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I. INTRODUCTION AND OVERVIEW

l
[ System identification technology has been used
!

successfully for many vehicles. Because of their

large number of degrees of f?eedom and complex aero-

dynamic interactions,the rotorcrafthave always
presented a special challenge to system identification

I methods. A completelyintegratedmethodologyhas been
developed under this NASA contract to solve this

I difficult problem. This methodologyhas also been
translated into a user oriented series of computer

programs. Thisvolumeprovidesbasicguidelinesfor
efficient and effective use of one of these computer

. programs.
Figure 1 shows a schematic flowchart of the overall

1 dataprocessingtechniquefor rotorcraft. The first
step in this procedure is state estimation and instrument

i calibration. This is implemented by the computer program
DEKFIS (for Discrete Extended Kalman Jilter and Smoother)

which • implements an extended Kalman filter/smoother using

I the Friedland-Duffy formulation. Instrument biases and

scale factors are estimated at this stage together with

any state which is not measured directly. The second

step involves estimation of the mathematical model of

various forces, moments and interchanges. This is

implemented in OSR (Optimal S_ubset Regression) computer

program which uses a regression •technique. Accurate

estimates of parameters are obtained in the final step.

One of two computer programs is used for this purpose.

SCIDNT implements the maximum likelihood method for•linear

systems and NLSCIDNT extends the method to nonlinear
rotorcraft models.
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Figure I Integrated Rotorcraft System
Identification Procedure I

Accuracy of parameter estimates may be improved

by using flight test inputs based on the input design
program, INDES.

I

This user's manual describes the NLSCINDT I

computer program. The details of the theory and the I

particular implementation used are given in the final I
report.*

* Hal.l, _.E., Gupta, N.K., Hansen, R. and Bohn, J.,
"State Estimation and Parameter Identification
for Rotorcraft," final report on contract NASI-IaS49,
May 1978. "
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I This user's guide describesthe structure of the NLSCIDNT
program, the program's input and output, and illustratesthem

with example runs. It also gives guidelinesfor the program's
effectiveuse and informationon selected topics which the
reader will find helpful in using the program.

I

i

The contract research effort which led to the results in this report was
; financially supported by the Structures Laboratory, USARTL(AVRADCOM),

NASALangley Research Center and NASAAmes Research Center.
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CHAPTER II

BACKGROUND

The nonlinear, maximum likelihood, parameter identification

computer program (NLSCIDNT) described in this user's guide was

written by Systems Control, Inc. (Vt) to evaluate rotorcraft

stability and control coefficients from flight test data.

The program has the following features:

• The optimal estimates of the parameters (stability and
control coefficients) are determined (identified) by
minimizing the negative log likelihood cost function.
These maximum likelihood estimates are asymptotically
unbiased, consistent, and efficient (see Appendix A)[l,Z].

• The minimization technique is the Levenberg -Marquardt
method, which behaves like the steepest descent method
when it is far from the minimum and behaves like the
modified Newton-Raphson method when it is nearer the
minimum. Hence, the technique becomes quadratically
convergent as it nears the minimum, and at the same
time it avoids the divergence problems often associ-
ated with quadratic techniques when far from the
minimum.

• Twenty one states and 40 measurement variables are
modeled, and any subset may be selected. States which
are not integrated may be fixed at an input value, or
time history data may be substituted for the state in
the equations of motion.

• Any aerodynamic coefficient may be expressed as a non-
linear polynomial function of selected "expansion
variables.!' This feature gives the user great flex-
ibility to model nonlinear aerodynamics through the
program's input without any changes in the program's
code. Up to five expansion variables may be selected
from a list of 17.

• The states and state sensitivities [partial derivatives
of the states with respect to the identified parameters)
are propagated by an efficient implementation of a
variable-order, variable-stepsize, Adams-Bashforth pre-
dictor and Adams-Moulton corrector algorithm due to
Shampine and Gordon [3].

