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1 .O SUMMARY 

Previous work on the DOT/SST follow-on program showed that the environmental corrosion 
resistance of aluminum-brazed titanium honeycomb sandwich was basically satisfactory. 
Short term investigations indicated that titanium brazed with 3003 aluminum alloy was 
inherently resistant to corrosion under anticipated aircraft service conditions. Passivation 
films on both the aluminum and titanium surfaces effectively prevented galvanic coupling 
in the service environments evaluated. Chromate-inhibited primers provided additional cor- 
rosion protection for exposed panel edges. 

The present program was designed to continue the long term creep-rupture, flight service, and 
jet engine exhaust tests initiated under the original program. The program included three 
types of specimens that were exposed to ambient environments on commercial airplane landing 
gears, jet engine test stands, the YF-12A airplane, and laboratory elevated-temperature, 
creep-rupture tests for periods LIP to 6 years. 

The results of the investigation confirm previous conclusions that the corrosion resistance of 
ABTi structure is satisfactory for commercial airline service. The only deviation from this 
general conclusion is for sandwich structure, which is designed for sound attenuation and 
incorporates a perforated face skin that fosters entrapment of water. In this case, the braze 
must be protected by either a protective finish or by drying, such as heating in a jet engine 
tailpipe. 

ABTi was shown to have usable (flatwise tension) creep strength up to 4250C (800OF). The 
braze was also shown to be metallurgically stable for approximately 50,000 hours at 425’C 
(800OF) and for progressively shorter times at increasingly higher temperatures. 



2.0 INTRODUCTION 

Aluminum-brazed titanium (ABTi) honeycomb sandwich is attractive for aircraft structural 
and acoustic applications, especially at service temperatures between 1.50’ and 42.5OC 
(300° and 800’F). 

The corrosion resistance of the ABTi system during short and intermediate time exposure to 
a broad range of service environments was established by a program under the sponsorship of 
the Department of Transportation (DOT, report FAA-SS-73-5-6). 

The purpose of this NASA-sponsored program was to perform additional tests to evaluate 
degradation of ABTi during extended exposure to extreme service environments. Flight 
service, jet engine exhaust exposure, and creep-rupture tests initiated under the DOT contract 
were also continued, in order to provide 4- to 8-year environmental service data under the 
conditions encountered during actual usage. Extreme environment tests were conducted to 
determine the effects of flight service environmental fluids, temperatures, and stresses on 
ABTi structures for exposures of up to 7 months. The overall scope of the DOT and NASA 
corrosion programs is shown in table 1. 

The results of the “Accelerated Lab Tests” and “Fundamental Studies” were reported in 
reference 1. The results of the “Extreme Service Tests,” phases II, III, and IV of this contract, 
were reported in reference 2. 

This report covers “Service Evaluations” (with the exception of 737 airplane flight spoilers, 
which are carried on NASA contract NASl-13897, phase I of this contract, and 737 tailpipe 
extensions which will be covered in a supplementary report). 

All brazed test parts were fabricated from Ti-6Al-4V titanium sheet, Ti-3Al-2.W titanium core 
if honeycomb sandwich, and 3003 aluminum braze alloy. Specimens were vacuum retort 
brazed per Boeing specification XBAC 5967 (see DOT report FAA-SS-73-5-8) by shop personnel 
under production conditions. 

Because of significant differences in processing and corrosion parameters, three different types 
of parts are described in this report: 

1. Structural honeycomb panels-honeycomb sandwich panels with solid 
face sheets. 

2. Acoustic honeycomb panels-honeycomb sandwich panels that have one 
solid face sheet and one perforated face sheet. These panels are designed 
for noise attenuation applications. 

3. Faying-surface panels-two solid :sheets directly brazed together. 



Table I.- Corrosion Test Summary and Schedule 
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The code used to define the configuration of the honeycomb core is as follows: 

S C 4 - 20 N M (Example) 

M = Machined both surfaces 
R = Rough, as fabricated 
M/R = Machined one side only 

N = Cell walls nonperforated 
P = Cell walls perforated 

Cell wall thickness in 0.00 1 ths of an inch, 
e.g., 20 = 0.0020 inch (0.05 1 mm) 
Cell size in 1/16ths of an inch, e.g., 
4 = 4/ 16 or l/4 inch (6.4 mm) 

C = Corrugated cell wall 
S = Smooth cell wall 

_ S = Square cell shape 
H = Hexagonal cell shape 

ACKNOWLEDGMENTS 

The sustained efforts of the following organizations over a period of several years made this 
study possible : 

Air France 

All Nippon Airways 

Braniff Airways 

Continental Air Lines 

Deutsche Lufthansa 

Eastern Air Lines 

Libyan Arab Airlines 

Northwest Airlines 

Trans World Airlines 

Western Air Lines 

General Electric Company, Aircraft Engine Group 

Pratt & Whitney Aircraft 

NASA Flight Research Center 

The use of commercial products or names of manufacturers in this report does not constitute 
official endorsement of such products or manufacturers, either expressed or implied by NASA. 



