0.10 
PROBABILITY OF A METEOROID PENETRATION, (1-P0 ) 

FIGURE 21 
EFFECT OF METEOROID PROBABILITY
 

ON RADIATOR WEIGHT
 
32kW HEAT LOAD
 

VOU3I-IT 
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VOUGHT 

26 ­
24 

22­

----­
--

X 
PUMPED FLUID 
INTEGRAL MANIFOLD HP, 

LOW TECHNOLOGY HP 

SINGLE
SUBSYSTEM 

COST 
(MILLIONS 

OF DOLLARS) 

20 

18 

16 

14­

-

/SUBSYSTEMS 

S 

- MULTIPLE 

.10. 

6 
4 

0 40 

I 

80 120 .160 
HEAT LOAD (kW) 

I 

200 

, 

240 280 

FIGURE 22 
HEAT PIPE/PUMPED FLUID TCS 

COST COMPARISON 
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EFFECT 
FIGURE 23 

OF BODY MOUNTED HEAT PIPE 
TCS ON FLUID LOOP 

VOUGHT 

3.5B T 

1 6 kw 
640*? 

64 P S TT2 

S 

T2 4 4 0 

.o 
5W35 

432 f9t2 ."88 
1,. . 

' 

104-P Z'.kWps SOU0 0 9 ", 909F 

7913359 
lT]o00 " 

, LLLLL 140 pT2 I g 0"' 

9 5 ", 90CE 

I Or 

432 pT2 100F 8­

,,30?oo., 
N or 3or , 

79m 

C 79 I-1 oo 

BASELINE CANDIIDATES BODY NOUNTFD HP PAD FOR POWER 
PROCESSING AND PS EQUIP 

BODY IOUNTOI HP MAD FOR BATTERIES 



FIGURE 24
 

BODY MOUNTED ALL HEAT PIPE
 
TCS CONCEPT
 

'DETAILB
 
PERIMETER HEAT PIPE
 

PRINARY, 
RADIA. O SUPPORT 

PANEL STRUCTf 

AL 

TYPICAL 

COMPONENT 
MOUNTING 

i O5 IN OD HP 

.035 IN FIN 1.6t 

DETAIL AT 

-161 
RADIATOR 

PANEL VIEW A-A 

PRIMARY SUPPORT
VOUGHT VSTRUCTURE 1rP, H .035 INUT 0.5 IN. OD 

FIN 

DETAIL A
 



VDUC I-I I EUIPENTFIGURE 25EQUIPMENT MOUNTING CONCEPT FOR 
- -/rr ALL HEAT PIPE TCS 

I, |I 

I 'I 

EXISTING 'LOAD CARRYING
 
SECTION A-A SKIN PANELS (H/C OR SKIN'
 

BODY MOUNTED 
 AND STRINGER)

HEAT PIPE 

p pu! v pp _____ _ _ _ ______ 

HEAT DISSIPATING
 
'COMPONENT
2 FN 


H 1.o" 

SECTION B-B
 

J- 0.5 IN.
o.D.
I [Ji\-VARIABLE CONDU AYCE HEAT PIPE 



TSiNK = 20'F TSINK = 10OF TSINK = -10OF 

600 60OF 
SYSTEM 80F 
WEIGHT TRAD= 80F /40OF(LB) 80OF 

40- 60FF 600F / 

200 / -/ 

-PUMPED FLUID 
TsINK = -80OF

0 i ,i I I. .. I I I I 
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 

SYSTEM HEAT LOAD (kW) 

FIGURE 26 
BODY MOUNTED - ALL HEAT PIPE TCS WEIGHT 

VOUGHT
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, - . [ H R A 
0~<~*1 PANELS-''o .. . .. .. . . . . . . . [. I 

7 4 I "" I 
0
o " I. - J+ I 

HI I . . -.- . . 

ul 2 
I -" '-'-- , ' 

2- . 4 8 1 

.-t ,jt , . I 

. . ..- .F -*. 4 ­

.. .. 1 r 

FIUR 27 ODUMONTD-HATPIP RDTOR CS
 
246 8 10 

HEAT LOAD -kW 

FIGURE 27 BODY MOUNTED HEAT PIPE RAflIATOR COST 
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VOUGHT
 

FIGURE 28 
CENTRALIZED THERMAL CONTROL 

SYSTEM CONCEPT 
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90 DAY PAYLOAD TCS 