-9
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CHAPTERIII

i PROGRAMDESCRIPTION

I 3.I PROGRAM STRUCTURE

I• The overall logic of the NLSCIDNT program is presented in
Fig. 3.1. it is intendedto give the user a general overview

i of the program and, therefore,it shows only the major routineswith a brief descriptionof their purpose.

I The subroutinecalling structureis given in Fig. 3.2. Theuser may find this figureuseful in further understandingthe

program's•flowand in constructingan overlay structure if one
I is needed. The program was developed on a CDC 7600 and re-

quired 303,771 (octal),I00,345 (decimal)storage locations

i (words) .

The functions of the various subprograms are sketeched

.- below:

DRIVER is the main routine. It performs no calculationsi 'itself, but rather calls three routines--INPUT,S_IN, and _UTPUT--

which accomplish the computationaland input/outputtasks.

" [. DRIVER's most important function is the dimensioning of the major

I

arrays and setting up most of the labeled commons in the program.

BL@CKD is a block data routine. Its major function is to

initialize arrays which contain labels for the measurement, con-

trol, and ex-pansionvariables for input/outputpurposes.

INPUT handles all of _he program's input, checks for errors

in the inputs, and initializesvarious flags within the program.
It also prints this informationas a record for the user.

FLAGIT is used by INPUT to set pointer arrays to the state,

measurement, and expansion variables which are to be used in the
run.



I DRIVEl{
• SETS ARRAY DIMENSIONS

CARD INPUT SMAIN _UTPUT

INPUT. 4_ • READS CARD
INPUT • CONDUCTS SEARCIIqF- • SAVES TRUE AND

- FOR OPTIMAL 'ESTIMATEDTIME

• READS CONTROL PARAMETER HISTORY DATA
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l:igtll'C 3.1 MI,S('IDNT I:tlllt'Lioll;.ll I:iot_ {:hzl|'t
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EQUATE RDTITL
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i
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-- BUTPUT--.--PRTPLT _ INTRP __LCONTR L
nEntry point in STATE
: Entry point in MEAS

Figure 3.2 SubroutilJe (:ailing Structure
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INREAD is called by INPUT to read the time histories of

the measurementand controlvariables. I

P_NTP is called by INPUT to print the initial parameter

• I "values which were read into the program.

SMAINperformsthe main computationaltasks. It searches )

for the optimal parameter estimatesby means of the Levenberg- I

Marquardt minimization technique. It constrains the parameter

• Ivalues within bounds set by the user, and it automatically

restricts the search for estimates of parameters having low

identifiability. This latter function is accomplishedby adap- I
tively modifying the effective rank of the information matrix.

i

CVINIT is called by S_IN to compute the covariances of the I
I

measurements and controls.

by S_IN to compute the eigenvalues and 1
SY_fVI is called

eigenveczors of the (symmetric) information matrix. It is op=i-

mized for use on symmetric matrices. The eigensyszem is calcu-

lated by the QR algorithm after the matrix has been put in tri-

diagona! form by a Householder transformation.

UPDATE: (I) propagates the state estimates (_) and s_a=e

sensitivities (_/_§) with respect to the parameter estimates and

computes the measurement estimates (_) and their sensitivities

(_y/_e) by calls to appropriate subroutines; (2) calculates the I

cost func=ion and its first and second gradients for use by S_IN;

and (3) stores the measurement estimate time histories for use by

_UTPUT I• i

INTGRS is called by UPDATE to oversee the integration of the

first-order differential equations for _ and _x/_e forward I

one sample time increment. This is accomplished by a variable- !

order, variable-stepsize, predictor-corrector algorithm. The I

algorithm chooses its o_ order and stepsize to most efficiently

" ^/_ Isatisfy relative and absolute error bounds on x and 3x,=_ set

by the user• The resulting stepsize may be more as well as less

than the sample time increment.

8
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STEP is called by INTGR8 to perform the actual integration

of the equations. In genera!, the integrationstepsize is not

I a rational fraction of the timesample interval.