3.0 SERVICE EVALUATION TESTS 

The service evaluation tests included: 

1. Samples mounted on the main landing gear of Boeing 727 airplanes in 
commercial airline service 

2. Samples mounted in a dry wing bay of the NASA YF-12A airplane 

3. Samples mounted in the exhaust plume of jet engine test stands 

4. Laboratory stress-rupture tests 



4.0 TEST SPECIMENS AND PROCEDURES 

727 AIRPLANE LANDING GEAR 

Three types of specimens were used, representing structural honeycomb, acoustic honeycomb, 
and faying-surface joints. The honeycomb sandwich specimens were fabricated using 0.5-mm 
(0.020-in.) Ti-6Al-4V skins. For the acoustic samples, one skin was perforated with a staggered 
array of 1.3-mm (0.050-in.) holes to produce a 9 percent open area. Core in all cases was 
2.54-cm deep (1 .OO-in.) Ti-3Al-2.5V. The structural specimens were half SS2-20N and half 
SC4-20N; the acoustic specimens were all SC4-20N. The lap shear specimens were fabricated 
from 2.7-mm (0.106-in.) Ti-6Al-4V sheet. Figures 1, 2, and 3 give the details of the three types 
of specimens. The specimens were assembled as test kits, figure 4, using titanium alloy bolts 
and washers to preclude any external galvanic effects. The kits were bolted to the landing 
gear mud flaps as shown in figure 5. 

The flight test specimens were enclosed in the unheated, unpressurized wheel well during 
flight and were partially sheltered by the wing when the airplane was on the ground. During 
takeoff and landing, the specimens were exposed to rain, spray, slush, runway deicing 
materials, reverted rubber deposits, engine exhaust fumes, and the local corrosive atmospheric 
contaminants. The specimens were mounted on 18 aircraft flown under routine conditions 
by nine commercial airlines (Air France, All Nippon, Braniff, Continental, Libyan Arab, 
Lufthansa, Northwest, Trans World, and Western). Flights were operated in Europe, Japan, 
the Middle East, North Africa, and the United States, exposing sets of specimens ranging 
from temperate-inland to tropical-marine (mild to highly corrosive). 

Individual specimens were removed by the airlines at intervals of 6 to 12 months and shipped 
to Boeing for examination, test, and analysis. 

JET ENGINE EXHAUST 

Test specimens were open-edge (core exposed) 3.8- by 7.6- by 2.5-cm-thick (1.5- by 2- by 
l-in.) structural and acoustic honeycomb sandwich. They were fabricated, finished, and 
assembled as test kits similar to those shown in figures 1, 2, and 4. The test kits were bolted 
onto special frames located in the exhaust gas stream of the engine test installation. Specimens 
were tested in the General Electric (Evendale, Ohio) and the Pratt & Whitney (East Hartford, 
Connecticut) facilities in indoor cells, sheltered from the rain but otherwise exposed to the 
ambient outdoor temperature, pressure, and humidity conditions. During engine operation, 
specimens were subjected to the exhaust blast at 69’ to 1 13’C (155’ to 236’F) in the 
General Electric facility and at 425’ to 482’C (800° to 900’F) in the Pratt & Whitney 
facility. 

Specimens also were tested in the Pratt & Whitney Florida Research and Developmental Center 
(FRDC) (West Palm Beach, Florida) facility in an outdoor test stand, completely exposed to the 
Florida weather. The facility is approximately 32 km (20 mi) inland from the east Florida 
coast and subject to prevailing force 4 winds from the ocean. During engine operation, the 
FRDC specimens were subjected to the exhaust blast at a location 5 m (16.5 ft) to the rear 
and 1 m (3.5 ft) left of engine centerline, as shown in figure 6. The FRDC specimen temperature 
ranged from 85OC (185OF) during unaugmented operation (approximately 38 percent of the 
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Figure 1. - Structural Honeycomb Flight Test Specimen 
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Figure 2.- Acoustic Honeycomb Flight Test Specimen 

.051 mm (0.002 inch) prebraze gap 

I 

2.69 mm 
0.106 inch 

Figure 3.- Single Lap Shear Faying Surface Test Specimen 
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(a) Structural Honeycomb Specimens 

(b) Honeycomb Specimens and Attachment Hardware 

Figure 4. - Model 727 Ffigh t Test Kits 
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(c) Acoustic Honeycomb Specimens 

(d) Faying-Surface Joint Specimen 

Figure 4. - (Concluded) 
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Figure 5.- Corrosion Flight Test Kit Mounted on Model 727 Main Landing Gear 



L 

figure 6.- Corrosion Specimen Kit Mounted in a Jet Engine Exhaust Zone (Pratt & Whitney - Florida) 



engine time) to 425OC (800OF) during the 5 percent of the time that the engine operated 
with maximum augmentation. 

YF-12A AIRPLANE 

Test specimens were 5- by 5- by 2.5-cm-thick (2- by 2- bv l-in.) structural honeycomb sand- 
wiches, with 0.5-mm (0.020-in.) face sheets and SS2-20 core. The two adjacent edges of each 
specimen were left unfinished and the other two edges were protected with Alodine 1200, 
DeSoto 825-009, Dow Corning XR-62205, or Sermeta1385 coatings. The specimens were 
assembled into test kits as shown in figure 7. Some of the fastener holes were left bare and 
others were protected by filling with Dow Corning 77-028 sealant or by flushing with a 
saturated solution of magnesium chromate or strontium chromate corrosion inhibitors. 