FIGURE 29 
DISTRIBUTED THERMALCONTROL'SYSTEM CONCEPT 
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5 YEAR PAYLOAD TCS 

FIGURE 30 


DISTRIBUTED THERMAL CONTROL SYSTEM CONCEPT 
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VOUGHT 

CENTRALIZED2,200 
2 DISTRIBUTED 

- Tin = G0 OF, Tout = 40°F2,000 


1,800 - /­

1,600 - , 


WEIGHT, 1,400 
(LB)
 

DISTRIBUTED1,200 
-Ti n 2500 F, Tou t 1300 F 

15000 - -" 

800 

600
 

20% 40% 60% 80% 100% 

0 5 10 15 20 25 

PAYLOAD HEAT LOAD (kW) 

FIGURE 31
 
CENTRALIZED AND DISTRIBUTED TCS WEIGHT COMPARISON 
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-LOW TEMP PAYLOAD (TIN/TOUT = 100OF/0OF) 

.--- HIGH TEMP PAYLOAD 
CENTRALIZED (TINITOUT = 250*FI130OF)
 

2,200 ( k,
 

5 YEAR PAYLOAD 

2,000 \ 

S90 DAY PAYLOAD 

THERMALCONTROL 1,800 % 

CONTRO POWER SYSTEM 12 kWSYSTEM 
WEIGHTPAYLOAD =25 kWWEIGHT(LB) 1,600 \ .TOA TOTAL 3akW 

N,1,400 ­

, "N5 YEAR PAYLOAD 

% 90 DAY PAYLOAD 

I I I I I .. .. . 

O 5 10 15 20 25 
PAYLOAD HEAT REJECTION (kW) 

FIGURE 32 
POWER SYSTEM/PAYLOAD 

THERMAL CONTROL SYSTEM WEIGHT 

iolt
 



VOUGHT 

LOW TEMPERATURE PAYLOAD 
---------- HIGH TEMPERATURE PAYLOAD 

CENTRALIZED TCS 

2,200 
2 -"3 PAYLOADS 

2 PAYLOADS 
1 PAYLOAD 

2,000. 

1,800 - '4,
THERMAL 

POWER SYSTEM = 12 kWCONTROL 
PAYLOAD 
 =25 kW 

SYSTEM TOTAL =37 kW
 
WEIGHT 1,600
(LBI 

1,400 

PAYLOADS 
1,200- 1 PAYLOAD 

1,000
 

II I I I
 
0 5 1O: 15 20 25
 

. PAYLOAD HEAT REJICTION (kW) 

FIGURE 33 
POWER SYSTEMIPAYLOAD THERMALCONTROL SYSTEM WEIGHT : 
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2,200 TOTAL HEAT LOAD 

- 37kWCENTRALIZED 
2,000 37kW TCS (12 kW + PAYLOAD LOAD 

- PAYLOAD REJECTION) 

THERMAL 1,800 
CONTROL 
SYSTEM 30 kW 
WEIGHT "-CENTRALIZED 

(LB) 1,600 30 kW TCS 

1,400 25 kW 
ENTRALIZED 
25 kW TCS 

1,20 

1,000 
SI p p 

0 5 10 15 20 25 
PAYLOAD HEAT REJ"ECTION (kW) 

'FIGURE 34 -

POWER SYSTEM/PAYLOAD

THERMALCONTROL SYSTEMWEIGHT 

3-06
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PAYLOAD HEAT 
REJECTION 

2,600-
 25 kW 

20 kW 
2,400-

CENTRALIZED 15 kW 

POWER SYSTEM 10 kW 

2,200 5 kW 
TCS 

WEIGHT 
(LB)
 

2,000 - 10
 

15
 

1,8W0- 2 

1,600- EDGE TO SUN EDGE TO PERPENDICULAR 
PERPENDICULAR SUN TO SUN 

TO EARTH 

I I I I
-lno -80 -60 -40 -20 0 

PAYLOAD RADIATOR SINK TEMPERATURE (OF) 

FIGURE 35
 
EFFECT OFPAYLOAD SINK TEMPERATURE 

ON TCS WEIGHT 
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PAYLOAD 

26 90 DAY HEAT REJECTIONPAYLOADS 
 25 kW 
'24 ­

22­

20- 20 kW 

18 

TCS WEIGHT 16 15kW 
TO ORBIT 

(THOUSANDS 14"
 