- INTRP is called by INTGR8 to interpolate the values of x,

and their time derivatives at the data sampling times.a_/a_

DXDTNL is called usually by STEP but initially by INTGR8

I ^to obtain the time derivatives of x and also a_/aoi, where 0i
is an identifiedparameter.

i YAHAT is called by UPDATE to evaluate y and aT/_@ at
the data sample times given x and _x/a0 at those times.

STATE has five ENTRY points. A call to STATE initializes
variables used elsewherein the subroutine. STATIC sets the

state initial condition estimates, x(0). STAICI sets the state

sensitivity initial condition estimates, Sx(0)/_. A call to

i computes the s_ate estimates," dx/dt.
XDOT the time derivative of

A call to XTHDOT computes the time derivative of the state sensi-

I tivities with respect to a specified parameter, d<_/_i)/dz.
Therefore, the vehicle equations of motion appear in this sub-

routine.
MEAS has three ENTRY points. A call to >{EAS evaluates the

I measurement noise covariancematrix, R. HCOMP computes the
measurement estimates, y. HTHCMP compUtes the measurement sensi-

tivities with respect to a specified parameter, _Y/_0i" There-
fore, the measurement instrumentequations appear in this routine.

COEF evaluates the aerodynamiccoefficients required by the
vehicle equations of motion in subroutineSTATE.

DCOEF evaluates the partial derivatives of the aerodynamic

coefficientswith respect =o each of =he identifiedparameters.

C_NTRL finds the values of the control inputs az any speci-

fied time by linear interpolationbetween the nearest sample time
points.

9
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_UTPUT performs three tasks: (I] it computes the combined

optimal parameters if the a priori information matrix is not zero [..
Csee Section 5.3); [2) it writes the time histories of the con-

trois, measurements, and measurement estimates to tape; and (3) it

uses PRTPLT to produce plots of the estimated measurement time [

history fit to the actual measurement time histories and to plot . :"

the control input time histories. [

In addition to these major subroutines, there are ten utility

routinesof whichuse is made by severalof the above routines. ]

ADD finds the sum of two matrices.

EQUATEsets one matrix equal to •another. [

INV finds the inverse and determinant of a matrix.

MULT finds the product of two matrices.

P_NT writes a matrix on the printer.

RDTITL reads a card containing the run title.

• _:=mSUBT finds the dz_rence of two matrices.

ZER@.sets a matrix equal to the zero matrix.

ASPHRR produces a "walk-back" when an error in computation
is detected.

LNCNT prints the _an's title at the .top of each page.

PRTPLT produces plots on the printer

3.2 EQUATIONS OF MOTION

The maximum likelihood identification algorithm may be

applied to any dynamic system. NLSCIDNT was coded specifically

to model the motions of a rotorcraft. These equations are

written in terms of the 23 state variables and eight con-
trols listed in Table 3.1.

l0 [
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I Table 3.1

State, Control, and Measurement Variables

l
•STATE VARIABLES

INDEX SYMBOL DEFINITION UNITS
i

1 u longitudinalcomponentof velocity ft/sec

I. 2 .v. lateralcomponentof velocity ft/sec

3 w• vertical componentof velocity ft/sec

4•. p . body roll rate rad/sec

5 q body pitch rate rad/sec

I 6 r body yaw rate rad/sec" 7 @ Euler roll angle " rad-

8 e Eulerpitch angle . rad.

.9 @ Euler yaw.angle, rad.

10. Boi ' collectiveflap angularrate rad/sec.

I 11- !1c longitudinalflap angularrate _ad/sec

12 .BIs • _ •:•lateralflap angularrate • radisec

- . . . ,.. . _
13 " Bo collectiveflap angle rad

14 B1c longitudinalflap angle ... rad .

( 15 ._Is .lateralflap angle " . rad '
" 16 "_0 " •collectivelag angular rate. -..., rad/sec

17 _1c longitudinallag angularrate rad/sec

18 _is• laterallag angular rate " rad/sec

• 19 $_r rotor speed variation rad/sec

20 _o co!lectivelag angle rad

21 _1c longitudinallag angle rad

22 ._ls lateral lag angle rad

23 _r rotor angularpositionvariation rad

( __ m

II



I

Table 3.1 CContinued) I

CONTROLVARIABLES.