The flight test specimens were mounted in an unpressurized dry wing bay and were sheltered 
from direct contact with the weather. The specimens were subjected to low temperatures 
and periodic moisture condensation during subsonic flights and to 200’ to 260°C (400° to 
500°F) temperatures at very low atmospheric pressures during Mach 3+ supersonic flights. 

EVALUATION 

Upon receipt, specimens were examined visually for evidence of corrosion or mechanical 
damage. Following visual inspection, the specimens were tested to destruction statically. 

The honeycomb sandwich specimens were bonded to loading blocks and pulled to failure 
in flatwise tension. In a specimen of this size, 3.8 by 5.1 cm (1.5 by 2.0 in.), the peripheral 
fillet constitutes roughly 60 percent of the total braze (there is considerable variation 
depending upon the relationship between the edge of the specimen and the core nodes). 
This condition makes the test hypersensitive to corrosion or other (mechanical) damage to 
the peripheral core. 

The faying-surface specimens were pulled to failure in tension (single lap shear). 

The strength values obtained were 10~~ Doed against the total exposure time since installation. 
The tabulated data are shown in tables I through V in the appendix. Each set of data was 
subjected to a statistical regression analysis. These analyses are shown in tables VI through X 
in the appendix. 

STRESS RUPTURE 

HONEYCOMB SANDWICH TESTS 

Flatwise tension stress-rupture tests were conducted i!sing single-cell tube specimens and 
honeycomb sandwich specimens. The honeycomb specimens were made with 2.54-cm-deep 
(1 .O-in.) SC4-20N Ti-3Al-2.5V core. Since adhesives were inadequate for attaching the speci- 
mens to the loading blocks, the sandwich was made with 6.35-mm-thick (0.25-in.) skins that 
were drilled and tapped for attachment to the loading blocks with cap screws. Testing was 
conducted at 230°, 320°, and 425’C (450°, 600°, and 800’F). Specimens that did not 
fail in 50,000 hours (5.7 years) were unloaded and pulled to failure at room temperature. 
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Figure 7. - Supersonic Y F- 12A Test Specimens 



FAYING-SURFACE TESTS 

Two double-shear lap joint specimens, as depicted in figure 8, were loaded in tandem at 230°C 
(450OF) at an applied shear stress of 13.8 x lo6 Pa (2000 psi) (33 percent of USS). Lines 
scribed across the joint were examined periodically with a microscope to measure creep. 

- 

--- 

--- 

- 12.7 mm 
0.50 inch 

t 
2.54 cm 
1 .O inch 

0.635 cm 0.25 inch 

2.54 cm 
1 .O inch 

0.20 inch 

i 

Scribed lines 

d- Braze 

Figure 8.- Faying Surface Braze Stress- Rupture Test Specimen 
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5.0 RESULTS 

The cooperation of the participating airlines, engine manufacturers, and NASA was excellent. 
With the exception of the Libyan Arab airplane, which was destroyed before any specimens 
were returned, over 80 percent of the originally installed specimens were returned for 
evaluation. 

727 AIRPLANE LANDING GEAR 

The specimens, as returned, were coated with a heavy black layer of adherent reverted 
rubber and other soil that effectively masked any evidence of corrosion attack. Cleaning 
methods that would remove the soil also removed any corrosion deposits. After flatwise 
tensile testing (sandwich specimens), the characteristics of corrosion attack could be examined 
(see Discussion). 

STRUCTURAL SPECIMENS 

The composite core (part SS2-20N and part SC4-20N) in these specimens produced a large 
inherent variation in the flatwise tensile strength. The statistical analysis showed a small 
decrease in the strength of the specimens with exposure time. 

ACOUSTIC SPECLMENS 

Both visual examination and statistical analysis showed the acoustic specimens to be consider- 
ably degraded with increased exposure time. 

FAYING-SURFACE SPECIMENS 

Neither visual examination nor statistical analysis showed any degradation in the strength of 
the faying-surface joints. 

JET ENGJNE EXHAUST 

The tests conducted in indoor test cells at both General Electric and Pratt & Whitney produced 
essentially the same results. There was no evidence of braze degradation in either the struc- 
tural or acoustic specimens by either visual examination or statistical analysis. 

The tests in the Pratt & Whitney outdoor test cell in Florida were too limited to provide 
conclusive results. The specimen fixture in this installation was located in an extremely high 
sonic environment, which caused loss of the entire fixture before representative testing had 
been accomplished. Visual examination of the specimen with the longest test time accumulated 
(16 months) showed light surface corrosion on an acoustic specimen. The flatwise tensile 
strength was lower than would be predicted from the visual corrosion damage. The low 
strength could have been caused by mechanical damage from the high sonic environment. 

15 



YF-12A AIRPLANE 

_ . _ . 

The specimens were installed in the YF-12A airplane for a total time of 75 months. During 
that time, a total of 193.4 flight hours was logged, of which 56.8 hours were ab.ove Mach 2.6 
and 21.5 hours were above Mach 3. Temperature indicators mounted .on the test panel showed 
that the parts reached a maximum temperature close to 260°C (500OF). 