OF LB) 12l 

10kW 
10­

5 kW6­

4 

2 -------------- CENTRALIZED 
0 ! L I I I I I I I 

0 4 8 12 16 20 
NUMBER OF PAYLOAD LAUNCHES 

FIGURE 36 
POWER SYSTEM/PAYCOAD
 

- THERMAL CONTROL SYSTEM WEIGHT
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PAYLOAD
 
TCS PROCUREMENT COST (2 PAYLOADS) HEAT REJECTION 
PLUS $700/LB LAUNCH AND 25 W 

28 - RETURN COST 

26 
20 kW
 

24 

15 kW22 


20 
10 kW 

18 -
COST 

('MILLIONS OF 16 5 kW 

DOLLARS) 
14 

12 

10 -_- .	 CENTRALIZED 
POWER SYSTEM 

4 

2 
6 I I I I I I I I I I 
0 2 4 6 8 10 12 14 "16 Al8' 20 

NUMBER OF PAYLOAD LAUNCHES 
FIGURE 37
 

POWER SYSTEM/PAYLOAD TCS COST COMPARISON
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VOUGHT 

a PASSIVE HEAT REJECTION:
 
- EXPECT 20%-40% MANY PAYLOADS
 
- NEEDS STUDY
 

* 	SCIENCE PAYLOADS:
 
- PAYLOAD GIMBALLING DESIRED (SASP STUDIES)
 
-
 GIMBAL HEAT TRANSPORT TECHNOLOGY READINESS QUESTIONABLE 
- EARLY PAYLOADS HAVE MODEST POWER REQUIREMENTS 

* 	UP TO 15 kW (25 kW POWER MODULE EVOLUTION STUDY) 
o 	CANDIDATES FOR DIRECT PALLET MOUNTING TO POWER SYSTEM (NO GIMBAL) 

* -SPACE CONSTRUCTION: 
-	 PUBLIC SERVICES PLATFORM ASSEMBLY AND TESTUP TO 15 kW (25 kW PM EVOL STUDY) 
- HIGH PASSIVE HEAT REJECTION POTENTIAL 

MMANNED MODULES: 
-7 kW TO 27 kW HEAT REJ NEEDED USING 25 kW PS,40 kW GROWTH (SASP CONCEPTUAL DES STUDY)0 F HUMIDITY CONTROL 

- - CANDIDATE FOR CENTRALIZED HEAT REJ; ALSO CONTROLLED STR HEAT LEAK 

* 	MATERIALS PROCESSING: 
- 10 kW TO 65 kW HEAT REJ NEEDED USING 25 kW PS, 100 kW GROWTH (MEC AND SASP STUDIES)
-	 TEMPERATURES.UP TO 3009F 
-	 CANDIDATE FOR SPECIALIZED HEAT REJECTION 

CONCLUSION: 10-16 kW CENTRALIZED POWER SYSTEM HEAT REJECTION TO PAYLOADS PROVIDED BY 
MSFC REFERENCE CONCEPT CAN BE EFFECTIVELY USED AND SHOULD SATISFY 
ESSENTIALLY ALL EARLY MISSION REQUIREMENTS. 

FIGURE 38 PAYLOAD CONSIDERATIONS FOR CENTRALIZED/DECENTRALIZED TRADES 

http:TEMPERATURES.UP


* DEVELOP FOR USE WITH EARLY PAYLOADS 
-. PANELS DESIGNED TO-INTERFACE SPACELAR 

PALLET AND PLATFORM NONDEPLOYABLE V'OU I-IT 
TRUSS 

* INSTALLED ON GROUND AS KIT 
* PALLET AREAS AVAILABLE INCLUDE 

MOUNTING 	CLEARANCE IN SHUTTLE 3 M
 
SPACE LAB
 
PALLET
 

3M 
SPACELAB 

PALLET34 T2 

PER SIDE 

BODY MOUNTED PANELS 	 DEPLOYED PANELS
 

30A40 FT2 "FIXEDPLATFORM 
BODY MOUNTED 

STRUCTURE 
PANELS 

FIGURE 39 
PAYLOAD KIT RADIATOR 



VOUGHT
 
, EVALUATE FOR USE AS PAYLOAD

CONCEPT 1 REQUIREMENTS EMERGE 

* 	 ACCOMMODATE PAYLOAD HEAT REJECTION 
NOT-SUITABLE FOR CENTRALIZATION 

* AVOID REPEATED DEV/PROD.LAUNCH COSTS 
ONE OF 4 
EXISTING 
SURPLUS
 
ATM SOLAR 
ARRAY CONCEPT 2 
SENSORS 
ARM WINGS ­

655 FT2 

RADIATING 
AREA:
 