INDEX SYMBOL DEFINITION UNITS

i 80 collectivepitch of blades rad j
2 81c lateralcyclic pitch of blades • rad

3 Bls longitudinalcyclic pitch of.blades rad j
4 _TR pitch of tail rotor blades rad

5 _e elevatorangle rad

6 _a aileronangle rad {

7 _r .. " rudder,angle rad

8 6f flaperonangle rad (

MEASUREMENTVARIABLES Ji

INDEX• SYMBOL •DEFINITION UNITS
l l

1 ax longitudinalaccelerometer ft/sec:2

2 ay lateralaccelerometer ft/sec

3 az verticalaccelerometer ft/sec2

4 Pm roll angularaccelerometer rad/sec2

5 qm pitch angularaccelerometer rad/sec2

6 rm yaw angularaccelerometer" rad/sec2

7 Pm roll rate gyro rad/sec j

8 qm pitch rategyro radisec 1
9 r. yaw rate gyro rad/sec

m

10 Cm roll positiongyro rad I

11 em pitch positiongyro rad

12 Cm yaw posi:tiongyro rad I

13 _m angle-of-attackvane rad

14 Bm sideslipvane rad I
15. Vm pitot tube ft/sec .

L



Table 3.i {Continued)

MEASUREMENTVARIABLES (Cont'd)

INDEX SYMBOL DEFINITION UNITS

16 um longitudinalvelocity ft/sec

17 vm lateralvelocity ft/sec

18 wm verticalvelocity ft/sec

.19 XRm .rotorlongitudinalforce Ibs

20 YRm rotor lateralforce Ibs

21 ZRm rotor verticalforce Ibs

22 LRm rotor roll moment• ft-lbs

23 MRm rotor pitch moment ft-lbs

24 NRm rotor yaw moment ft-lbs

25 . Blm flap-angleof blade I- rad

26 B2m flap angle of blade 2 rad

27 B3m flap angle of blade 3 rad

28 B4m " f!ap angle of blade 4 rad "

29 BSm flap.angle of blade 5 rad

30. B6m flap angle of blade 6 rad

31 Blm flap angle of blade 7 rad

32 _lm lag angle of blade 1 rad

33 _2m lag angle of.blade2 rad

34 _3m lag angle ofblade 3 rad

35 _4m lag angle of.blade 4 rad

36 _Sm lag angle of blade 5 rad

37 ;6m lag angle of blade 6 rad

38 ;7m lag angle ofblade 7 rad

39 (cos _R)m cosine of rotor azimuth N.D.

40 (sin_R)m sine of rotor azimuth N.D.

13
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The equationsof motion are lengthy for the sake of com- I
Ipleteness. As a result, they contain terms which will frequently

be negligible, and they contain far more aerodynamiccoefficients

than can be accuratelyidentifiedwith ordinary rotorcraft

instrumentation. With properly designed control inputs and with
highly accurate and very complete instrumentationsuch that all

state variables are redundantlyobservable,it would be possible
to use the complete set of equationsof motion and identify all

significantparameters. However, in the commonuse of the pro-

gram, only subsets of the equationsare integratedand only the
parameters appearing in those integratedequations are identified.

For this purpose, the user has the option of fixing any state

at its initial value or reading in a time history for it rather

than letting the program propagate that state by integrating

its differentialequation. A considerablesavings in computation

time is realized if states unnecessaryto the problem at hand are

not integrated. As an example of the use of these options, suppose

lateral directionaldata about a trim condition is to be processed
but significantperturbationsin pitch, angle-0f-attackand

flappingoccurred. Then the user may choose to have the lateral

states v, p, r, and ¢ integrated;to hold u,the rotor .lag and I
Ispeed states at their initial values, and to substitutemeasure-

ments of q, e, w (perhapsderived from angle-of-attack)and I

the six flapping states for these state variables in the equations I
of motion.