There was no visible change in any of the specimens since the original installation. Flatwise tensile 
strength could not be determined. The specimens were fabricated using SS2-20N core through- 
out. Such a construction has a flatwise tensile strength of approximately 34.5 x 106 Pa 
(5000 psi), which is greater than can be achieved by adhesive bonding loading blocks. All tests 
resulted in the failure of the adhesive at stress levels between 27.6 x 106 and 34.5 x 106 Pa 
(4000 and 5000 psi). 

STRESS RUPTURE 

HONEYCOMB SANDWICH TESTS 

The results of the honeycomb sandwich stress-rupture tests are shown in figure 9. This figure 
contains data generated on the SST and DOT follow-on programs as well as the current contract. 
Failure in all cases occurred in the braze but was attributed to prior creep of the core that 
relaxed the triaxial stresses at the root of the braze. 

The data show that the flatwise tensile strength of ABTi sandwich is time dependent, with a 
leveling phenomenon analogous to a fatigue endurance limit. This limit is approximately 
40 percent of the static strength sustained load, 4.1 x 106 Pa (600 psi) at 23OoC (450oF). 
At 3 16O and 425OC (600’ and 800°F), the limits are approximately 30 percent and 20 percent 
sustained load, 2.8 x lo6 and 1.4 x IO6 Pa (400 and 200 psi), respectively. 

FAYING-SURFACE TESTS 

The two double-shear lap joint specimens neither failed nor showed detectable creep after 
5 1 ,117 hours at 230°C (450’F) under a sustained load of 13.8 x 106 Pa (2000 psi). Room- 
temperature static shear strengths after this exposure were 68.6 x 106 and 58.6 x 106 Pa 
(9950 and 8500 psi) for the two specimens. These values fall within the range of unexposed 
room-temperature strengths, demonstrating that the exposure caused no degradation in 
properties. 

METALLURGICAL STABILITY 

Specimens from this contract, prior DOT programs (FAA-SS-72-03, ref. 3), and unpublished 
Boeing R&D programs were sectioned after thermal exposure and the thicknesses of the 
titanium aluminide (TiA13) interface layers were measured for growth during the therma 
exposure. If no significant growth of the aluminide layer occurred, the braze was considered 
metallurgically stable at that exposure. Figure 10 is a plot of combined data showing the time/ 
temperature limits. These data reveal that the braze joint has long term metallurgical stability 
at temperatures up to 425’C (800’F) and is usable at higher temperatures for shorter times. 
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Figure 70. - Metallurgical Stability of A B Ti 
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6.0 DISCUSSION 

Previous testing (ref. 1) developed three primary factors in ABTi corrosion: 

1. The 3003 aluminum alloy used for brazing has a high intrinsic corrosion 
resistance. 

2. The aluminum corrodes only when in contact with liquid water. 

3. Under severe (liquid) environments, the aluminum corrosion can 
be prevented by an appropriate protective finish. 

The corrosion of ABTi is limited to attack on the aluminum braze alloy. In the presence of 
liquid water, corrosion initiates as pitting attack at the intersection of grain boundaries. 
Further attack progresses along the grain boundaries until the entire braze fillet is affected. 
This progression, together with environmental factors that control the rate, can be illustrated 
with a brazed specimen from the 727 airplane landing gear exposure test. 

The corrosion morphology on a specimen from the 727 airplane landing gear test is representa- 
tive, in kind, of all types of specimens and aircraft applications. Figure 11 illustrates salient 
features. This photo shows the entire 3.8- by .5.1-cm (1.5- by 2.0-in.) face skin removed from 
a 727 landing gear test specimen. Sides marked A and B were painted with a corrosion pro- 
tective primer; sides C and D were left bare. G is the attachment hole and E is the cell with a 
vent hole in one skin. Neither E nor G (on this specimen) received any protective finish (see 
fig. 1). This particular specimen had been on the airplane for approximately 5 years. 

Cells marked H, I, and J had open nodes at the outside edge. Cell F had a small slit at the 
bottom of a cell wall (see fig. 12). This slit permitted some moisture to enter but also provided 
a drain such that water could not accumulate. Cell E contained the vent hole in the upper skin 
that would permit moisture to enter and accumulate without draining. The fastener hole G 
was not sealed (slip-fit fastener), but was shielded from liquid water by the fastener head. 
(The deposits around the hole are residual adhesive from bonding loading blocks for the flatwise 
tensile test.) The fillets marked 1 through 4 are the locations of scanning electron photomicro- 
graphs (SEM) discussed later. The various areas illustrate the corrosive behavior of ABTi. 

Sides A and B, which were coated with a chromate-inhibited epoxy primer, are representative 
of any exposed aluminum that has been given an appropriate protective finish. The SEM 
photograph at cell wall 2, figure 13, shows the surface of the fillet to be smooth with no evidence 
of corrosive attack. The results confirm prior testing (ref. 1) that an appropriate protective 
finish prevents corrosion. 

Cell F experienced a minimum exposure to moisture because of the small opening into the cell. 
The resulting corrosion within the cell was also minimal. The SEM photo of fillet 1, figure 14, 
shows the initiation of corrosion pits and the start of intergTanular attack. 