43FT 	 11 kWtAT 1000 F/400 F 
28 kWt AT 2500 F/700 F 

TOTAL RADIATING
AREA, FULCY 
DEPLOYED: 1,700 FT2 

SEFOS#IO0N 	 ­

son 

DEPLOYED WING: 
--'f. 	 57 FT X 16 FT 

RELOCATABLE 
HEAT REJECTION
 
MODULE CONCEPT
 
USING ESA 
PALLET AND
 
ATM DEPLOYMENT
 
STRUCTURE PARTIALLY
 
(ALSO 4 PALLET TRAIN) DEPLOYED
 

STOWED
 

FIGURE 40"
 
TYPICAL RELOCATABLE HEAT REJECTION MODULE CONCEPTS 
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INITIAL INTERMEDIATE LONG-TERM VOUGIIT 
25 kW PS GROWTH GROWTH 

H'Lo 

* CENTRALIZEDAS 
MUCH AS EFFECTIVE 
- APPROX 10-16 kW 

FOR PAYLOADS 
* PASSIVE WHERE CAN 
• KIT P/L RADIATORS 

WHERE CANNOT 
CENTRALIZE OR 
PASSIVE 

0 INCREASED 
CENTRALIZATION 

* CONTINUED 
EFFECTIVE USE 
OF PASSIVE 

0 RELOCATABLE 
MODULE AS 
REQUIREMENTS 
EMERGE 

0 
* 

0 

HIGHLY CENTRALIZED 
EFFECTIVE USE OF PASSIVE 
AND CONTROLLED 
STRUCTURAL HEAT LEAK 
LARGE SCALE 
THERMAL MANAGEMENT 

PAYLOAD STUDIES 
AND DEVELOPMENT PAYLOAD NEEDS PAYLOAD NEEDS 

TECHNOLOGY 
DEVELOPMENT 

-

-

INITIAL MANNED MODULES 

GROWTH OF SCIENCE 

AND SPACE PROCESSING 

-

-

FURTHER MANNED OPERATIONS 

LARGE SCALE PLATFORM 

-
-
-

SWIVELS 
DISCONNECTS 
CONTACT HX 

-

-

THERMAL UMBILICAL 
CONSTRUCTABLE RADIATORS 

FIGURE 431 TYPICAL EVOLUTIONARY PATH 



FIGURE 42
 
POWER SYSTEM/PAYLOD 
 THERMAL INTERFACE CONCEPT' 

COWTACT HEAT EXCHANGER
 

ct
 
',~PayloadCotc


a 


Payloadlo 
Heat Load Payload H/X


RTemp 
Control 

Valve
 

~Batteries
 

Radiator~Power Proc.
 

Equip
 
wr rS Ss se e
Payload All Heat Pipe 14P up 

TCS 


Payload Power System
 

Pump Package
 

Thermally Actuated
 
Flow Control Valve
 

VOUGHT 



FIGURE 43 
POWER SYSTEM/PAYLOJW THERMAL INTERFACE CONCEPT 

FLUID HEAT EXCHANGER 

Payload 
Heat Load 

Payload 
Radiator 

Payload 

H/Xo 

On--

--

Batteries 

Temp Control 
Valve 

Fluid Quick 
Disconnects 

I-Actuated 
Flow 

Control 

Valve ---

-

- -_ 

:H 

~~PowerProc. 

Equip 

rower System. 
Equipq _. 

RadiatorRdao 

Payload -- O--Power System Pump Package 
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FIGURE 44
 

POWER SYSTEM/PAYLOAD THERMAL INTERFACE CONCEPT
 

DIRECT FLUID COUPLING
 

Microprocessor
 
for P/L Heat
 
Load Control
 

Payload
 
Heat Load ~Valve Temp Control
 

Paylad ]Batteries
 

H/X Radiator 
Power Proc.
 
