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PROBLEM OF GAS ACCRETION ON A GRAVITATIONAL CENTER
V. A. Ladygin

Examined in the study is a method of approximated solution
of' the problem of gas accretion on a rapidly moving gravitational
center. The solubion is obtained in some vicinity of the axis
of symmetry in the region of potential flow. Calculations on
a computer showed the effectiveness of the given method.

Introduction

The solution of the problem of stationary gas accretion on
a moving gravitational center simulates the movement of a
substance in interstellar space in the vicinity of a black hole.
A detailed picture of gas accretion on a black hole is of
interest in connection with the problem of observation of black
holes.

The qualitative study of such accretion, as well as two-
dimensicnal numerical calculsgtions of this proklem, are available
in studies L1] - L%]. The study of self-modeling solutions, which
may represent asymptotics of the flow of gas near a gravitational
center, was carried out ir study [5].

In the present study, the system of equations of two-
dimensional gas dynamics, which describes gas accretion, in
contrast to studies [2] - [4], is solved in an approximate
manner, by means of expansion into a linear series, according to
one of ‘the indeperdent variables (angle 6), and by means of
"abridging" of the obtainea infinite system of common differ-
ential equations.

*Numbers in the margin indicate pagination in the foreign text.



Although only the region of potential flow of the gas is
studied in the present study, this method may be uged also for
a nonpotential flow behind a shock wave.

1. _Formulation of the Problem and Basic Equationsg VL)

Studied herein is the steady-state axisymmetrical flow
of an ideal polytropic yas, devoid of vigcosity and thermal
conductivity in a gravitational field of a material point of
mass M.

At infinity, the approach stream is assumed to be homo-
geneous and supersonic.,

S)_*P“,const‘ P—«»R*CG“S‘T.'
Y --\LeosB, Vg~ -\Lsnb, 2.4/
VL. =cunst >0 T 09

With these boundary conditions, the flow prior to the
shock wave is potential and isentropic, and, in a spherical
syatem of coordinates, it is described by the system of

equations:
AVEAV el IR o /2.8

-energy integral,

‘g‘f('tvﬁ)““g'g}' =0 72,3/
-condition of potentiality,
bz (PTW) + vy f(PUsmB =0 2l

-~equation of continuity,
P“(T’?)K}‘)T /305/
~equation of state,

where Ve, Y , P, and P are the radial and angular com-
ponents of velocity, the density, and the pressure of the gas,

G is the gravitational constant, y is the indicator of the
polytropic curve.

The constants K and Y are determined with the boundary



conditions (2.1).

13 )
K&{F%m . \fj:%qt%%%p; . /tftﬁ/
Through transformation of the analog

?”Gfg'?n p“ﬁ"?hvc“c,\/t,, v. (_v" ‘ p "’A‘Qi‘?‘

o Y
where r~“7§3% is the speed of sound at infinity, the five-
parameter problem (2.1)-(2.6) (parameters: y¥,GM, Fo,Pw s Vo)
ig reduced to a two-parameter problem (parameters: y and M=

gﬂ is the Mach speed at infinity).
o0

Therefore, without bounding the generality, cne can assume

G'Muf, \Vul'%;.*. i&{"f R - 4
P#“%r Dw‘!s f:m'*!‘ \Iﬁ"!’ : 'f

(I

On the strength of (2.4), the expression
=1 PSINGV, d7 +2ipsint Vdd

is a complete differential of some function S(¥,8) of the
current lines, and, consequently,

d,¥-§ =50V H 72
a3« vsmbv | 1201
V37 g— w,%* ié‘? d'qrm\f' ;) £2.07
PR8F —me %q(wg);ggxag : FARTE

where dsj% is the specific volume.

2. Description of ‘the Method of Solution of the Problem

We will derive the formulas for the approximated solution
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of the system (2.8)-(2.11). Since the flow is axisymmetrical,
then

die,6)=d(x.-0), \LTBIn Uizo8),

%(T'e"g“%(‘i”g)‘ $I“,@}“S{'{‘.G} 3.1/

We will assume that the functions d, Ve, V, , S are
analytic according to € in some vicinity of €=0. Then, d,
Ve, § are exj *‘ded into an exponential series according to
even powers of 8, and V , according to uneven powers of €, i.e.,

dxo= L dut 8" Vi« g 00 0"

Stx, 6"*35;8..(” 9"" \'e”»m"g«- p‘,ttli} raH

One can think that & (¥)=0, since the function 8(7,6) is
determined with an accuracy up to ‘the additive constant, and is
constant along the trajectory, while the axis of symmetry 0=0
ig the trajectory of the particles.

We will substitute the expansion (3.2) into the system
(2.8)-(2.11), and group the terms with identical powers of 9.
We will obtain the system of relationships:

PR fj‘g%’ =A% 3.8/
A P Ly ‘:;5}%‘ Q. 8.4/
FE AL g“ % ’*“L} ' 3.8/

\f‘ + .3& .-!Q, 1306/
¥+ Ly 3-?
PRIV &,g('rym-;) g, .4

XR“I '3'» LX) OI"

where @; , V; » h{ are the coefficients of the expesnsion into
an exponential series, resgpectively, of the functions sin 6,

b

/6
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We will expand the equality
dhy = - TPoicde

into an exponential series according to 6.

