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E	 ABSTRACT

A detailed design of a thermal energy storage (TES) system for

use with the Stirling engine as an automotive power system has been

L

	

	 developed. The gravimetric and volumetric storage densities are

competitive with electric battery storage systems. The TES/Stirling

engine system meets all operational requirements for a practical

vehicle and can be packaged in compact-sized automobiles with
E

minimum impact on passenger and freight volume.

The TES/Stirling system is the only storage approach for direct

use of combustion heat from fuel sources not suitable for direct trans-

port and use on the vehicle. /The particular concept developed in this

study is also useful for a dual-mode TES/liquid fuel system in which

the TES (recharged from an external energy source) - is used for short-

duration trips (•x•10 miles or less) and liquid fuel carried on board . the

vehicle used for long-duration trips (as in current automobiles)./ The

dual-mode approach permits an automobile with the convenience and

flexibility of current automobiles while offering the potential of 50-per-

cent savings in the consumption of premium liquid fuels for automotive

propulsion in the United States. Relative to the TES-only vehicle, the

dual mode approach also reduces the TES cost significantly because

g	 of the much smaller TES capacity required.
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1. INTRODUCTION

1.1 BACKGROUND

When the world ' s petroleum reserves are depleted, alternative

energy sources for automotive propulsion will be required. Current

automobiles are based on the use of premium-grade liquid fuels,

derived from petroleum as the energy source, and these fuels provide

the convenience in personal transportation to which we are all accus-

tomed. Passenger automobile propulsion currently utilises 28 percent

of the total petroleum consumption in the United States, corresponding

to 13 percent of the total national energy consumption from all sources.l

The world's petroleum resources are inadequate to sustain the

present rate of consumption for very long, and there is no guarantee

	

Y	
that synthetic fuels derived from coal or oil shale, our major fossil

energy resources for the future, will be available in time and in suf-

ficient quantities to replace petroleum -derived fuels. in addition, the

thermal efficiency of current or projected processes to produce the

synthetic premium fuels required for automotive propulsion is poor

resulting in a waste of the coal energy resource, even if this approach

were feasible in a timely and economic way.

	

r	 The private automobile is an institution in the United States and

severe restrictions in its use will result in severe economic and social

repercussions. There is thus a very strong incentive to develop al-

^t 
ternatives to premium liquid fuels for automotive propulsion. Several

alternative options are under development, ranging from development

of highly efficient engines such as the Stirling engine (to reduce the

1
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consumption of premium liquid fuels from whatever source) to electric
cars (which use electrical energy from central-station nuclear and
coal-burning powerplants and thus are not dependent on use of premium
liquid fuels). The energy storage options currently under development.
such as the electric car with electric batteries for energy storage,
have severe limitations relative to vehicle range between recharges,
long recharge times. high cost, and limited life (limited number of
discharge/recharge cycles). 2

The Stirling engine is under intensive development for automotive
propulsion by the U. S. Department of Energy. primarily because of
its very high efficiency potential which reduces the consumption of
premium liquid fuels. 3 This reduction is important for either petroleum-
derived or synthetic fuels. For the former, it extends the time when
the petroleum reserves are depleted; for the latter, it reduces the
capital investment in new plants to supply the fuel and provides addi-
tional time for implementation of synthetic liquid fuel plants.

The Stirling engine is an external combustion engine in which heat
is transferred into the engine working fluid from combustion gases by
a tubular heat exchanger; this is in contrast to the internal combustion
engine in which the fuel is mixed with air and combusted directly in
the engine cyclinder. The Stirling engine can thus be adapted to prac-
tically any high-temperature heat source, including stored thermal
energy by the sensible and/or latent-heat-of-fusion of selected

materials. Thermal energy storage (TES) can also be utilized with
other external combustion engines such as the closed-cycle Brayton
or the Rankine engine, but these are considerably less efficient than
the Stirling engine and have other disadvantages for automotive power
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G	 as well. The Stirling engine is the only external combustion engine

currently under development for automotive propulsion.

In 1964, the General Motors Research Laboratories constructed

and successfully operated a demonstration car, the "Calvair, „ using
thermal energy storage combined with a small Stirling engine. In

this installation, nitrogen was circulated through a tank of hot alumina

pellets where it was heated; it was then circulated on to the Stirling
engine where it heated the engine to about 1200 0 F. The tank was re-
charged by combustion of natural gas in an external combustor to
reheat the alumina. The system was installed in a modified Corvair,

i'	 but was too heavy and too expensive for a practical automotive vehicle
installation. 4

Meijer of the Philips Research Laboratories, Eindhoven, Holland,
t	 described application of the TES/Stirling engine system for automotive

propulsion in a 1970 paper. 5 In this study, the latent heat-of-fusion

of LiF was used for TES, with heat transported from the TES reservoir
$	 to the Stirling engine heater by means of a heat pipe with sodium

working fluid. Use of the heat-of-fusion of L!F greatly improved the

gravimetric and volumetric thermal energy storage density relative
to sensible heat storage in alumina or other materials. Transport of

g

	

	 the thermal energy by means of the heat pipe also has many desirable

features; demonstration Stirling engines (with helium working fluid)

were successfully operated with sodium heat pipes. 5,7 Separate test-
ing of a TES system with LiF and using a sodium heat pipe for heat

transport was also successfully demonstrated by the Philips Laboratories
in Eindhoven. 6 These studies demonstrated the basic technologies re-
quired for the TES/St irling automobile as well as the excellent potential

t
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of the TES/Stirling system relative to other energy storage concepts

for automotive propulsion.

As a result of this potential, Mechanical Technology, Inc. per-

formed a study to establish appropriate system parameters and initiate

feasibility studies on the TES/Stirling automobile. 8 This work resulted

in the issuance of an RFD on August S, 1977 to initiate a program to

assess the technical and economic feasibility of the TES/Stirling car

and to develop conceptual designs. As a result, a contract was issued

to Thermo Electron Corporation on December 27, 1977 to perform this

detailed assessment with the results described in this report. A par-

allel contract was also issued to Sigma Research, Inc. of Richlands.

Washington.

1.2 GOALS AND APPROACH

In addition to the Stirling engine, any TES system for automotive

propulsion includes the following major subsystems:

e TES Media and Containment

e Thermal Insulation

e Heat Transport to Engine With Controls for Regulating Heat

Delivery Rate In Response to Engine Thermal Demand

e Thermal Recharge System

In this report, each of these major subsystems is discussed as well

as their integration into a complete TES system that meets all opera-

tional requirements. In addition, critical factors related to customer

acceptance and application are discussed, specifically packaging in the

vehicle with minimum impact on passenger and freight volume, manu-

facturing cost, energy sources and recharging, vehicle range, safety

1-4
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considerations, environmental considerations, and material availability
considerations.

The application of the TES/Stirling system to dual-mode TES/liquid-
fuel operation is also discussed. This approach, unique among energy

storage methods for automotive propulsion, permits the Stirling engine

to operate either from the TES unit charged from an external energy

source or from liquid fuel carried on-board the vehicle as in current

automobiles. The TES is used only for short-duration trips, with

liquid fuel used for long-range trips. This approach'offers a system

with minimum cost for the TES system, retains the current flexibility
and convenience of automobiles, and offers savings of up to 50 percent

In the premium liquid fuel consumption for automotive propulsion.

Because of the far less stringent technical requL ements on the TES

when used as a dual-mode TES/liquid fuel system, we believe that any

future utilization of TES for automotive propulsion will be initiated as

a dual-mode system, and that evolution to the total TES automobile

will occur over an extended period of time as technology develops and

social conditions change. The dual-mode system will greatly extend

either petroleum or premium synthetic fuels for automotive propul-

sion by substitution of alternative energy sources not suited for direct
on-board storage and/or use.

Two selections were made for the TES media, either of which
can be used in the TES reservoir, LiF or a 70 w/o NaF - 30 w/o
MgF2 eutectic. Thermal energy storage is based on the use of

both the sensible and latent heat-of-fusion with an operating tem-
perature range cf S00°K 	 1150°K. The materials have good storage

densities on b:.th a gravimetric and volumetric basisf they have a
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melting temperature that provides a good temperature match to the Stirling
anginal they are very stable chemically and thermailyf and they have low
corrosion rates with suitable containment materials. LiF has the highest
storage capacity and is the preferred materialf however, there are ques-
tions concerning its availability and cost for large-scale automotive use.
The NaF/MgF 2 eutectic has somewhat lower performance, but is made
up of readily available and inexpensive materials.

In designing the reservoir or containment structure for the salt, the
configuration was restricted to that judged best-suited for packaging in the
vehicle. Packaging of the TES reservoir underneath the floorboard and
between the wheels provides a low center-of-gravity, minimizes impact
on the passenger/freight volume of the vehicle, provides equal weight dis-
tribution of the wheels, and provides maximum protection to the TES res-
ervoir in the event of collision. This packaging location restricts the
reservoir to a low profile (height) with large plan area. Two reservoir
configurations were designed, a rectangular configuration and a cylindrical
configuration made up of two identical cylindrical units. A key objective
in the design of the reservoirs was maximizing the fraction of the total
reservoir weight and volume comprised by the salt media. This required
development of an efficient structural design to meet the system pressure
loads as well as acceleration loads within the stress limits of the materials
of construction. This goal of efficient structural design to minimize the
structure weight is very important, since the design stress for contin-
uously loaded parts of the structure is only 3000 psi because of the high
operating temperature.

Extremely effective thermal insulation with low volume (thickness)
and low weight is critical to minimize heat losses without compromising

1-6
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other system requirements and severely degrading the overall system

efficiency. The approach selected, which provides a significantly lower

volume (thickness) and weight than any fiber insulation even under vacuum,

is use of vacuum Multi-Foil insulation, which provides a 24-hour heat loss

of 10 percent or less of the full-charged thermal storage capacity. Use of

vacuum introduces severe difficulties in the reservoir structural design,

but these difficulties were successfully resolved for both the rectangular

and cylindrical reservoir configurations.

For heat transport from the TES media to the Stirling engine and

for recharging, the only feasible :approach is use of either potassium

or sodium heat pipes. A unique approach was developed that uses three

coupled heat pipes, one for recharging, one for internal heat transfer

in the reservoir, and one for heat delivery or discharge to the Stirling

engine. Precise control on the heat delivery rate to the engine is ob-

tained by incorporating an E-M pump for liquid return to the TES

reservoir, with the heat delivery rate controlled by modulation of the

pumping rate. This system meats all operational requirements for

the system with no moving parts.

A preliminary evaluation indicated that a recharging combustor

could be developed to permit automotive recharging of the TES unit

with the same convenience as operation of a home furnace. A key con-

sideration is the source of energy for recharging. The most appropriate

source is that used for home heating, since an extreme incentive exists

to develop synthetic fuels for home heating as our petroleum resources

are depleted. It can thus be hypothesized that a synthetic gas industry

will develop to initially supplement, and eventually replace, natural

gas. The extensive and expensive natural gas transmission/distri-

bution infrastructure provides a strong economic incentive for

1 -7
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development of the synthetic gas industry. If this develops, this synthetic

gas can be used for overnight recharging of the TES/Stirling automobile

at home, as well ah for home heating. Such gas is not suited for direct

on-board storage; it is delivered to the majority of the homes in the United

States by an existing infrastructure; and it is easily combusted with low emis-

sions, permitting a compact external (to the vehicle) furnace for recharging.

In the design of the system, the detailed specifications on which

the design was based, as given in the contract, are summarized in

Table 1. 1. The total TES system weight was specified as 500 kg, with

a volume < 0.4 m3 . The maximum heat delivery rate to the Stirling

engine for peak power is 200 kwth. The designed system meets or

exceeds all specifications and operational requirements. The vehicle

range depends on the particular vehicle characteristics, including

driving cycle and salt media, but is generally > 161 km (100 miles)

for a 500-kg total system weight.

1.3 PERFORMANCE COMPARISON WITH THE ELECTRIC CAR

The prime competitor to the TES/Stirling engine system at present

is the electric car; a brief comparison of the storage density by TES

is compared with that of the electric battery in this section. From

Table 6. 10 of Chapter 6, the storage density of the TES reservoir is

given as summarized below:

Gravimetri.c Storage Volumetric Storage
Density Density

(Kwhrth/Kg) (Kwhrth/m3)

Saltonfiguration Rectan- Cylin- Rectan- Cylin-
gular drical gular drical

LiF 0.30 0.28 400 400

NaF/MgF 2 Eutectic 0.20 0.18 290 290

1-8
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TABLE 1. 1

TES AUTOMOTIVE PROPULSION SYSTEM SPECIFICATIONS

TES System: Weight
Volume

Vehicle Energy Requirement:
Steady Speed at 88.5 km/hr
SAE Metropolitan Driving Cycle

Heater Head Temperature:
Normal Operation
Peak (Not to be exceeded)
Minimum

Heat Delivery Rates:
Peak for Maximum Power

(15 second duration)
Constant Speed at 88.5 km/hr
With Hill Climb (S minute duration)

Maximum Heat Loss Rate

Thermal Control Requirem:nts:
Traffic Start from Idle
Traffic Stop
Idle
High Power Burst*
Maximum Heat Leakage to HerAt

Transport Subsystem During
Standby

Orientation Limits

Geometrical COastro into:

Recharget

Operating Life:

Transient Accelerations for Structural
Integrity:

Soo kg
<0.4m3

0.627 kwhrth/km
0.824 kwhrth/km

1023•K
1123•K
w 800• K

200 kwth
55. 5 kwth
66.8 kwth

25% of Full Charge Over
12-Hour Period at
25 6 C Ambient

5 + 15 kwth in 0.2 sec.
15 -# 5 kwth in 0.2 sec.
Stable at 2 kwth Indefinitely
50 -# 200 kwth in 1 sec.

0.5 kwth

Maximum Power + 1S'
From Horizontal in
Any Direction

Startup on 30%. Grade
With Minimum Heat
Delivery Rate of
66. 8 k.-th.

The TES System Stull be
Configured to Fit Within
a Compact-Sized Auto-
mobile

Amenable to Rec!urge
From External Com-
bustion Heat Source

10 Year Minimum
3000 Charge/Discharge

Cycles

Vertical: 3.5 g
Longitudinal: 6.0 g
Vibration Rates: 10-20

Cycle s/sec
Slew Rate: 2 Radians/sec

+Minimum 'fester Wall Temperature During Transient of 673'K
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From the Lawrence Livermore Laboratory report on energy storage
systems for automobile propulsbam, 2 the storage characteristics of
engineering batteries, those that have a reasonable chance of becoming
commercially available within the next few years, are given as:

State-of-the-Art Improved (Goals)
Stor-	 Batter Pb/Acid	 Ni/Zn Ni/Fe Pb/Acid	 Ni/Zn	 Ni/Fea aDensit

Kwhre/kg 0.035 0.070 0.045 0105 0.09 0.06
Kwhre/m3 60 115 85 90 150 110

The most promising -tivanced batteries are given as the Lthium/metal
sulfide, sodium/sulfa, r (ceramic electrolyte), and zinc/chlorine sys-
tems. The energy storage densities of these batteries are uncertain
since they area currently in development. Projected gravi:netric storage
densities for these batteries range from 0. 1 to 0. 15 kwhre/kg, and
the volumetric storage densities are given as:

Battery Volumetric Storage Density
(kwhre ft3 )

Li- Al/FeSx 174
Na/S (ceramic) 135
Zn/C12 120

Exploratory batteries are also discussed, but they are not presented
here since their storage densities are even more uncertain.

For comparison, it is assumed that the average Stirling engine
efficiency in use is 25 percent so that, in terms of work output, the
TES system has storage densities ofs

1-10
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Salt Gravimetric Storage Density Volumetric Storage Density
(kwhr work/kg) (kwhr work/m3

LiF 0.069 -► 0.076 100

NaF/MgF2 0. 046 -- 0.050 72

It is apparent from comparison of these values with those from the
previous tables that, in terms of gravimetric and volumetric storage
densities. TES with LiF media is superior to the current Fby' acid
batteries and competitive to other state-of-the -art batteries. While
the storage densities for TES are somewhat lower than for the ad-
vaned battery systems, it should be noted that the quoted values for
advanced batteries are undoubtedly optimistic and will decrease as
development continues. For example, a 20 kwhre Li-Alf FeS

x 
battery

storage arystem currently under fabrication for automotive propulsion
has a battery weight of 900 lbs, high temperature insulation and con-
tainment box weight of 150 lbs, and overall size of 12 in. x 18 in. x
65 in.9 These values correspond to storage densities of 0.042 kwhre/kg
and 86.9 kwhre/m3, which are much lower than the values presented
In Reference 2. although some improvement in these values can be
expected for larger battery units, it would appear that TES should be
competitive in terms of storage density with even advanced battery
systams.

In addition, TES is the only automotive storage system suited for
direct use of combustion energy from fuels not suited for on-board
storage and use. A very [-nportant and unique feature of the TES/
Stirling aysteri is its use as a dual -mode TES/liquid fuel system that
provides the convenience and flexibility of current automobiles while
offering 50-percent savings in premium liquid fuels in the LTnited
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States for automotive propulsion. The combination of excellent storage

densities and this potential fuel savings justifies a development effort

on the TES/Stirling automobile with initial emphasis on the dual-mode

TES/liquid fuel system.
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2. SELECTION OF ENERGY STORAGE MEDIA

2.1 INTRODUCTION

Thermal energy storage (TES) can be accomplished by utiliza-

tion of sensible heat, latent heat-ef-fusion, or thermally reversible

chemical reactions. For the automotive application, the primary

selection criteria are:

• High gravimetric storage capacity, kwhrth/kg

• High volumetric storage capacity, kwhrth/liter

• Low cost per unit of TES capacity

• Temperature range appropriate for integration
with Stirling engine

• High thermal stability

• High chemical stability; i. e., compatible with
available materials of construction and nonreactive
with air and water

• Composed of readily available chemical elements
permitting large-scale automotive use

• Low vapor pressure at maximum operating tem-
perature

• Firm technology base (known properties, prior
experience)

As with most engineering analyses, selection of the final material

generally represents some compromise with respect to the selec-

tion criteria, based on the engineering judgment of the selector.

2-1
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In this chapter, we present a summary of the characteristics

of TES media leading to our selection of either LiF or a NaF/MgF2

eutectic mixture for the TES media. For either material, TES is

based on utilization of both the latent heat-of-fusion and sensible

heat of the fluoride salt, with a significant contribution from the

sensible heat. LiF has the highest gravimetric and volumetric

storage densities, but is relatively costly and lithium has a low natural

abundance—with questionable availability for large-scale automo-

tive use. The NaF/MgF2 eutectic has significantly lower gravi-

metric and volumetric storage densities, but is available at low

cost and is made up of highly abundant and readily available

elements. Both materials have excellent thermal and chemical

stability—thus, the TES reservoir design presented in Chapter 6

can be charged with either material, depending on the relative

importance attached to performance and cost. It should be noted

that eutectics containing LiF are also available with storage densi-

ties intermediate between the two selected materials. However,

achieving a significant improvement above the NaF/MgF2 eutectic

requires a substantial weight percentage of LiF (at least 30 to 50%) —

so that the questions of cost and availability of LIF are not elimi-

nated, but only somewhat reduced. The decision was thus made

to use pure LiF and a material containing no LiF as the two

alternative TES media for this study.

2.2 SENSIBLE, FUSION, OR CHEMICAL THERMAL STORAGE

A TES material having very high gravimetric and volumetric

storage densities, as well as meeting the other criteria outlined

2-2
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in Section 2. 1, would have a very wide application potential. As

a result, much effort has been expended by many organizations over

the last 15 years on development of TES media, particularly those

using the latent heat-of-fusion or reversible chemical reactions.

In this section, we briefly discuss the basis for selection of latent

heat-of-fusion as the beat approach for TES for the automotive

application.

One can, of course, use only the sensible heat of high-tem-

perature oxides as the means of TES. For application with a Stirling

engine, the minimum heat source temperature is already high,

— 1000 • K (1340° F), if high engine efficiency is to be achieved. Re-

liance on sensible heat alone thus requires a very high peak tem-

perature of the TES media if acceptable storage densities are to be

achieved for even a limited-purpose vehicle. As an example, for

LiF with a latent heat-of-fusion of 0.29 kwhrth/kg (450 Btu/lb),

the latent heat-of-fusion is equivalent to — 1000° K (1800• F) tem-

perature differential for a material with, heat capacity of 0.25 cal

gm- • K. The heat capacity of Al 203 is 0.29 cal/gm- • K at 1000° K.

Since the technical difficulties with respect to materials-of construc-

tion, insulation and heat losses, and heat delivery to the engine

increase rapidly with the peak storage temperature, the delivery

of heat at a constant temperature by use of the latent heat-of-fusion

has important advantages, and thus has been selected as the optimum

approach for this application. Use of the sensible-heat, as well

as the latent heat-of-fusion, can add significantly to the TES den-

sities, primarily by using the sensible heat of the solid below the

M
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melting point. For example, either solid or liquid LiF has a heat

capacity of — 0.6 cal/gm-°K.

A potential alternative to the latent heat-of-fusion is the use of
a thermally reversible chemical reaction. On charging, heat

added to the TES media raises the temperature of the media, which
results 'n the shift of a reversible chemical reaction. The energy

Is stored, therefore, both as sensible heat and as chemical energy

resulting fr ,)m the endothermic chemical reaction. On discharge,

the temperature drops as heat is removed, and the reverse exother-

mic reaction occurs. This approach sounds extremely promising

at first glance, due to the high energy available from certain chem-

ical reactions. We believe, however, that once the practical

restriction for motive power applications (and for most other

applications) is made that components of the chemically reacting

system must be either liquid or solid phases over the temperature

range of the TES, it is extremely difficult for a thermally reversible

chemical reaction to outperform the better latent heat of fusion

materials. The reversible reaction cannot produce a gas because

of the large storage volume required for a gas relative to a liquid

or a solid.

For a latent heat transition, which occurs at a specific tempera-

ture,

'AFG	 Me
Fusion - . Fus i on - TMP AS*Fus ion 0'

For a reversible chemical reaction, the temperature at which the

reaction occurs can be represented by T*, where the equilibrium
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constant, K=1 and AF' _ -RT 1nK = 0. Thus,

'V Reaction	 Reaction - T* ASO Reaction 0

For either type of reversible transition, therefore,

f

.	 .
H Trans = T*	 Trans

.	 oH 
Treats	 T* 

dS 
Trans

M	 M

where

M = Molecular Weight .

in kilocal
gm-mole'

in kilocal

gm
21

In terms of the transition heat per unit mass,

From this relation, it is apparent that for high TES per unit mass,

M must be small enough that only low molecular weight chemical

elements should be considered, and that the entropy change, AS*

(for given T*), should be as large as possible.

In Table 2. 1, the entropy of transition is presented for several

fusion and chemical transitions classified according to the change in

the number of gaseous products. 15 Inspection of this table indicates

that a relatively large aS° occurs only for those transitions in which

the number of gas-phase particles ir the products is greater than

the number in the reactants, whatever the nature of phase of the

other reactants or products may be. For those gas-phase reactions

in which the number of product gas moles is equal to the number of

reactant gas moles, the entropy change is very small. For the
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ENTROPY CHANGE FOR SEVERAL I'USION AND CHEMICAL TRANSITIONS

Type of Transition OS-, cal/gtn-mole'K
Transition

Fusion LiF ( s)4 LiF(1) S.8*	 (1121•K)
N&CI( s)T3NaC1 ( 1) 6.5	 (1074•K)
Al(s)W-kAl(1) 2.6	 (6S9'K)
CaF2 ( s);F-*CaF2 ( 1) 4.3	 (1691-K)
MgC12 (s);FiMgC12(1) 10.5	 (988'K)
FeCl2(s)Z-*-FeC12(1) 10.8	 (950-K)

Vaporization LiF(1 ) 4tLiF(g) 17.6**	 (1990•K)
NaCl( 1)FNaCl(g) 23.4	 (1738•K)
Al(1)4*Al(g) 25.1	 (2767' K)
CaF2 ( I)Z±CaF2 ( g) 26.7	 (2773•K)
MgC12 ( 1)*--'O- MgCl? (S) 19.4	 (1691•K)
FaCI Z ( I	 FeC12(g) 23.4	 ( 1285'K)

Reactions in Which 1-1/2Br2 (1) + 1/4 P4 ( s)	 PBr3 (g) 17.9	 ( 17.9)***
"eeous Products Li(s) + 172I2(s) 4, LiI(g) 34.9	 (34.9)
Are Found From C(graphite) * 25(rhombic) -> CS2(g) 40.2	 (40.2)
Solid or Liquid H20(1) =+ H2 ( g) +1/202 ( g) 40.0	 (26.7)
Reactants at 298 ° K NaCl (s) i Na ( g) + Cl(g) 58.1	 (29.1)

NH4C1 ( e)	 NH3 ( g) + HCl( g) 68.1	 (34.1)

Reactions in Which BiC13 (g)	 Bi ( s) + 1/2 C1 2 ( g) 8.1	 (16.2)***
There is a:i Increase Pb02 ( 6)	 PbO(s) + 1/2 02 ( g) 22.5	 (45.0)
in the Number of Pb304 ( s) -> 3PbO ( s) + 1/2 02(g) Z2.7	 (45.4)
Gaseous Particles SiC14(I) + 2H ZO ( 1) -> SiO2 (a) + 4HCl(g) 98.0	 (24.5)
at 298 ° K ZnS ( s) + 2H2O0) -> Zn(OH)2(s) + H 2S ( g) 21.7	 (21.7)

PbCO3 ( s) ^PbO ( s) + CO2 ( g) 36.1	 (36.1)
NaCl ( s) + Na(s) + 1/2 C12 ( g) 21.5	 (43.G)
PH3(9) + P(s, white) + 1- 1/2 H2(g) 7.2	 (14.4)
KHF2(s) i KF(s) + 11F(g) 32 . 5	 (32.5)
AsF 3 (1)	 As ( a, grey) + 1-1/2 F 2 (g) 38.0	 (25.3)

Gas Phase 02(g) -'o 20 ( g) 28.0	 ( 28.0)***
Reactions at 298 ° K NH3 ( 9) -> 1/2 N2 ( g) + 1-1/2 H 2 (g) 23.7	 (23.7)
in Which There is P4(g) > 4P(g) 81 . 7	 (27.2)
an Increase in the S8(g)	 8S(g) 218.9	 (31.3)

Number of Gas NO2 ( g)	 1/2 N Z(g) + 02(g) 14.3	 (28.6)
Phase Particles N204 ( g) -I,- N Z ( g) + 2O2 ( g) 71.0	 (35.5)

H20(g)	 H2(g) + 1/2 02(g) 10.5	 (21.0)
Ni(CO )4(g) -> Ni(g) + 4CO(g) 136.7	 (34.2)

Gas Phase H2(g) + F 2 (g) ^ 2HF(g) 3.3
Reactions at 298 ' K H2(g) + C12(g)	 2HC1(g) 4.8
in Which No Change H2(g) + Br 2 ( g) s 2HBr(g) 5.0
Occurs in the H2(g) + 12 ( g)	 2HI(g) 5.0
Number of Gas NZ(g) + 0 2 (g)	 2NO(g) 6.0
Particles Br2(g) + C12(g) -> 2BrCl(g) 2.6

I2 (g) + C12(g) ^ 2IC1(g) 2.6

NO(g) + C1 2(g) + NOC1(g) + Cl(g) - 1.2

*
**At fusion temperature.

***At normal boiling temperature.
Normalized to an increase of 1 gm-mole of gas in the reaction.
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fusioa transitions, all of which have a relatively large latent heat-

of-fusion, the AS change, though small, is intermediate between

these two cases.

From this analysis, it would appear that the only way to obtain

a thermally reversible and large transition M (by use of a thermally re-

versible chemical reaction) is to use a transition that produces gaseous

molecules. Since space limitations prevent the use of this type of transition,

it will be difficult to find any thermally reversible chemical reaction that is

significantly better than the best of the fusion transition materials now

available. This difficulty is best illustrated by the fact that no thermally re-

versible chemical reaction has yet been discovered (to our knowledge)

that is competitive with the better fused-salt TES materials.

The difficulty is further illustrated by TES by liquid hydrocarbon

fuels as used in current automobiles. Using n-hexane as repre-

sentative of gasoline, the lower heating value (LHV) is 12.41 kwhrth/kg

and 8.26 kwhrth/liter (as compared to 0. 29 kwhrth/kg and 0.53

kwhrth/liter for the latent heat-of-fusion of LiF)—values which re-

sult in the excellent range of the current automobiles with a rela-

tively small fuel tank and mass of fuel. However, the excellent

TES storage capacity of liquid hydrocarbon fuels is due, in part,

to the fact that one of the components, 02 , is freely available from

the atmosphere and does not have to be transported. Including the

3.53 kg of 0 2 required per kg of fuel reduces the TES capacity to

2. 74 kwhrth/kg. Thus, even for a highly-exothermic and in-situ

irreversible chemical reaction, the gravimetr:c storage capacity

for all reactants is only 9.4 times the latent heat-of-fusion of LiF

as compared to a factor of 42. 8 for the hydrocarbon mass alone.
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Thus, the excellent storage capacity of liquid hydrocarbon fuels is

due primarily to the fact that a major portion of this TES system

does not have to be transported by the vehicle, and secondarily to

the highly exothermic (and in situ irreversible) reaction.