Equip
 

•Disconnects
 

Pump Package
 

Intermediate Coolant
 
Loop
 

Payload i Power System 
I VOUGHT 



FIGURE 45 

POWER SYSTEM/PAYLOAD INTERFACE 

HEAT EXCHANGER WEIGHT 

16 kW 

140 

120 

FROM PS RAD 

H 

100 

80 

35OF 

TOUT 1 1 0 F 

FROM P/L 

60 

40 

CON TACT 

FLUID/FLUID 

-

20 

TT 

I 

.84 

= 45.0OF 42.5 0 F 
p 

.86 .88 .90 .92 

HEAT EXCHANGER EFFECTIVENESS 

39.5 0 F 

.94 .96 
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OMk4XSEALS FBEARING 
BEARING- BEARING 

CARBON SEALS 
ONISEAL"A 

FIGURE 46 FOUR PASS FLUID SWIVEL
 



SCALE: 1/4" =1" 

FIGURE 47 

FLEX HOSE/REEL ROTATING JOINT CONCEPT 

S VOUGI-IT 
CORPORRTIOn 



FIGURE 48
 

FLEXHOSE/REEL WEIGHT
 

INCLUDES F-21 WEIGHT
 

15 WRAPS
 
28 REVOLUTIONS
 

250.
 

206­
10 WRAPS
 
18 REVOLUTIONS
 

150
 

5 WRAPS
 
8 REVOLUTIONS
 

100 ­

soo
 

0'
 
0 .25 .5 .75 1.0
 

HOSE I.D. (IN)
 
2VOUG0T
 

COI'-PORR:TIOr
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10000 

FIGURE 49 

FLEXHOSE/REEL VOLUME 

8000 

6000 

DIA 20.4" 

4000 

DIA = 16.8" 

* 2000 

0 

1000 

DIA = 13" 

800, 

600 -

DIA = 9.6" 

I , 

400 

0 .2 .4 .6 

HOSE I.D. (IN) 
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FIGURE 50 

FLEX HOSE/REEL PRESSURE DROP 

40.0 

20.0 

10.0 

8.0 
3 

P46.0 
~6.O 15 WRAPS 

S4.0 

10 WRAPS 

5 WRAPS 

-2.0 

1.0 A­
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SVOUGHT 
HOSE ID - IN. CORPORRTIOf 
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VOUGHT
 

CONTACT,
 
HX 

FIXED 
HOSESWIVEL, / N 

I POWER SYSTEM -

END
 .I , 

FIGURE 51
POWER SYSTEM/PAYLOAD s 

THERMAL INTERFACE CONCEPT 

123. 



.SEGMENTED CONIC, 
HEAT EXCHANGER CORE 

I fil , S DIAPHRA GM 

- PRESSURIZED 
AREA 

.INNER CONE 

POWER SYSTEM STRUCTURE 
PAYLOAD STRUCTURE 

COOLANTLOOP 
TO P BRGFROM 

'tAG 
PAYLOAD 

COOLANT LOOP 

4N2 

MOTOR 

.REGULATOR 
DIAPHRAGM 

2-WAY VALVE, 

JACKSCREWIGUIDE MOTOR OR SOLENOID 

() PRESS SOURCE PORTED 
S(1TO DIAPHRAGM 

(2) PRESS SOURCE SEALED, 
DIAPHRAGM VENTED TO 

VLECTRICAL 

I MBILICAL 

I 

" ! 

MIN 

FIGURE 52 
CONICALCONTACT HEATEXCHANGER CONCEPT 

T PAYLOA 
24 ' POR QALr LOOP 



FIGURE 53
 

POWER SYSTEM TCSSCHEMATIC VOUGIT 

CONTROLLED
 
__ TEMP
 

3288 LB/HR 778TL"/H 350F
!778 LB/HR
35F 


BATT 
 GSE -FROM RAD
 

16 kW ea. 
 0 REDUNDANT TEMP 
P/L H/X I CONTROL VALVE 

BATT 

5 00F00 


OHARG. 
BREGS
Ho I^EGi 
 93.50OF RADIATORS 

61o00 LB/HRRATE 
0 -- ° A GYROS76,3 F DAT ) 

FLUID -REDUNDANT LOOPS (ONE STANDBY)
 