Call J was completely open to moisture. The SEM photo of fillet 3, figure 15, shows that 
corrosion has progressed alon, a 0 Drain boundaries over the entire fillet surface; however, after 5 
years, the basic structure of the fillet is still intact and able to sustain load. 
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. 

Figure 1 l.- Face Skin From 727 Landing Gear Structural Specimen 



Figure 12.- Side View of Specimen Showing Slit In Wall of Cell F 

Cell E, with an exposed vent hole, which can accumulate liquid water, represents the worst 
condition. (Acoustic sandwich that has more and/or larger holes is worse than this specimen 
because water can enter more readily, but the difference is in amount, not kind.) The entrapped 
water dries more slowly than an exposed surface, which increases the time the aluminum is 
wet and, hence, the amount of corrosion. The SEM photograph of fillet 4, figure 16, shows 
that the exposed side of the fillet is almost completely gone and corrosion has penetrated 
beyond the cell wall to the inner side of the fillet. 

An area such as the fastener hole, G, that is accessible to water vapor but not to liquid water, 
does not corrode. 

The small degradation in the structural specimens revealed by statistical analysis would not 
occur if (1) all of the edges had been painted and (2) there had been no vent hole. If a crack 
should develop in service, it would be expected to act similar to the fastener hole (with regard 
to corrosion), as there would not be sufficient opening to permit ingress of liquid water. 
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Figure 73.-SEM Photograph of Fillet Number 2 Showing 
No Evidence of Corrosion Attack 

Figure 74.- SEM Photograph of Fillet Number 7 
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Figure 15. - SEM Photograph of Fillet Number 3 

Nearly complete destruction and 
start of attack on inner side 

Figure 16.- SEM Photograph of Fillet Number 4 
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. . . _.--_._-..-...- . . . . . . ._ .- .---. ..--.. - 

7.0 CONCLUSIONS 

1. Aluminum-brazed titanium (ABTi) structures that do not incorporate features that will 
trap water (such as noise attenuation panels with perforated skins) have excellent 
corrosion resistance in aircraft service environments. 

2. For extended or severe service applications, the corrosion resistance of ABTi can be 
further enhanced by appropriate protective finishes. 

3. ABTi structures, such as acoustic panels, that can trap water must be protected from 
corrosion. This protection can be achieved either by a protective finish or by heating 
(to drive off moisture) such as air in an engine exhaust. 

4. Thermal exposure for up to 50,000 hours at 425OC (800°F) is not deleterious to the 
properties of the brazement. Higher temperatures up to 650°C (1 200°F) can be 
sustained for progressively shorter times. 

5. The ABTi system has useful flatwise tension stress-rupture strength LLP to at least 
425OC (800OF). 

6. Lap shear joints neither creep nor rupture in 50,000 hours at 230°C (450°F) when 
loaded at one-third the ultimate shear strength. 

Boeing Commercial Airplane Company 
P.O. Box 3707 

Seattle, Washington 98 124 
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APPENDIX 

Table I.-Controls (No Exposure) 

Structural 

Acoustic 

Faying surface 

Strength, psi MPa 

18.4 2667 
11.1 1617 
10.9 1583 
16.4 2383 
13.1 1 900 
15.1 2 183 

11.5 1667 

12.9 1867 

12.8 1850 

11.41 1650 

11.8 1717 

11.7 1700 

12.3 1783 

12.2 1773 

78.4 11 364 

49.7 7 208 

57.8 8377 

54.9 7 959 

55.7 8078 

62.2 9026 
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Table Il.-Structural Honeycomb 

Jlonths 
exposure 

6 

10 

11 

13 

14 

15 

17 

18 

21 . 

22 

23 

24 

25 

27 

30 

31 

32 

33 

lir France 

14.6(2119) 
11.4(1650) 

3.6(1978) 
5.0(2182) 

3.8(20001 
6.3( 2369) 

411 Niooon 

13.0(1885) 
12.4(1796) 

2042(14.1) 
1859(12.8) 

Flatwise strer 

Braniff 

13.4(1937) 
16.5(2389) 

14.1(2046) 
13.2(1910) 

15.1(2193) 

13.0(1892] 
10.4(1509) 

Continental 

15.7(2275) 
14.1(2038) 

14.9(2163) 
14.8(2149) 
14.5(2098) 
12.7(1842) 
14.8(2142) 
13.9(2018) 

h. MPa (ps 
_~..._ 
Lutthansa 

14.7(2136) 
10.6(1540) 

l3.7(1981) 
14.2(2060) 

11.7(1690) 
12.8(1861) 

7.411068) 
3.7 (1983) 

12.9(1869) 
12.8(1857) 

Vorthwest 

10.5(1528) 
12.3(1788) 

9.5(1382) 
12.6(1826) 

12.6(1832) 
12.6(1824) 

-ransWorld 

12.0(1736) 
14.7(2138) 

14.3(2070) 
I6.5(2390) 

'2.5(1809) 
l4.3(2079) 

1 

Western 

15.7(2281) 
13.9(2009) 

14.1(2043) 
15.0(2171) 
12.5(1809) 
14.1(2042) 

d = minordamagetospecimen D = specimen badly damaged 
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Months 
exposure 