In summary, the latent heat-of-fusion represents a highly

competitive means of storing thermal energy when all materials

must be solid or liquid and in-situ reversibility is required for

recharging. Use of the sensible heat of the solid and/or liquid can

add significantly to the storage capacity for the heat-of-fusion, where

temperature variation in the heat-source temperature can be tol-

erated. Thus, the combination of latent heat-of-fusion/sensible

heat has been selected as the best approach for thermal energy

storage for automotive use.

2.3 SELECTED MATERIALS AND CHARACTERISTICS

2.3.1 Selection of Salts

Based on the specifications for the Stirling engine, the normal

operating head temperature (outside tube wall maximum) is 1023' K

(13 81 • F), and the maximum head temperature, which should not

be exceeded, is 1123°K (1561 . F). Because of the low strength of

metallic materials at temperatures above 1150° K (1610 1 F). 1150° K

has been assumed as an upper limit on the heat source temperature.

Since it is highly desirable to operate the Stirling engine at its

highest efficiency and highest temperature to maximize the vehicle

range for a given TES capacity, and assuming an —50°K temperature

difference from the heat source to the Stirling engine heater head,

2-8
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the optimum temperature range for the melting point of the TES
material is:

1075-K (1475-F) I- TM. P. < 1150-K (1610 9F).

In searching for TES media in this temperature range, reliance
has been placed primarily on survey reports by Borucka l , Eichelberger,

J. L. 2 , and Schroder3 . In Table 2. 2, a summary is given of the
TES characteristics of single salts having latent heats-of-fusion >
0. 116 kwhrth/l g (100 cal/gm). For automotive propulsion, both
the gravimetric and volumetric energy storage densities are very
important. The gross vehicle mass has a strong effect on the energy
economy of the vehicle, and the space is very restricted for incor-
poration of any energy system. From inspection of Table 2.2, LiH
has by far the highest storage capacity per unit mass, and near the
highest per unit volume. This is primarily the result of the very
low molecular weight of this material rather than an unusually high
entropy change on fusion. It also has a very high heat capacity for
both the liquid and solid phases. However, LiH is very hazardous
to handle due to its high flammability, and has an appreciable decom-
position pressure of H2 [H2 pressure = 1 atm at 1223 0 K (17410F)],
which is difficult to contain because of the high diffusion rate of H2
through most materials of construction at high temperature. L&H
is not suitable for this application.

Once LiH is eliminated, it is apparent that the metal fluorides,
in particular LiF, NaF, and MgF 2, have high latent heats-of-fusion
on both a gravimetric and volumetric basis, as well as reasonably

2-9
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high heat capacities. From a performance viewpoint, LiF is the
preferred material, since it has a melting temperature of 1121•K
(1558 • F) (almost optimum for integration with a Stirling engine);
it has the second highest gravimetric storage density (after LiH),
0.29 kwhrth/kg heat-of-fusion; it has the second highest volumetric
storage density (after MgF 2 ), 0. 53 kwhrth/liter hest-of-fusion; and
has high solid/liquid heat capacities of 0.57 and 0.60 cal/gm-•K,
respectively. However, lithium has a low abundance in the earth's
crust and is relatively expensive, so that its use for automotive
propulsion can be questioned from a viewpoint of both availability
and cost. Eichelberger2 has performed an evaluation of the potential
cost of LiF, as well as the other fluoride salts of interest, with re-
sults as presented in Table 2.3. Fora TES system with 300 kg of
LiF, the LiF cost alone would amount to $800 to $1000, based on the
estimated production cost range of Table 2.2. Both Naf and MgF2
are considerably less expensive (lower by a factor of 4 to 25) and
are made up of abundant and readily accessible elements.

In Table 2.4, a summary is given of the 45 most abundant ele-
ments in the earth's crust(Hurlich4). In Table 2. 5, the concentration
of elements present in seawater is given (McLellan 5 ). Both Na and
Mg have a high abundance in either the earth's crust or seawater.
Fluorine is the 13th most abundant element in the earth's crust, with
an average concentration of 625 ppm (0.0625 % by weight); thus, its
availability should not be a problem. Lithium has an average
abundance in the earth's crust of 20 ppm and a negligible concentra-
tion in seawater (70 ppb). It is thus a relatively scarce element,

2-11



TABLE 2. 3

MATERIAL COSTS, 1976 DOLLARS*

Material
Current Selling

Price ($/kg)
Estimated Production Cost Range

($/kg for 91, 000 Metric Tons/Year)

Li.F 5.38 2.58 — 3.27

NaF 0.74 0.11 - 0.58

MgF2 0.87- 1.71 0.18 - 0.76

Estimated by Eichelbarger.

Range due to different process assumptions relative to cost of the
source of fluorine.
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TABLE 2.4

THE 45 MOST ABUNDANT ELEMENTS IN THE EARTH'S CRUST

Relative Abundance,
Abundance Element ppm/wt

1 Oxygen 466,000
2 Silicon 277.000
3 Aluminum $1,300
4 Iron 50,000
S Calcium 36,300
6 Sodium 28,300
7 Potassium Z5,900
8 Magnesium Z0,900
9 Titanium 4,400

10 Hydrogen 1,400
11 Phosphorus 1,050
12 Manganese 950
13 Fluorine 62S
14 Barium 42S
15 Strontium 375
16 Sulfur 260
17 Carbon 200
18 Zirconium 16S
19 Vanadium 13S
20 Chlorine 130
21 Chromium 100
22 Rubidium 90
23 Nickel 7S
24 Zinc 70
2S Cerium 60

26 Copper SS
27 Yttrium 33
28 Lanthanum 30
29 Neodymium 28
30 Cobalt 25

•	 31 Scandium 22
32 Lithium 20
33 Columbium, 20
34 Nitrogen 20
3S gallium 15
36 IAM 13
37 Radium 13
36 Boron 10
39 Krypton 9.8
40 praseodymium 8.z
4: Procoactin!um 8.0
42 Thorium 7.2
43 Neon 7.0
44 Samarium 6.0
45 Gadolinium S14

2-13
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TABLE 2.5

CONCENTRATION OF SOME ELEMENTS PRESENT IV SOLUTION
IN SEAWATER

Cc'Ancentration
Element	 gm/metric ton on parts per million

Cl 18980
Na 10561
Mg 1272
S (as Sulfate) 864
Ca 400
K 380
Br 65
C (as Bicarbonate) 28
Sr 13
B 4.6
F 1.4
Sio2 1.0

N (NO S NO2O NH3 ) 1.0

Rb 0.20
Al	 i 0. 12
Li	 I 0.07

2-14
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but cannot be eliminated from consideration on this basis alone,

since relative accessibility (that is: Has the element been concen-

trated by nature into ore deposits or is it uniformly spread through

the earth's crust?) is also an important consideration. Copper and lead,

for wmmple, are produced at relatively low cost, even though their aver-

age abundance +,; 55 ppm and 13 ppm, respectively. Some evaluation of

their availabilli: for large-scale automotive use can be obtained by com-

parison of the amount required for large-scale automotive use with the

current yearly production, identified reserve, and identified reserves con-

sidered economically recoverable by the year 2000, as summarized in

Table 2.6 6 . The identified reserves in the U.S. and world are

obviously insufficient to support complete turnover of automobiles

to this system. Substantial implementation would be feasible,

however, since with the U. S. reserves alone, subtracting the cu-

mulative demand to the year 2090 leaves 643,000 metric tons o`

lithium - which, if totally committed to automotive propulsion,

would provide 8, 000, 000 automobiles — a very substantial number.

In addition, the U. S. and world resources o: sny metal or

mineral may be very much larger than the published data on reserves.

Quoting from Hurlich 4: "A considerable portion of the world's crust

has yet to be thoroughly investigated for mineral deposits; many

known deposits have not been quantitatively studied as to size, concen-

tration, and total quantity of metals which may be extracted. Reserves

of many metals may be expected to increase from year to year as

more exhaustive surveys of mineral resources are made around the

world". With a mean concentration of 20 ppm, the earth's crust to

2-15
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TABLE 2.6

COMPARISON OF Li REQUIRED FOR LARGE-SCALE AUTOMOTIVE
USE TO ESTIMATED RESOURCE AND RECOVERABLE

RESOURCE POTENTIAL6

AMOUNT REQUIRED (MAXIMUM)

No. of Vehicles (U. S.) 	 100, 000, 000
Mass of Li Par Vehicle (300 kg LiF) 	 80. 26 kg
Total Li Mass	 8. 03 x 109kg

8, 030, 000 metric tons

AVAILABILITY

U.S. Demand (Lithium Content)
1970	 2440 metric tons
1974	 4120 metric tons
2000 (Average 5 % Annual Rate of 	 13100 metric tons

Increase)
1973 - 2000 Cumulative Demand 	 201, 000 metric tons

Availability
Identified Reserves

U. S.	 298000 metric tons
World	 677000 metric tons

Identified Reserves Considered
Economically recoverable by 2000

U. S.	 546000 metric tons
World	 1239000 metric tons

Total Identified Reserves
U. S.	 844000 metric tons
World	 1916000 metric tons

2-16
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• depth of 1 km (0.6 mile) contains — 10 13 metric tons of Li. —

a factor of 106 greater than that needed for 100, 000, 000 automobiles.

While most of this is economically unrecoverable, it would appear

highly likely that naw resources will be uncovered when the need

exists. With a current U. S. demand of 4120 metric tons, and iden-

tified reserves of 298, 000 metric tons economically recoverable at

present prices, there is obviously little incentive at present for

extensive prospecting for new Li resources.

Because of its superior properties, LiF has been included in

this study as one of the reference materials. Its availability is

sufficient for significant automotive usage, particularly if the

liquid hydrocarbon fuel/TES hybrid, as discussed in Chapter 7, is

used — since this decreases the mass required per vehicle by a

factor of —10.

Because of the questions on the price and availability of LiF, a

second reference salt was selected, namely an eutectic mixture of

NaF and MgF 2. While mixtures containing LiF do exist and could

be used, a significant contribution by LiF to the TES performance

requires a substantial percentage of LiF in the salt (? 30%). The

potential problems of LiF because of cost and availability would

thus be only alleviated and not eliminated. The decision was thus

made that the second salt should have no LiF and should be made of

materials about which there could be no question regarding availability

and low cost. From Table 2.2, the materials with the best TES

gravimetric and volumetric densities after LiF are NaF and MgF2]

but, their melting points are unacceptably high. However, a

2-17
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eutectic mixture of these two salts exists with a melting point in the

desired range for integration to the Stirling engine with TES prop-

erties as given in Table 2.7. The phase diagram of the 70 w/o

NaF-30 w/o MgF2 mixture which has a melting point of 11030K

(1525 • F) is given in Figure 2.1. From Table 2.6, the latent heat-of-

fusion of the eutectic is 0. 18 kwhrth/kg and 0.39 kwhrth/liter, 62%

and 74%, respectively, of the corresponding values for LiF, The

heat capacity is 0. 33(s) and 0.39(1) at the melting point — N60% of

the values for LiF. From Table 2. 7, it is apparent that the eutectic

mixture of Naf/MgF 2 has a lower heat- ,i -fusion than the individual

components. This can be interpreted as a result of the decrease in

melting temperature by mixing the two components with approximately

the same entropy change on fusion.

In summary, then, two alternative fluoride salts have been

selected as reference materials with melting points in the desired

range, pure LiF and the 70 w/o NaF-30 w/o MgF 2 eutectic.

Lithium fluoride (LiF) is preferable from a performance viewp3int,

but has questionable cost and availability for large scale automotive

application. The NaF/MgF 2 eutectic has gravimetric and volumetric

storage densities in the range of 60 to 70% of that of LiF, but is

inexpensive and has unquestioned availability for large-scale appli-

cation.

2.3. 2 Properties of Selected Salts

2.3. 2.1 Enthalpy and Storage Capacity

The enthalpy is presented as a function of temperature in Figure

2-18



TABLE 2. 7	 23-478

SELECTED TES MATERIALS WITH MELTING POINTS
GREATER THAN 10230K

°Hf C  at Melting
kWhrth kWhrthMaterial

Temperature Point
('K) kg liter (cal/g-°C)

LiF 1115 0.29 0.53 0.57(s);0.59(1)

NaF 1261 0.22 0.43 0.37(s);0.40(1)

MgF2 1543 0.26 0.63 0.33(s);0.36(1)

70 w/o NaF - 1103 0.18 0.39 0. 32(s);0.39(1)
30 w/o MgF2

'Based on liquid density at melting point.
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2.2 for LiF and the 70 w/o NaF-30 W/o MgF 2 eutectic. The

LiF curve is based on the Janaf tables 7 . For the NaF/MgF2

eutectic, the heat-of-fusion reported by Schroder 3 and used by

Eichelberger2 was used, namely 0. 180 kwhrth/kg (155 cal/gm).

The enthalpy change of the solid and liquid for the eutectic was

based on the weighted average of the values for the solid and liquid

phases of the pure components, NaF and MgF 2, again using the

Janaf tables.

The LiF enthalpy should be quite accurate. For the eutectic,

the heat-of-fusion is based on only one sources however, the value

reported is considerably below the well-established values for each

of the pure components, and application of Kirchhoff's method for

estimating the value for mixtures ,14 resulted in a substantially

higher value (16%) than that reported by Schroder3 Thus, the heat-

of-fusion of the eutectic would not be expected to be lower than the

quoted value of 0. 18 kwhrth/kg. The solid/liquid heat capacities

calculated from the pure components should be accurate.

For performance evaluation, the temperature range over which

the TES system operates is taken as 800° K to 1150'K. Below the

somewhat arbitrary limit of 800° K (980'F), the Stirling engine

power and efficiency are reduced to unacceptable levels. As dis-

cussed earlier, 1150 • K (1610'F) represents the upper limit based

on material strength considerations. In Table 2.8, the energy

storage capacity is given for each salt, based on these limits. The

importance of the sensible heat in maximizing the TES capacity is

apparent, representing an increase of 76% for LiF and 72% for the

NaF/MgF 2 eutectic above the heat-of-fusion.

2- 22
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TABLEl.8

THERMAL ENERGY STORAGE D^NSITY
OVER TEMPERATURE RANGE OF 800 9 K TO 1150•K

LiF

Solid, 8000 K- 1121 0 K	 0. 20 Kwhrth/kg
Heat of Fusion	 0.29
Liquid, 1121 • K - 1150 . K	 0.02	 #

Total	 0.51 Kwhrth/kg(0.92kwhrth/L)

70 W/O NaF - 30 W/O MgF2 Eutectic

Solid, 8000 K m* 1103 . K	 0.11 Kwhrth/kg
Heat of Fusion	 0.18
Liquid, 1103 0 K- 1150"K	 0.02

Total 0.31 Kwhrth/kg (0.68 kwhrth/L)

* Based on liquid density at melting point
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2.3.2.2 Density

The density variation is important in assuring sufficient volume
for the salt at its maximum temperature and in designing for the
volume change which occurs during melting. Values for the two
salts are summarized in Table 2. 91' 3, The liquid density varia-

tion from the melting point to 1150' K is small enough to be neglected.

2.3.2.3 Vapor Pressure

The vapor pressure of LiF liquid at the maximum operating

temperature of 1150' K is 0. 048 mm Hg. The vapor pressure of

the eutectic mixture has not been measured, but can be estimated

from the vapor pressure of the pure components. At 1150' K, the

vapor pressure of MgF 2 is 2. 8 x 10
-5

 mm Hg, and that of NaF is

0. 030 mm Hg, based on extrapolation of the liquid vapor pressures.

Thus, the vapor pressure of the eutectic should be primarily deter-

mined by the NaF companent which, with a mole fraction ratio of

77.4% NaF corresponds to a vapor pressure of approximately 0. 02

mm Hg.

The vapor pressure decreases rapidly with temperature for all

components. Thus, at the minimum storage temperature of 800'K,

the vapor pressure of NaF is 9. 9 x 10-8 mm Hg.

The vapor pressures given above are based on relations from

Barin and Knacke9.

2.3.2.4 Thermal Conductivity and Diffusivity

Since heat must be transferred from the solid salt to the heat

2- 24
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transport media with an acceptable AT, the thermal conductivity of

the salt (and thermal diffusivity) is an important property in the

system design. Generally, conduction through the solid state is

the controlling thermal resistance in the removal of thermal energy

from the salt, since natural convection assists the heat transfer once

the salt is molten.

The thermal conductivity of LiF is well established. Ie Figure

2.3, the thermal diffusivity and thermal conductivity of solid and

liquid LiF are presented, as measured by Chang, et a1 10 and

Sreenivasan, et al l 1 . In the temperature range of 800 0 K to 1150•K,

average design values are:

Thermal Conductivity

Solid LiF	 0.059 watt/cm • K (3.4 Btu/izr-ft-OF)

Liquid LiF	 0. 019 watt/cm' K (1. 1 Btu/isr-ft- • F)

Thermal Diffusivity

Solid LiF	 0.0105 cm2/sec (0.0407 ft2/hr)

Liquid LiF	 0.0042 cm2/sec (0.0162 ft2/hr)

For the NaF/MgF 2 eutectic Maru8, reports the thermal con-

ductivity at the melting point to be in the range of 2.4 to 4.8 Btu/hr- • F-ft

for the solid and 2.69 Btu/hr-'F-ft for the liquid, with reference to

work reported by Philips. These values are consistent with thermal

conductivity values for MgF 2 as well as other fluoride salts for which

detailed measurements are available. Reasonable design values are

thus:

2- 26
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Thermal Conductivity
Solid Eutectic 0. 059 watt/ cm- • K (3.4 Btu/hr-ft-' F)

Liquid Eutectic 0. 047 watt/ cm- • K (2.7 MuAr-ft-•F)

Thermal Diffusivity
Solid Eutectic 0. 016 cm 2/sec (0. 063 ftr/hr)
Liquid Eutectic 0. 013 cm2/sec (0. 051 ft2/hr)

It should be noted that even though the thermal transfer properties of the
NaF/MgF 2 eutectic are not well known, the system design regaires
tranrler through relatively thin salt layers, with a large surface area
and resulting small 9T's. Thus, the thermal conductivity and dif-
fusivity are not crucial factors in the system performance, and large
variations could be tolerated without seriously affecting the design or
performance.

Z. 3. 2.5 Thermal and Chemical Stability

All three of the fluorides of interest, LiF, NaF, and MgF 2 are
extremely stable compounds ti.at are unreactive wits conventional
materials -of-construction, water, or air. Because of this high
chemical stability, these metal fluorides show little corrosive action
on alloy steels and other high temperature alloys at temperatures to
1150' K. Asselman 12 dr?nonstrated that technical grade LiF, when
purified for the removal of hydrogen fluoride, water, and oxygen,
is noncorrosive to Inconel 600 capsules as used in his demonstration
unit. Assehnan, as well as Schr^der 3 indicated that adding a small
quantity of aluminum to the fluoride salt permits use of technical grade
LiF as well as other fluoride salts without the slightest corrosion of
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AISI 321 stainless steel after prolonged heating at 1123 • K (1561'F).

In a more pertinent series of tests, Beam 13 performed an experi-

mental evaluation of the compatibility of several eutectic fluorides
with the specific material selected for the high temperature parts of

the TES system, Inconel 617. Eleven different capsules were fabri-

cated and filled with the following eutectics: LiF/MgF 2, LiF/MgF2/NaF,
and LiF/MgF 2/KF. From the initial 2000 hours of testing at tem-

peratures of about 950 • K to 1000°K, no significant corrosion of the

Inconel 617 was observed, with the eutectic temperatures remaining

stable. The testing was to be continued to a 10, 000-hour test.

In a separate evaluation by Bramlette 14, it was concluded:

"Turning now to chemical properties of molten fluoride eutectics,
it has been conclusively demonstrated that these mixtures are stable
for many years up to 1023°K if maintained under an inert gas atmos-

phere. Suitable containment materials are Hastelloy N, titanium-

modified Hastelloy N, and Inconel".

While additional experimental work on corrosion rates is re-

quired, this prior work establishes a high degree of confidence that

Inconel 617 should be suitable for this TES system with negligible

corrosion rates, particularly if a small quantity of aluminum is

added to the salt to act as a corrosion inhibitor.

2.3.2.6 Other

While the liquid viscosity is unimportant since the salt is con-

tained in sealed capsules, Eichelberger 2 reports the viscosity for
many fluoride salts. He concludes: "In general, 'he fluorides are

Ii
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highly fluid, with viscosities on the order of 1.7 to 15 centipoise at

the melting point and decreasing as temperature is increased".

While not important in the TES system: operation, this low viscosity

could be important in filling of the system during manufacture.

An additional consideration is the possibility of supercooling

of the fluoride salt. Again quoting from Eichelbergers "Metal

fluoride salts apparently do not have this problem (supercooling).

. . . Reports of work on metal fluorides performed at Oak Ridge

and Philips Labora+ories state that supercooling is not evident".
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3. CONCEPTUAL APPROACH AND

MODES OF OPERATION

3. 1 INTRODUCTION

The operational requirements of an automotive TES/Stirling

engine system are severe:

e Heat Transfer from TES Media to Stirling Engine

Heater Head at High Temperature during Vehicle

Operation

- Normal engine heater head temperature of 1023 ° K

- Small AT from TES media to engine heater head

- Variable heat delivery rate from 2 kwth to 200 kwth

- Very rapid transient response

2 kwth to 200 kwth in < 2-1/2 sec

200 kwth to 2kwth w/o exceeding heater head

temperature of 11230K

- Temperature control to prevent exceeding head

temperature of 1123 ° K
- Separate location of TES/engine with small connecting

line for heat transport

- Rapid startup of engine from cold or standby condition

e Minimal Heat Losses for High Energy Efficiency

- Highly effective insulation on TES Reservoir

- For automotive application, volume and weight

of insulation reduced to absolute minimum

3-1
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- With engine shutdown, very low heat transfer rate

to engine

• Recharging from External (to Vehicle) Combustion 	 :i 1
Heat Source

- Heat exchanger external to vehicle structure required
with means of conveying thermal energy to TES media

- Heat losses through recharging heat exchanger very
low when not in use

• Dual Mode Operation (As Described in Section 3. 4).
'^	 !

- Operation from TES alone
- Operation from on -board liquid hydrocarbon fuel
- Use of TES for peak thermal requirements when

operating on hydrocarbon fuel permitting relatively
steady combustion (thermal flywheel)

- Minimum inventory of high temperature heat trans-
port fluid from safety viewpoint 	 R

- High reliability— no seals, no moving parts

After considerable and iterative evaluation of alternative approaches,
a concept evolved which meets all of these operational requirements. 	

-II

It is remarkable that such a wide variety of operations can be accom-
plished in a relatively simple system with no moving parts. In
this chapter, the concept and its operational modes are described in
qualitative fashion to serve as a basis for the detailed evaluation and 	 .. ;

design presented in succeeding chapters of this report.

:^ f
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The system concept and its modes of operation are described schemat-

ically in Figures 3. 1 through 3.6. All heat transport operations are ac-

complished by means of potassium heat pipes. Three separate, but

coupled, heat pipes are used in a specific manner to decouple the charging

discharging modes of operation and to provide the required operational

flexibility. In addition, heat pipes are well adapted to coupling low heat

flux surfaces to high heat flux surfaces, and vice versa. One heat pipe

is used for recharging, the second for transfer of heat into and out of the

TES media, and the third for discharging or transport of the thermal

energy from the TES reservoir to the Stirling engine heater head. For

control purposes, and to decrease the connecting-pipe size by permitting

a higher AP along the heat pipe than is feasible with capillary pumping,

this latter discharging heat pipe uses an electromagnetic pump to return

the condensed postassium. Power is supplied to the E-M pump by a small

thermoelectric generator operating on heat extracted from the pumped

potassium liquid. This E-M pump provides a means for conveniently reg-

ulating the potassium flow, and hence heat transport rate, to the Stirling

engine heater head by means of a permanent magnet rotated to vary the

magnetic field. If no potassium is pumped to the wall supporting the dis-

charge/TES reservoir heat pipes, no heat transport to the Stirling engine

heater occurs. It should be noted that the wall separating the discharge/

TES reservoir heat pipes (illustrated schematically in Figures 3. 1 through

3.5) is formed by multiple tubes in the detailed designs presented in

Chapter 6 for both the rectangular and cylindrical configurations; heat trans-

fer considerations are presented in Chapter 4, and the E-M pump design

is presented in Chapter ?.

To provide for very low heat losses with minimum volume and

weight, high performance Multi-Foil insulation is used. Multi-Foil
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PUMP
 C FIELD
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1 fES CHARGING DURING NONOPERATION. BURNER ON; PUMP CONTROL SET AT OFF.

The potassium in the boiler is vaporised by cnmbustion heat and condenses in the charging heat pipe

section located in the TES sump. The condensed potassium returns by gravity to the boiler.

The charging heat pipe vaporize s potassium in the TES sump which condenses and transfers boiler

heat into the TES material and walls. The condensed potassium returns by gravity to the TES sump.

Heat is not supplied to the engine head since the pump flow control has rotated the ctepping motor

to the off position so that the magnetic field is not perpendicular to the thermocouple current flow

(consequently there is no •E x H s force to circulate the potassium in the electromagnetic pump circuit).

NOTE = Auxiliary electric heaters powered from the vehicle battery will be used to maintain or

raise the potassium line temperature above the melting point of potassium..

Figure 3. 1 TES Charging During Nonoperation
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TES SUMP	 •
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TO TEMPERATURE
BURNER
	

SENSOR IN TES

R SUPPORT	 TO STIRLING ENGINE
HYDROGEN

FIBER INSULATION	 DIFFUSION
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ENGINE SUMP

2. TES OPERATION. BURNER OFF. PUMP CONTROL SET AT RUN.

The burner is off s therefore, no combustion heat is supplied to the system. The boiler temperature is
low enough that potassium convection is "mall. The boiler is designed to minimize heat loss from the

system. This configuration functions as a "Thermal Rectifier."

TES heat to supplied to the engine because the electromagnetic pump flows liquid potassium out of the
artery onto the wall separating the discharge/TES reservoir heat pipes. The potassium evaporated
from the wall and is transported in the vapor state to the Stirling engine heater where it

condense• to supply heat the engine.

The Stirling engine is operated by its usual controls, which are independent of the TES System.

The condensed liquid potassium is collected in the engine sump sad circulated to the wall Separating
the discharge/TES reservoir heat pipe to transfer additional heat to the engine head.

The current for the electromagnetic pump is provided by a large thermocouple which operates from
heat supplied by the liquid potassium being pumped. The flow rate of the pump is controlled by the
position of the permanent magnet which is located by the stepping motor. In the run position, the
pump now control operatels to maintain the atirling engine heater temperature - regardless of engine

power level.

Figure 3.2 TES Operation

3-5



A-2075

Do o HYDROGEN GAS

ti's POTASSIUM VAPOR

HEAT FLOW

SUPPORT

FIBER INSULAT

ENGINE SUMP

TO STIRLING ENGINE
HYDROGEN
DIFFUSION
WINDOW

POTASSIUM RETURN

ARTERY

VV

•

RQE	 /HEAT PIPES	 • •	 '	 •
•	 '

IRON/ALUMINUM	 •	 •	 DISCHARGING HEAT PIPE
MULTI-FOIL	 •
INSULATION	 ES TES ES	 THERMOELECTRIC C

	

•	 MODULE

TES SUMP	 •	 ELECTROMAGNETIC C

	

•	 PUMP	 L
THERMAL	 •	 PUMP FLOW	 "P"
RECTIFIER	 CONT ROL (VIA	 LEG(S)

III	 MECHANICAL
VARIATION OF
MAGNETIC FIELD)

"No LEG(S)

PERMANENT
0
	 MAGNET

MOTOR

CHARGING I TO TEMPERATURE SENSOR
HEAT PIPE	 IN ENG INE HE ATER
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4. SHORT PERIOD OF NONOPERnTION (with charted TES). BURNER OFF. PUMP CONTROL SET AT IDLE.

If the vehicle is not expected to be used for short periods (e. g. , order of an hour). the pump control

will be set on idle. This location will position the magnet (via the stepping motor) so that: (1) the heat

loss from the system will be reduced, and (2) the heat leakage to the engine will maintain the engine at

• near operating temperature so that the vehicle can start relatively quickly.

Note that with the pump control in the idle position, a "trickle" flow of potassium is maintained to keep

the engine heater at an intermediate temperature somewhat below the usual operating temperature.

Figure 3.3 Short Period of Nonoperation (with charged TES)

3-6



S. LONG PERIOD OF NONOPERATION (with chsrjsd TES). BURNER OFF. PUMP FLOW CONTROL

SET AT OFF.

For long period• of nonopsration to. S . . overnight) without recharging. the pump flow control will be set

at oft. This position will stop any potassium flow through the electromagnetic pump and minimise heat

lose from the system, However, vehicle startup may require several minutes.

Figure 3.4 Long Period of Nonoperation (with charged TES)
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The burner is ten; theref,-re, host is supplied to the TES and "or the engine. 	 At low origin* power, the

TES charged It, e., melted) and at high engine power the TES is discharged. 	 Thus the combustion

y•tent can be seed fur average power, rather than peak power, operation.

Figure 3.5 Dual-Mode Operation
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denotes a high temperature thermal insulation system developed by

Therr-no Electron Corporation in which thin metal foils (90 in this

case) are spaced in a vacuum by oxide particles. The vacuum

and oxide particles eliminate conduction losses. and the foils serve

as multiple radiation shields so that a 1/2 inch insulation thickness

results in very low heat losses from the high temperature parts of

the system. This insulation and its characteristics are described

in detail in Chapter 5. The Multi-Foil is used to insulate the TES

reservoir and the primary heat transport line to the Stirling engine.