ICK- CMG 8 0 03 ORBITER PUMPS EACH LOOP NETSN6V] 
 92"I°F 2 OPERATE, 1 STANDBY 
N SINV 3200 LB/HR EACH AT 64 PSI 

PAYLOA !100"F 90OF 78.5 0 F AP
 
POWER ---- RADIATOR 30.0
SYSTEM FLUID LINES WEIGHT TCV 6.o
 
INTERFACE 61.7 FT 0.85 ID = 30.24 LB. GSE 3.0
 

44.2 FT 0.65 ID = 13.9 LIKES 8.8
 

FT o.6 ID = 1.7 COLDPLATES 3.0_5 


30.3 FT '0.45 ID = 9.5 50. PSI 
P/L HEAT EXCHANGER 67 FT 0.35 ID = 8.2 MARGIN 13.2 
CONTROL VALVE (EACH LOOP) 73 5LB.­



TO 

/ I 
G ' I '.OL I 

Ho I WEIGHT OPTIMIZED PLUMBING -

POWER PENALTY = 350 LB/kW 

Ik 

FLUID LINES 

61.7 FT 0.85 ID 
44.2 FT 0.65 ID 
5 FT 0.60 ID 

30.3 FT 0.45 ID 
67 FT 0.35 ID 

(EACH LOOP) 

= 
= 
= 
= 
= 

WEIGHT 

30.24 LB 
13.9 
1.7 
9.5 
8.2 

FIGURE 54 FLUID LINES ROUTING 25 kW POWER SYSTEM REFERENCE CONCEPT 



Spac-lab 
AERITALlA 

FIGURE 55 SPACELAB COLDPLATE PRESSURE, DROP DATA
 

THEPJAL CONTROL SUDSYSTEnl - PRELIIINARY DESIGN REVIEW 

6.1 '.ANALYS - COLD PLATE/WATER FREON PRESS. DROP VS MASS FLOW 

ZOO - ­

oa~ Patir-- 000S ACELU 

11.I 1 " o a ­-

_ -f 

lI - --- - -i - 5'o: MzHo 
G =136uM8( H 

To 37 '' ,37,8c3ho/ GRil (G 

5" 000 .coeo300 500060 

WATER MASS FLOW RATE (KG/H) " POWER FREON MASS FLOW RATE (KG/H)

SYSTEM
 
DESIGN POINT
 



VERJTALIA 

SPACELAB COLDPLATE THERMAL PERFORMANCE.
FIGURE 56 


THEPMAL CONTROL' SUBSYSTE,? - PRELIMINARY -DESIGN -REVIEW 

6.1 ANALYSIS - COLD PLATE PERFORMANCE/FREON 

1500­
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, DESIG POIT.
,200DESG 

FREON FLOW
 
DESIGN POINT"
POESE T 37,3C _ _ 

CC.-,N 

-J 

,0 500 1000. 1500 zooo 

FREON MASS FLOW (KG/H)
 



FIGURE 57
 
SPACE SHUTTLE FREON 21 PUMP PERFORMANCE
 

MODEL 145660-200
 

FLUID TEMP: 	 DEMONSTRATED -65F -TO +120°F
 
CAPABILItY -200°F TO +300°F
 

FLUID PRESSURE: 	 DEMONSTRATED 570 Psi PROOF
 

LEAKAGE: (6.8 x 10-4scc/sEc HELIUM
 
9 380 PS.I
 

MATERIALS IN CONTACT WITH FLUID
 

STAINLESS STEEL (PASSIVATED)
 

ALUmTumI (ANODIZED)
 

'-CARBON - GRAPHITE 	 Op,T Azp,CHROM E LU lTEFLON S;EALS 	 .117i 

LIFE: 	 28000 HRS. DEMONSTRATED AND SWILL
 

RUNNING (DECEMBER 1980)
 
WEIGHT: 	 3.9 LBS.
 