34 

37 

42 

43 

45 

46 

49 

50 

51 

53 

58 

61 

62 

63 

64 

69 

70 

73 

I 

Table il. - (Concluded) 

Flatwise strenqth, MPa (psi) 

Air France All Nippor Braniff Xontinenta Lufthansa Northwest rrans World 

IO.4( 1506) 
13.6(1973) 

lO.4(1513) 

11.5(16611 

D 

D 

O.O( 14531 
2.9( 18761 

11.5(!661 
11.2(1621 

3.0( 1444d 
7.8( 1129d 

1 .O( 1600) 

11.8(1712) 
14.8(2151) 
12.9( 1865) 

13.0( 1883) 
10.511522) 

14.2(2062) 

15.8(2296) 2.1(1750) 
11.8( 17081 2.2( 1776) 

12.4(1805 
9.8( 1421 

l2.3( 1778: 
1.8(17091 
2.4( 17931 

2.8(18541 

l4.1(2038: 12.5(1815) 

'0.6( 15421 6.4(926) 

378dI9.5) /424(9.8) 
931(13.3) I584( 10.9) 

3.7( 1267) 
2.7( 1847) 

9.9(1437) 
IO.6( 1536) 

267dt8.73 
847t12.7) 

1 
Western 

13.2(1921' 

11.7(1608 

2.2( 1770) 
3.6( 1967) 

3.0( 1892) 
2.4( 1800) 

d = minor damage to specimen, D = specimen badly damaged 
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Months 
exposure 

6 

7 

8 

12 

13 

16 

18 

19 

20 

24 

26 

29 

30 

32 

35 

36 

38 

39 

41 

43 

48 

49 

50 

57 

62 

Table /Il.- Acoustic Honeycomb 

Air France All Nippon Braniff Lufthansa Northwest Trans World Western 

11.7(1699) 

7.6(1098) 

10.9(1588) 

9.0(1308) 10.6(1543) 4.0(577) 

6.9(1004) 

7.7(1122) 6.5(939) 6.6(956) 

5.5(803) 

D 

Flatwise strength, MPa (psi) 

11.1(1608) 

4.6(670) 

7.1(1036) 4.7(676) 

2.6(377) 

1.9(273) 
3.3(483) 

6.4(924) 9.1(1322) 

5.2(750) 
9.3(1354) 

12.6(1824) 

3.1(447) 
6.2(899) 

5.2(759) 

7.1(1028) 
8.0(1162) 
7.9(1147) 
8.1(1180) 
7.7(1124) 

7.6(1103) 6.0(864) 

7.4(1072) 
6.3(916) 
8.0(1164) 
6.0(877) 

2.6(378) 

5.7(833) 

1 

5.8(841) 
8.1(1172) 

4.8(693) 

7.2(1038) 
4.4(642) 

11.9(1733) 

D =specimen badly damaged 
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Months 
exposure 

6 

7 

8 

12 

13 

16 

19 

24 

26 

29 

35 

36 

43 

47 

48 

49 

50 

57 

60 

62 

Table IV. - Faying-Sur face Joints 

Air France All Nippon Braniff Lufthansa Northwest Trans World Western 

51.9(7530) 

64.9(9420) 

62.5(9060) 49.4(7160) 52.8(7660) 

55.0( 7984) 53.8(7810) 51.4(7460) 

52.8( 7660) 

51.1(7405) 

52.2(7564) 41.5(6025) 

Flatwise strength, MPa (psi) 

55.4(8039) 

51.3(7436) 
79.6( 11550) 

56.0(8120) 59.1(8570) 

56.7(8228) 

47.0(6820) 

54.1(7843)* 

29.3(4250) 

44.7(6480) 

37.6(5452) 

58.2( 8440) 
54.6(7920) 

55.3(8020) 
49.9(7240) 

48.9(7097) 

58.6(8506) 
55.5(8051) 
38.6( 5599) 
45.5(6596) 
79.1 (I 1477) 

51.6(7487) 

*Adjusted for approximately 8.9 by 19.8 mm (0.35 in. by 0.78 in.) as brazed void. 
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Table V.-Jet Engine Exhaust 

Months Time, 
exposu rea hou rsb 

3 

4 

6 

8 

9 

IO 

13 

14 

16 

20 

23 

24 

36 

47 

49 

59 

60 

70 

136 

328 
40 

7 

1114 

787 

206 
324 

897 

2227 

507 

2668 

1180 

3091 

3508 

1993 
- 

2208 

6010 

2592 

General Electric 
T Pratt&Whitney 

i 

Structuri 

13.8(200 

Acoustic Structural Acoustic Structural Acoustic 

15.5(2241) 

11.6 (167 1880( 13.0) 

12.8 (185 14.1(2044) 

15.0(2171 13.4(1944) 

15.6(226( 12.5(1819) 

16.7(242l 10.4(1515) 

10.5(152: 

Notes: 

aMonths= Total elapsed time installed 

bHours = Time at temperature during engine run: 
General Electric: 62.2’ to 113’C 

(144’ to 236’F) 

Pratt&Whitney: 

Hartford: 427’ to 482’C 
(800° to 900°F) 

Florida: 85’ to 427’C 
(I 85O to 8OO’F) 