Conventional fiber insulation (e. g. , Fiberfrax or Min-K is ur, ad to

insulate the heater head of the Stirling engine for ease in rnainte-

nance of the engine.

Use of the vacuum insulation does introduce difficult structural

problems in design of the TES reservoir, and a major portion of

the reservoir design effort was concentrated on development of a

practical means of structurally supporting this vacuum with mini-

mum structural weight. The TES reservoir structural designs for

rectangular and cyUndrical envelopes are given in Chapter 6.

3.2 DESCRIPTION OF OPERATION

The means of charging the TES system is illustrated schemati-

cally in Figure 3.1. Thermal energy is added to the system b,r

means of the charging heat pipe. The charging heat pipe .functions

as a thermal rectifier which transfers heat in one direction only. 	 t

Thus. when the burner Is "ON", heat is transferred by vaporization

of potassium vapor in the boiler section heated by the burner. The

3-10
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vapor flows to the condensing section, which is located in the TES

reservoir sump and is surrounded by liquid potassium in the TES reser-

voir heat pipe. The vapor in the charging heat pipe is condensed, trans-

ferring heat to the boiling potassium in the TES heat pipe. The condensed

liquid drains by gravity back to the boiler sectio:. Rectification is ob-

tained by use of this gravity return of the potassium to the boiler section,

rather than by capillary return as in a conventional heat pipe. Thus, if

the TES reservoir is at a higher temperature than the boiler section of

the charging heat pipe, no condensation or heat transfer occurs, and

the K inventory is collected in the burner section. In other words, with

gravity return of the condensed K, reverse vapor-condensation is impos-

sible, eliminating heat loss by this mechanism from the TES reservoir

via the recharging heat pipe. Conduction heat losses are minimized by

use of an extended length of thin-wall tubing in the charging heat pipe and

by use of low thermal-conductivity metal in the adiabatic section connect-

ing the boiler/condenser sections of the heat pipe.

In the reservoir, the charging heat pipe is immersed in a sump in-

to which the liquii potassium in the TES reservoir heat pipe collects.

The sump is configured to minimize the inventory of potassium in the

TES reservoir required to assure that the charge heat pipe in the reser-

voir is immersed in, and wet with, potassium liquid during charging.

During charging, heat transfer from the charging heat pipe results in

boiling of the potassium in the reservoir containing the TES salt cap-

sules. This vapor condenses on any cold surfaces, transferring heat

to these surfaces and heating/melting the salt media, with the liquid

potassium draining back to the sump. In other words, the TES reser-

voir operates isothermally with uniform recharging of the TES media.

3-11
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During recharging, heat transfer from the TES reservoir to the Stirling

engine by the discharging heat pipe does not take place, since no liquid

potassium is pumped to the wall separating the discharge/TES reservoir,

and no vapor is generated (the permanent magnet is rotated out of the

E-M pump so that no magnetic field exists and no pumping occurs).

The charging concept thus meets the functional objectives of no

heat loss by vapor transport through the charging system when not

charging, no heat loss by vapor transport to the Stirling engine during

charging, minirnuin potassium inventory in the charging/reservoir

heat pipes, uniform heating of the TES salt containers, and no moving

parts. It does require that the boiling section of the charging heat pipe

be located at a lower level than the TES reservoir during recharging,

and, to minimize the K inventory in the TES reservoir, that the vehicle

be level during recharging so that the liquid potassium can be con-

strained to flow to the sump in the reservoir. These restrictions can

be satisfied in a practical vehicle. There will be a small heat transport

rate from the hot TES reservoir to the cold Stirling engine by thermal

radiation and conduction.

With a charged TES system, normal operation of the vehicle is

as illustrated in Figure 3.2. The permanent magnet is rotated

into the E-M pump, producing a magnetic field and resulting in

pumping of liquid potassium in the discharge heat pipe. This

romped potassium is distributed onto the wall separating

the discharge heat pipe and the TES reservoir heat pipe. Pro-

vided the Stirling engine heater head is at a lower temperature

3-12
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than the TES media, boiling of this pumped potassium occurs with

vapor flow down the discharge heat pipe and condensation on the

Stirling engine heater tubes. Temperature of the engine heater

is controlled by modulation of the pumping rate in the discharge

heat pipe via rotation of the permanent magnet, to regulate the

magnetic field. Thus, the normal operating temperature of the

heater head, 1023 ° K. can be obtained under all-load conditions

(i.e. small or large TES engine head ff),even though the TES media

has a maximum charged-temperature of 1150° K and melting point

of 1121'K or 1103 • K, depending on the salt used.

WithLn the TES reservoir itself, boiling of potassium on the wall

separating the discharge/TES reservoir heat pipes removes heat from

the wall with a reduction in the wall temperature. Vapor in the TES

reservoir heat pipe immediately condenses on the TES reservoir side

of the wall to liquid potassium. This liquid drains or drips into the salt

capsules, where it vaporizes with extraction of heat from the salt; this
condensation/vaporization cycle continues until the pressure in the reser-

voir heat pipe equals the vapor pressure of K at the TES media tempera-

ture. The salt capsules have their surface textured to assist in distribu-

tion of the dripping K liquid over the capsule surfaces. Also, the bottoms

of some of the capsules are immersed in the liquid potassium in the reser-

voir sump to provide potassium vapor and to ensure isothermal condi-

tions in the reservoir, including the sump; the slight capillarity on

the salt capsule surfaces assists in this function and ensures suffi-

cient heat transfer from the capsules to the liquid in the sump to

maintain its temperature at the salt temperature.
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During short periods of nonoperation with a charged TES, it

may be desirable to maintain the engine head at an Intermediate

temperature between ambient and the normal operating temperature.

This would minimise heat losses through the engine while still pro-

viding instantaneous startup of the vehicle. This function can be
easily accomplished, as illustrated in Figure 3. 3, by switching the

control to an idle position which changes the set point of the engine

temperature control to a lower temperature. The system then

functions as in normal operation to maintain this new temperature.

For long periods of nonoperation with a charged TES, the permanent

magnet Is simply moved from the E-M pump, preventing any K pump-

ing and any heat transfer (except by radiation) from the high tempera-

ture TES media to the low temperature engine head. A longer startup

is required, since the engine head must be heated from a cold con-

dition instead of an intermediate temperature. Startup time should

be no more than that required for the combustion-heated Stirling

engine.

The operational concepts as described above meet the important

functional requirements of minimal heat loss to the engine during long

periods of nonoperation, absolute control on the engine head tem-

perature, rapid transit response both in turndown and turnup, no

moving parts (except for the permanent magnet), and minimum

inventory of potassium. In addition, as will be described in Chapter

4, the discharge heat pipe diameter to carry 200 kwth from the TES

reservoir to the engine at the minimum heat source temperature of

800 • K is only 10 cm (3.94 in), with a 25'C AT from the TES salt to
the engine heater (outer tube wall).

3-14
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3.3 DUAL-MODE SYSTEM

As discussed in Chapter 9, the dual mode of operation, in which
the Stirling engine can be operated from stored thermal energy for
short duration trips or from liquid hydrocarbon fuels for long duration
tripe, provides an attractive alternative to the TES-only vehicle.
This method can provide (1) a vehicle with the convenience of current
automobiles and (2) substantial savings of premium liquid hydrocarbon
fuels by use of TES via an external heat source for short-duration
trips. In addition, the TES can be used to provide peak thermal
energy requirements, so that the combustion system can operate
at approximately steady-states a resultant reduction in emission
levels can be expected relative to the direct-fired Stirling engine
where the combustor must track the highly transient engine power
demand. It is much easier to achieve low emissions with steady-state
combustion than in highly-transient combustion, particularly where a
turndown of — 20: 1 is required. In other words, the TES would func-
tion as a thermal "flywheel. "

The functional operation as a dual mode system is illustrated
schematically in Figure 3. 5, and in terms of a block diagram in
Figure 3.6. For dual-mode operation, the TES size would be
reduced to about one-tenth of the size required for TES-only opera-
tion, since the TES by itself would be used only for short trips. In
addition to the external charging combustor and its associated heat-
pipe, a second combustor/heat pipe system would be operated in
parallel to that for the external heat source, using liquid hydrocarbon
fuel carried on the vehicle. The external charging system would be
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operated exactly as on the TES-only system, with overnight recharging

from an external heat source. The on-board unit would function in a

similar manner — with fuel tank, combustor, and a second charging

heat exchanger carried on board. The boiler section of this heat pipe

would be located below the TES reservoir, with gravity return of con-

densed potassium to eliminate heat losses when the on-board combustor

was not in operation in an analagous fashion to that described earlier.

For dual-mode operation as illustrated in Figures 3.5 and 3. 6, the

TES reservoir is located in series between the on-board combustor and

the Stirling engine. It is thus necessary that the TES module be at least

partially charged and at a sufficiently high temperature for proper opera-

tion of the Stirling engine (> 800 0 K), since the heat input to the engine

Is always taken from the TES reservoir. This disadvantage is alleviated

because of the small storage capacity (- 10 percent) of the TES reservoir

relative to the TES-only vehicle and the increased thermal charging rate

possible with the on-board combustor. Thus, even with a cold and un-

charged TES reservoir, the startup time will be relatively small (a

matter of minutes). Normally, the TES reservoir would be maintained

either charged or partially charged so that instant operation of the vehicle

Is possible. It would be desirable, of course, to be able to bypass tho

TES reservoir, with the on-board combustor directly heating the Stirling

engine via a heat-pipe. Such an approach would greatly complicate the

system and the extra complication was not felt warranted, relative to

the inconvenience of delayed startup only when the TES reservoir is cold.
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3.4 METHOD OF RECHARGING FROM EXTERNAL
COMBUSTION SOURCE

An external burner producing combustion gases with a temperature

of at least 2000°F is required. These gases must be ducted to the

vehilce and passed through the evaporator section of the recharging heat

pipe as described earlier. The gases leaving, still at a high tempera-

ture considerably in excess of 1600° F, must then be ducted back to the

furnace and passed through a recuperator for an efficient utilization of

the combustion energy. The exhaust gases, which are at a low tempera-

ture, are then ducted to a stack or chimney. The combustor must also

be connected to the fuel source, either gas or liquid, with a burner

suited to the fuel. As a final note, the recharging must be safely ac-

complished.

Such a system can obviously be operated by trained engineers/

technicians on prototype vehicles. The question of .whether it can be

operated by the normal layman must be considered. Although a defini-

tive answer requires design and evaluation, the following discussion

describes, in qualitative terms, one technique that appears feasible.

It is based on the supposition that the recharging system must be as

convenient to operate as a central home-heating system, i. a., com-

pletely automatic.

For overnight recharging (50, 000 Btu/hr transfer rate to the TES

system), two recharging heat pipes are used, each with a finned evap-

orator having a tube O. D. of 1 inch, a length of 12 inches, and a fin/

tube area ratio of 3. One possible method of recharging is illustrated

in Figure 3. 7. The two finned tubes are located beneath the car in an

insulated cavity as illustrated. The cavity matchce with a special
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combustor configuration, as illustrated schematically. The combustor

would be located permanently in the garage floor so that the car could

be driven over the unit. Special metal wheel indents and guides fastened

to the floor would be used for accurate positioning of the vehicle to

match the burner cavity and the exchanger cavity on the vehicle. Once

positioned, the recharging sequence would be completely automatic

and actuated by pressing a switch in the garage. On actuation, the

burner assembly would be automatically raised by an electric motor

and pushed against the bottom of the vehicle with considerable force,

providing an effective gas seal around the perimeter and forming a

closed furnace. The blower would then be started and the air pressure

checked automatically to ensure groper positioning and a good gas seal.

If satisfactory the gas burner (or liquid burner) would be actuated and

the recharging started. The burner would continue to operate until a

thermocouple indicated that the desired temperature of 1600°F in the

TES reservoir had been reached. The burner would be turned off and

the air flow continued until the furnace surfaces had cooled to near

room temperature, at which point, the blower would be turned off and

the burner assembly lowered into the garage floor, completing the

cycle.

Safety sensors would be incorporated to shut down the recharging

in the event of overheating in any part of the system, such as one of

the finned tubes. An electrical connector would automatically be

coupled, connecting sensors carried on the vehicle to the burner con-

trol assembly. Fuel and exhaust lines would be brought into the cavity

beneath the furnaces and connected to the burner by flexible lines.
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4. HEAT TRANSFER AND TRANSPORT CHARACTERISTICS

In the TES/Stirling engine system, key considerations are: trans-

for of 200 kwth for at least 15 seconds from the TES media to the engine

heater with a AT small enough to have an insignificant effect on the engine

performance; small connecting line for heat transport between the TES

reservoir and the engine; rapid transient response; and low parasitic

power. The AT between the TES media and the Stirling engine working

gas can be divided into the followings

AT in Salt

AT in Transport of Heat Removed From Salt to Engine Heater
Plenum

AT in Transfer of Heat From Engine Heater Plenum to Working Gas

In Section 4.4, the transient temperature profile in the solid (frozen)

salt-slab is calculated for a step increase in the heat removal rate from

zero to 200 kwth with an initially uniform temperature in the salt. Trans-

fer from the solid salt represents the worst case, since natural convection

assists heat transfer and reduces the AT where liquid exists. After

15 seconds with 200 kwth removal rate, the salt capsule surface tempera-

ture has decreased by only 20-C (36°F); most full-power transients last

15 seconds or less. This small temperature decrease will have only

a small effect on the Stirling engine performance during the full-power

transient. Even when 200 kwth is removed continuously for longer periods,

the asymptotic centerline-to-surface AT in the solid salt is only

43-C (77-F).

Relative to heat transport from the salt to the engine working gas,

evaluation of alternative means of heat transport (such as use of an inert

Sam) rapidly leads to the conclusion that the only practical means of heat
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transport are heat pipes using, at the temperatures of interest for the

Stirling engine, either sodium or potassium vapor. The proposed sys-

tem is thus based on three potassium heat pipes for charging, internal

heat transfer in the TES reservoir, and transport of thermal energy to

the Stirling engine, as described in detail in Chapter 3.

In Section 4.3, the evaporation/condensation AT's for potassium

are estimated for the systems designs presented in Chapter 6. For
I

200-kwth heat transport, the AT's for evaporation/condensation are

all substantially less than 1 ° C and thus negligible. The major AT in

heat transport is thus that resulting from the AP required to transport

potassium or sodium vapor in the discharge heat pipe from the TES

reservoir to the engine heater plenum in a connecting pipe of reasonable

size. This heat transport is evaluated in Section 4. 1. At the minimum

storage temperature of 800 • K, the AT resulting from the 4-inch diameter

connecting pipe used in the system design is 25° C with a vapor transport

rate corresponding to 200 kwth transport. This AT decreases rapidly

with increasing TES media temperature. Thus, the maximum TES media-

to-engine heater tube temperature is 45°C, with 200 kwth supplied con-

tinuously for 15 seconds. Under almost all actual operating conditions,

the AT is less than this worst-case value. The effect of this AT on the

Stirling engine performance is small and the operational requirements

of the system are therefore satisfied.

Use of potassium as a heat transfer medium does introduce safety

questions because of its high reactivity. The approach followed in the

design has been to reduce the potassium inventory to an absolute minimum,

thereby reducing this hazard to a low level compared to other hazards.

Safety of this system is discussed in Chapter q. Also, use. of a potassium
heat pipe for transport of thermal energy to the Stirling engine heater
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head introduces questions regarding the effect of H 2 diffusion through the

heater tubes on the heat transport rate or performance of the heat pipe.

This issue is discussed in Section 4. 2 of this chapter.

Transient response of the TES system is discussed in Section 4.6,

and meets the operational requirements of the system.

4. 1 HEAT TRANSPORT BY POTASSIUM AND SODIUM VAPOR

Consideration of the large volume and weight of the TES reservoir

requires packaging of the TES reservoir and the Stirling engine at dU-

ferent locations in the vebicle. Thermal energy at 200 kwth (for peak

engine power) is transported from the TES reservoir to the Stirling

engine by means of the discharge heat pipe. In a conventional heat pipe,

with capillary liquid return, the pressure drop for sodium- or potassium-

vapor flow is very small and limits the transport rate per unit duct area,

kwth/cm? As discussed in Chapter 3, a separate E-M liquid return pump

is incorporated so that a larger AP can be generated over the vapor trans-

port line, thereby greatly increasing the transport rate per unit area. (The

E-M pump also provides a means of controlling the heat transport ra ge. )

The effect of AP on the vapor transport rate, and hence thermal

transport rate, was analyzed parametrically for both sodium and potas-

sium vapor, based on the flow schematic of Figure 4. 1. The model

used for the calculations (given in Appendix A) treated the vapor flow as

compressible flow in a frictional duct. The metal vapor was assumed

to obey the ideal gas law, with ocood approximation; other properties,

such as vapor pressure and heat- of -vapor izaticn were taken from Schins. I

While some ecndensation may occur during flow of the vapor down the

duct, this effect was neglected, since it has a srr.all effect on the vapor

flow rate (< 10 percent), and results In a slightly higher transport rate

I
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than that based only on compressible flow. The heat transport rate is
determined as the product of the vapor mass flow rate and the latent heat-

of-vaporization of the metal.
With reference to Figure 4. 1, for given conditions of pressure, Po,

and temperature, T o, at the TES reservoir, the back pressure, PB, at

the Stirling engine heater head determines the flow rate in the duct.
This back pressure in turn is determined by the temperature of the engine
heater tubes and determines the temperature at which the metal vapor

condenses on the heater tubes. If P8 = P, no flow occurs and no heat

transport occurs. As PB is reduced (by extraction of heat by the Stirling

engine), the flow rate responds to the AP, and vapor flow and heat trans-

port occur. The flow rate continues to increase until the hack pressure

is reduced to the level where the flow velocity at the duct exit equals the
sonic velocity of the vapor. At this point, the flow is choked, and a further

decrease in B does not result in a further increase in vapor flow rate

and heat transport rate; this condition represents the maximum thermal

transport capability of the heat pipe duct.

Results of the calculations are given in Figures 4. 2 through 4.4 for

sodium vapor and in Figures 4.5 and 4.6 (and figure 7. 1 of Chapter 7)

for potassium vapor. These figures are based on a duct length of 10 feet,

taken as the maximum length of interest for the automotive calculation.

It is also assumed that P and To correspond to saturated conditions, with
+km ^^^^eneing temperature determined by the back pressure, PB (as

jed by P and the pressure ratio o/P ). From these figures, the

1 conclusions can be drawn:

At a given heat source temperature (PO ), the heat transport rate
increases rapidly as the back pressure is reduced.

4-5



aoN

in

^a
0V
W

f H
Q

J 0
J

$4
Ow
u

m
•^ o

^ u
uA

^a
U=NIM 11

OA
a.0
to

qo
^ a

CD
CL

a

H^D

u 'd
xul
N
d'

it

8
CD

V
i^

O
00
..r

O V
0 v̂N

^T

0
00

Rn.s

0	
O	 00	 O

i	 M	 N

(M CI) 83MOd

4-6



Da

[Da

a
a

a
0
0
OD Ue

Hw
O
O
I`

O
O
t0

w
0w
u

0... 0
v n

uA
a^^a
U=
^ u
oAa
^ 3

dx^

tio

w

a

iW
F-
Q
Ir

1;
0
J
IL

a



m 0
D a

m
av
a

O

$4
O
w

u
44

m
..a p
I♦
y II
uA
^a
U =^

0A0
a^
ra 4A
0 ."
14

HE
v
^ u7
w

.i

0

1

x

a

W
^ Q

^ 3O
J
U.

m
t•

I
a0
in

u

u

r

cr

I

1

am

c
Q00- m

mm amO
MOa o
0
a

It
O

O
O
ti or..

CD
H

O
O
40

O
O

v	 O
O

s♦
00

T̂ I

O	 O	 O	
M	 N

tD	 ^	 a

(Mx) a3MOd

4-8



00	 0	 0	 0	 0	 0
^p	 fA	 tr	 fn	 N

(M 4) 83MOd

ao
f-

1

0
0
to

0

a
cV̂

r W

ar a
3

V 0

LL

DR 
o

D m

CL

L.
CL

to

0

0

0
0 --
ti

0

m

0
0
(o

N0w
U p
10 11

°' au
a! -

^ N
n

u 
1: x
0
a3

H m̂
^44
0 0
x 0

0

m
w

4-9



%J	 %J	 0	 0	 0

V	 M	 N	
O

(M CI) 83MQd

)1

co
tiw
ti

a
c^
W
H
Q

3
OJ

^ M

a

M

N

O

O

m
N
q,
M Op
^^ a o°°
a

N
Cs N

O

°a a° 0

a
0

ti

0

00

$.
0w
u

m

c

u

.. û a
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• The reduction in back pressure for fixed Po
corresponds to an increase in the temperature
differential between the heat source and the con-
densing temperature.

• The heat source temperature has an extremely strong
influence on the heat transport capability of a given
diameter duct, with the capability decreasing rapidly
as the heat source temperature is reduced. This
effect is very important, since it is proposed to utilize
the TES system over the temperature range of 800 • K —
1150° K to maximize the storage capacity per unit
mass. The duct diameter required to transport 200
kwth is determined by the lower storage temperature.
U the TES were restricted only to higher temperatures,
a very small duct (— 1 inch with potassium at 750°C)
would be required to transport 200 kwth.

• The liquid now rate for 200 kwth transport is 1. 0
gal/miL for sodium and 2.2 gal/min for potassium.

• At a given heat source temperature and, temperature
difference, potassium has a significantly higher
thermal transport capability through a duct of a given
dtameter.

Calculations were also performed to determine the effect of the

L/D ratio and the effect of superheated vapor from the TES reservoir,

with results as given in Figures 4. 7 and 4. 8, respectively. The

L/D ratio has only a small effect on the -:hermal transport capability;

thus, the duct length, and the exact locations of the TES reservoir

and Stirling engine, are not important in establishing the duct diam-

eter. Relative to superheat, for a given pressure, P o , at the TES

reservoir, the specific vapor temperature, T o , or degree of super-

heat, has a minor effect on the thermal transport capability of a

j
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given duct — as illustrated by Curves 1, 2, and 3 of Figure 4. 8.

However, if superheat is obtained at a given vapor temperature, To,

by reducing the vapor pressure, a significant change in the thermal

transport capability occurs — as illustrated by Curves 4 and 5 of

Figure 4. 8, In other words, the thermal transport capability is

determined primarily by the pressure, P o , at the reservoir, with

superheat of the vapor having a minor effect.

The results presented previously were cross-plotted to determine

the duct diameter for the discharge heat pipe, based on a transport

rate of 200 kwth with a 2F°C AT from the heat source to the Stirling

engine and with a heat source temperature of 800° K. Results are

given in Figures 4.9 and 4. 10. Based on these results, potassium

was selected as the best fluid for the discharge heat pipe, and a duct

diameter of 4. 0 inches was determined to be sufficient to transport

200 kwth at 800°K. At higher heat-source temperatures, the TES

media/Stirling engine heater bT will be substantially less than 25•C.

If sodium were used, the required duct diameter would be 6. 0 inches.

The potassium liquid flow rate is about double that of sodium, so that

the potassium inventory in the liquid return line is somewhat greater

that that for sodium.

4. 2 EFFECT OF HYDROGEN LEAKAGE ON DISCHARGE HEAT

PIPE OPERATION

The heater tubes of the Stirling engine are metallic, contain

high-pressure hydrogen, and operate at high temperature (1023 ° K).

Under these conditions, hydrogen gas diffuses at a relatively rapid

rate through the heater tubes into the discharge heat pipe. The

4-14



33-478

AT, SOURCE TO HEATER a 25°C

4"
500

400

W

300

a

z 200
H
a
= 100

3"

2"

No
-- K

01
500
	

600	 700	 800	 900
SOURCE TEMPERATURE (°C)

Figure 4.9 Heat Transfer Rate vs. Source Temperature
And Pipe Diameter

4-15



40-478

800
..e
V
0
%.0

W
700

a
W
a

w 600

Ow 500

X

? 400

No
-K

N00 kWth
50kWth
00 kWfh

200kWth
150kWth
OOkWth

2	 3	 4	 5	 6

PIPE DIAMETER (IN.)

Figure 4. 10 Minimum Source Temperature vs. Pipe Fiameter
LT, Source to Heater =25'C

4-16



r

RLfp 0^
CC)POO RAT I ON

presence of an inert gas in a heat pipe can have very serious effects
on its heat transfer performance, and this leakage of hydrogen is
of otnious concern. Stirling engines have been operated with
excellent performance, using heat pipes for thermal transport to
the engine heater. 2 All of the engines tested in this fashion have
used helium instead of hydrogen as the Stirling engine working fluid,
since helium does not diffuse through the tube walls. Indeed, as
pointed out below, use of heat pipe heating of the Stirling engine
permits use of helium as a working fluid, with comparable or better
power and efficiency relative to the direct-combustion heated Stirling
engine of the same displacement with hydrogen working fluid. This
opportunity to eliminate use of hydrogen as the working fluid deserves
careful attention, even without use of thermal energy storage. Without
experimental work, it is impossible to give a definitive answer as to
whether it is feasible to operate a heat-pipe heated Stirling engine with
hydrogen working fluid. Since it is a complicated ; problem to model
analytically, there are strong doubts that a reliable analysis can be
made without experimental measurements to both provide an under-
standing of the phenomena occurring and to back up the analysis. Such
experiments should simulate as closely as possible the expected con-
figuration of the Stirling engine heater head and be carried out with
both H, and He.

Y

If HZ diffusion does develop as a serious problem in operation
of the discharge heat pipe, one alternative is to take advantage of
the he-at-pipe "bonus I' effect as out' fined by Hoagland and Percival. 3
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In Figure 4. 11, a power and efficiency comparison is presented

for high specific power, double-acting engines optimized for direct

heating with He and H 2 working gases and for indirect heating by a

heat pipe with helium working gas. 2 In Figure 4. 12, experimental

measurements on a directly heated and heat-pipe heated Stirling

engine are presented. 3 The information in both of these figures

is from United Stirling, Malmo, Sweden, a major developer of

Stirling engines. In Figure 4. 13, a similar comparison prepared

by Philips of Eindhoven, Netherlands and reported by Meijer is

presented,4 based on upe of the same high- specific power engine in

which the engine heater is not optimized for each working gas and

mode of heating. All of this information indicates that, because of

the "bonus effect" of heat-pipe heating, the power and efficiency of

a heat-pipe heated engine with helium working gas is equal to or

greater than that of the direct-fired Stirling engine with hydrogen

working gas.

The "bonus effect" of heat-pipe heating vs. direct heating

results primarily from two effects as follows:

• The use of condensing potassium (or sodium) as a
heat source provides a nearly constant wall tem-
perature of the Stirling heater. In addition, control
of the potassium pressure around the Stirling heater
provides extremely tight control over the tube tem-
perature, since the pressure directly determines the
temperature at which potassium can condense. In
a direct-fired heater, heat is being transferred from
combustion gases with a widely varying temperature.
Furthermore, small perturbations in the tube spacings
due to manufacturing tolerances can lead to nonuniform
combustion gas flow, through heater tubes - with re-
sultant heat-flux variation. Both of these effects re-
sult in a nonuniform tube-wall temperature. To assure
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that the safe working temperature of the tubes is
not exceeded, the average heater tube temperature
is substantially :,-,low the "hot spot" temperature —
which is governed by material creep properties.
The net result is that with heat-pipe heating, the
average heater tube temperature (and peak working
gas temperature) can be boosted to the creep tem-
perature limit, an increase of about 50°C to 75°C
above that for the direct-fired engine, thereby
Improving engine output and efficiency substantially.

9 Due to its high condensing .ieat transfer coefficient,
the potassium heat pipe allows the heater tubs to
operate at a substantially higher heat flux than with
direct combustion heating. Reoptimization of the
heater head for heat pipe, rather than direct heating,
results in a larger number of smaller-diameter and
shorter tubes. This modification Lrproves the in-
ternal heat transfer performance, reduces the
internal gas pressure loss through the heater, and
reduces the dead volume of the engine — all leading
to higher engine specific power and efficiency.

Thus, a viable solution to the hydrogen diffusion problem is to
use helium working gas. Relative to the H2/combustion-heated
engine, nothing is lost by going to He in terms of engine size,
engine power, and engine efficiency. In addition, elimination of
H 2 has some advantages relative to safety and to the elimination
of the need to periodically charge the engine with makeup H 2 to
replace leakage. Even without TES, heat-pipe heating should
be given serious evaluation for the automotive Stirling engine.
In addition to use of He working gas with the same engine displace-
ment and higher power and efficiency, the heat pipe decouples the
burner/combustion heater from the Stirling engine, permitting,

4-22
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for example, placement of the burner/combustion heater in the rear
of the vehicle with the Stirling engine in the front. Elimination of
the.burner from the Stirling engine. coupled with the shorter heater
tube, reduces the overall length of the Stirling engine — thus,
facilitating packaging.

The heat pipe also decouples the heat transfer surface at the
burner from that at the Stirling engine — permitting separate
optimization of each. Thus, the burner/combustion heater can be
designed larger, with a much lower pressure drop and parasitic
power loss, resulting in an additional improvement in the overall
system energy efficiency. In the direct-heated Stirling engine,
several percent of the gross engine power is required for the com-
bustion air blower. The heat pipe acts as a very effective heat-flux
transducer. using the low heat-flux in the combustion heater and
providing a very high heat-flux to the Stirling heater.