We will obtain a system of relationships between the
coefficients {h;} and {d:].

k‘.’ Saly Y,

} n V}!,(}v Y B 3 ) ttj*agak fﬂ,m/
P ) DR 3

Py x . ]
SR N gy oww F

We will transform the system (3.3)-(3.10). 1In place of the
coefficients Syc, we will examine the functions
i 73,11/
which have finite limits with Y-tee, Using’(B.S) and (3.6),
we preclude the coefficients h; in (3.10). We will introduce
the new independent variable

U=fn 7 /3,127

and alse the functions
M=ty /d,
/uel,2, ...,
We will obtgin an infinite system of common differential
equaticns relative to the functions Pax-1 v o

' /xel 2,71
g%ﬁ:.! = 2K G Prey

G = Tom (2= 2lB9=€' =



The functions {Tu&}:, .Lq,*, 3:. , G* (square of the speed of
gound on the sxis of symmetry €=0), which are part of the right-»
hand port:.on of system (3.13), as well as the functions {Va }m.
{14 ]m , are sequentially determined through the relatiorshipss

Clu(p-10p-g = 2R, /3147
Gu=tf, Vm4E', Tm-pi 2,18/

Then, if the coefficients py» Vurqy (E<K) and Ty (j<K+1)
hav: already been calculated, then [, Var Q. are determined
from ‘the system of three linear equationsi

[ Vo298 Tnd N+l P /5.16/
2x<vu-2c.}iu)~(4~7>§;«h‘){£,\ﬁ il 7.1/
2R =G e 5@«%» (F Jy = 2004 1) gy, /a.18/

[£2) }H u)tﬂtﬂ Jhe
Rl 2, 0afy

and the function T,4,) 1is calculated according to the
formula

7;(,“” el TH TP AR

prretust By = TY)

From (2.1), (2.9), and (3.2), we will obtain the boundary
conditions for system (3.13)

_‘vlll At

p v h (-m 4
K (iR 4

with U =~+oe

CIRT LR N

F"“ - i .‘;x_ . « /33@’
[Ret 3y f

If the system (3.13)-(3.20) is solved, then the coeffici-
ents d, and S;c are determined by the formulas
dg,c.}_\ . d:x‘ 9')'&%3 ¥ quy

Sl&:‘(’n‘lﬁx/d&
/K‘I'z"vu/ 5



The emlculutions s~cording to formulus (3.13)-(3.19),
with small values of T, requires large outlays of computer
time, since the right-hand portions of the system (3.13) are
unbonnded with“(~0. Therefore, in the region of U<0, it is
advisable to make a substitution of the variables:

[Tt e Forw@™h |
gr=e"yq,, FAEY vl i 79,22/
o ™M, %:“QR'VM

In this case, only equations (3.13) and (3.14) change,
takirg on the forms

gﬁ:&dam{q;« RZAJ ‘
$1 ey . -
$a Tl RIS lﬂ:%?;f&}..i) 73,23/

AMETS B TS RS BPg A 73.324

For approximated calculation of the first N coefficients
of expansion (3.2), we will sxamine system (3.13) for k=1,2,...N.
Formulas (3.14)-(3.19) meke it possible, in the right-hand portion
of (3.13), to express qu. f,;, Va (E<N) and Ty (J<N+l) in the
form of functions from WU, Py seevifyyr Forov B For a similar
recording of the coefficients q, and Vy, we will make use of
formulas (3.168) and (3.17) for k=N, withpw =0 being assumed in
(3.17). This additional assumption does not contradict the
boundary conditions

M =0 with U -« eee
wel,2,../.

The obtained closed system 2N of common diffevential
equations relative to the functions p, ,.vuyp,., v Bpaee o By



was integrated numerically on a computer by the Runge-Kutt
method in the interval .uai0cu<iOinid  (i.e., 10™¥<¥<10”)
for the indioator of the polytropic ocurve y=5/3 and the Mach
speed Mex2,4, In this case, the boundary conditions with " ~rtes
were transposed to the point'tnlo'oﬁondi radil.

The calculation was carried out for N=1,2,...,10,15,20.

For N»2, within the limits of accurasy of intearation
£=10"° of the system (3.13), the values of the density.P (¥),
Mach speed M(Y), and modulus of speed V(Y) on the axis of
symmetry 0=0 practically do not depend on the selection of N,
and are represented in the table. The dansity, speed, and
Mach speed approach infinity monotonocusly with"-0.

The solution of system (3.13) may bs continued into the
randomly small vicinity of the point< =0, which indicates the
absence of a departed shock wave in front of the graviiational
center for a gas with y=5/3. The density f(%,0), modulus of
speed V(¥,0), and function of the current lines S(1,8) were
calculated approximately according to the formulas

Pld,+d,8%,, * s 8 R
VeVt V8% . +V 8™, /4.2¢
S"s; gl*‘ ..*5;;‘9’? 43/

For N=10, the level lines p, V, and S are given in figures
l, 2, and 3, respectively. Here, the x-axis is the axis of
symmetry. The gravitational center is located at the origin of
the coordinates. Plotted along the axes of the coordinates
are the distances in Bondi radii (R,=G'M/C2 ). The gas flows
into the center from the right.

The calculation of the level lines of », V, S for N=5, 10,
15, and 20 shows that, in the range 0<b6<n/2, the values of P, V,
and S practically do not depend on N, i.e., there occurs /10

8



convergence of the approximated solution to the potential flow.

For w/2<8<r, and especially close to the axis of symmetry
O=1. the approximated valuss of p, V, and 3 depend strongly on
N. In this region, thare is no convergence %2 the point
solution, since the flow is nonpotential.

L ] per v [ v

S - $ - R

e 1.owud o X412 2.4413
L0UZ | 2.4 2.4684
: 10005 | 2.5014 | 2.5018
2. | 1.cote | z.5o78 | 2.5000

jL 1006t | 2,777 | 2.7636
MEPOR'S 10186 | s.0087 | 3.1181

vl i 1128 | 48124 5.0460
U0 L L .DB4d 11,214 14.279
0.001 £.8078 | 25,635 | M,.7)7
s A01 15733 | 56,424 I41.59
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