VOLUME: 	 7.9" L x 3.5" DIA. 
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FIGURE 58 POWER SYSTEM/ORBITER
 

ENVIRONMENT MODEL
 

SOLAR ARRAYS
 
129.4' x 28.5'
 
SUN SIDE a .33, e .87
 
BACK SIDE a,711 .81
 
WT = .29 LB/FT4
 

RADIATORS
 
16' x 53'
 

-POWER SYSTEM
 
-- / 	32' x 13' x 6.7 

S=.32, £ = .80 
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SUN O
 

X AXIS PARALLEL TO SUN LINE (PSL) 

SUN jl 

Z AXIS PARALLEL TO SUN LINE (PSL) 

FIGURE 59 

TSINK -°F 

Z-PSL X(-PSL 

/ 0.11 0.20 0.30 0.50 0.11 0.20 0.30 0.50 
0 -57 -49 -41 -26 -87 -79 -69 -53 

28.5 -60 -90 
57 -63 -93 
90 -66 -96 

DESIGN CbONDiTION IS Z-PSL, = 00 

RADIATOR THERMAL ENVIRONMENT STUDY RESULTS ,­

-Lj 



VOUcs-fT
CORPORRTlon 

T = 100OF 

1,000 X -POP, Z - PSL TOUT 4C* F 

235 NM 

950
 

HEAT REJECTIONFOR 774.5 Ft2 -2
RADIATORADIATOR2
 

900- 24 
RADIATOR 23 HEAT 

AREA(FT,| 850- REJECTION- 22 (kW) 

-- 21
 

AREA REQUIREMENT 
FOR 25 kW HEAT LOAD 

.750­

VO.1 0.2 0.3 0.4 0.5 
SOLAR ABSORPTIVITY 

FIGURE 60
 
EFFECT OF SOLAR ABSORPTIVITY
 

ON RADIATOR PERFORMANCE
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700 
a = 0.30 

RADIATOR 
AREA 400 

SAVINGS(FT2) 

300 

a= 0.20 
200 25 kW 

HEAT LOAD 

!oo 

a=0.11 

0 10 20 30
 
6, SOLAR MISALIGNMENT ANGLE (DEGREES)
 

. FIGURE 61 
SOLAR AVOIDANCE BENEFITS 
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ORI NTED 

150 -

RADIATOR 

AREA 
SAVINGS(FT2). 100 

50-

I I 
0.1 0.2 0.3 0.4 0.5 
SOLAR'-ABSORPTANCE 

FIGURE 62 SOLAR ARRAY AVOIDANCE BENEFITS 

-' VOUIIGHT 

CORPORRTIOn 
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4.0 VOUGHT 

FLUID TUBE 
ALUMINUM EXTRUSION 

HONEYCOMB* 

2.0 lei II 

0011O A' NIFOLD. L 01.011ALUMINUM FACE SHEET 

0.85 x 0.035 
BUMPER 

WALLMNIOLD 
-,PNLDTI

B-B, PANELDETAIL 

A-A MANIFOLD DETAIL 

2VOID L0.025 
0.029 

0.069 

FLOW 182 0. 625 

0.S025 -0 

-. 127-I 

MANIFOLD B 
<EXTRUDEDTUBE DETAILS 

FIGURE 63 RADIATOR PANEL PRELIMINARY DESIGN
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FIGURE 64 VOUGHT 
DRUM AND CABLE DEPLOYMENT SYSTEM CORPOI-IR-TIOn, 

1-36 



FIGURE 65
 

HINGE LINE LOADS - SPRING LOADED HINGE CONCEPT
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SVOUGHT
 
CORPORRTIPn 

k 	 RADIATORS 

DEPLOYED 

RADIATORSO D 

- IPAYLOADV 

SYSTEM
 

FIGURE 67 BOOM DEPLOYMENT CONCEPT
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FIGURE 68 SPACE CONSTRUCTED RADIATOR ARRAY
 

EXAMPLES OF IELO TABLE
 
CONSTRUCTABLE MODULES
 
ATTACHED TO MATERIALS 
PROCESSING LAD
 

SOLAR ARRAYS MMSATCA 

DPznfVhfcouNSTUCTEa, 
RA)IATOTPANELS 

SVOUSI-T 
cORPO~rRTIOfl 



SVOUG|-T
CORPORRlTIo-f 

ADJACENT 
 I ADJACENT 
SUBMODULE 01- 4 KW SUBMODULE SUBMODULE 

OVER/DOORN2 BOTTLE N BOTLE9FTCN2 LINE -

FLUID SYSTEM 1 I1 
FLUID SYSTEM 22 

_I
 

HINGE HINGE 

N2 VALVE RMS 

CONTROLLEVERSP GRAPPLE HOLES 

PRNdc-LgW7771 

FIGURE 69 SPACE CONSTRUCTABTE RADIATOR SUBMODULE
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FIGURE 70 

SPACE COiSTRUCTABLE RADIATOR WEIGHT 

11000 
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Ts = -400 F 

1T. = 1000 F Tinf Tout 

LENGTH > 45 FT 
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FIGURE 71
 

12000 SPACE CONSTRUCTABLE RADIATOR WEIGHT 
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FIGURE 72
 

DEPLOYED RADIATOR
 
25KH POWER MODULE
 

FREQUENCY = 0.11 'CPS
 

FIRST MODE
 

.... UNDEFORMED
 

.... .... -----------------------­
4 -,---
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-- 