Use of H2 with the heat pipe would result in a smaller Stirling
engine for the same power and efficiency, and could greatly improve
the attractiveness of the automotive Stirling engine. Thus, even though
the heat-pipe heated engine with He is competitive with the direct-
heated engine with H 2. there is still an incentive to use H2 with the
heat-pipe heated engine. Two approaches can be followed to poten-
tially eliminate the effect of H2 diffusion leakage on the heat pipe.
First, the heater head can be designed so that high-velocity flow
of the metal vapor cleans the tubes of H 2, with pumping of the H2
to a H2 diffusion window in a manner analogous to a diffusion pump.
This technique is suggested in the concept schematics of Chapter 3
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for elimination of H 2 from the discharge heat pipe, but requires

experimental development and demonstration before its success

can be assured. Second, to reduce any effect, materials or coatings

that greatly reduce the diUusion rate can be used as (or on) the heater

rubes. It should be noted that diffusion rates through the tubes in

operation of actual Stirling engines have been substantially less than

would have been predicted from steady-state, isothermal, laboratory

diffusion measuremecnts. 3 The reason for this reduction is not known,

but may be due to the oscillating pressure as well as thermal gradient

in the tube wall.

4.3 EVAPORATION/CONDENSATION AT's IN HEAT PIPES

In general, the evaporation/condensation heat transfer coefficients

of alkali metals, specifically potassium and sodium, are high enough

so that the AT's for evaporation and condensation of potassium in each

of the three heat pipes are negligible compared to other heat-transfer

operations. In this section, typical heat transfer coefficients are

presented and used with the system heat transfer areas to justify

the negligible AT's wherever potassium is evaporated or condensed.

For condensation of liquid metals, the liquid metal film on the

condensing surface has a negligible LT and heat transfer resistance.

The liquid film is basically isothermal at the temperature of the sur-

face on which condensation is occurring. The primary resistance

Is thus at the liquid-vapor interface, with a continual interchange

of molecules being condensed from the vapor and molecules evaporat-

ing from the surface. With a net flow of molecules toward the surface,

4-24
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there exists a temperature drop, T s- Ti, whose magnitude depends
on the fluid being condensed, on the saturation pressure, and on the

C:
rate of condensation. T s is the saturation temperature of the vapor,
and T i the surface temperature at the liquid film interface (wall
temperature in this case). The heat transfer flux, q/A, is thus
related to the net mass flow (W/A)net toward the liquid-vapor inter-
face,

	q/A -(A )	 hfNet g

where, hf = heat- of-vaporization of condensing vapor. Schrage5
g

has analyzed this problem with kinetic theory with the results
1/2	 P P P T T

(q/A) = 2 R ) ( d ( ) ( s P i	 2T i ) hfCond	 s	 i	 i	 g

where M = vapor molecular weight
R = ideal gas constant
O = accommodation coefficient, defined as fraction of

molecules striking surface that actually do condense

s = saturation pressure

Pi = Interface pressure

The heat transfer flux and heat transfer coefficient are summarized

in Table 4. 1 for sodium and potassium at a film surface temperature

of 650• C and for several AT's. The condensing heat transfer coeffi-

cients are extremely high, so that small AT ' s result wherever con-

densing heat transfer occurs. Presented below are heat transfer

fluxes and the dT's for a condensing surface temperature of 650 9 C for the
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TABLE 4. 1

CONDENSATION HEAT FLUX AND HEAT TRANSFER COEFFICIENT
FOR SODIUM AND POTASSIUM AS FUNCTION AT

Ti = Interface or Condensing Surface Temperature = 65011C

T = Saturation Temperature of Vapors

AT=  Ts - Ti

C)

q/A (w/cm2 ) h (watts/cm2-' C)

Na K Na K

5 300 800 60 160

10 600 1600 60 160

30 1800 4800 60 160

50 3000 E000 60 160

a '
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TES system as presorted in this report (based on a rectangular

configuration):

• Recharge heat Pipe (Condensing in TES Reservoir)

A	 718 cm  (0.77 ft?')

q	 14.65 kwth (5 x 104 Btu/hr)
q/A	 20.4 w/cm2

&T (650 • C)	 0. 13°C

• Reservoir Heatpipe (Condensing on Discharge Heatpipe)

A	 1.724 x 104cm2(18.6 ft2)

qmax	 200 kwth (6. 826 x 105Btu/nr

(q/A)max	 11.7 w/cm2(3.6 x 104Btu/hr-ft2)

AT(650-C)	 0.07°C

• Stirling Engine Heater Head (Condensing on Heater tubes)

A	 —5000 cm2(5. 38 ft2 ) (for automotive
Stirling engine)

q	 200 kwth (6. 826 x 105Btu/hr)

q/A	 40 w/cm2

AT (650°C)	 0.25°C

From these values, it is apparent that the condensing AT is small

enough to neglect in all parts of the system.

The evaporative section of a heat pipe normally includes a wick,

and evaporation occurs from the liquid surface without bubble forma-

tion. While wicks are not required for capillary pumping, they are

used on all evaporative surfaces to ensure wetting of the surface and

4-27



01M=
COPPORAT;ON

to provide good distribution of liquid potassium over the hot surface.

In this resp-ct, then, the evaporation from a hot surface (relative to

the vapor saturation temperature) is similar to the condensation on

a cool surface, and the same molecular kinetic model applies for

evaporation as Dior condensation; that is, the heat transfer represents

the net mass flow .esulting from molecular evaporation and conden-

sation at &he liquid interface, with the wall (or liquid) temperature

in this case higher than the vapor saturation temperature:

1/".	 P	 P P	 T T
(q'WEvap-( 21►R ) ( 2 o-x_ j'=i (_ i

	 i

	

Pi s	 Ti s )h f
V s	 g

The evaporative heat transfer coefficient at a given temperature is

thus identical to the condensing coefficient, and equivalent AT's

exist for the same heat flux as for boiling. This type of heat trans-

fer definitely applies in the evaporative section of the discharge heat

pipe, and this AT would be —0. 07 • C. This mode mf evaporative heat

transfer also occurs in the charging heat pipe for which the evaporative

AT should be basically zero, since the external thermal resistance for

heat transfer from combustion gases to the evaporative section of the

charge heat pipe is totally dominant in the heat transfer.

In the reservoir heat pipe, liquid potassium may immerse the

charging heat pipe, so that heat transfer by pool boiling could occur.

The heat flux of 20 w/cm 2(6.34 x 104Btu/hr-ft2 ) is small enough so

that only small AT's will occur. In Figure 4. 14 the heat fluxes for pool

boiling of sodium and potassium at several temperatures are presented,

based on the results of Subbotin, et al. 6 Heat transfer coefficients at

1400 • F are 35, 000 Btu/hr-ft 2-'F for potassium, and 13, 500

Btu/hr-ft2 - • F for sodium, respectively. It is apparent that the &T for
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pool boiling of potassium at a heat flux of 6.3 x 10 4 Btu/hr-ft2 is in the

range of 0. 8° C to 1.2 • C (2 • F to 3 • F ), and thus is negligible.

In summary, all OT's for heat transfer by evaporation/boiling or

condensation of rota ssium are sufficiently small to be neglected at the

maximum heat flt.xes required.

4.4 SALT TEMPERATURE VARIATION DURING HIGH-POWER
TRANSIENT

During wide-open throttle operation, 200 kwth must be supplied by

the salt capsule for at least 15 seconds. It is important in this transient

that the salt capsule surface temperature is not significantly reduced,

since both the Stirling engine power and efficiency are reduced as the

head temperature decreases. In this section, an estimate is given of

the transient temperature distribution in tae solid salt slab following

a step change in power demand from zero to 200 kwth. The worst- case

occurs when the salt is completely frozen, as assumed in the calculation,

since natural convection assists the heat transf±r in liquid salt and re-

duces the AT relative to that obtained with the completely frozen salt slab.

The heat transfer problem is that of a flat plate of thickness 2L,

initially at a uniform temperature, T w . 
For times t > 0, a constant

heat flux, q" is applied to both surfaces of the flat plate= q" is positive

for heat aduitior. and negative for heat removal. The solution to this

unstiady-state thermal conduction problem, expressed in terms of

dimensionless parameters d, is:8
at 2 2

	

9x t - at + 1 ( x ) 2 _ 1 _ 2 E	 ). e L2	 cos qrx(VL k) L2 2 L	 6	 n=1	 2 r	 L

where 8(x, t) = T(x, t) — T , ' F
W

»1

J

.I

V
is
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x x distance in plate from plate centerline, 0 < x < L, ft

L = plate half-thickness, ft
t = time after application of constant heat flux, hr

q" = constant heat flux applied to both surfaces of plate for
t > 00 Btu/hr-fta

k = plate thermal conductivity, Btu/hr-ft- •F
a = thermal diffusivity of plate, k/(pCp), ft2/hr
p = plate density, lb/ft 3

Cp = plate heat capacity, Btu/lb-.F
T
ao 

= initial constant plate temperature, OF

T(x,t) = plate temperature at position x and time t, OF

For large times where a t/L 2 is large, this relation reduces to:

2

q'^L k	 2+ 2 (L ) — 6 for "21 5:0. S
L	 L

The temperature profile across the plate thus asj mptotically becomes
Invariant with time, with the temperature at any x changing linearly
with time and at the same rate. The plate centerline-to-surface AT
thus asymptotically approaches a. constant value, given by:

0(0, t) — 0(L, t) = T(0, t) T(L, t) _ — 1!L
2k

For the designs presented in Chapter 6, the total capsule surface
areas nre 132 ft  for the rectangular configuration and 1S3 ft 2 for the
cylindrical configuration, with a salt thickness of 1.S in. for each con-
figuration and heat removed from both surfaces of the salt slab. How-
ever, the salt capsules are only p&rtially filled with solid salt, since
allowance has been made in the design for thermal expansion of the
salt as well as the volume increase on melting. Thus, only a fraction

1
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of the capsule surfaces is effective in heat transfer from the solid salt. 	 f

Using the rectangular design because of itd smaller capsule heat transfer

area, and assuming that the salt freezes with a flat surface across the

capsule (uniform height :n capsule), the edotvt, -e heat transf.>r area for

heat removal from the surface is 81.5 ft 2 or about 62 percent of the

total capsule surface area. F'ou 200-kwth heat removal rate, this our- 	 !

face area corresponds to a hest flux of 8372 Btu/hr-ft2. The parameters

used in ealculk tino the salt slab temperature profile are summarized

below, based on L1Fs

q" = —8372 Btu/hr-ft 2 (for 200-kwth heat removal rate)

L	 0.0625 ft

k = 4 Btu/hr-ft-OF

Cp = 0.57 Btu/lb- . F

p	 = 146 lb/ft3

a = pCp = 0.0409 ft2/hr

T = 1400•F
0o

With these parameters, the temperature profile in the salt slab is

presented in Figure 4. 15 for various times after a step increase in

the heat removal rate from zero to 200 kw •hf the plot is based on an

assumed initial uniform temperature of 1400• F. In Figure 4. 16, the

salt centerline and surface temperatures are presented as a function

of time and in Figure 4. 17, the centerline-to-surface AT is presented

as a function of time.

With reference to Figures 4. 15, 4. 16, and 4. 17, the initial heat

removal is taken only from the salt in the immediate vicinity of the

surface with a reiatively rapid decrease in the surface temperature.

After 15 seconds, the surface Temperature of the salt has decreased
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by only 20°C (36 • F); most full-power transients last 15 seconds or less.

1
This small temperature decrease will have only a small effect on the

Stirling engine performance during the full-power transient.	 i

If 200 kwth continues to be removed, the temperature wave reaches	 ' 1

the centerline of the slab after about 30 seconds, and the centerline

temperature then also starts to decrease; the centerline-to-surface &i

is 28° C (5I ° r) at this time. After 120 seconds, the temperature pro-

file in the salt has closely approached the asymptotic profile; the

asymptotic centerline-to-surface AT is 43°C (77 0 F). For times

>120 seconds, continued removal of 200 kwth occurs with a constant

temperature profile and constant centerline-to-surface AT of 77° F;

with this asymptotic temperature profile, all parts of the solid salt are

decreasing in temperature at the rate of 0.447° F/sec or 26. 8° F/min.

After 240 seconds (4 minutes) with continuous 200 kwth heat removal,

the centerline and surface salt temperatures are i319°F and 1242°F,

respectively, relative to the 1400°F initial temperature, and both

temperatures are decreasing at the rate of 26. 8°F/min.

In summary, the surface temperature of the aalt capsule decreases

by a maximum of 20° C (36°F) during wide-open throttle acceleration,

when 200 kwth is removed from the solid salt for 15 seconds. This

decrease is small enough to have an insignificant effect on the Stirling

engine performance. The design is capable of delivering 200 kwth

continuously from the solid salt, until discharged, with an asymptotic

43°C (77°F) centerline-to-surface AT and a corresponding 14.9°C/min

(26. 8° F/min) uniform rate of temperature decrease. 	 r
r
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4.5 CHARGING HEAT PIPE, COMBUSTION SIDE

The combustion side of the charging heat pipe was not considered
in detail, since this must be integrated and designed with the specific
combustion system to be used with the vehicle. The single tube inside
the reservoir can be manifolded to two or more tubes in the combustor
heat exchanger. Use of multiple, finned tubes manifolded to the single
tube in the reservoir can be used to provide whatever heat transfer area
is required. A rough estimate is summarized below for perspective on
the heat exchanger size.

The required recharging rate is — 50, 000 Btu/hr (14.6 kwth) for
overnight recharging. It ib asarmed that the combustion heat exchanger
is made of 1. 0-inch O. D. finned tubing, with a total heat transfer/bare
tube area ratio of three (i. a., relatively low fin density). With an
average heat-transfer coefficient of 15 Btu/hr-ft 2. F, and neglecting
any radiant transfer, the required tubing length (in feet) is given as
follows:

50, 000 Bt" = (15	 Btu ) ( (w)(1. 000)(L)(3)  
ft2HAT)hr	 hr - ft 2• F	 12

where AT is the average gas-to - tube wall temperature.

Thus,

LAT = 4244 ft- ° F

if AT = 1500° F, which is feasible with a combustion heat source, L =

2.8 ft. The combustion recharger could thus be made of two finned

tubes, each having a length of 1.4 feet based on convection alone. With

radiation considered, a tube length of 12 inches would probably be

adequate. The combustion heat exchanger section of the recharging

4-37
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heat pipe is thus of reasonable size for integration with the vehicle, as
illustrated schematically in Figure 3.7 of Chapter 3.

4.6 TRANSIENT RESPONSE

The transient response of the TES system must be adequate to
assure that the Stirling engine heater tube temperature does not de-
crease significantly during rapid power increases and that overheating
does not occur during rapid power decreases. Response to rapid
power increases is more crucial, since the heater tube temperature
cannot be heated to a temperature higher than the TES media, a maxi-
mum of 1150°K. It is thus impossible to drastically overheat the
Stirling engine.

Extremely rapid ( 0.2 sec) transient response of the TES system
in response to a rapid power increase by the Stirling engine is not re-
quired, since the engine heater tubes themselves provide a small TES
capacity for transient operation. The magnitude of the TES transient
response requirement can be estimated as follows: The heater tubes
of the Ford Motor Company 4-98 Stirling engine have a mass of 3.96 kg;
an additional mass of 8.49 kg is located in the cylinders, cylinder walls,
regenerator caps, and regenerator walls, at least part of which operate
at the heater head temperature. 7 On an idle-to-full-power transient,

the heat transfer rate in the heater head rapidly goes from — 2 kwth to
the maximum requirement of 200 kwth as the pressure level of the
engine is increased in response to the power requirement. Even with
no thermal input into the Stirling engine heater head, the engine will
continue to operate at full power for a short period using thermal energy
stored in the heater head. Assuming the tubes alone are effective for
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TES. the rate of temperature decrease of the tube temperature with no
thermal input and a removal rate of 200 kwth is 94 0 C/sec, using a
heat capacity for the tubes of 540 joules/kg- • C. Assuming that 2.5 kg
of the S. 5 kg in the engine head is also effective reduces the rate of
temperature decrease to 57 9 C/sec. Thus, if a momentary decrease
in the tube wall temperature of 150° C is acceptable, — 2-1/2 seconds
are available for the TES system to increase its thermal delivery rate
from idle (— 2 kwth) to the full power demand of 200 kwth. This response
requirement is consistent with the response rate of the combustor for
the direct-combustion-heated Stirling engine. Mr. Worth Percival,
who managed Stirling engine development at General Motors, indicated
that the combustor typically responds from idle to full-firing rate in
— 3 to 4 seconds so that faster transient response is not needed.

The turnup response of the TES system described conceptually in
Chapter 3 is controlled primarily by the speed with which the potassium
flow rate to the TES reservoir can be modulated by the E-M pump and
by the rate at which potassium vapor is generated in the discharge heat
pipe, thereby building up the pressure differential in the discharge heat
pipe to the level required to meet the thermal transport demand of
200 kwth. Increasing the liquid potassium flow rate involves rotation
of the permanent magnet on the E-M pump (see Chapter T for the E-M
pump design) and should require only a few tenths of a second. Since
the liquid lines will normally be filled with liquid potassium, this in-
crease in liquid potassium pumping rate immediately results in spray
of liquid potassium into the tubes of the discharge heat pipe located in
the TES reservoir. Because of the large heat-transfer rates for

t
	 evaporation/cr ar+eneation of potassium with small OT's, generation of
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potassium vapor in the discharge heat pipe will very rapidly increase

the pressure diffarential to the level required to transport the required

200 kwth. Vapor transport down the 4-inch connecting pipe occurs

with sonic velocity at the discharge end and represents a completely	 : ►
negligible time delay. In short, the turnup response of the TES system

developed in this raport should be much faster than that for the direct

combustion-fired system where both air and fuel inust be increased in

a controlled ratio into the combustion chamber in response to the idle-

to-full-power transient. The transient response on turnup of the de-

signed TES systern is more than adequate to meet the -lemands of the

Stirling engine for automotive propulsion.

For turndown, the res ponse time is controlled by the liquid potas-

sium flow rate cutoff time, by any liquid potassium existing on dis-

charge heat-pipe walls which can flash to vapor, and by potassium

vapor in the discharge heat pipe. Tho liquid potassium flow rate can

be rapidly stopped by the E-M pump,and the TES storage by potassium

vapor is very small. The primary limitation is thus any residual liquid

in the reservoir tubes of the discharge heat pipe. It is believed that

this liquid holdup is small enough so that the thermal transport poten-

tial from this source is small relative to TES capacity of the Stirling

engine heater tubes. In addition, as pointed out earlier, it is impos-

s+.ble to heat the Stirling engine heater to a temperature higher than

the TES media under any circumstances, and thus impossible to

drastically overheat the Stirling engine.
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S. THERMAL INSULATION

The thermal insulation represents an extremely important part

of the TES system. The TES system operates at high temperature

(up to 1150 • K) and should have capability for extended standby in

the charged condition without excessive heat loss. Any heat losses,

either while operating or in standby, degrade the energy efficiency

of the system and represent an economic loss, and thus must be

minimized. In addition, space is extremely limited — so that the

volume of the insulation is very important relative to packaging of

the system. Weight is also important, since weight contributes

indirectly to poor energy efficiency (or vehicle range for a &-ted

salt weight), and a TES system is by nature heavy. For a fixed

TES system weight, it is obviously desirable to maximize the ratio

of the salt weight to total system weight.

For this application, Multi-Foil insulation has been selected

as the best method of insulating the TES reservoir and vapor

transport pipe to the Stirling engine. Multi-Foil denotes a

thermal insulation in which many thin metal foils are loosely

stacked and enclosed in a vacuum space; the metal foils are

coated with small oxide particles which space the individual foils —

preventing their contact and minimizing thermal conduction losses.

As illustrated in Figure S. 1, the multiple foils are effective thermal

radiation shields; the vacuum environment eliminates convective

heat transport; and the oxide particles provide a high thermal impedance
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(TYPICALLY, 0.3 TO 1.0 MIL THICK)

• CONVECTION — ZERO

• RADIATION — REDUCED BY MULTIPLE REFLECTING FOILS

• CONDUCTION — MINIMIZED DUE TO:

1. SMALL FRACTION OF PARTICLES BRIDGE FOILS

2. LOW THERMAL CONDUCTIVITY OF OXIDE PARTICLES

3. HIGH PARTICLE-TO-FOIL CONTACT RESISTANCE
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Figure 5.1 :4iulti-Foil Heat Transfer
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to conduction by selection of oxides with low thermal conductivity,
providing an extremely effective high temperature thermal insula-
tion with small thickness (— 0.5 in.) and low weight (— F lb/ft2).
The oxide particles are selected on the basis of low thermal con-
ductivity and foil compatibility at the application temperatuze.

5.1 HEAT TRANSPORT THROUGH MULTI-FOIL INSULATION

The heat flux, b, through Multi-Foil thermal insulation with
a hard vacuum (no convection) is a function of the following pasa-
meters:

(T.N^^ S. TC, 04 d, k e' kf t
TT  )

1st	 nd	 3rd
Order	 Order	 Order

where T	 = Heat source temperature
N	 = Number of foa layers
P	 = Pressure applied to foils
S	 = Spacing between foil layers

T 	 = Heat sink temperature
a	 • = Particle density per unit area
d	 = Characteristic dimension of particles
k

P	
= Thermal conductivity of particle spacers

C	 = Emissivity of foils
kF,O,L	 = Thermal conductivity of foils

tFOIL	 = Thickness of foils

From previous work at Thermo Electron Corporation, zirconia
particles have been established as an exc&llent powder for coating

C
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the foils, and the optimum particle density, a4 and particle size, d,

estzblishe3. Thus, q d, and k  can be elimin..vted from the

relation.

For effective performance, it is essential that the foils be

loosely stacked with no external pressure exerted, that is, the

foils are not load bearing. Heat flux ir, given in Figure 5.2 as a

function of applied pressure for Multi-Foil insulation made of

nickel foils. It is apparent that an atmosphere of applied pressure

g. eatly increases the thermal conductance of Multi-Foil insulation.

With foil thickness of 0.0005 in. to 0.001 in. , a total space thickness

which allows at least 0.002 in. between foils is adequate. With

these precautions. P and S can be eliminated from tue ^ relation.

Because of the effectiveness of the insulation (low heat flux),
the outer surface of Multi-Foil insulation is very close to the
surrounding ambient temperature. For most terrestrial applica-
tions, T  is about 300'K. Particularly for high-heat source
temperatures, variation in T  has very little influence on the heat
flux, considering the rapid increase in radiation heat flux with
temperature. T  can thus be eliminated as an important varie0le
from the J equation.

Fiscally, it has be:.. experimentally demonstrated that the
foil characteristics, t:, 'FOIL and tFCIL have very little influence
on 4, and can be eliminated from the equation. While it might be

expected that a would have an imp3rtant effect, coating of the foils

with the zirconia particles, evidently results in approximately ; he

same c for all foils.
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91	 Thus, for practical purposes:

(T. N)

Assuming an ambient temperature of 300 ° K, analysis of meas-

ured heat flux curves (for a given number of foils) gave the theoreti-

cally expected fourth power dependence on source temperature. 	 t

However, for a given source temperature, a 11(N + 1) dependence

was not satisfactory, especially for N < 20 foils. For the	 !

to Conventional" Multi-Foil data, the following function was found to

giva reasonable agreement to the measurements: i

watt = 1. 06 x 10
-12 

T4 - 81 x 108)]
c	 0. 778 N + (l. 11 x 10- Z ) NZ

where ^ = Heat flux perpendicular to the foils
T = Heat source temperature, /°K
N = Number of foils

Heat flux as a function of source temperature, parametric in number
of foils, is given in Figure S. 3. Although these curves were de-
veloped from measurements on nickel Multi-Foil assemblies, they
are applicable to insulation packages fabricated from stainless steel,
aluminum or other metal foils, since, as pointed out above, the
heat flux is insensitive to the foil metal.

It should be noted that great care must be taken in the design
and fabrication of Multi-Foil assemblies to minimize heat losses
at joints, such as the intersection of two edges which cannot be
wrapped with continuous foil. Typically, these joint losses can
be as high as the heat losses directly through the foil. Several
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techniques have been developed at Thermo Electron Corporation

to minimize these joint heat losses. It should also be noted that

methods have been developed for application to ducting bends, flanges,

penetrations, and other irregularly shaped surfaces, by use of a

"tape" Multi-Foil insulation, rather than wide sheets. In this

technique, a tape of suitable metal foil coated with the optimized

oxide coating is used to continuously wrap with reverse bias the

areas to be thermally insulated. On large flat surfaces or straight

cylinders, much wider sheets of foil are used, with the sheets either

precut to the proper size and stacked on the surface, or wrapped as

a continuous sheet around a straight cylinder or box.

A high vacuum must be maintained in the foil if good insulating

performance is to be achieved, since the insulating properties de-

grade above 10-4 torr. In Figure 5. 4, the effect of helium pressure

on neat loss from a 9-layer foil insulation is illustrated; the effect

of pressure is greater when a much larger number of foils are used

with -40 3 to 10 -4 torr required for 90 foils. It is therefore essen-

tial that the foil enclosure be leaktight and the entire unit be thoroughly

degassed prior to pinchoff. The stringent requirements on leak-

tightness are evident from Figure S. S, which gives the time to

reach 10 -3 torr as a function of initial helium leak rate for an

insulation enclosure of approximately the same size as for the

TES system. The sensitivity limit for available leak detectors

is approximately 10-8 cm3/sec. A. leak of this size will degrade

the vacuum in the foil insulation to an unacceptable level in about

500 hours. Leaks of this magnitude can be gettered by commercially
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available materials used in the electronics industry. For example,

a recent Multi-Foil battery enclosure has utilized copper turnings

to getter oxygen and CerAlloy 400 (which is an alloy of rare earth

metals, aluminum and thorium) to getter nitrogen and other gases.

5.2 DESIGN CONSIDERATIONS AND PERFORMANCE

A key design requirement is provision of a vacuum-tight

envelope for the space containing the Multi-Foil insulation. This

envelope must be structurally self-supporting, since pressure on

the Multi-Foils severely degrades their performance. Even though

this requirement introduces great design difficulties for larger

systems, successful designs were developed for both the cylindrical

and rectangular configurations as described in detail in Chapter 6.

The number of foils is an important design consideration. In

Figure 5. 6, the heat loss is presented as a function of the number of

foils with a heat source temperature of 850°C (1123 0 K), near the

melting point of the two reference salts. Based on this curve, 90

foils was selected for the reference design, since the heat loss

decreases slowly with additional foils above 90. With 90 foils,

the heat lose is 0. 01 watts/cm2.

For the foils, it is desirable to use as thin a foil as possible

(i. e. , a very ductile metal which can be rolled to thin foils) with

a metal which has low density and is inexpensive. The best material

is aluminum, provided the temperature is low enough for its use.

Aluminum obviously cannot be used at temperatures near or above

its melting point of 660° C (933 ° K). A composite foil package can

5-11
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be used, however, in which aluminum foil is used in the lower
temperature part of the insulation and a different material in the
high-temperature region. The temperature profile across the foil
insulation is not linear, as illustrated in Figure S. 7, for measured
temperature profiles across 60 zirconia-coated foils. These tem-
perature distributions are more linear than calculated on the assump-
tion that the only mode of heat transfer is radiation. Conduction
across metal oxide particle bridges tends to linearize the tempera-
ture profile.

To minimize the weight and cost, the insulation for the present
application is a composite foil package consisting of 50 layers of
0. 001-inch thick stainless steel foil in conjunction with 40 layers
of 0. 0005- inch thick aluminum foil. The interface temperature
between the hot stainless steel and the cooler aluminum foils is
—450°C. It should be noted that use of 0. 0005-inch thick stainless
steel foils would reduce the insulation weight, and that use of soft
iron foils (feasible because of the vacuum/environment) would
reduce the cost. However, neither of these options was selected,
since a check of vendors indicated considerable doubt in the tech-
nical feasibility of their manufacture at reasonable cost. Stainless
steel foil 0. 001-inch thick was thus selected for the reference de-
sign.

An envelope spacing of 0. 5 inch was selected for the 90 foils,
providing an average space for each foil of 0. 0056 inch. This
spacing is sufficient to assure loose packing of the foils, even with
some deflection of the envelope structure. With this spacing,and
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heat source temperature of 850° C, the effective thermal conductivity
of the insulation is 1. 54 x 10 watt/em- • C (S.9 x 10-4 Btu/hr-ft. •F).
This k is lower by a factor of at least 25 than the best fibrous insu-
lation in air (Min- K with k 3.9 x 10 w/cm- • C). Furthermore,
the spacing could be reduced somewhat from 0. 5 inch without affect-
ing the insulating performance with a corresponding reduction in
the effective k.

With the spacing of 0. 5 inch and the selected foils, the insula-
tion weight per unit area is 2.33lb/ft 2 [11.35kg/M2 ], with the 50
stainless steel foils contributing 88 percent of the weight, and the
40 aluminum foils only 12 percent. If 0. 0005-inch thick stainless
steel foil could be used, Cie insulation weight would be reduced to
1.301b/ft2, with 78-percent due to the stainless steel and 22 percent
to the aluminum.