Hartford 

15.9(2310) 12.4(1792) 

12.5( 1819) 13.7( 1996) 

12.8(1851) 12.4( 1794) 

11.4(1650) 12.7( 1838) 

11.8(1712) 12.4( 1794) 

D 7.1( 1024d) 

12.3( 1780) 

10.9( 1583) 

Florida 

10.2( 1482) 

D 

10.7( 1549) 

12.9(1875) 

9.2( 1339) 

6.9( 1000) 
5.4(783d) 

d = minor damage, D = major damage 
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Table VI.- 727 Landing Gear - Structural 

REGRESSION TITLE .STRUCTURAL HONEYCOMB STRENGTH VS TIME 
DEPENDENT VARIABLE' : : : : : : : : : : : : : . 2 STRENGTH 
TOLERANCE . . 

ALL DATA CONSIDERED AS'A'SiNGLi iR&i' ' ' ' ' ' ' 
.OlOO 

MULTIPLE R .2994 STD. ERROR OF EST. 269.7654 
MULTIPLE R-SQUARE .0897 

ANALYSIS OF VARIANCE 
SUM OF SQUARES DF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 709596.661 1 709596.661 9.751 .00235 
RESIDUAL 7204563.636 99 72773.370 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T P(2 TAIL) 

(CONSTANT 2015.2498 ) 
TIME 1 -4.658 1.492 -.299 -3.123 .002 

THE FOLLOWING COMPUTER PROGRAM WAS USED FOR ALL STATISTICAL ANALYSES: 

BMDPIR - MULTIPLE LINEAR REGRESSION 
HEALTH SCIENCES COMPUTING FACILITY 
UNIVERSITY OF CALIFORNIA, LOS ANGELES 

PROGRAM REVISED OCTOBER 7, 1974 
WRITEUP REVISED APRIL, 1974 

- 



- 

Table V/l.- 727 Landing Gear - Acoustic 

REGRESSION TITLE .............. .ACOUSTICAL HONEYCOMB STRENGTH VS TIME 
DEPENDENT VARIABLE .............. 2 STRENGTH 
TOLERANCE ................... .OlOO 

ALL DATA CONSIDERED AS A SINGLE GROUP 

MULTIPLE R .6381 STD. ERROR OF EST. 365.3273 
MULTIPLE R-SQUARE .4072 

ANALYSIS OF VARIANCE 
SUM OF SQUARES OF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 4859094.703 1 4859094.708 36.408 .ooooo 
RESIDUAL 7073595.220 53 133464.061 

VARIABLE 
STD. REG 

COEFFICIENT STD. ERROR COEFF T P(2 TAIL) 

(CONSTANT 1492.4343 ) 
TIME 1 -15.622 2.589 - .638 -6.034 - .ooo 

w L 



Table VIII.- 727 Landing Gear - Faying Surface 

REGRESSION TITLE .FAYING 
DEPENDENT VARIABLE' : : : : : : : : : : : : : . 

STRENGTH VS TIME 
2 STRENGTH 

TOLERANCE . . . . . . . . . . . 
ALL DATA CONSIDERED AS A SINGLE GROUP ' ' . ' ' ' 

.OlOO 

MULTIPLE R .2406 STD. ERROR OF EST. 1322.0675 
MULTIPLE R-SQUARE .0579 

ANALYSIS OF VARIANCE 
SUM OF SQUARES OF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 3866785.711 1 3866785.711 2.212 .14562 
RESIDUAL 62923052.183 35 1747862.561 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T P(2 TAIL) 

(CONSTANT 8157.8521 ) 
TIME 1 -16.046 10.788 -.241 -1.487 .146 



Table IX A.- Jet Engine Exhaust - Structural Vs Total Installed Time 

REGRESSION TITLE .STRUCTURAL 
DEPENDENT VARIABLE' : : : : : : : : : : : : : . 

HONEYCOMB STRENGTH VS TIME 
5 STRENGTH 

TOLERANCE . . . . . . . . . . . . . . . . . . . .OlOO 
ALL DATA 

MULTIPLE 
MULTIPLE 

ANALYSIS 

CONSIDERED AS A SINGLE GROUP 

R .1714 STD. ERROR OF EST. 
R-SQUARE .0294 

OF VARIANCE 
SUM OF SQUARES DF MEAN SQUARE 

REGRESSION 47741.758 1 47741.758 
RESIDUAL 1576548.242 14 112610.589 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T 

(CONSTANT 1975.0856 ) 
TIME 3 3.059 4.698 .171 .651 

335.5750 

F RATIO P(TAIL) 
,424 .52551 

P(2 TAIL) 

.526 



Table IX B.- Jet Engine Exhaust - Structural Vs Engine Operating Hours 

IN THIS VERSION OF BMDPIR 
-- WHEN ZERO INTERCEPT IS USED, SUBPROBLEMS GIVE BAD RESULTS. 