VOUGHT
CORPORRTIOn 

FIGURE 73 
DEPLOYED RRDIATOR
 
25KW POWER MODULE
 

FREQUENCY = 0.49 CPS
 

SECOND MOfDE
 

.... 
 . --
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UNDEFORMED 
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FIGURE 74
 
DEPLOYED RAO1RI
= VOGHT 
25KW POWER NOmIIJ ROPORuqT~~f 

FREQUENCY =0.49 CPS 

THIRD MODE 

-4------ UNDEFOR14ED 

-. .. -........ -- - .
 

. . . . . . . --- .. . ... . .
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FIGURE 75 
DEPLOYED RADIRTOR r VOUGHT 
25KW POWER MODULE CORPORRTiOfl 

FREQUENCY = 0.56 CPS 

FOURTH MODE
 

-UNDEFORMED
 



FIGURE 76' VOUGI-IT 
PARTIALLY OEPLOYEO RRDIATOR - 45 DEGS. COrPORnTion. 

25KW POWER MODULE 
FREQUENCY = 0.12 CPS 

FIRST MODE 
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FIGURE 77 

PRTIALLY DEPLOYED RADIRTOR - 45 DEGS. COUrI-IT 
25KW POWER MODULE 
 CDRPORRTIOf 

FREQUENCY = 0.21 CPS
 

SECOND MODE
 

- - - - UNDEFORMED 
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FIGURE 78 
PRRTIALLY DEPLOYED RADIRTOR - 45 DEGS. 

25KW POWER MODULE 
FREQUENCY = 0.29 CPS 

L VOUGHT 
CORPORRTIOf 

THIRf MODE 

UNDEFORMED 
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FIGURE 79 

PARTIALLY DEPLOYED RADIATOR - 45 
25KW POWER MODULE 

FREQUENCY = 0.78 CPS 

DEGS. 

f VOUGHT 

rCORPORRTIo 

FOURTH MODE 
. UNDEFORMED 
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ALUMINUM EXTRUSION 
0.127

.O2 5,N. 
x 0.625 

00.069\ IN. ID.LOW PA.TH 
28 TUBES (14 EACH LOOP) HONEYCOMB F 

0.85 IN k 
DUAL 
MANIFOLDWITH N. 1 0.011 IN.FACESHEET ALUMINUM 

METEOROID 
BUMPER 

FLOW1 

LOOPS (1 STANDBY) 

FLOW = 6,400 LB/HR 
TIN = 93.5 0 F, TOUT = 35 0 F 

=WEIGHT SUMMARY QREJ 28.0 kw PS 
9 kw PAYLOAD 

RADIATOR PANELS (9) 1,322 LB DEPLOYED NATURAL 
INTER PANEL FLEX HOSES (40) 80 LB FREQUENCY = 0.11 HZ 
SCISSORS ARMS 234 LB 

(2 x 0.3 IN. WEB I BEAM) 
DEPLOYMENT BASE - (SOLAR AVOIDANCE). 247 LB 

(GEARS, MOTOR, LATCHES, ETC) 
1,883 LB 

FIGURE 80 TCS PRELIMINARY DESIGN SUMMARY 

VOUGHT 

1% 



FIGURE 81 

FLEX HOSE SOFT ARMOR NETEOID PROTECTION
 
A.SMD ON RITTENHOUSE EQUATIOQ 

.22 
 NDLOU, t - 500, pt - 0.9 g/cm3, C , 0.676 

A - 5.89 FT2 - 26 ROSES EACH 18* 
.20 TIME 5 YS 

a""
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•PROABILITY OF PUNCTURE 
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VICUEE $4 FEASIBILITY DEMONSTRATION MODEL STOWED POSITION
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RADIATOR/ DEPLOYMENT MECHANISM PRELIMINARY DESIGN
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