In summary. Multi-Foil vacuum insulation provides an extremely
effective high-temperature insulation, with very low weight and very
low volume characteristics, which are extremely important for an
automotive TES system.

5.3 OVERALL SYSTEM CHARACTERISTICS

The two configurations have outor shell areas of 38 ft 2 (35300 cm2)
for the rectangular box and 40 ft2(37200 cm2) for the two cylinders
described in detail in Chapter b. Total heat loss rates through the
container walls (at 0. 01 watts/cm2)are therefore 0.35 kwth for the
rectangular box and 0.37 kwth for the two cylinders, respectively,
with an interior temperature of 850 • C. This heat loss rate

5-15

^C

t	 .



ermo

CORPORATION

over 24 hours represents the percentage of the total storage

capacity for the two units as shown in Table S. 1. The total energy

loss over 24 hours is, however, relatively small — amounting to

-29, 500 Btuth per day. At $4.0 per million Btuth (typical of

current fuel energy price to home owner), this lost energy has a

value of only $0.12, and is thus acceptable from a cost point-of-view.

Other heat losses, such as from the discharge heat pipe when operat-

ing or radiation from the TES reservoir down the discharge heat

pipe when not operating, will add somewhat to the direct heat heat loss

through the containment envelope of the TES reservoir.

The overall insulation weight (at 2.3314/ft2) is 88 lbs and 93 lbs

respectively, for the rectangular and cylindrical units. The values

were increased to 95 lbs and 100 lbs , respectively, to allow for

forming of joints.

It is useful to compare the performance of the Multi-Foil with

a conventional, high-performance, high-temperature insulation —

specifically, molded Min -K insulation (Johns-Manville Corporation)

with a thermal conductivity of 3.9 x 10 -4 /cm- . 0 and density of

0.32 gm/cm3 (20.0 lb/ft 3 ). The heat loss from the insulation can

be expressed as follows:

THS - TAmb_
q RI + RS

where q = heat loss, w

j

	

	 THS = temperature of heat source on hot surface, • C.

TAmb = temperature ut surrounding air, • C.
RI = thermal insulation heat transfer resistance

1

1 11
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TABLE 5.1

24-HOUR HEAT LOSS AS
PERCENTAGE OF STORAGE CAPACITY

Configuration	 LiF	 NaF/MgF2

Rectangular	 5.0%	 6.8%

Cylindrical	 6.6%	 9.0%

i
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RS = thermal resistance for convection and radiation from the

insulation surface

=	 1	 , 'C
(hc + hr ) A w

X = insulation thickness, cm.

k iI = insulation thermal conauctivity. w/cm- • C

h
c 

+ h = heat transfer coefficient representing convection and
r

radiation loss from surface. 	
w

cm 2-•C

A = heat transfer area, cm 

For the present case,

q = 360 watts
A : 36000 cm2

TH S = 850° C

TAmbw 2511C
1 z 3.9 x 10-4 /cm»•C

h c + hr= 9. 0 x 10-4w/cm2 -' C

The Min-K thickness required to achieve the same heat transfer
rate as the Multi-Foil insulation wit'z these parameters is 31.7 cm
(1.04 f0with a specific weight of 20.8 lb/ftt, The insulation volume
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is 25 times greater and the weight 9 times greater than for the

Multi-Foil. For the two systems described in Chapter 6 and for
equivalent hest loss, the Min-K weight (for 40 ft2) would be 380 kg,
which can be compared to the total TES system weight specification
of 500 kg.

A composite insulation of Min-IVMurlti-Foil was also considered,
with the thought of either reducing the temperature of the Multi-Foil
sufficiently so that aluminum foils could be used throughout (Min-K
on high temperature side), or reducing the amount of high-tem -
pexature foil required (stainless steel), by placing Min-K on the
low-temperature side. For affective performance of the composite,
approximately equal thermal resistances would be required ors

X 
Min-K = V'-Multi-Foil

1Viin-KA	-multi-FoilA

X Min-K 	 _K = 3.9 x 10-4 = 25
eff

XMulti-Foil	 Ultk-Foil	 1. 54 x 10-5

Thus, the Min - K volume of the composite would be about 25 times
that of the Multi-Foil (and the weight ratio about 9 rsmes). Con-
sideration of these ratios, coupled with the fact that the problem
of a vacuum enclosure still exists, eliminated this composite
approach from further consideration.

In summary, Multi-Foil vacutmi insulation was selected as the beat
approach for an automotive TES system operating at high temperature.
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I`. provides an extremely effective thermal insulation, with very
ow heat loss, and with an absolute minimum of volume and weight

all extremely important considerations for this application. It
does introduce the problem of a self-supporting vacuum enclosure
on a relatively large structure with minimum weight. Practical
designs L r the vacuum enclosure were developed, however, as
described in detail in Chapter 6. The vacuum enclosure must
also be extremely leak-tight, and considerable development will
be required to develop reliable seam-welding techniques for large-
scale manufacture which provide this leak-tightness. For both
design configurations, a design criterion has been to restrict the
design to straight seam welds suited for automated machine welding,
and there should be no reason why the required leak-tightness cannot
be achieved, either in large volume production or in prototype con-
struction. The cylindrical configuration has much less welding
than the rectangular configuration, an important advantage.

5-20
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6. TES RESERVOIR DESIGN

6.1 INTRODUCTION

Thermal energy storage systems are much heavier and require

a much larger volume than the liquid hydrocarbon storage (gasoline)

now used. The criteria important in packaging such a system in

a vehicle are:

• Low center of gravity

• Equal weight distribution on wheels

• MLL;jnum encroachment on passenger/freight volume

• Maximum impact protection

• Short vapor transport line to engine

• Relatively large diameter 10 cm transport line

to engine

• Maximum collision protection and minimum hazard

to passengers feasible

In the TES system design, great emphasis was placed on selecting

a configuration (outer envelope) that permitted passenger and freight

volume equivalent to that of current automobiles. Rather than fit

the vehicle around the TES, the TES was to be fit into the vehicle

with minimum deviation from the current automobile, as far as

trunk/freight volume and passenger volume and seating are concerned.

I	 With this prime consideration in mind, as well as the other

criteria, the best location for the TES reservoir is between the

wheels and beneath the floorboard of the vehicle. This location

requires a relatively low height for the TES reservoir with a large
I(
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plan area to provide the required internal volume. In Figures

6. 1 and 6. 2, the space available for the TES system in a Volkswagen

transporter is illustrated] the available space is

41 in. (w) x 60 in. (1) x 	 15 in. (h), without

modification to the vehicle. Incorporation into a conventional

compact car would require substantial modification of the vehicle

to incorporate the height of the TES unit, while still retaining the

trunk and pas senger volume. As illustrated in Figure 6.3 for a

Ford Pinto-size automobile, the vehicle roofline would have to be

raised approximately the height of the TES reservoir (perhaps less

by 2-4 cm), providing a relatively boxy vehicle. With this modi-

fication, a volume of 48 in.(w) x 60 in. (1) x 12 in. (h) can be utilized for

the TES reservoir. A significant design effort would be required to

develop a non-van compact automobile with the TES integrated as

illustrated in Figure 6. but such a vehicle appears practical and

would still provide trunk/freight and passenger volume equivalent

to current automobiles.

The optimum configuration of the TES reservoir for integration

into a practical automobile of either the van or conventional auto-

mobile type is one which has relatively low overall height (< 15 ins)

and a large plan area. Two approaches were evaluated with de-

tailed structural analysis and preliminary detail design drawings

prepared. One was a rectangular box with an overall height of

15 in. and plan dimensions  of 41 in. x 41 in. The other was a

cylindrical configuration with ellipsoidal heads; two cylindrical
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Figure 6. 1 Location of TES Module in VW Transporter
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units with overall dimensions of 15 in. (OD) x 60 in. (L) are re-

quired, to be packaged side-by-side in the selected space in

the vehicle. The rectangular configuration is better suited for

integration into the vehicle, but the necessity for use of vacuum,

Multi-Foil insulation introduces structural design and manufac-

turing problems. These problems arise because of the neces-

sity of self-supporting flat surfaces of relatively large area

and minimal weight across which a substantial pressure

differential exists. The cylindrical unit is efficient as a

pressure vessel and easier to manufacture, but does not use

the vehicle space as efficiently as the rectangular configura-

tion.

Feasible designs were developed for both the rectangular box

and cylindrical shell configurations and are described in this section.

An important consideration in the evolution of the designs was adapt-

ability to automated, high-volume production. A detailed manu-

facturing and cost analysis was carried out for each configuration

with the results presented in Chapter S. Another consideration

in the design was a large surface area or heat transfer area for

the salt containers, with the maximum salt thickness through which

heat must be transferred small enough to result in ar. insignificant

AT in the salt.

6. 2 DESIGN CRITERIA

The thermal energy storage reservoir must function at temp-

eratures slightly higher than the melting point of the salt, and

6-6
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maintain its integrity in a corrosive environment that includes
solid and liquid salt and liquid and gaseous potassium. In addition,
the TES reservoir must function in the mechanical environment
typical of a car, including accelerations and vibrations inherent
in normal driving and accelerations due to collisions or road
hazards.

Loss of heat from the TES reservoir is minimized by using
Multi-Foil insulation, which requires a vacuum. To achieve the
required vacuum, the TES reservoir uses two containers, one
inside the other. The inside unit stores the salt and is used to
perform the heat transfer function; the space between the two
containers is filled with Multi-Foil insulation.

The functional requirements can be summarized as follows;

e Environment

- Liquid and solid salt (LiF or NaF/MgF2)
- Potassium liquid and vapor

e Mechanical

- Vacuum between inner and outer container
- Operating and collision accelerations and vibrations

for an automobile

The design goal for the TES reservoir is a unit that will store
a minimum 300 kg of salt and will meet the functional requirements
during a 10-year design life. To achieve the design goal, the
functional requirements must be translated into design criteria.

6-7



ermo

CORPORATION

An important consideration in the design was to maximize the ratio

of salt weight to total reservoir weight and salt volume to total

reservoir volume, that is, to reduce as much as possible the TES

structural weight and the volume required for the structure and

heat transfer media.

6.2.1 Desi n Approach

The primary design requirements for the TES reservoir are to

(1) provide a containment system for solid or liquid salt, (2) provide

a means of heat transfer in and out of the salt, and (3) provide an

efficient insulation around the contained salt. The first and second

requirements lead to the need for a container that can operate at

high temperature up to 1150° K (1610°F),and that can sustain internal

pressure resulting from the vapor pressure of potassium used as

the heat transfer medium. If the third requirement is met with

Multi-Foil insulation, a system that requires a vacuum for its

operation, then a second container that encloses the inner container

and the insulation is needed. Therefore, the TES reservoir consists

of two containers, one inside the other, separated by the Multi-Foil

insulation.

Any structural design must allow thermal expansion and con-

traction of the inner container to occur without overstress; because

of the very large magnitude of these movements, it was decided that

they should be allowed to occur freely. Thus, the inner container

must be supported so that it can expand and contract without causing

restraint forces. As a consequence of allowing thermal movement,

both the inner and the outer containers must be designed as independent

pressure vessels with no support from each other.

6-8
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Two designs were developed, one rectangular and one cylindrical:
these are described in detail later. In both designs, the inner con-
tainer is supported on four sliding pins which provide support but
do not restrain expansion and contraction. The outer container is
also supported by these pins at the points where they pierce through
the outer container. Consequently, the containers are structurally
independent of one another. Adequate clearance between them
must be maintained to accommodate deformation due to pressure
and acceleration loads, and the thermal movement.

6.2.2 Loads

Mechanical loads to be considered are differential pressures
acting on the container walls, dead weight, inertia loads due to
longitudinal and vertical accelerations, and temperature loads.

The pressure inside the inner container of the TES reservoir

varies from 0 to 30 psia — depending on the salt and potassium
temperature3 the pressure outside the outer container is atmos-
pherics and the Multi-Foil insulation between the inner and outer
containers is in a vacuum. Therefore, the design pressures are:

e Inner container	 0-30 psi internal pressure
e Outer container	 15 psi external pressure

The transient accelerations for structural integrity are speci-
fied by the contract ass

e Vertical	 3.5 g
e Longitudinal 6. 0 g

t,

r'
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e Vibration Rates	 10-20 cycles/sec
e Slew Rate	 2 rad/sec

The temperatures inside the inner container are slightly higher than
U

	

	
the melting point of the salt. Lithium fluoride has a melting point
of 1121 6 K (1559 'F) and the sodium fluoride/magnesium fluoride
eutectic has a melting point of 1103'K (1526 'F). The thermal
energy storage capacity of the reservoir is based on a temperature
range of 800 ° K (980° F) to 1150'K (1610 1 F ) ; this is also the design
temperature range for the reservoir. Thermal loads are a function
of temperature and configuration of the structure.

6.2.3 Material Selection

The material selection for the inner box is governed primarily
by the sustained high pressure (30 psia) at high temperatures (1150° K)
and the corrosiv .^ environment (liquid salts and potassium). In
addition, the requirements of fabricability and minimum weight must
be considered. These requirements narrowed the possible materials
to high-nickel alloys, and of these, to the ones exhibiting the highest
strength properties at the maximutc, operating temperatures. The
critical properties considered in this selection were (1) stress to
rupture in 10, 000 hrs and (2) creep strength (I% minimum creep rate in

10, 000 hre). The alloy selected is Inconel 617 (a registered trade-
mark); its composition is given as 54 % nickel, 22% chromium, 12. S%

cobalt, 9 % molybdenum, and I% aluminum. Of the alloys reviewed,

it had the highest stress to rupture (6. 7 ksi ) in 10, 000 hours at 1600•F.
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The manufacturer (Huntington Alloys, Inc. ) indicates that
Inconel 617 is a relatively new alloy and only limited corrosion
test data are available for it in contact with liquid salts or potassium
vapors however, this alloy does have good-to-excellent resistance
to cyclic oxidation and to carburization at temperatures to 2100•F,
to corrosion by sulfuric, phosphoric, and hydrofluoric acid, to
corrosion by sodium hydroxide, and to stress corrosion cracking.
As described in Chapter 2, test data with several fluoride salts at
-4 000 • K indicate excellent compati bility for long-term exposure.
In summary Inconel 617 would be expected from its alloy compo-
sition to have excellent corrosion resistance, and available data
support this conclusion. More extensive corrosion testing must
be performed for the particular conditions of this application before
a definitive conclusion can be reached, however.

The outer box operates under ordinary ambient conditions,
and therefore carbon steels, high-strength low-alloy steels, or
aluminum may be used. When the container is designed as a
cylindrical shell, buckling, and not high strength, is they governing
criterion: ordinary carbon steel is therefore selected for this
application. For the rectangular container, the design is governed
by the bending of panels with large span-to-thickness ratios; to
control deflections while minimizing weight, honeycomb sandwich
panels were selected. The selection of the specific panels is
discussed in Section 6.3, describing the rectangular structure.

6-11
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6.2.4 Allowable Stresses for Inconel 617

Design allowable stresses for Inconel 617 were based on data
published by the manufacturer, Huntington Alloys, Inc., 1 supple-
mentad by engineering judgement in use of the data for this applica-
tion. Considerations in selecting allowable stresses were:

e Type of Stress - e.g.. primary membrane stress,
secondar y bending stress.

• Duration of Stress - e. S. , sustained load, dynamic
load of short duration.

The selection of allowable stresses is complicated by the cyclical
operation of the TES system with the temperature varying ove_ each
cycle. Since the internal pressure in the inner container depends
on the salt temperature (: ►apor pressure of potassium), this cyclical
operation results in a stress-time history in the TES reservoir that
depends on the mode of use of each vehicle. There are no codes or
other authoritative criteria for selecting design stresses under these
conditions, and improvisation was required to set allowable stresses,
as summarized in Table 6. 1. Selected strength properties of
Luconel 617 are summarized in Table 6. 2.

For sustained loads, the creep strength is the important stress
value. The selected value of 3. 0 ksi was based on 90 percent of the
0. 5 percent creep strength over 10, 000 hours at 1600 1 F (1144°K).
This level is believed to be consistent with a design Ufa of 10 years
(87,600 hours), since the system will operate at substantially lower
temperatures than 1144 • over most of its life period. The TES

6-12
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TABLE 6. 1
SELECTED ALLOWABLE STRESSES FOR INCONEL 617

Type of Stress Allowable Stress
(ksi)

Primary membrane stress due to pressure. 3.0
Primary membrane stress due to pressure plus

membrane stress due to gravity load. 3.0
Primary membrane stress due to pressure plus

local bending discontinuity stress. 6.7
Primary membrane stress due to pressure plus

membrane stress due to gravity plus local
bending discontinuity stress. 6.7

Primary membrane stress due to pressure plus
membrane stress due to gravity plus local
bending discontinuity stress plus membrane
or bending stress due to accaleration loads. 16.0

6-13
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TABLE 6.2

STRESS LEVELS OF INCONEL 617

A. For 10 000 hr Sustained Load
116 Creep

Temperature Stress Strength 0. 5% Creep
(• F) Rupture (ksi) Strength

1550 9.0 5.0 4.0

1575 7.8 4.4 3.6

1600 6.7 3. 9 3. 3

B. For Dynamic Loads

Yield Strength Tensile
Temperature (0. 216 Offset) Strength

(° F) (ksi) (ksi)

1000 27 82

1200 24 81

1400 25 63

1600 27 40

6-14
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reservoir will be at temperatures above the melting point of the
salt. [1121 • K(1558 • Y) for LiF and 1103 0 K(1525 • F) for NaF/MgF21
for only a very small fraction of the time, and substantial time may
be spent at temperatures below the melting point down to 800 • K,
since use is made of the solid sensible-heat as a significant con-
tribution to the total storage capacity.

For load combinations that include secondary stresses (dis-
continuity stresses) in addition to primary bendings, the ASME code 
specifies: ":he allowable stress shall be 3. 0 times the allowable
value for primary membrane stress, but not to exceed the rupture
stress". The allowable stress for this loading was thus taken as
the rupture stress at 1144° K(1600° F), for 10, 000 hours -- 6. 7 ksi.

The primary bending and gravity stresses, as well as the
discontinuity stresses, are sustained loads; of course, as previously
stated, the temperature fluctuates and so does the pressure — never-
theless,, there are primary membrane stresses at all times. This
is not the case for collision accelerations which are one-time occur-
rences; therefore, the allowable stresses for collision acceleration
loads can be based on the high-temperature yield strength (0.2-per-
cent offset). The allowable stress for combined static and accel -
oration loads is chosen as twoo-thirds of the lowest yield strength, or

16. 0 ksi,. The lowest yield strength is not at the highest temperature,
and the allowable stress is therefore based on the lowest yield
strength in the operating temperature range.
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Another concern is acceleration loads encountered in normal

driving, and the problem of low-amplitude fatigue. Considering

that for normal driving vertical impact accelerations are often taken

as 0. 25g (14 times smaller than design collision acceleration), and

that longitudinal accelerations are taken as 0.33g (18 times smaller

than design collision acceleration), and also considering that the

allowable stress for collision accelerations is 16 Kips/in 2(ksi) for
Inconel 617, it is concluded that normal driving accelerations

wculd cause stresses that are 1 ksi or smaller. This stress is low

enough that low amplitude fatigue due to normal driving accelerations

should not be important.

6.3 RECTANGULAR DESIGN

A rectangular box is one of the shapes selected for the TES ro-s-

ervoir.	 It appears that a rectangular box best utilizes the space

between the axles and below the passenger compartment of an auto-

mobile. A box size of approximately 44 in x 44 in x 14 in, outside

dimensions, was chosen to meet the packaging constraints and to

provide the space required to store at least 300 kg of salt.

6.3.1 Design Approach

The TES reservoir, as noted earlier, consists of two containers,

one inside the other, separated by insulation which requires a vacuum.

The function of the outer box is to contain the thermal insulation around

the inner box.

The inner box must function under internal pressure varying

from 0 to 30 psi and at temperatures up to 1150° K(1610 0 F). The
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outer box is under an external pressure of 15 psi and is at ambient

temperatures. Because of the large thermal expansions/contractions

that the inner box undergoes, the design must allow relative move-

meats to occur without restraint between the boxes.

The most efficient structural action is direct tension or com-

pression in contrast to bending. A widely used configuration for

pressure vessels is a cylinder with ellipsoidal heads. Under internal

or external pressure loads, these vessels are primarily in tension or

compression. By contrast, in a hollow rectangular box under pressure

loads, each side must act as a plate in bending to deliver the pressure

loads to its edges; a rectangular box is therefore not a structurally

efficient shape for a pressure vessel.

The structural efficiency of a rectangular box can be increased,

however, by adding structural elements inside the box. The function

of these elements is to reduce the bending span of the surface plates

by providing intermediate supports. For internal pressure, the

reactions on symmetrically located supports on two opposite sides

of the rectangular box are equal, and of opposite sign. This means

that if a symmetrical structure is located between opposite faces of

the box, this structure will be subjected to a system of self-equili-

brating forces.

In the rectangular TES reservoir, internal structure can be used

with the inner box. In the outer box, the sides can have no inter-

mediate supports, since these supports would pass through the inner

box.
i

i
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The design of the inner and outer boxes are therefore quite

different. The inner box is under internal pressure at high tem-

perature. It supports itself, the heat pipes, and the 300 kg of salt,

and is internally braced. The outer box is under external pressure

at near ambient temperature, and supports only its own weight plus

part of the Multi-Foil insulation; however, it can have no internal

bracing, and the side plates must be self-supporting to the pressure

differential.

6.3.1.1 Inner Box

All metal parts of the internal box must operate at high tem-

perature (up to 1150° K), and are therefore constructed of Inconel 617.

In developing a concept for the structure of the inner box, the primary

considerations were that the design be of minimum weight and prac-

tical to fabricate. Since minimum weight is achieved by structural

efficiency, the design approach was based on developing an efficient

structure, that is, one that to the maximum extent possible relies

on direct tension and compression rather than bending.

The concept developed is illustrated in the perspective of Figure

6.4 , which presents the inner box with the discharge and charge

heat pipes in place. The inner box has overall dimensions of

approximately 41 in x 41 in x 10 in. The dominant considerations

in arriving at the design were:

• Tying the top and bottom (41 in x 41 in) surfaces

together

6-18
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• Providing salt containment with a small centerline

to surface salt thickness for heat transfer from salt

with minimum AT.

• Fabrication from sheet stock of Inconel 617 for

automated manufacture at minimum cost.

• Design amenable to stacked-assembly for manu-

facturing ease

As illustrated in Figure 6. S. the inner box is made as a stacked assem-

bly of salt containers consisting of a flat diaphragm, a pressed plate with

indentations for the salt TES media and an enclosure frame to position

the salt containers and provide a vacuum-tight seal with space for the dis-

charge heat pipe tubes (these tubes form the wall separating the discharge/

TES reservoir heat pipes illustrated schematically in Figures 3. 1 through

3. 5 of Chapter 3). This construction ties the two 41 in. x 41 in. surfaces

together by the diaphragms, reducing the clear span to be supported by

the top and bottom surfaces. Under internal pressure, the forces on the

top and bottum surfaces are equal and opposite and the diaphragms be-

tween the top and bottom surfaces carry these self-equilibrating forces.

The concepts examined for the top and bottom surfaces, divided into

a series of short spins by the supporting diaphragms, were;

• Plate of uniform thickness

• Corrugated sheet

• Honeycomb sandwich panels

• A series of adjacent cylindrical shells.
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The uniform plate was rejected because of its excessive weight;

the corrugated sheet is more efficient, but is very difficult to weld

to the diaphragms. The honeycomb sandwich plates appeared to

be an efficient solution, but was not selected because of lack of such

panels capable of operating at 1150° K.

In the concept using a series of adjacent cylindrical shells, as 	 '

illustrated in Figure 6.6, the pressure load is carried by direct

tension in the shells and by direct tension in the diaphragms. The

same concept of adjacent cylindrical shells is also used on the other

two opposite sides of the box — which are divided by the diaphragms

into short spans. The diaphragms are thus loaded in direct tension

in two orthogonal directions. In addition, the diaphragms can per-

form still another function as part of the salt containment capsules

to minimize weight.

For the remaining pair of opposite faces of the box which are

parallel to the diaphragms and approximately 41 in x 10 in, the

concepts considered were: a corrugated skin to span 10 inches, the

provision of vertical stiffeners 5 inches on center and corrugated

skin spanning 5 inches horizontally, and doubly curved shallow-end

shells (pressure heads) across the entire span. The end shell concept

was selected over the corrugated skins because it had slightly less

weight and avoided the complex welding of corrugated skins at the

box edges. The end shells, or pressure heads, apply reaction

forces along each of the four support sides of the shell. These edge

forces are carried by the end diaphragm (forming the end salt capsule)

lying in the plane of the shell perimeter and by top and bottom
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diaphragms, which, with the support trusses, form a reinforcing
skin (or corset) around the entire capsule assembly as illustrated

in Figures 6.6 and 6.7. Tabs are spot -welded along the perimeter
of each capsule diaphragm. The top and bottom diaphragms, as well
as the two side trusses, perpendicular to the capsule diaphragms,
are then spot -welded to these tabs, thereby tying the edges of the
pressure heads to the top and bottom diaphragms and the side trusses.

The in -plane base diaphragms act in compression, and the top and
bottom diaphragms (and trusses) act in tension to support the two
pressure heads.

The closely spaced cylindrical shells on four sides of the box
and the end shells on the remaining two sides are the pressure vessel
envelope in the rectangular box concept. These shells, however,
are not adequate to transfer gravity and acceleration leads to the
supports. For these loads, additional structural elements are
needed. The supports are formed by four sliding pins in a support
bushing that can transmit only shear forces; this support system re-
strains the box from displacements and rotations, but allows free
thermal expansion of the inner box. The concentrated loads at the
supports are transferred to the edges of the rectangular box by a
set of four perimeter trusses and top and bottom diaphragms which
act as a rigid ritructure capable of channeling the loads to the supports.
As discussed earlier, this reinforcing skin is connected to the capsule
diaphragms along all edges of the capsule diaphragms by tabs spot
welded to both the capsule diaphragms and the top/bottom diaphragms
and side trusses. Had the honeycomb sandwich panels been selected
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r.4ther than the • • % , eral shells, tl.e }panels could have been designed

to act as pre m ,ore-containing units and to transfer the acceleration

loads to the supports; that is, Cie side trusses and top bottom dia-

phragms would not be required.

The structural behavior for accele ration loads is as follows:

• Vertical loads are carried by the beams formed by the
top and bottom diaphragms acting as flanges and the
primacy diaphragms acting as webs. Thesc beams
are supported at their ends by two trusses; these trusses
are supported by pins at their centers and elastically
supported at each end by the ether two trusses, which
in their turn are supported by pins.

• Hor17ontal loads parallel to the primary diaphragms

are transferred from these to the top and bottom dia-
phragnis by the sprit-welded tabs, and from these to
the trusses, and theme to the pins.

• Horizontal loads perpendicular to the primary diaphragms
are carried by these diaphragms by out-of-plane bending,
the edge supports being provided by the top and bottom
diaphragms via the soot-welded tabs. The loads would

then be carried b^	 -plane action to the perimeter trusses.

In sumniary, the inner box is approximately 41 .n x 41 in x 10 in (h),

and can be described as follows:

e The pressure envelope consieits of a series of adjacent
cylindrical shells for four faces (the top and bottom faces
and two sideiO and doubly curved shells for the remaining
two faces.	 The cylindrical shells each span 1. 5 inches
and are 0. 010-inch thick; the enclosure frame assembly
(welded) is illustrated in Figure 6, g, with the details
of required p ► ece-i giN en in Fi g -sres 6. 9 through 6. 12.	 The
doubly curved end shells or pressure heads span 41 in x 10 in

.	 and are 0. 07 inch-thick with details given in Figure 6. 13.
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• A series of primary diaphragms 0, 015-inch thick
and 1. 5 inches on center support the longitudinal
edges of the cylindrical shells. Under internal
pressure roads each diaphragm carries self equili-
brating tension forces between the cylindrical shells
on opposite faces. Since each diaphragm is attached
to shells along all four edges, it carries equal tension
in two orthogonal directions. Each primary diaphragm
is also used as a side of a salt capsule, The diaphragm
design is illustrated in Figure 6, 14, and includes holes
for pressure equalization in the entire volume outside
the salt capsules comprising the reservoir heat pipe.

• The two end primary diaphragms carry in-plane
compression forces :rom the end shells and are
thicker than the others (0. 19-inch thick).	 Their de-
sign, other than thickness, is identical to that of the
other diaphragms.

• Diaphragms on the top and bottom surfaces 0.05 -inch
thick support the edges of the end shells. These
diaphragms are connected to the primary diaphragms
by spot welding to tabs on the diaphragms. To assist
in welding to the tabs, the diaphragm is split into four
segments as illustrated in Figure 6. 15,

• A deep-drawn sheet, 0. 010-inch thick, is welded to
each primary diaphragm to form a salt capsule. Each
salt capsule is 1.49-inch deep and has stiffeners stamped
into it.	 The capsule sheet designs are illustrated in
Figure 6. 16 for most of the capsules, with the design
for the end capsules (lower height) given in Figure 6. 17.