REGRESSION TITLE . . . . . . . . . . . . . . .STRUCTURAL HONEYCOMB STRENGTH VS HOURS 
DEPENDENT VARIABLE . . . . . . . . . . . . . . 5 STRENGTH 
TOLERANCE . . . . . . . . . . . . . . . . . . . .OlOO 

ALL DATA CONSIDERED AS A SINGLE GROUP 

MULTIPLE R .0995 STD. ERROR OF EST. 338.9285 
MULTIPLE R-SQUARE .0099 

ANALYSIS OF VARIANCE 
SUM OF SQUARES OF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 16074.656 1 16074.656 .140 .71395 
RESIDUAL 1608215.344 14 114872.525 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T P(2 TAIL) 

(CONSTANT 2052.8811 ) 
HOURS 4 -.026 .070 - .099 -.374 .714 



Table IX C.- Jet Engine Exhaust - Structural Vs Combined Installed Time and Engine Hours 

IN THIS VERSION OF BMDPIR 
-- WHEN ZERO INTERCEPT IS USED, SUBPROBLEMS GIVE BAD RESULTS. 

REGRESSION TITLE .STRUCTURAL 
DEPENDENT VARIABLE’ : : : : : : : : : : : : : . 

HONEYCOMB STRENGTH VS TIME & HOURS 
5 STRENGTH 

TOLERANCE . . . . . . . . . . . . . . . . . . . .OlOO 
ALL DATA CONSIDERED AS A SINGLE GROUP 

MULTIPLE R .3947 
MULTIPLE R-SQUARE .1558 

ANALYSIS OF VARIANCE 
SUM OF SQUARES 

REGRESSION 253077.119 
RESIDUAL 1371212.881 

VARIABLE COEFFICIENT STD. ERROR 

(CONSTANT 2027.0440 ) 
TIME 
HOURS 4" 

10.529 7.024 
-.144 .103 

STD. ERROR OF EST. 324.7736 

OF MEAN SQUARE F RATIO P(TAIL) 
2 126538.559 1.200 .33256 

13 105477.914 

STD. REG 
COEFF T P(2 TAIL) 

.590 1.499 .158 
-.549 -1.395 .186 



Table X A.- Jet Engine Exhaust - Acoustic Vs Total Installed Time 

REGRESSION TITLE .ACOUSTICAL 
DEPENDENT VARIABLE' : : : : : : : : : : : : : . 

HONEYCOMB STRENGTH VS TIME 
5 STRENGTH 

TOLERANCE . . . . . . . . . . . . . . . . . . . .OlOO 
ALL DATA CONSIDERED AS A SINGLE GROUP 

MULTIPLE R .1340 STD. ERROR OF EST. 167.2251 
MULTIPLE R-SQUARE .0180 

ANALYSIS OF VARIANCE 
SUM OF SQUARES OF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 9202.137 1 9202.137 .329 .57331 
RESIDUAL 503356.413 18 27964.245 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T P(2 TAIL) 

(CONSTANT 1828.2465 ) 
TIME 3 -1.277 2.226 -.134 -.574 .573 



Table X B.- Jet Engine Exhaust - Acoustic Vs Engine Operating Hours 

IN THIS VERSION OF BMDPIR 
-- WHEN ZERO INTERCEPT IS USED, SUBPROBLEMS GIVE BAD RESULTS. 

REGRESSION TITLE . . . . . . . . . . . . . . .ACOUSTICAL HONEYCOMB STRENGTH VS HOURS 
DEPENDENT VARIABLE . . . . . . . . . . . . . . 5 STRENGTH 
TOLERANCE . . . . . . . . . . . . . . . . . . . .OlOO 

ALL DATA CONSIDERED AS A SINGLE GROUP 

MULTIPLE R .0155 STD. ERROR OF EST. 168.7265 
MULTIPLE R-SQUARE .0002 

ANALYSIS OF VARIANCE 
SUM OF SQUARES OF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 122.942 1 122.942 .004 .94833 
RESIDUAL 512435.608 18 28468.645 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T P(2 TAIL) 

(CONSTANT 1809.4892 ) 
HOURS 4 .002 .033 .015 .066 .948 



Table X C.-Jet Engine Exhaust - Acoustic Vs Combined Installed Time and Engine Hours 

IN THIS VERSION OF BMDPIR 
-- WHEN ZERO INTERCEPT IS USED, SUEPROBLEMS GIVE BAD RESULTS. 
REGRESSION TITLE . . . . . . . . . . . . . . .ACOUSTICAL HONEYCOMB STRENGTH VS TIME & HOURS 
DEPENDENT VARIABLE . . . . . . . . . . . . . . 5 STRENGTH 
TOLERANCE. . . . . . . . . . . . . . . . . . . .OlOO 

_- 

ALL DATA CONSIDERED AS A SINGLE GROUP 

MULTIPLE R 
MULTIPLE R-SQUARE 

.2350 STD. ERROR OF EST. 168.7743 

.0552 

ANALYSIS OF VARIANCE 
SUM OF SQUARES DF MEAN SQUARE F RATIO P(TAIL) 

REGRESSION 28317.489 2 14158.744 .497 .61688 
RESIDUAL 484241.061 17 28484.768 

STD. REG 
VARIABLE COEFFICIENT STD. ERROR COEFF T P(2 TAIL 

(CONSTANT 1815.0329 ) 
TIME 3 -3.587 3.606 -.376 -.995 .334 
HOURS 4 .043 .052 .310 .819 .424 
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