• Trusses are attached to the four sides of the box. These
trusses are 10-inches deep and made of 0. 05-inch thick
material; they are attached by segment welding to the
top and bottom surface diaphragms, and to the primary
diaphragms by spot welding to tabs on the diaphragm.
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The design is illustrated in Figure 6. 18 for the truss with the
holes for the discharge heat pipe. The other three trusses are
identical except theydo not have the heat pipe holes at the top.

•	 Four bearing supports are provided, one at, or near, the cen-
ter of each truss. Pins cantilevering inwards irom the ex-
terior, where they are assumed held, fit into bushings In these
bearings. The sliding Interface between the pins and the bush-
ings must accommodate the thermal movements plus deforma-
tions due to pressure and acceleration loads. A support bush-
ing is welded to eachtruss with each bushing near the center
of the truss. The b paring supports are described in detail in
Section 6.3. 1. 2, which describes the outside box.

o	 Tubes run along the top of each capsule, and connect into a
manifold located along one side of the box. These tubes form
the wall separating the discharge; TES reservoir heat pipes.
A 4-inch diameter pipe goes from the manifold to the Stirling
engine for transport of K vapor to the engine. The discharge
heat pipe assembly is illustrated schematically in Figure 6. 19,
with a detailed assembly in Figure 6. 20. Part details are
presented in Figures 6.21 — 6.24,inclusive.

•	 The charge heat pipe consists of one tube with the same dimen-
sions inside the reservoir as for the discharge heat pipe, namely
0. 875 in. (OD) x 0. 020 in. (wall) x 40. 50 in. (L). To ensure that
the exterior of this heat pipe is wet with liquid potassium with
a minimum potassium inventory in the reservoir heat pipe, the
entire reservoir should be installed slightly tilted, so that any
liquid potassium drains to the charge heat pipe. Holes in the
diaphragm at top and bottom permit vapor to reach all capsules
in the reservoir, and the liquid potassium to drain to the heat
pipe.

6.3. 1.2 Outside Box

With she inner box assembly completed, the Multi.-Foil insulatio.,

is installed around the inner box, followed by the outside box designed

to support the internal vacuum in the Multi-Foil insulation over the
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flat aides, at, illustrated in Figures 6. 2 5and 6. 26. Of prime

concern in the design was an outer box structure which could

support the internal vacuum over the large flat surfaced with

minimum weight while still requiring only straight seam welds to

facilitate manufacture of a vacuum - tight box.

The loads on the outside box are of the same nature as those

on the inside box, namely, pressure and acceleration loads. There

are, however, sonie differences:

• The outside box is at ambient temperature, and there-
fore carbon steel, low alloy steel or aluminum can be
used.

• The outside box surrounds the inside box, and there-
fore no cross members or diaphragms can be used to
brace the walls of the outer box. This is a constraint
because the inner and outer boxes must be independent.

• The outer box supports only itself and part of the Multi-
Foil insulation.

Each face of the outside box is a plate supported on four sides.

The plate configurations considered were corrugated sheets and

honeycomb sandwich panels. Corrugated sheets carry out-of-plane

loads in one-way action only, and require edge members to carry

in-plane shear forces. In addition, the joints involve long, mul-

tiple, S-type welds, Sandwich panels are structurally efficient

since the skin s are optimally placed at the full depth of the panel

and the panels carry loads in two- way action.
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Based primarily on fabrication considerations, honeycomb

sandwich panels were selected for the outer box. For design

purposes, the panels selected are Astech "Tre-Metal" (a trademark); 	 a

the design allowable stresses used are those recommended by the
4

manufacturer.

The material selected for the panels is PH1!i-7Mo, which is a high-	 .1

strength stainless steel alloy. This was selected because of its cor-

rosion resistance to the external ambient environment and the ready

availability of data on its properties. A lower-strength material

could be used, since the computed stresses are well below the

allowables. In the top and bottom panels, the design is controlled

by shear in the core and by deflection limitations; in the side panels,

the skins are of minimum thickness. 	 .7

The design of the outer box is shown in detail in the assembly

drawing presented in Figure 6.27. 	 Design details are summarized

below:	 -^

• The panels for the top and bottom faces have a 1-inch
core, with 1/4-inch cells and a core density of
10.33 pcf.	 The face Akins are 0. 035-inch thick.
The detailed design of the top and bottom faces is given
in Figure 6.28.

• The side panels have an 0. 5-inch core, with 1/4-inch
cells and a core density of 9. u 1 pcf. The face skins
are 0. 012-inch thick, The rear, side, and front panel
details are given in Figures 6. 29 through 6.31.

9
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• The box is supported by the four pins which also support
the inner box. The pins are welded to the outer box.
In Figure 6.27, a cross section of the pin support ar-
rangement for both the inner and outer boxes is pre-
sented, with part details given in Figures 6.3% and 6.33.

• A 5-inch diameter pipe surrounds the 4-inch diameter
pipe from the manifold as it passes out of the outer box
forming the space for the vacuum Multi-Foil insulation*
At the appropriate distance from the outer box and near
the Stirling engine the annulus between the pipes is
sealed off by a bellows as illustrated in Figure 6.37
for the cylindrical unit assembly.

• The inside dimensions of the box are 43. 25 in.x
42. 125 in.x 11.625 in; the outside dimensions are
44.3 in. x 43.2 in. x 13.8 ink and the weight of the
box is approximately 118 lbs.

The plan view of the outer box is not square, because space for
the discharge heat pipe manifold is needed along one side of the inner
box, which has a square plan.

The edge detail is based on one proposed by Astech for a
similar panel. The vacuum tightness of the box depends on a
single straight seam weld along each edge, and is in marked
contrast to the intricate welding required at the intersection of
corrugated sheets.

For pressure loads, the panels act as simply supported plates
with lateral and in-plane forces. Acceleration loads must be car-
ried to the four pin supports. For the outside box, acceleration
loads arise out of their own mass a.tid part of the Multi-Foil insula-
tion. In general, local acceleration loads are carried by in-plans
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CORPORATION

action to the pins or by out-of-plane bending of the panels to their

edges the loads delivered to the edges are then carried to the pins

by panels acting as deep beams.

The inside dimensions of the outer box are selected to provide the

required minimum 0. 5-inch clearance for the Multi-Foil insulation

between the boxes. These dimensions take into consideration the

deflections of the outer box due to the external pressure load.

6.3.2 Miscellaneous Details

In the manufacturing procedure of Chapter 8, it is planned to

use precast salt blocks for charging the salt capsules prior to

welding of the salt capsules. In Figure 6.34, the dimensions of

the tall and short salt blocks required are presented. The salt

capsules will be cast with a small percentage of aluminum powder

to act as a corrosion inhibitor, as discussed in Chapter 2. These

dimensions allow room for the salt to expand on heating and melting.

After welding, the capsules must be evacuated. Each salt capsule

will have a pinch-off tube for evacuation and sealing, as illustrated

in Figure 6.35. A small quantity of potassium will also be sealed

in each salt capsule to equalize the internal capsule pressure with

the external pressure.

In Figure 6.3 6, the tabs for tying each primary diaphragm to

the top and bottom diaphragms and to the side trusses are illustrated.
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6.3.3 Summary of Stresses Weightsl_and Volumes

6.3.3.1 Stress Summary 	 a
Stresses for the inside box are summarized in Table 6. 30

while stresses for the outside box are summarized Li Table 6.4.
As can be seen in these tables, all primary stress elements have 	 Z
been checked to have stresses within allowable values. The com-
puted stresses are based on approximate hand computations.

6.3.3. 2 Weight and Volume Summary

A breakdown of the weight for the rectangular box structure
is given in Table 6. 5. The estimated weight of the inner box is
based on a unit weight of 0.32 lbs/in 3 ; this corresponds to the unit
weight of Inconel 617 (0.302 lbs/in3 ), plus an allowance of 5 percent
for connections and local stiffening.

In Table 6.6, a summary of the TES reservoir characteristics
is presented. Of particular interest are the fractions of the total
TES reservoir weight represented by the salt, 59. 5 percent and 64.0
percent for LiF an3 NaF/Mgy,, respectively] and the fraction of
the total volurne represented by the capsule volume, 44.7 percent
and 75 . 3 percent for the outer envelope and for the inside of the
inner box, respectively. The storage capacities are 169 kwhrth
when filled with Li .F, and 125 kwhrth when filled with NaF/MSF2. 	

z .

I
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TABLE 6. 3

INNER RECTANGULAR BOX OF INCONEL 617
STRESS SUMMARY

Result
No. Element

Loading or
Result No. Type of Stress

Stress
(ksi)

Allowable
Stress

(ksi)

1 Primary Internal Stretching, direction Y 3.0 3.0
diaphragm pressure
(ta0. 015)

2 Primary Internal Stretching, direction Z 3.0 3.0
diaphragm pressure
(ta0. 015)

3 Primary Internal Stretching. direction Y 0.4 3.0
diaphragm pressure
(t:0. 19)

4 Primary Internal Compression. direction Z 0.4 -
diaphragm pressure
(two. 19)

5 Primary Internal Bending, direction Z Z.5 -
diaphragm pressure
(ta g. 19)

6 Primary 4+ 5 — Z. 9 3.0
diaphragm
Out 19)

7 Top/Bottom
diaphragm

Internal
pressure

Stretching, direction X 3.0 3.0

g

(t=O. 05)

Top/Bottom
diaphragm

Gravity Stretching/compression.
direction Y

0.5 3.0

9

(ta g. 05)

Top/Bottom
diaphragm

Acceleration
Y

Stretching due to bending,
direction X

0. Z -

10

(ts0. 05)

Top/Bottom
diaphragm
(ta g. 05)

7 + 9 Stretching 3.2 16.0



a

A-3023b

TABLE 6.3 (coat.)

INNER RECTANGULAR BOX OF INCONEL 617
STRESS SUMMARY

Result
No. Element

Loading or
Result No. Type of Stress

Stress
(kai)

Allowable
Stress
Nei)

11 Top/Bottom Acceleratl ` n Stretching/compression. 1.6 -
diaphragm Z direction Y
(t=0. 05)

I t Top/Bottom 8 f	 11 Stretching 2. 1 16.0
diaphragm
(t=0. 05)

13 Cylindrical Internal Hoop tension 3.0 3.0
shells pressure

14 End caps Internal Hoop tension 3.0 3.0
pressure
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TABLE 6.4

OUTER RECTANGULAR BOX OF THE-METAL
STRESS SUMMARY

Result
No. Elernent

Loading or
Result No. Type of Stress Stress

Allowable
Stress

1 Top/Bottom External Bending of panel. 36.7 ksi 150.0 kai
Panels pressure stretching of skin

Z Top/Bottom External Shear in core 26S. 0 lb/in 265.0 lb/in
Panels pressure

3 Edge strip of External Bending Z6. 9 ksi 150.0 ksi
top/bottom pressure
panels

4 Edge strip of External Shear S.7 kai 90.0 ksi
top/bottom pressure
panels

S Side panels External Bending of panel. 43.7 ksi 117. 0 kai
pressure stretching of skin

6 Side panels External Shear in core SZ. S lb/in 14S. 0 lb/in.
pressure

7 Edge strip of External Bending 100.0 kai 150.0 ksi
side panels pressure

s Edge strip of External Shear S. Z ksi 60.0 ksi
side panels pressure

6-8S



• Inner Box

234	diaphragms, t = 0. 017"",

2	 diaphragms, t = 0.191,

2	 diaphragms, t = 0.050,

24	 edge pieces, t = 0.011,

2	 end pieces, t = 0.071,

26	 capsules, t = 0.011,

4	 trusse`, t = 0.05of
Subtotal

• Oute r Box

2	 square panels, tt = 0.03511

4	 rectangular panels, tt = 0. 0121,

edges

Subtotal

• Total Structural Weight

• Multi- Foil Insulation Weight

• Heat Pipe Weight

• Total TES Reservoir Weight Less Salt

The
45.3
	 31

24.9

53.8

21. 2	 .3
38. 6

57.7

27.7

269

93.7

22. 1

i
118

387

95

25
v '

507 (230 kg)

R
	

s

C' r) n.1 014A ♦ ION

A-2966
TABLE 6.5	

4!
SUMMARY OF STRUCTURAL WEIGHT

RECTANGULAR BOX

A

A i
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A-2967
TABLE 6.6

SUMMARY OF WEIGHTS, VOLUMES,
HEAT TRANSFER AREAS„ AND TES CAPACITY

FOR RECTANGULAR CONFIGURATION

Internal Capsule Volume

Volume of Inner Box (Inside)

Volume of Outer Box (Outside)

Surface Area of Salt Capsule

Surface Area of Discharge Heat Pipe Tubes (OD)

Surface Area of Recharge Heat Pipe Tube (OD)

Total TES Reservoir Weight Less Salt

Capsule Volume/Total Volume

Capsule Volume/Inner Box Volume (Inside)

12, 000 in 

15, 670 in 3

26.410 In  
(0. 433m3)

19, 000 in  (132 ft2)

2, 672 in  (18. 6 ft2)

111. 3 in  (0. 773 ft2)

507 lb (230 kg)

0.447

0.753

Li F
	

Na F/Mg F2

Weight of Salt ( Capsules 94% Full
of Liquid at Melting
Point)

Storage Capacity (Salt Only, 8000Y,7-
1150°K)

Total TES Reservoir Weight

Salt Weight/Total TES Reservoir
Weight

6-87

744 lb (337 kg)	 901 lb (409 kg)

172 kw hrth	 127 kwhrth

1251 lb (567 kg) 1408 lb (639 kg)

0.595
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6.4 CYLINDRICAL DESIGN

The most common pressure vessel design is the circular 	 ;5

cylindrical unit with spherical or ellipsoidal heads. For the TES

reservoir a cylindrical design it also feasible; however, to accommo-

date the required 300 kg of salt within the packaging constraints,

two cylindrical reservoirs are required. The outside dimensions

chosen for each of the two units, except for local stiffeners, are

a 50-inch long, 15-inch diameter cylinder with two ellipsoidal

heads of 5. 5-inch rise. The primary drawback of the cylindrical

design is the lower packaging efficiency; nevertheless, two cylinders

may prove to integrate into a car design as well as one rectangular

unit. The cylindrical units are easier to fabricate than the rectangu-

lar unit, and would require less development for automated, high

volume production.

6.4. 1 Design Approach

There are many similarities in the design approach for the

cylindrical and rectangular configurations. For the cylindrical

design concept, the design requirements led to the selection of two

congruent pressure vessels, each a cylindrical body with two

ellipsoidal heads, that are positioned one-half of an inch apart to

provide the vol?une for the Multi-Foil insulation. To allow for

thermal expansion of the inner container to occur freely, a four-pin
A

support system as previously described for the rectangular unit is

used. The support plane was chosen as the symmetry plane that

contains a circumference of the cylinder.

6-88
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Once a pressure vessel configuration has been adopted, the
primary design consideration is the method of containing the salt.
A concept of individual salt capsules, shaped approximately as
slices of a cylinder, was chosen. In this approach, the salt con-
tainers are stacked loose inside the inner pressure vessel= to
physically restrain the salt capsules and prevent their crushing
under acceleration loads, a series of restraining rings is used.
These rings perform a dual role in that they also strengthen the
thin shell of the pressure! vessel. Strengthening is required at
discontinuities such as the support plane and the head-to-cylinder
intersection.

The pressure loading is such that the inside vessel is in tension

(internal pressure from the potassium vapor) and the outside
vessel is in compression (outside pressure from the atmosphere)
as for the rectangular configuration. Under internal pressure the
meridional and hoop stresses in the inner cylinder and in its
ellipsoidal heads are tensile. Buckling is therefore not a con-
siderationf nevertheless, the rings that are required for other
purposes can also work to prevent buckling under external pressure
should the vacuum in the insulation space be accidentally lost. The
atmospheric pressure causes compressive meridional and hoop
stresses in the outer pressure vessel. To prevent buckling of the
thin shell, stiffening rings are necessary. Two of these rings also
serve to channel the dead weight of the shell to the supports.
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In summary, the cylindrical design consists of two congruent pres-

sure vessels, with Multi-Foil insulation in between. Each pressure

vessel is thin-walled, and therefore stiffened by rings. The salt is

stored in short cylindrical capsules stacked in the inner pressure ves-

sel. Discharge and charge heat pipes are incorporated in a fashion

similar to that for the rectangular unit with tubes forming the wall Sep-

arating the discharge/TES reservoir heat pipes. An assembly drawing of

the entire unit is given in Figure 6. 37, and perspective illustrations of

the construction of the system are presented in Figures 6.38 - 6.41.

6.4. 1. 1 Inner Cylinder

The inner cylinder will be made of Inconel 617, for the reasons

given earlier. The design and allowable stresses for this material

are shown in Table 6. 7.

The several design concepts studied can be classified into two

groups: (1) designs in which the salt containers are units independent

of the pressure vessel, and (2) designs in which the salt containers

are an integral part of the inner cylinder. The advantage of the

first group is that the resulting cylinder is easy to fabricate, since,

in essence, it is a conventional pressure vessel; the disadvantage is

that the salt units are independent, and some motion or rattling must

be expected. The decision was made that a design concept should

not be disqualified merely because of rattling, that is, if the design

concept is structurally sound. The advantage of a design with integral

salt containers lies in its one-piece aspect; this advantage, however,

is gained at a significant increase in fabrication complexity. Because

6-90
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TABLE 6.7

INNER CYLINDRICAL CONTAINER OF INCONEL 617
STRESS SUMMARY

Result
No. Element

Loading or
Result No. Type of Stress

Stress
(ksi)

Allowable
Stress
(kei)

1 Cylinder Internal Hoop primary membrane 3.0 3.0
pressure

2 Cylinder Internal Meridional primary membrane 1.5 -
pressure

3 Cylinder Gravity Meridional primary membrane 0.6 -
4 Cylinder Internal Hoop secondary bending 0.8 -

pressure
5 Cylinder Internal Meridional secondary bending L 8 -

pressure
6 Cylinder 2+ 3 — Z. 1 3.0
7 Cylinde r l+ 4 — 3.8 6.7
8 Cylinder 2+ 3+ 5 — 4.9 6.7
9 Cylinder 3. 5 g vertical — 2. 1 16.0

10 Ring at Internal Hoop tension 1.0 -
Center pressure

11 Ring at Gravity Bending 1.0 -
Center

12 Ring at 10 + 11 Combined 2.0 3.0
Center

13 Ellipsoidal Internal Primkry membrane at crown 2. 1 3.0
mead pressure

14 Ellipsoidal Internal Primrry membrane at 1. 5 10
hei.d pressure cylinder junction

15 Ellipsoidal Internal Secondary bending at 1. 5 •
head pressure cylinder junction

16 Ellipsoidal 14 + IS — 3.0 6.7
head
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of these fabrication complexities, many of the advantages of a
cylindrical pressure vessel are lost when the capsules are integral
with the containment walls. A design of this type shares many of
the conceptual aspects of the rectangular design, such as closely
spaced diaphragms.

A design of either of the two previously discussed groups must

be considered, a priori, as feasible. Since a design of the one-
piece approach would be similar to the rectangular box, it was decided
to pursue the design with independent salt containers. The decision
implies that the rectangular and cylindrical designs are conceptually
quite differentt at a later stage in the program, a one-piece cylinder
could be pursued and a cost comparison performed. Once a pressure
vessel design with independent salt containers is selected, a number
of design questions arise;

• What are the required pressure vessel thicknesses for
the cylindrical portion and for the heads, based on pri-
mary membrane effects ? Are the thicknesses selected
to carry primary bending sufficient to carry discontinuity
stresses (e. g. , at the head to cylinder junction) ?

• What shall the support system be? Are the thicknesses
of the vessel sufficient to carry the additional str*sses
that arise near the supports ?

• What shall be the configuration of the salt containers ?
How shall the salt containers be supported ?
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The design arrived at after investigating the preceding questions,
in addition to the all-encompassing issue of fabricability of the con-
tainer, is shown in Figures 6.3 7 through 6.4 L A summary descrip-
tion of the inner pressure vessel is given below.

• Material selected, Inconel 617

• Cylindrical portion of the pressure vessel is 50
inches long, 14 inches outside diameter, with a
wall thickness of 0. 07 inch (70 mil).

• The ellipsoidal head is an obUtto spheroid, with a
minor axis of 5 inches, a major axis of 7 inches
(both of these are outside dimensions), and a wall
thickness of 70 mil.

• The inner cylinder is supported at its midlength
by four pins which cantilever inwards from the
exterior. These pins slide into four bearings
equelly spaced around the cylinder. Local stiff-
ening is used to distribute the loads from the bearings
to the cylinder walls= 1. 25-inch diameter bushings
provide the sliding interface with the pins.

• Eight stiffening rings are used, one at each end of the cyl-
inder. two at the center, and tv ►o at each quarter point.
The stiffening rings perform several functions; support for
the pressure vessel, for the salt containers, and for the
twelve 7/8-in diameter discharge heat pipe tubes. The two
rings at the center o: the cylinder distribute gravity and
acceleration loads from the cylindrical shell to the four sup-
ports; the two rings at the ends of the cylinder stiffen the
head-to-cylinder junction; and all eight rings provide sup-
port to the salt containers and the discharge heat pipe tubes.

e Each stiffening ring consists of a four - spoke wheel
stamped out of a 1t0-mil thick sheet. The rim and
the spokes, which are stiffened by a U0-mil thick

i
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cross -like plate, serve as supports to the salt containers
for acceleration loads in the longitudinal direction. Each
rim has 12 circular holes through which pass the discharge
heat pipe tubes.

• The sale containers are made of two identical pieces, press
drawn to a thickness of 10 mil, and welded along the cir-
cumference. Each salt container is 1.56-inches wide,
inciudir,- 10-mil deep stiffeners stamped onto the sides.
One- to : -n,D. thick spray-on wicking may be used. A cir-
cumferential edge strip protects the weld from damage
from impact against the heat pipe tubes.

• The 4 -inch diameter pipe of the discharge heat pipe, which
transports K vapor from the TES to the Stirling engine,
passes through the center of one of the heads.

The inner cylindrical container was checked for pressure loads,
gravity, and acceleration loads. A straightforward pressure vessel
analysis was performed for the shell; both primary membrane and
secondary bending stresses were checked. Gravity and acceleration
'oads are transmitted from the salt containers to the shell, to the
rings located at the center of the cylinder, and finally to the bearings.

For accelerations normal to the axis of the cylinder, each half
of the inner container acts as a cantilever member with circular
cross section; the overall bending moment is carried by meridional
membrane action; and the overall shear is carried in the shell by
in-plane shear to the support rings, which act as a diaphragm in
transferring the load to the bearings. For accelerations parallel
to the axis, the cylindrical shell acts primarily as a tension/compres-
sion element with meridional stresses.
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The salt containers, are loose inside the vessel. Every eight
contiguous capsules are restrained in the axial direction by two
rings, one at each end of the group of eight. These rings provide
support along the axial direction. When the TES experiences longi-
tudinal accelerations, each capsule of the group will bear on the
adjacent capsule; since the first capsule is restrained by a ring,
so are the remaining capsules. The criterion used for selecting
the size of allowable stacking of capsules is that every capsule main-
tain its structural integrity, without excessive deformations or wall
buckling. Conceptually, the problem is similar to determining the
stacking height for cardboard boxes. When the TES experiences
accelerations in the transverse direction, each capsule bears against
the heat pipes. The circumferential edge strip around the capsules
protects the heat pipes against punching damage from the capsules.

and also protects the circumferential weld of the capsule from abrasion.
Even though the salt containers will be stacked tight, some movement
of the capsules is expected; some testing will be required to determine	 -is

the effects of the movements.

6.4. 1.2 Outer Cylinder

The outer cylinder is at ambient temperature. Since buckling, 	 :"s g

rather than stress, is the primary design concern of pressure vessels
under external pressure, any carbon steel with a yield > 40, 000 psi
can be used, for exe.mple, AISI 1040.	 >®

Consistent with the geometry of the inner cylinder, a 50-inch
long, 15-inch diameter cylinder was selected with a wall thickness
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a 55-mil wall thickness were selected. The design of the tank was

performed in accordance with the ASME Boiler and Pressure

Vessel Code, Section VIII, Division 1. Four circumferential

stiffener rings are used, located at + 2 inches and 1 18 inches

from the tank centerline. The two rings closer to the heads are

sized to prevent shell buckling; the two rings close to the center

serve the dual purpose of preventing buckling and distributing the

gravity and acceleration loads to the pin supports. The cylindrical

portion between the central rings, which is 4 inches wide, is made

of 0. 15-inch thick material. This extra thickness, supplemented by

local stiffeners next to the support pin, is sufficient to deliver the

gravity and acceleration loads to the pin supports.

A 5-inch diameter pipe extends from the head towards the engine;

this pipe surrounds the 4-inch pipe, of the discharge heat pipe, that

goes from the inner cylinder to the engine, with the space between

filled with Multi-Foil insulation. At a location near the Stirling en-

gine, the annulus between the pipes is sealed off by a bellows. A

transition piece may be required to weld the Inconel 617 heat pipe

to the carbon steel outside pipe.

6.4. 2 Summary of Results

6.4.2. 1 Stress Summary

Stresses for the inside cylinder are summarized in Table 6.7.

The computed stress values are based on well-established methods

of shell theory, and on formulas, figures, and tables given in the

ASME Boiler and Pressure Vessel Code. The outer shell is designed

in accordance with the ASME Code Section VIII, Division 1; and since

this does not require the calculation of stresses, none are tabulated.
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6.4.2.2 Weight and Volume Summary

A breakdown of the weight for the inner and outer containers is

given in Table 6.8. For the inner cylinder, a unit weight of 0.32

lbs/in3 is used; this corresponds to the unit weight of Inconel 617 plus

an allowance of 5 percent for connections and local stiffening.

In Table 6. 9, a summary of the TES reservoir characteristics is

presented. The capcule volume/total volume ratio of 0.45 is almost

identical to that of the rectangular configuration. The ratio of salt

weight to total reservoir weight of 0.53 for ' ' F and 0.58 for NaF/

MgF 2 is about 10 percent less than that for the rectangular configura-

tion. It should be noted, however, that the cylindrical configuration

is definitely able to withstand one atmosphere pressure in the Multi-

Foil chamber without buckling (with vacuum in the inner box), whereas

the rectangular configuration may not. Thus, air-leakage into the

Multi-Foil could be catastrophic to the rectangular unit; whereas the

cylindrical unit could probably be repaired and put back in service.

Two modifications to the design could also improve the salt/total weight

ratio for the cylindrical configuration. From the detailed layout of

Figure 6.37, it appears that one more salt capsule can ue added to the

inner cylindrical envelope, resulting in a 2.9 percent increase in the

salt/total weight ratio to 0.549 and 0.596 for LiF and NaF/MgF 2, re-

spectively. It also may be possible to elimL ate the cross-web inden-

tations in the capsule, by the addition of internal supports in the cap-

sules — thereby adding about 10 percent to each capsule internal volume.

This additional modification would bring the salt/total weight ratio to

0.604 for LiF and 0.656 for NaF/MgF 2, which is comparable to the

weight ratio for the rectangular configuration.
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2 Cylindrical walls,

4 Ellipsoidal heads,

5 Stiffening ring s

4 Support details

64 Capsules,

Subtotal

The

t = 0. 0711
	

98.0

t= 0.0711
	

22. 6

51.6

3.0

t = 0.011,
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TABLE 6.8

SUMMARY OF STRUCTURAL WEIGHT
CYLINDRICAL CONTAINERS

• Inner Container

• Outer Container

2 Cylindrical walls,	 t = 0. 0551,

4 Ellipsoidal heads,	 t = 0. 055"

3 :stiffening rings

4 Support details

Subtotal

• Total Structural Weight, 2 cylinders

• Multi-Foil Insulation Weight (2 cylinders)

• Heat Pipe Weight (2 cylinders)

• Total TES Reservoir Weight Less Salt

76.6

21.0

27.6

19.2
144

380

100

16

496 (225 kg)
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TABLE 6.9

SUMMARY OF WEIGHTS. VOLUMES, HEAT TRANSFER AREAS,
AND TES CAPACITY FOR CYLINDRICAL CONFIGURATION

(TWO CYLINDERS)

Internal Capsule Volume

Volume of Inner Cylinder (Inside)

Volume of Outer Cylinder (Outside)

Surface Area of Salt Capsule

Surface Area of Discharge Heat Pipe Tubes (OD)

Surface Area of Recharge Heat Pipe Tube (OD)

Total TES Structure Weight Less Salt

Capsule Volume/Total Volume

Capsule Volume/Inner Box Volume

9, 320 in 3

17, 07 0 in 3

20, 640 in  (0. 338 m3)

22,000 in  (153 ft2)

1, 650 in  (11. 5 ft2)

137 in  (0. 954 ft 2)

496 lbs (225 kg)

0.452

0.546

LiF NaF/MgF2

Weight of Salt (Capsules 9510 Full of 579 lb (262 kg) 700 lb (318 kg)
Liquid at Melting Point)

Storage Capacity (Salt Only, 800° K-
1150-K) 134 kwhrth 98. 6 kwhrth

Total TES Reservoir Weight 1075 lb (487 kg) 1196 lb (542 kg)

Salt Weight/Total TES Reservoir
Weight 0.533 0.579
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6.5 DISCUSSION

6.5. 1 Alternate Designs

Several alternate designs were considered for the inner rec-

tangular box. The primary concepts were:

• A honeycomb sandwich panel box similar to the design
of the proposed outside box. This was discarded be-
cause it is too heavy and because of the uncertainty
about the behavior of honeycomb sandwich panels at
temperatures of N 1600° F.

• A box with sides made of corrugated sheet. Such a
design requires diaphragms adjacent to the corrugated
sheets to carry in-plane compression normal to the
direction of the corrugations; the design also requires
at least four, and possibly eight, edge members or
longerons to carry dead weight and acceleration loads.
This design was discarded primarily because it is
too heavy, but also because of the difficulty and expense
of welding multiple S-shaped seams.

• A honeycomb sandwich panel box with closely spaced
interior diaphragms. The design approach is similar
to that adopted, with parallel diaphragms used to cut
down the bending span of the panels that are the sides
of the box. In this design approach the honeycomb
sandwich panels replace functionally the multiple
adjacent cylindrical shells, the top and bottom diaphragms,
and the perimeter trusses of the proposed rectangular
box. The spacing of diaphragms in this design must be
chosen to minimize the material weight of diaphragms
and panels and the fabrication cost. If a spacing of
either 1. 5 inches or 3. 0 inches is selected, the salt
containers may be attached to the diaphragms as in
the proposed rectangular design; if a spacing larger
than 3.0 inches is selected, individual salt capsules would
be required. A honeycomb sandwich panel box with
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interior diaphragms is an interesting alternative
that should be studied further. It was not selected
in this study, because of the lack of data for sandwich
panels operating at the high temperatures required
for this application.

An altogether different possibility is to use two rectangular

boxes instead of one. Any of the design approaches described

before could be used. Two 'coxes could be considered for pack-

aging efficiency, and to cut down on the span of the faces of the

inner and outer boxes.

The use of corrugated sheets for the outer box was considered

and discarded. The problems are the multiple S-welds, the need

for longerons and extra diaphragms, and the increase in weight.

Fabrication costs are much larger than for the proposed honeycomb

sandwich panel box.

The only alternative considered for the cylindrical design is

one in which the salt containers are an integral part of the inner

unit. This alternative has been discussed in Section 6.4.1.

6. S. 2 Potential Problems

Several technical uncertainties exist in these designs which can

only be resolved by experimental testing and/or more extensive

design evaluation. Foremost is the need to establish the behavior

of Inconel 617 in contact with solid and liquid salt, and with potassium

liquid and vapor, in the temperature range of 800° K -- 1150° K. Cor-

rosion rates and the effect of temperature cycling on corrosion and

on the creep characteristics should be established. To minimize the

rT
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structural weight, thin plates (0. 010-inch thick) are used where stress

conditions permit. Although the manufacturer indicates that Inconel

617 is readily weldable, welding techniques for the thin plates to

provide an absolutely vacuum-tight weld will require some develop-

ment. Where the Multi-Foil insulation is ended, (see Figure 6. 37).

a vacuum-tight welded connection is required between the Inconel

617 heat transport tube and the outer carbon steel and/or stainless

steel envelope. A graded connector will probably be required, per-

mitting welding to Inconel 617 on one end and to carbon steel and/or

stainless steel on the other.

The cylindrical design incorporates independent salt contaiu:,;rs

which are not completely restrained. Some movement of these cap-

sules under dynamic loading may occur, with potential problems from

material fretting and abrasion and from noise.

A loss of vacuum in the Multi-Foil drastically reduces the effec-

tiveness of the insulation, so that the outer box or cylinder will be

heated if the TES reservoir is charged with hot salt. The insulation

approaches the effectiveness of a stagnant air gap (the small spacing

between foils minimizes convection), and thus is not completely lost.

Consequently, the surface temperature will be somewhat less than

the salt temperature, with the exact temperature depending on the

ambient around the TES reservoir. A rough calculation for a surface

in free air indicates a surface temperature (C) of — 600 • F with 1600 • F salt

temperature. If this temperature is high enough, the strength of the

outer container (of carbon steel or stainless steel) will be affected,

with the possibility of some deformation of the outer container. In
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addition, the high surface temperature would represent a fire

hazard for the vehicle.

A more serious consequence of loss of vacuum may be buckling

of the inner container. If the los a of vacuum is from a leak to

the atmosphere, the outer container will no longer be under external

pressure, while the differential pressure on the inner container will

initially be lower than the design pressure. As the inner container

cools down, the internal pressure may drop to below 1 atmosphere,

and the unit would then be under external pressure. No calculations

have been performed for the inner containers under external pres-

sure. However, in the cylindrical design, the inner cylinder is

thicker, has a smaller radius, and has stiffening rings more closely

spaced than the outside cylinder; it therefore should not buckle. In

the rectangular box, the only elements that could buckle are the

primary diaphragms; however, these are restrained by the salt. In

any event, shnuld further study indicate a stability problem, one-way

pressure release valves may be incorporated into the design to pre-

vent failure of the inner containers due to external pressure,

If the loss of vacuum is from a leak of potassium vapor, the

inner unit would no longer be under pressure and the external con-

tainer would be under reduced external pressure, but would be in

contact with the hot potassium, with possible corrosion problems.

The normal operation of the TES reservoir is such that the

temperature is expected to be uniform, and nonuniform temperature

distributions are unlikely to occur under any conditions. The effect
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of nonuniform distributions was therefore not considered. If

nonuniform temperature distributions become possible, stremses

could develop with nonuniform thermal ecpansion of the structure —

resulting in distortion and possible joint fracture. Differential

pressures could also develop across the salt capsule walls due to

a difference in potassium vapor pressures inside and outside of the

capsules.

The consequences of a leak of salt from one or two salt con-

tainers is not believed to be serious, since the reservoir heat pipe

is sealed — preventing migration of the salt to the Stirling engine.

The salt in the reservoir heat pipe would probably end up around the

charge heat pipe and, if excessive, would prevent recharging. Gross

leakage would obviously prevent functioning of the TES system. No

structural effects would be expected.

The designs presented in this report are based on criteria and

specifications set in the contract. These criteria could be extended

and modified for a more realistic and detailed evaluation relative to

structural response in a vehicle. Thus, criteria for transverse

accelerations where the vehicle is struck from the side, or for

puncture resistance of the outer skin, could be included. Dynamic

response to random vibrations in the 10-20 cycle/sec range should

also be evaluated, particularly with respect to the dynamic ampli-

fication for accelerations that vary harmonically in the 10-20

cycle/sec range. With regards to restricting the natural fre-

quencies, it must be noted that the rectangular unit may have rela-

tively high overall natural frequencies (not computed in this study)

with low local frequencies for out-of-plane vibrations of the

b-111
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diaphragms. The cylindrical unit is also expected to have high

overall natural frequencies; however, the salt containers are loose —

a known natural frequency of zero.

6. 5.3 Comparis on and Evaluation

The design specification indicated a 500 kg total system weight,

with a volume of < 0.4m3 . Since the designs did not exactly match

this specification, the system characteristics are extrapolaty^ linearly

to this specification — so that a direct comparison can be made. No

allowance is made here for the rest of the system weight, comprising

the heat transport pipe to the Stirling engine, the E-M pump, and the

controls. Results are given in Table 6. 10.

Both designs satisfy the volume specification of < 0.4M3.

6.6 CONCLUSIONS

The two structural cor. epts developed for the TES meet the basic

design requirements of the contract. In t::e rsctanoular :;:.:i, the

salt capsules are welded to the structure, and the design requires

a consid ,2rable amount of vacuum-tight seam welds. For the cylin-

drical design, two u„its are required, the salt capsules are stacked

inside, without connection to the structure, and much less vacuum-

tight welding is required.

A testing program will be needed to confirm material properties.

to determine structural performance, to check for feasibility of

fabrication in an industrial environment, and eventually to establish

which configuration is preferable.
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7. THERMOELECTRIC-ELECTROMAGNETIC PUMP DESIGN

An electromagnetic pump is used to control the now of potassium

In order to regulate the thermal conductance of the discharge heat

pipe. Since the pressure head of such a pump is much greater than

that due to capillary forces, the diameter of the discharge heat pipe

can be smaller than if a wick return were used. Electromagnetic

pumps also have the advantage of no moving parts and have been used

successfully in sodium-cooled nuclear reactors, as well as in other

high-temperature, liquid-metal pumping applications.

The potassium vapor transport characteristics for the reference

case duct (4 in DIA, x 4 ft L) are shown in Figure 7. 1. To meet

eyetem specifications, a maximum potassium flow rate of 2. 2 gal/min

at a pressure head of 1 psi Is required. For these flow conditions, a

d-c Faraday conduction electromagnetic pump requires a power input

of only 4. 2 watts (ideal pumping power of 0. 96 watt). Although this

power requirement is insignificant, it must be supplied at a high current

(83 amp) and low potential (0. 05 volt), an inconvenient impedance

for most power sources. However, a thermoelectric module can

match this impedance. This design concept of using the output of a

short-circuited thermoelectric module to drive an electromagnetic

pump has been successfully demonstrated on SNAP 10A, the only

space reactor power supply launched by the United States. In thin

system, NaK was circulated by the electromagnetic pump through the

reactor to the thermoelectric power conversion system and back,. The

electromagnetic pump was powered by a short-circuited PbTe

thermocouple operating between the NaK outlet t .nperature (990°F)

and a cold junction determined by a small pump radiator at 6001F.
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The pump magnetic field was supplied by a permanent magnet. With a

now rate of 13 gal/min versus a d P of 1. 1 psi, this pump required

a thermal power of 62S watts with the above operating conditions.)

The physical arrangement of the thermoelectric-electromagnetic

( E- EM) pump proposed for the TES system is illustrated in

Figures 7. 2 and 7. 3. The close integration of the thermoelectric and

pump components is evident in these figures. This design does not

require long, high-current leads. The .heat for the thermoelectric

generator is provided by the potassium flowing through the pump. The

pumping rate is controlled by rotating the pe - rmanent magnet to vary

the field strength to the current flow through the pump. The total

current output from the thermoelectric module flows through the EM

pump at all times.

The design considerations for the thermoelectric module and the

EM pump will be discussed in the next two subsections. The operation

of the thermal control has been described in Section 3.

7.1 THERMOELECTRIC MODULE

The term "module" usually denotes an array of thermocouples.

For the present application, a single semiconductor thermocouple is

sufficient. However, if a different EM pump design point or a

thermoelectric ( TE) material with a low Seebeck voltage were used --

two, or more, thermocouples would be required.

For theTE- EM pump design shown in Figures 7. 2 and 7. 3, the

"N" and "P" legs are concentric, with the tube containing the flowing

potassium. Each leg is electrically insulated from, but thermally

connected to, the potassium tube.
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The TE output current is conducted through short, heavy leads 	 i

into the EM pump section, where the current flow is perpendicular to

the field of the permanent magnet. The resulting pumping force is

proportional to the vector product of the current and magnetic field. 	 .i

The current loop through the "N" leg, EM pump and "P" leg is

completed by the "hot shoe" (see Figure 7. 3). The cooling tubes are

connected to the Stirling engine radiator cooling system. An eval-

uation of available thermoelectric materials is given in Table 7. L	 •}

a

Any of the semiconductor materials in this tabulation would probably

be adequate; however, the efficiency of bismuth telluride is marginal.

The thermoelectric efficiency is given in Figure 7. 4 as a function of

hot junction temperature for the semiconductor materials under consider-

ation. Silicon-Germanium is attractive, but its low thermal expansion

(relative to other materials in the system), would present some match-

ing problems. Gadolinium selenide has a high efficiency, but there

is yet little experience with this material. Based on all considerations

(i. e., efficiency, maximum hot junction temperature, bonding, cost

and experience), lead telluride has been chosen for the reference de-

sign. Cylindrical lead telluride TE modules have been built by

Westinghouse.

A summary of the TE-EM pump reference design is shown in

Table 7. 2. A samarium-cobalt magnet is assumed to minimize weight;

however, the magnetic field conditions could be met with a heavier

Alnico magnet.	 '
.t

.,
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A-2971
TABLE 7. 2

THERMOELECTRIC- ELECTROMAGNETIC
REFERENCE PUMP SUMMARY

Maximum Pump Rate - 2. 2 gal/min Potassium

Pressure Heat - 1 psi

Potassium Temperature - 650 • C

Duct Dimensions

Length - 0.400 in.
Inside Height of Chamber = 0. 100 in.
Inside Width - 0.706 in.
Wall Thickness - 0.005 in.

Samarium-Cobalt Permanent Magnet

Magnetic Field - 4500 gays
Area of Field - 0. 282 In.

Electrical Input

Current - 83 amp
Potential -. 50 millivolts
Power - 4. 2 watt

Electromagnetic Pump Efficiency - 22.8 percent

Thermoelectric Material - Lead Telluride

Maximum Hot Junction Temperature - 5506C
Cold Junction Temperature - 1506C
Thermoelectric Efficiency - 9 percent

Number of Couples - One

Thermoelectric Element Dimensions

Inside Diameter - 0.5 in..
Outside Diameter - 1.00 in.
Length - 1. 120 in.
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7.2 ELECTROMAGNETIC PUMP

The electromagnetic pump operates on the Lorentz force principlet

a body containing an electric current in the presence of an externally

applied magnetic field experiences a force perpendicular to both the

current and the field. Thus, an electrically conducting fluid. such as

liquid potassium, can be made to flow through a duct, as shown in

Figure 7. 5. in the absence of any other moving parts. 	 1

Figure 7. 6 presents a lumped parameter analytical model of

Figure 7. 5, incorporating the back emf (e) induced by the flowing

fluid and the power loss (Re ) due to eddy currents at the field	 {

boundaries. The model assumes a constant velocity profile, which, as
y

shown below, is the case for liquid potassium in the range of tem?er-

atures and now rates specified by the design.

On the basis of the equations given in Figure 7.6, pump operating

currents, voltages, power consumptions, and efficiencies were deter-

mined as functions o! dimensions and magnetic field. It was assumed

that the tubing material was 0. 005-inch wall 304 stanless steel, and

that the working fluid was liquid potassium flowing at 2. 2 gal/min,

with a L 0 psi head (aP). Figure 7. 7 shows typical operation curves

for a series of EM puynp designs, including the one selected as a
1

practical optimum;

B - 4500 Gauss

I	 - 83 amps

V - 0.05 volt

L - 0.400 inch

D - 0. 716 inch

S - 0. 100 inch
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789-33

RL
I—+

V
Re

E	 = 2.48 x 10-7 BQ/pf, back emF induced by Fluid Flow

R_	 = lead resistanceL

R 	 = pt D/5.08TL, duct wall shunting resistance

Ra	[ps D + 2T(pt-ps )1/2.54LS, device resistance series

Re	= 1.44psIS, back voltage resistance shunted across

1	 = 2.48 x 10-7 BQ 1 + Re + Ra	+ SAP (1 + R&/R%

SRe	 Rw Rw	 5.71 x W 
7 B

Vm 2. 48 x 10-7BQ 1 + Ra + R 	 1 + Re + RaS	 R	 R	 R	 Re	 e	 w	 w

+	 SAF- /	 Ra + RL(1 + Ra/Rw)
5.71 x 10 B

Figure 7.6 Lumped Parameter Model of Electromagnetic Pump
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it is apparent from Figure 7.7 that slight variations in magnetic
	 •11 I

fields have little effect upon voltage and current requirements. The ref-

erence design pump consumes 4.2 watts electrical power and has an ef-

ficiency of 43 percent; with a thermoelectric module efficiency of - 9 %, 	 r 51

the thermal power requirement from the circulating liquid potassium is

47 watts. The magnetic field is furnished by the Samarium-Cobalt mag-

netic alloy  (Sm Co 5 ) - which is known to have a residual induction of be-

twecn 7500 and 9000 gauss and can function up to 900° C. The pump duct

cross section can be generated by deforming a 0. 50 inch -diameter tube

which is identical to the size used for the liquid return line.

Calculations Were made to determine the pressure losses in the	 I

pump and its associated plumbing. The results are enumerated in

Table 7. 3. Liquid potassium is less dense and less viscous than

water. 3 Flow in the EM pump would be associated with Reynolds

number [ Re = 2SDQp /µ (S + D) ] on the order of 10 5, and thus would

be turbulent and have a flat cross - sectional velocity profile. Pressure

losses in the discharge heat pipe vapor duct were determined para-

metically from Figure 7. L Hydrostatic head requirements were

com,)uted on the basis of a one -half meter liquid height. Frictional

losses in the short rectangular EM pump duct are only about 2 per-

cent of Its pressure generating capability. Entrance - exit losses 4
	

M

were taken as 10 percent of the loss calculated assuming abrupt.

entrance - exit. since efficient inlet- outlet diffusers are used to re-

duce the entrance-exit losses. Calculations for pressure losses in

the return plumbing are based upon four feet of turbulent flow in a

3/4-inch diameter return pipe. As seen from the right hand colurna

of Table 7. 3, total pressure drops anywhere in the conceivable

ll
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operating temperature range are well under the 1 psiOP capability de-

signed into the pump, particularly considering that the hydrostatic head

is recoverable and thus not really a pressure loss unless the TES 	 1

reservoir is located substantially higher in elevation than the engine. ^i
The EM pump as designed should be adequate for all TES system flow

requirements.

f1

	

7-16



FAM mom 
CORPORATION

REFERENCES FOR CHAPTER 7

L Dieckamp, H. M. , Nuclear Space Power Systems, Atomics
international, Canoga Park, California, September, 1964.

L. L R. Moskowitz, Permanent Magnet Design and Application
Handbook, Cahuer Books International, Inc. , Boston, 1976.

3. R. N. Lyon, ed. , Liquid Metals Handbook, U.S. Government
Printing Cffice, Washington, D. C., 1953.

4. W. M. Kays and A. L London, Compact Heat Exchangers,
McGraw-Hill Book Co.. New York, 1964.

7-17



T Thermo
CORPORATION

8. CUSTOMER ACCEPTANCE AND APPLICATION
CONSIDERATIONS

In the preceding discussion, prime attention has been given to

technical considerations in the development of a technically feasible

system. Many other requirements related to socio-economic factors

must be satisfied before a new system can be considered for large-

scale application. These include items such as safety, recharging

energy source, environmental impact, and system cost. Many of

these questions do not have an absolute answer, and can be considered

only in a relative sense to other alternative means of achieving the

desired function. For others, only preliminary projections are pos-
aible.

8.1 MANUFACTURING COST

An obviously important issue is the initial cost to the customer.

A manufacturing cost estimate for fabrication of both the rectangular

and the cylindrical reservoir configurations has been prepared.

This cost does not include the items required for a complete business,

such as sales force, engineering force, administrative force, etc. ,

but represents estimates of the raw material cost and burdened cost

of hands-on labor, that is, the direct manufacturing cost. The cost

to the consumer will thus be somewhat greater than the costs given
here.

The cost estimate was prepared by an experienced industrial
engineer on the basis of producing 200, 000 units per year of the

8-1
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designs presented in Chapter 6. It was assumed that automated

machinery would be utilized as much as possible, in particular for

all seam welding operations. A complete manufacturing flow

diagram was developed, for each configuration, as illustrated in

Figures 8. 1 and 8.2. For each operation in the manufacturing

process, man-minute time estimates were made by simulation of

the proposed operation. Vendor contact was used to determine the

raw material costs for the items comprising the structure. In short,

we believe the manufacturing cost estimate to be reasonably accurate

for a mass-produced system and a good basis on which to evaluate

the potential system cost.

The results of the cost estimate are presented in Table 8. 1 for

the rectangular configuration and Table 8. 2 for the cylindrical

configuration. The manufacturing cost of the basic structure is

estimated at $5830 for the rectangular design and $5170 for the

cylindrical design (two cylinders). Most of this cost results from

the use of Inconel 617 for all high-temperature parts of the system;

the Inconel 617 sheet cost amounts to 51 percent of the structure

manufacturing cost for the rectangular design, and to 73 % for the

cylindrical design. An important development goal is obviously

replacement of Inconel 617 with a less expensive material.

The charged reservoir cost is presented for both LiF and NaF/MgF2

eutectic, using costs of $2.75/kg for LiF and $0.20/kg for NaF/MgF2,

approximate lower limits as given by Eichelberger 1 for large-volume

production. In terms of cost per unit thermal storage capacity, the

rectangular design has a cost of $39/kwhrth when charged with LiF

and $47/kwhrth when charged wit1, NaF/MgF 2 ; the corresponding

8-2
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TABLE 8. 1

MANUFACTURING COST ESTIMATE FOR
RECTANGULAR TES RESERVOIR CONFIGURATION

Unite/Year	 200, 000

Ftnished Structural Weight	 230 kg (507 1b)

Structural Raw Materials

Inconel Sheet and Tubing

Weight 217 kg
Cost $ 2976

Multi-Foil Insulation

SS Weight 39. 6 kg
Cost $ 258

Al Weight 5. 3 kg
Cost $ 34

Honeycomb For Outer Box (Carbon Steel)

Weight 53,5 kg
Cost $ 42

Total of Above Weights 313 kg

Total of Above. Costs $ 3310

Miscellaneous Parts Costs

B211ows $ 185
Welding Rod $ X50

Total Raw Materials Cost $ 3745

Direct Labor

Manhours	 48 1/2 Manheure

Burdened Cort (at $ 25/Manhour)	 $ 1212

Assumed °,o of Units Scrapped	 15%
Because of Manufacturing Defects

Total Structure Manufacturing Cost
(Raw Material Plas Labor)	 $ 5832

8-7
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TAB LF 8. 1 (cont, )

MANUFACTURING %;OST FSTIMATF. FOR
RECTANC,ULAR TF.S RFSF.RVOIR CONFIGURATION

M.inufacturing Cost Charged With LiF (at $ 2.75/kg LiF)

LiF M isr;	 337 kg

Total Reservoir Mass	 567 kg

LiF Cost	 $ 927

'Total Reservoir Manufactured Cost 	 $ 6759

Storage Capacity	 172 k,,%-hrth

Cost Per Unit Storage Capacity 	 39. 3 $ /k.%•hrth

Manufacturing Cost Charged With NaF/MgF 2 Eutectic
(at .$ 0. 20 /kg)

NaF/Mgl. ', Mass

Total Reservoir Miss

NaF/MgF 2 Cost

Total Reservoir Manufactured Cost

Storage Capacity

Cost Per Unit Storage Capacity

409 kg

639 kg

$ 82

$ 5914

127 kwhrth

46. 6 $ /kNhrth

u

C)

,
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TABLE 8. 2

MANUFACTURING COST ESTIMATE FOR
CYLINDRICAL TES RESERVOIR CONFIGURATION

Units/Year 200, 000

Finished	 Structural Height 225 kg

Structural R aw M tte ria la

Inconel Sheet and Tubing

Weight 275 kg
Cost $3786

Multi- Foil Insulation

SS Weight 41.7 kg
Cost $272

Al Weight S, 6 kg
Cost $ 37

Outer Cylinder (.Alloy Steel)

Weight 68. 5 kg
Cost $182

Total of Above «eights 391 kg

Total of Above Costs $4277

Miscellaneous Part y Costs

Bellow s $	 185
Welding Rod $	 125

Total Faw Materials Cost $4587

Direct Labor

Manhours 13 Manhours

Burdened Cost (at $ 25j Manhour) $ 324

Assumed °'o of Units Scrapped 5%
Because r-f M inufacturing Defects

"lotal Structure Manufacturing Cost $ 5169
(Raw Materials Plus Labor)
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TAHLF 8. 2 (cont.)

MANUFACTURING; COST ESTIMATE FOR
CYLINDRICAL TF.S I:ESERVOIR CONFIGURATION

M inufacturing Cost Charged With I.iF (at $ 7. 75/kg LiF)

IAF Mass	 262 kg

Total Reservoir MAss	 487

I .i F Cost	 $ 7 20. 5

"Total Reservoir Manufactured Cost	 $ 5890

Storage Capacity	 134 kA- hrth

Cost Per Unit Storage capacity	 44. 0 $ /kw•hrth

Manufacturing Cost Charged ` lth Nn ^/Mg T'2

Futectic (at $ 0. 20/kg)

NaF/MgF z Mass	 318 kg

I otal Reser%-o^ c Mass	 543 kg

NaF/Mg F, Cost	 $ 64
L

Total Reservoir Manufactured Cost	 $ 5233

Stor: ► ge Capacity	 98. 6 kµhrth

Cost Per Unit Storage Capacity 	 53. 1 $ /kw-hrth

r
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values for the cylindrical design are $44/kwhrth and $53/kwhrtl,.

Thua, from an economical point of view, it is preferable to use

LiF as the storage salt, even though its cost per charge is about

I 1 times that of NaF/;.IgF 2 ($ 7 Ln versus $64 for the cylindrical

deai4n). This attractivenebe of LiF results from the high cost

of the basic structure and the extra storage capacity wher. charged

with LiF instead o r NaF/MgF L . Basically, the structural coat

overrides the cost of the charging salt. 	 It should be noted that

the rave materials cost does not include a credit for recycle of

manufacturing scrap.	 This credit can be a significant factor in

reducing the cost, since each unit has considerable sc*ap that -an

easily be recycled.

8. 2 ENERGY SOURCES AND RECHARGING

in Chapter 3, the recharging concept was described via a ra-

cha rgirg heat pipe lncorporatud as part of the TES system and a

separate combustor heat source, incorporated as part of the vehicle

garage, which can be automatically engaged to the vehicle for

overnight rechargin,-. The question arises as to what nanpetrolsum

fuel will be available for recharging that ina-,- not be suited for d:rect

use on the vehicle.

Ir Figure 8. 3. a schematic 6, ias;rarn is prest • nfed of potential

nonpetrolcum energy sources and hove they might be utilized' for

automotive propulsion. All three oF`ions can be used to produce

electric power, which pan eae+ily be used for recharging the TES

systeni.	 If ad-,anced batteries are developed that have a competitive

gravirnetr.c and volumetric energy storage -iensity to TES end that

8-11
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have an acceptable recharge cycle life, cost, etc. , — the use of

batteries would represent the best means of utilizing electric power

for automotive propulsion. However, it is not clear whether such

a battery will be developed,

The TES/Stirling system is competitive to electric battery storage

systems in terms of gravimetric and volumetric storage density and

thus represents a viable alternative for use of electric power for

automotive propulsion. although arguments can be made against

the use of electric power as a thermal energy .source on the basis

of efficient utilization of energy, it is a convenient thermal energy

source, universally available, and capable of production from any

of the nonpetroleum energy- sources. For these reasons, electric

power is used extensively for applications such as residential water

heating and, in certain areas, residential :pace heating. Whether

or not electric poker is used as the primary energy source, we

believe any TES system should include the capability of electric

recharging for emergency use when the system might be discharged

with no rneans of recharging froin a combustion source. The

universal availability of electric energy would permit partial or

complete electric recha r ging so that the vehicle could return to

its home base for recharging from a combustion heat source.

The most attractive option for recharging relative to energy

efficiency is the direct use of combustion from nonpetroleum-

d, rived fuels. Synthetic gas from coal, for example, represents

an excellent combustion energy source that may be widely available

in the future an(: that is not suitable for direct utilization for

8-13
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autornotive propulsion. In most sections of t-ie country, natural gas

is used extensively for residential space and eater heating as well

as for commercial and industrial heating. To support this system,

an irr dense and expensive pipeline network has been developed.

existing system provides an extremely powerful incentive to

develop synthetic gas production from coal to supplement, and

eventually replace, natural gas in these pipelines as our gas re-

serves are depleted.

Thus, a reasonable conclusion could be made that natural and/or

synthetic gas will be delivered to homes and to commercial/irdus-

trial establishments for many years in the future. Particularly with

overnight recharging when the normal gas demand is low, this syn-

thetic gas can be used for recharging TES/Stirlin g automobiles.

Furthermore, gas is an extremely clean-burning fuel with very low

emissions and requires a simple and compact burnerjfurnace because

of its ease of combustion. The use of synthetic gas delivered to the

hone, just as natural gas is now delivered, can represent an

important future energy source for the T:]S /Stirling automobile.

The use of synthetic liquid fuels depends on the grade of fuel.

If s y nthetic gasoline or synthetic diesel fuel is produced, the most

appropriate mode of use is direct storage on the vehicle and use

with an 11C engine (or Stirling engine coupled with liquid fuel/TES

as a dual-mode System). Thermal energy storage would thus be

suited best for liquid fuels with characteristics that were not suited

for direct on-board vehicle utilization, such as a high freezing point

or poor combustion characteristics. These fuels might still have

i
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properties suitable for home heating and could be cheaper to produce

and more energy-efficient in production than the premium liquid

fuels. This type of fuel could be used as a replacement for the

petroleum-based heating oil now used extensively in certain areas

of the country, particularly the Northeast, and an extensive infra-

structure again exists for this function. If used for home heating,

this liquid fuel could be used in a special burner for recharging the

TES/Stirling automobile with the same convenience as home heating

is now performed. The convenience would be the same as with gas,

although a somewhat larger combustor would be required.

Synthetic solid fuels, such as SRC-I, represent another potential

energy source. However, the use of this type of fuel would be more

difficult than that of the liquid or giseous fuels for which the distri-

bution system and utilization equipment for local use already exit3t.

Still, as recently as 30 to 40 years ago, coal was extensively used

for hoine heating, either with manual fueling or with automatic

stoker-fed furnaces. If the potential advantages of SRC-I or similar

synthetic fuel (high energy production efficiency, minimum production

cost) reEulted in its development and extensive use for home heating,

the fuel could be used for recharging the TES,/Stirling car with as

much convenience as its use for home heating.

In summary, relative to synthetic fuels from either coal or

biomass, we believe that synthetic ga g and/or synthetic liquid fuels

will be developed and used for residential heating for many years

in the future. The use of these fuels can be readily extended to local

combustion recharging of the TES/Stirling car.

8-15
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Finally, direct use of solar thermal energy for recharging

appears to be difficult. The recharging temperature is high (up to

1600 0 F), requiring a high-temperature concentrating collector; the

energy is available only during the day when automobiles are normally

used so that separate TES would be required for the charging system

to permit nighttime recharging of the vehicle; and coupi:ng the re-

charging system to the vehicle for recharging v uuld be difficult.

Still, if some of the high-temperature solar developments supported 	 I^
by DOE for electric power generation become feasible from an

economic point of view, this technology could undoubtedly be adapted

and used for TES/Stirling car recharging. Such a utilization of polar

energy will be many, many years in the future. The most immediate

sources of nonpetroleum energy for use with this system are the

synthetic fuels that are developed for home utilization, but that are

nut suitable for direct use on the vehicle. Electric energy provides

a useful backup energy source.

8.3 VEHICLE RANGE

The vehicle range represents an extremely important charac-

teristic relative to cusomer acceptance. The parameters determin-

ing the range are:

R =.(	 )(W)(f)
(QPL)

,.k, here	 R = vehicle range, km

L H = TES media gravimetric storage capacity,

kwhrth/kg

8- 16
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W = total TES system weight, k

f = fraction of TES system weight that is

TES media

QPL = thermal e,-iergy required per unit length

of travel by vehicle, kwhrth/km

Contract specifications indicated a QPL for a compact car of 0. 627

kwhrth/krn for steady speed cruise at 88. 5 km/hr and 0. 824 kwhrth/km

for the SAE Metropolitan Driving Cycle (SAEJ-Z27), based on calcu-

lations performed by MTI2 using the ERDA 4-98 Stirling engine perfor-

mance map. The calculations were based on a vehicle gross weight

of 3700 lb (1678 kg), automatic transmission, and the performance

map given in Figure 8. 4. The SAE J-227 driving cycle is Illustrated

in Figure 8. 5. With the calculated energy requirements and using

the TES storage capacity for the rectangular design after normalization

to a total TES reservoir weight of 500kg (See Table 6. 10), the vehicle

range is as summarized in Table 8. 3.

As a check on these values, and to provide additional information

on the effect of Stirling engine efficiency on the vehicle range for a

given TES system, the vehicle simulation program at Thermo Electron

Corporation %ra y used with to o Stirling engine performance maps,

one reported by the Ford Motor Co. 3 for the 4-98 Stirling engine

with rollsock seals is given in Figure 8. 6, and one for the United

Stirling P-75 Stirling engine as given in Figure S. 7. 4 The peak

Engine poorer for the FOMOCO 4-98 engine is very near 100 hp,

and the P-75 reap was normalized tothis peak power. Calculations were

8-17
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A-2975

TABLE 8. 3

VEY1ICI.E RANGE FOR 500 kg TF.S RESERVOIR WEIGHT

	

_ Salt	 —	 Li F —	 Na F/Mg F2

storage Capacity	 152 kx%, hrth	 99 kxhrth

ROng••

Cruise at 88. r+ km /hr*	 242 km	 158 km

SA F. Metropolitan Cycle*',	1 P4 krn	 120 km

	

LI----	 1_-- ---

0. 627 kwhrth/kni
0. 824 kNch rth ,/k*n
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perfar:.ied for a vehicle , gross weight of .;700 lb. The required

wheel power for the vriiicle was estimated by the following relation:

V W-3
HP = 550	 111 + (1. 4 x 10 )(V) + 1. 2 x 10-5V2

1.

+ 1 /2 p C  A  V 2

_ W dV

Z+ 32.2 dt 

where HP = wheel horsepower

V	 vehicle velocity, ft/sec

W = gross vehicle %Weight, lb

C 	 drag coefficient (- 0. 35)

Af = frontal area, ft 

Z = Constant factor for manual transmission to

account for rotary inertia of engine, auxiliaries,

and drivetrain (^- 1. 01 for calculations).

p	 = air density, slugs/ft3

L = time, sec.

The calculations are based on the use of a four-speed manual trans-

mission. The efficiencies of the transmission are taken as 96 percent

for 1st gear, 97 percent for 2nd gear, and 98 percent for 3rd and 4th

gear.	 The drive shaft gear efficienc; is 96. 5 percent.	 The shift

points are: shift from 1st gear to 2nd gear at 25 mph, shift from 2nd

gear to 3rd gear at 40 mph, and shift from 3rd gear to 4th gear at 62

mph. For the windage loss, the product Cd A f was taken as 10 ft2.

,m
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Results of the calculated thermal energy requirement for steady-
;

speed operation and for the Federal suburban and city driving cycles

are given in fable 8.4.	 Performance calculations for acceleration	 -W

and gradability are also presented in Table 8.4 The thermal energy

requirement distance is considerably higher than that predicted by

MTI for the 4-98 engine reap. The P-75 engine predictions are

approximately equal to thase of MTI, even though the engine map has

a substantially higher efficiency.	 The reason for the discrepancy

between the two estimates is not known at present. In any case, the

estimated vehicle range from a 500 kg TES r,•servoir is respectable.

From Part B of 'fable 8. 4, the acceleration performance and grada-

bility from the 100 peak hp engine is more than adequate. In fact, a

somewhat smaller engine could be justified.

8.4 SAFETY CONSIDERATIONS

Any system containing a molten salt at 1150°K and uFing potassium

(or sodium) as a heat transfer media obviously represents a safety

hazard, particularly when located in close proximity to personnel in

a mobile vehicle operating at high speed and subject to collision.

However, the same hazard exists in the operation of a vehicle that

contains 15to 20 gallons of highly volatile and high l y flammable fuel

(gasoline).	 The hazard resulting from the TES ehculd, therefore,

be considered relative to current automobiles to provide a proper

perspective on the hazard.	 It should be noted that a detailed safety

hazard analysis would require extensive analvsis as well as experi-

mental work outside the scope of this program. The approach

followed has been to make a conscious effort in the devign to rr.ake

h-24
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TABLE 8-4

ENERGY REQUiREME:NT AND PERFORMANCE PREDICTIONS
(THERM( F.LF(:TRON CORPORATION CALCULATIONS)

Vehicle Weight	 3700 lb

C D A f	 10 ft. 2

Four-Speed Manual TransmiFsion

A ENERGY REQUIREMENT PER UNIT DISTANCE AND RANGE FOR
152 kwhrth STORAGE

7

1 	 1

Driving

FOMOCO 4-98 Max United Sterlin g P-7 5 Max

Energy Req'd Range Energy Req'd
C ycle (kwhrth/kn;)	 I (),:m) (kwhrth/km)

Range

30 mph 0, 944 16 1 C. 642 237

40 mph 0. 776 196 0. 547 278

50 mph 0. 844 180 0. 631 241

60 mph 0. 986 154 C, 743 205
70 mph 0, 960 158 0. 718 212

8^ mph :.	 12 136 0. 850 179

Subur ban 1. 04 146 C.794 191
City 1.45 104 0.907 IC8

kw hrth _ 21	
Miles

km	 -	 U.S. Gallon

6-25



TABLE 8.4 (con^'d	 A-2976b

ENERGY REQUIREMENT AND PERFORMANCE PREDICTIONS
(THERMO ELECTRON CORPORATION CALCULATIONS)

B. VEHICLE ACCELERATION AND GRADABILITY
PERFORMANCE (PEAK ENGINE POWER = 100 hp)

4-98 MAP P-75 MAP

0-60 MPH 14. 9 Sec 12.9 Sec

25-70 MPH 17.6 Sec 15. 9 Sec

50-80 MPH 19.0 Sec 17.4 Sec

0-65 MPH, 5% 29. 4 Sec 24.5 Sec

0 MPH 53% 52.6%

20 MPH 32% 33.7 %

40 MPH 15.2% 15.8%

60 MPH 10% 9%

1

al
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the system as save as possible without compromising its functional

performance. It should be noted that Boser of the North American

Philips Corporation has reported on safety considerations for high-

temperature energy storage in fluoride salts. 5

The TES reservoir designs presented in Chapter 6 have a low

4	 profile (height) specifically so that they may be packaged underneath

the floorboard of the vehicle and between the wheels. This location

provides maximum protection of the TES reservoir from front, rear,

or side collisions of the vehicle, minimizing the possibility of major

physical damage to the reservoir in the event of a collision. Collision

stresses have also been considered in a preliminary manner in the

design of the cylindrical and rectangular configurations and their

supporting pins. It should be noted that, if the TES reservoir is

breached and molten salt leaks to the outside, freezing of the salt

around the edges of the leaking materials naturally restricts move-

ment of the molten salt and reduces the possibility of contact with

and ignition of flammable material (or personnel contact). The

fluoride saltb are very stable compounds and will not react chemi-

cally with ambient surroundings at high temperature.

An additional design feature to minimize leakage of molten salt

is the use of many individual capsules :or containing the salt. Thus,

even if maior damage to the TES reservoir occurs, it can be anti-

cipated that only a relatively small fraction of the salt capsules will

be breached, thereby limiting the potential salt leakage. In addition,

where leakage does occur, freezing of salt around the leakag. site

will tend to seal the leak, preventing further leakage.
f
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Another potential hazard results from the use of potassium

for sodium) as a heat transport medium. As discussed in Chapter 4,

the only feasible method of transporting the heat from the TES material

to the Stirling engine heater hea3 appears to be the use of either

sodium or potassium vapor transport. Because of a smaller trans-

port pipe diameter, potassium has been selected as the reference

material. Potassium is a very reactive material with either oxygen

or water and its use raises safety questions relative to the use of

such a reactive material. This issue is addressed in the following

discussion.

Our basic approach to this issue has been to reduce to a bare

minimum the potassium inventory required for operation of the

system. If this inventory is sufficiently small, the hazard from

the use of potassium as a heat transport medium will be insignifi-

cant relative to the hazard resulting from other sou: ces of stored

energy or from operation of the vehicle. A major criterion in our

deeign work has thus been to minimize the sodium inventory. In

Table 8. 5 the estimated potassium inventory in the system is pre-

sented. The tabulation i- based on the liquid inventory, since the

vapor inventory is negligible relative to the liquid inventory. It

should be noted that the exact inventory is difficult to estimate due to

uncertainty in the amount of liquid clinging to the walls in the system

or in a wick structure. Based on these estimates as well as prior

experience in sodium and potassium heat pipes, we believe that the

total potassium inventory will be no more than 1 kg for the rectangu-

lar configuration and no snore than 1. 5 kg for the cylindrical con-

figuration. As an example of the inventory in a specific heat pipe,

8-28
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TABLE 8. 5

ESTIMATED POTASSIUM CHARGE FOR SYSTEM

Potassium Mass, grams

Item Rectangular
Configuration

Cylindrical
Configuration

Per Item Total Per Item Total

A. Recharge Heat Pipes 6 6 12 12

B. TES Reservoir Heat
Pipe 280 440

Potassium Sump 110 ^^5

Clingage to TES
Containers 135 155

Clingage to Reservoir
Walls 35 30

C. Discharge Heat Pipe 255 200

Potassium Reservoir 40 40

Liquid Return Line
and E/M Pump 135 135

Wick Structure 75 80

Clirdege to Engine
Tubes 5

D. Total Estir_lated -- 541 - 712

Allowance for Over-
charge and Uncertainty
(-' 0% -• 100%) - 108-+ 541 - 142 -i 712

E. Estimated Potassium
Inventory Range - 650 -+ 1080 85C -i 1420

* For two cylinders.
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a Beat pipe with 4.5-in diameter by 6-ft length, operating at 1900 °F

(1040'C),  has been constructed and tested at Thermo Electron.

This heat pipe had wick on the entire interior surface and was

charged with 450 gm of sodium. The liquid inventory for the TES

system is minimized by the use of a small-diameter liquid return

line (rather than wick), as well as by minimizing liquid holdup at

all parts of the system.

If the potassium inventory can be held to the range of 1 kg to

1.5 kg, the hazard due to potassium should be acceptable. The major

1	 sources of hazard are reactions with 0 2 and water ae indtr:ated below:

2K(s) + 0 2 (g) — 2K 202 (s) oH 298 = 118.5 kilocal mole

K(s) + 1/2 1 Z0 — KOH(s) + V2 H 2 GH 0298 = 102. 02 kilocal/mole

Both reactions are quite energetic with exothermic heat releases

corresponding to 2730 Btu/lb of potassium for the first reaction and

4700 Btu/lb of potassium for the second reaction. In fact, the

reaction of potassium with water usually generates sufficient heat

to ignite the H 2 generated by the reaction (if mixed with the proper

amount of air), thereby increasing the potential hazard.

For comparison with the above reaction energies, the heat of

combustion of a hydrocarbon fuel is about 18, 500 Bt-a/lb of fuel,

The heat of combustion of hydrogen is 61, 500 Btu/lb of 'Zydrogen:

H 2 (g)+ 1/2 02 (g) H 2vt 1) 4H X 98 = -68. 3 kilocal/mote

4
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The tabulation below summarizes the energy releases, corres-

ponding to the above reactions, for 1. 5 kg of potassium, the esti-

mated upper limit on the potassium inventory.

Potassium Combustion with OZ	9,030 Btu

Potassium Reaction with Water	 15, 540 Btu

H 2 Generated by Water Reaction 	 77.3 gm

Hydrogen Combustion with 02	10,430 Btu

We believe that these potential energy releases are small enough so

that any potential hazard from this source is acceptable, relative to

the other hazards involved in operating either conventional or TES/

Stirling engine automobiles.

Finally, in the construction of the large 4. 5-in by 6-ft sodium

heat pipes described earlier, it was sometimes necessary to reproc-

ess the units containing a full charge (450 gm) of sodium. The sodium

charge was solidified at one end of the heat pipe. The end of the heat

pipe was then cut off with a hack saw. This procedure was carried

out in normal room atmosphere and at room temperature. The ex-

posed sodium was slowly covered by a film of sodium oxide and/or

sodium hydroxide without vigorous reaction. The reaction rate was

Blow initially and stopped within a few minutes.

Removal of the sodium from the heat pipe was performed by the

use of a large quantity of cold water, either by the use of a hose or

j-, dunking in a barrel of water. The reaction was vigorous, with

rapid hydrogen evolution as expected. The washing was performed

outside with no explosion occurring.
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Luring testing of one of the large heat pipes while it was 1

heated by a gas-fired burner, a crack developed in the heated part,

permitting sodium to leak out (the operating sodium pressure was

greater than atrtncspheric). The presence of the leak was noticed

because of the formation of the yellow-colored flame by the sodium

instead of the customary blue flame of the gas burner. The heat

pipe continued to function as the burners were turned off. Upon

shutdown, as the heat pipes cooled, the internal sodium pressure

became lens than atmospheric %with leakage of air into the heat pipe.

No observable effects occurred. Subsequent inspection revealed

the location of the crack by small amounts of sodium oxide and sodium

hydroxide around the crack.

An additional design consideration is to minimize the chances

of breaching the system in the event of a collision. As discussed

earlier, the optiniurn location for the TES unit to provide maximum

protection in the event of a collision is between the wheels and side

frame members, and underneath the floor board. This location

also niinimizes the reduction of useful vehicle space by the TES system.

From Table 8. 5, the total potassium inventory is divided into three

separate heat pipes, with the largest amount In the TES reservoir.

Thus, the systeni containing about 55 percent of the total potassium

f	
Inventory has the beat protection in the event of a collision, and

1	 it has the greatest potential for being hardened to a 35-rnph collision.

It would appear difficult to prevent rupture of the heat pipe connecting

the TES module to the Stirling engine in the event of a major collision.

However, this heat pipe is estiinated to contain only about 4C to 50

percent of the total potassium inventory.

8-32



MThermo

C:nR,I, I I I AT I(IN

G.ie consideration is the possibility of fires produced by the

hot, outer surface of the TES reservoir if vacuum is lost in the

Multi-Foil insulation. During normal operation, the insulation is

so effective that the outside surface temperature in ambient air is

estimated to be only about 10'F above the air temperature. Even

If vacuum is lost, however, the Multi-Foil insulation serves to

minimize convective heat transfer as well as radiation through the

air so that the surface temperature is relatively low, even in this

case. Estimates based on the thermal conductivity of air with

a 0. 5-Ln. gap thickness indicate that, with an internal temperature

of 1150* K, the surface temperature will be 150 — 500°F above the

ambient air temperature with external surface convective/radiation

heat transfer coefficients of 1 to 10 Btu/hr-ft?°F. These surface

temperatures are low enough to prevent ignition of practically all

flan-enable materials.

8.5 ENVIRONMENTAL CONSIDERATIONS

Potential environmental effects of the large-scale use of TES

for automotive propulsion can be divided into four categories:

• Mining and Production of Basic Materials

• Manufacturing

• Use

v End-of-Life Disposal

Potential problems from the mining and production of the basic

materials are no worse than those from other minerals and materials

required for our society, providing reasonable ore deposits can be
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1

located so that extraction from low assay ores is not required.

Environmental problems in manufacturing can be readily handled

since none of the materials required for the system are highly toxic.

In normal use, some loss of the fluoride salt can be expected by

leakage during collision or by component failure. This amount of

leakage and its possible environmental effects should be small and	
rl

totally negligible compared to other practices now routinely followed,

such as the use of CaCl, for highway ice removal.

The most important factor in reducing environmental effects 	
_) J

is end-of-life disposal. The entire system should be recycled,

thus minimizing potential environmental effects from the mining

and production of basic materials. Indeed, the cost of high-

temperature metal parts and of LiF will provide a strong economic
	 11

Incentive for recycling of these materials. With some additional

effort, all materials, both high and low cost (such as NaF/MgF21,

can be recycled, eliminating any potential. environmental effects	
31

from end-of-life disposal. Such recycling should be easily imple-

mented and carried out.

8.6 MATERIAL AVAILABILITY CONSIDERATIONS
11

The major material availability question is the cobalt, nickel,

chromium anu molybdenum content of the high-temperature alloys

required for ;;e hot parts of the system. For a TES system with

a structural weight of 250 kg, approximately 70 percent or

175 kg (386 lb), of the total structure weight is high-temperature

alloy, specifically inconel 617. 	 Inconel 617 has a composition of

:^ I
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54 percent nickel, 22 percent chromium, 12. 5 percent cobalt,

9 percent molybdenum, and 1 percent aluminum. Thus, for

each vehicle, the following approximate quantities of these metals are
required:

Nickel	 95 kg (208 lb)

Chromium	 38 kg ( 85 lb)

Cobalt	 22 kg ( 48 lb)

Molybdenum	 16 kg ( 3 5 lb)

In Table 8, 6, the total quantitiy required for 100, 000, 000 vehicles

is compared to the current ( 1973) world production and to identified

resources for these metals 7 . It is apparent that sufficient worldwide

resuurces exist for TES systems for 100, 000, 000 vehicles, though

the cost will be high, The U.S. resources of these metals are

low, introducing balance-of-trade problems for large-scale

utilization.

With continued development, and possibly with some reduction

in the peak operating temperature of the TES system (and of the Stirling

engine), use of iron-based alloys may prove feasible, thus reducing

the cost and availability difficulties.	 Such ar. effort at locating

substitute materials of construction tv) replace Inconel b 17 represents

an important goal for future development.

8.7 DUAL-MODE TES/LIQUID FUEL SYSTEM

An automobile based on the use of stored thermal energy as a

propulsion energy source has a number of :irritations and disadvan-

tages that raise questions of public acceptance:
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• The TES is expensive, relative to the rest of

the vehicle.

• The vehicle daily range is limited to 160 km

(100 miles) for a 5;)0-kg (1100-1b) TES system,

since recharge is necessarily slow.

recharging appears most practical.

• The large mass of very high-temperature liquid

salt coupled with potassium or sodium raises

psyc!iological barriers to public acceptance of

such a system because of safety fears.

• The large volume and mass introduce vehicle

design prublenis, relative to packaging, and

reduce the energy efficiency of the vehicle.

in short and stated bluntly, %%-ho wishes to pay a premium price for

a car that car, travel only 100 miles before requiring an overnight

recharge and that requires the passengers to sit directly over

600 lbs of molten salt at 1600 • F 7

The system ceveloped in this study is ideally suited for use in

a dual-mode approach in which the vehicle can be operated either

fron) fi:el carried on-board, as in current automobiles, or from

the TES system recharged overnight from an external combustion

energy source. Thie concept was described conceptually in Chapter 3.

With this approach, the TES system is greatly reduced in size and

used only for short-range triph . , acn as daily commuting or local

d-37
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r hopping trips. Whenever the TES system is discharged, operatioi

Is rliverted to the use of the liquid fuel in a car+ -%istor/heater th3: pi

video heat to the Stirling engine via the TES byev_m (see Figure. 3. 5

In this mode of operation, the TES s y stem operates as a thermal

flywheel permitting the combustor to operate at a relatively steady

rate with tra,isient pea's the:--.ial requirements for high power from

the Stirling engine (-wide-open-throttle acceleration) supplied from

the TES system. Steady combustion shuuld result in very Iow

emission levels from the comb—dor, relative to the highly transi ml

-ombustir. required for direct-firing of the Stirling engine.

The primary goal in using TES for automotive propulsion is to

eliminate the use of p remium liquid hydrocarbon fuels. Although

the dual-mode approach does not completely eliminate the use of

liquid fuels, it does provide an opportunity for a very ignificant

savings of premium liquid fuels,	 In Figure 8. 8, an estimate of the

distribution of trip mileage an:? fuel cunsumption is diven. 6 Trips

of 5 miles or less consume more than 30 percent of all automotive

fuel consumption, and trips of 10 !i les or less, almost 50 percent

of all automotive fuel consumption. It is apparent that even a TES

system with only a 10-mile range could result in an extremely impor-

tant fuel savings for automotive propulsion. Such a system would

have a size and weight approx im ately one-tenth of that described in

Chapter 6, namely about 50 kg (1 10 lb) total weight with a corres-

ponding reduction in volume. Coupling this TES into a dual-mode

system with liquid hydrocarbon fuel would provide the convenience

and flexibility of current automobiles; I. e. , it would p,^rniit long

8-38
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trips with one-minute recharging (refill of gasoline tank). In

addition:

• The TES system cost would be significantly reduced

because of the much smaller TES system required.

• The packaging of the TES would be much easier

because of the approximately one-tenth reduction

in volume, permitting automobiles to retain

their current styling.

• The TES system weight is small enough to have

a negligible effect on the energy efficiency, han-

dling,and suspension of the vehicle.

• Because of the use of the heat pipe heating of

the Stirling engine, helium working gas can

be used with an increase in power (for the same

engine displacement) and efficiency relative to

the direct-fired H 2 engine. Elimination of HZ
L

without performance degradation is an important

advantage.

Decoupling of the burner/heater from the

Stirling engine permits the use of a larger

burner/heater with lower pressure drop.

The parasitic power can thus be reduced,

resulting in an additional overall system effi-

ciency improvement. In addition, the burner/lieater

8-40
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can be located away from the engine (as Ln

the trunk with the engine in front) with

coupling by a small diameter(— 1-in. D)

potassium vapor line.

The TES system can be aized and used for

different purposes, ranging from a very small

TES used only as a thermal flywheel, to a unit

one-tenth the size of that described in this report

and used for dual-mode operation. This permits

gradual evolution of TES systems for automotive

use.
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9. CONCLUSIONS

Conclusions based on this study are su.-i!marized below:

• The TES/Stirling engine vehicle is technically feasible

and meets all operational requirements for a practical

vehicle.

• The TES system cost is high, primarily because of

the necessity for high-alloy metals for all high-tem-

perature parts of the system.

• Overnight recharging is most practical.

• The dual-mode fuel/TES system offers many

advantages relative to a TES-only system.

- Size and weight of the TES system are reduced by

a factor of ^-10. The cost would also be significantly

reduced and should be acceptable even with use of

Inconel 517.

- Substantial savings (up to 50 percent .) of premium

liquid fuels for automotive propulsion are obtained.

Current vehicle flexibility is retained.
cl	

Introduction of TES by this approach is a smaller

perturbation to current automobiles facilitating

implementation.

Implementation can be initiated by a very small

TES used only as a thermal flywheel to permit

steady combustion, with a gradual evolution to

larger sizes and dual-anode or TES-only operation.
c]
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• Use of potassium or sodium heat pipes is the )nl)

feasible method for transport of heat from the TE

reservoir to the Stirling engine and for recharge

the TES system. With the use of the metal-vapo

heat pipe,

- I-l e working gas can be used in the Stirling eng

instead of H 2 , with better power and efficiency

from the same displacement engine ; the engin

size is also reduced.

- Precise control of the engine heater temperate

with isothermal beater temr)erature (no hotpot

is easily accomplished with little danger of over-

heating the engine.

- The corn bustor/heater is decoupled from the

engine, permitting the use of a larger combustor/

heater with lower pressure drop. The 'lower

parasitic power loss improves the overall system

efficiency. The combustor/heater can be located

remotely from the engine.
1

'	 - H 2 working gas for the Stirling engine can introduce

problems in operation of the discharge heat-pipe

•	 due to H 2 diffusion through the Stirling heater tubes.

Experimental work is required to determine if the

H 2 diffusion can be satisfactorily handled, thereby

f	 permitting the use of H 2 working gas in the engine.

9-2
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- Use of three-coupled heat pipes is a unique and

key feature in meeting all operational requirements.

- The mass of potassium (or sodium) can be maintained

low enough in all three heat pipes sothat the hazard

from the potassium reactivity is negligible,

• A unique E-M pump design vas developed for return of

the liquid in the discharge heat pipe. Incorporation of

this pump provides precise control of the heat delivery

rate from the TES to the engine without moving parts

and reduces the vapor transport pipe to its minimum

size to transport 200 kwth.

• The optimum TES media for the Stirling engine is LiF,

provided that cost and availability are acceptable.

Sufficient information is not available to eliminate LiF

on these grounds. The best material without LiF is

a Nap'MgF2 eutectic, but its gravimetric and volumetric

storage densities are inferior to those of LiF.

• Vacuum Multi-Foil thermal insulation provides an

effective thermal conductivity that is a factor of ^20

lower than any type of fiber insulation even under

vacuum. This lo.v thermal conductivity leads to a

significantly lover volume (thickness), weight, and cost

when compared to other types of thermal insulation,

all factors highly important for the automotive appli-

cation. The structural design problems introduced by

the vacuu,.i enclosure are difficult, but have been

9-3
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successfully resolved for both the cylindrical and

rectangular configurations.

• For the TES-only system, the optimum location for

the TES reservoir is beneath the floorboard and

between the wheels and sideframes. This provides

maximum collision protection to the TES reservoir,

maintains a low vehicle center of gravity, and gives an

equal weight distribution on the wheels.

• With this location of the TES reservoir and design

for minimum potassium inventory, the hazard of

this system should be no greater than that due to

TES by up to 20 gallons of gasoline.

I

f

t
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APPENDIX A

MODEL USED FOR HEAT TRANSPORT CALCULATIONS FOR

DISCHARGE HEAT PIPE DUCT

The flow schematic is shown in the following figure.

	

Po Jo I P i, T i	 Tp I Pe

DUCT

	

STORAGE UNIT
	

ENGINE HEAD

The properties of the vapor of liquid metal at low pressure obey the ideal

gas law. If we assume that the flow of vapor from the storage unit to

the entrance of the duct behaves like the flow in a converge nozzle,

the relationships of pressure and temperature between these two loca-

tions is:	 K
K-1

	

Po 	 = (1 + K-1 M 2 )
	(1 ^

	

P.	 2	 1
1

T o = 1 K21 Mi l+ 	 (2y
T.

i

Q	 where K = the ratio of rpeLific heats
Mi = the Mach number of flow velocity at the entrance of the duct

Shapiro 1 gives the relationship of adiabatic flow of a perfect Ras in a

constant area duct with friction:

A-1

4



1 M -M 2- k	 i	 e

M. 	 el Mt

(3)
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k-1

4f L = k" hr (1+ 2 M12)	 2M1

D 2k	 k-1

	

2	 2

	

(1+ 2 M. 	 M.

	

i	 i

	

k-1	 1
2	 1

	

P	 Nt.	 +	 Mi
e	 -	 1	 k-1

	

P	 die	 1 + 2 M.

	

i	 i

K-1	 2
T e = 1 + _2 Mi

	Ti	 1 + K- 1	 2
Z	 1

Where f = the average friction factor. For the values of the

Reynold's number between 5000 to 300, 00,

f = 0. 079 1 N - 1/4re

L = length of the duct

P = diameter of the duct

M  = the Mach number of the flow velocity at the exit of the duct

	

For the given conditions of P
0	 0

and 'T in the storage unit, the back

pressure P  at the engine head governs the flow in the duct. A

reduction in back pressure P  acts to increase ti-e flow rate and

pressure drop in the duct. No qualitative changes are-to be observed

until the back pressure is re_' _ced to the value corresponding to the

condition that the exit Mach number M e is unity. Further reductions

(4)

(5)

(6)
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In back pressure cannot produce further increases in flow rate,

since M e cannot become greater than unity. The back pressure,

P B , at the engine head is determined by the condensation temperature

of the vapor.

REFERENCE FOR APPENDIX A

1. Shapiro A. H. , The Dynamics and Thermodynamics of
Compressible Fluid Floe, The Ronald Press Company, 1953.
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