The 13 degree-of-freedom,nonlinear equationsof motion are [

|

in body-axis coordinateswith origin at the center of gravity.

w_ = f (3.1)

The state vector is I

x = [u v w p q r _ 9 @ _o 81c 31s So Slc Sis I

• . _R]T ]
to _ic _'Is _'QR _o _ic _Is _ (3.2)

14
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The vector f is composed of the following elements:

I p_2 R4 { C + T sin8Rfu = vr - Woq- g sine . _ x aero

" Haero cose R} {3.3)

I + (3 4)
I fv= wp - ur + g cosesin_. _ 0_2 R4_{Cy Yaero} .

fw uq vp . gcose cos_ . .I T coseR= _ 0_2 R4_{Cz aero

H sineR} {3.5)

i aero
fp = (Iy-Iz)qr. lyz(q2_r2). + {Ixzq- Ixyr)p.

P_2 R5_{CL + Qaero R aero -+ . sine = L cos8R

I
= Yaero Zhub + NbC0SeR(loq" I_a 81c- I_= ._ic)} {3.6)

I. fq {Iz'Ix)Pr + Ixz{r2-p2)" + == {Ixyr lyzq)P

+.p_2 R5_ {CM + Maer° + Haero(Xhub sine R Zhub cos.eR)

. Taero(Xhu b cose R . Zhub sineR) . Nb[l_a 81s

[ . l_a _Is - I {p" cos8 + r_ sineR)]} (3,7)
i o R

f = {I -Iy)pq + Ixy(p2-q2) +.{.lyzP-Ixzq)r
I r x

+ O_2 R5= {CN + Yaero-Xhub Laero sineR

+ = .loq')} {3 8)Qaero c°SeR Nb sineR{'18a 81c l_a _Ic

fe = p + (q sin_ + r cos_) tan8 (3.9)
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.,

fS : q cost- r sin¢ (3.10)

J
f_ : (q sine + r cos¢)/cos8 (3.11)

£80 '= -2Is_ (p sin8R - r cosSR)- 1By So

+ p_2 R5 MO (3.12)

f81c 2 l)S - (I gs v + ZI ) (3 13): IB(vB - Ic S 8 38 81s

+ 218e (p cos8 R + r sinSR) + p_2 R5 Mlc (3.13)

= 2

fSls (I8 gs v8 + 2188)BIc - IsCvs-l)Bls 2IB_q

+ p_2 R5 MlS (3.14)

fSo 8o (3 IS)

fs : 81c (3.16)
Ic i

£_ : _Is (3..17)ls

I
f- : -21 r cos + p_2 RS QO
_o _ (p sinBR 8R) (3.18)

= 2 (I. a _ + _I ofl2R5QlCf_Ic "l_(v_-l)_Ic _ °s - _)_is + (3.19) I

f'_is = (It gs '_ + 21_)_ic l_(.v_-2 l)_is i
!

+ p_2 R2 QlS (3.20) I

• w I "f_R On2 R5_ Q_ (3 71)

f;_o : _o (3.zz) I

I6 I
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l

lc

f_ls= _is (3.z4)

f_aR = 6fiR (3.zs)

where

I = + € u + Cx __v +.c w + Cxp p_.Cx Cxo xu fiR v fiR xw _R

I Cxr r CX6TR6TR Cx6e
+ C _.+ _+ +

• Xq e

_a + _r + Cx_f_f (5.26)+ Cx_ a Cx6r

and Cy, CZ' CL' CM and CN are expandedsimilarly;

I Sis
T_o 8o 81c + T_Is __ + T8 8oTaer°= T°. -fl" + TSIc_ f_ ' o

_o _I_
+ TB1 csIc + TSlsSlS + .T_o _ * T_lc

_Is 6fiR

+ T_Is fl--+ T6flR T + T_o_O + T_ Ic•. Ic_

+ T_Is_IS+ T_R6_R . T8 Oo + To c81C + To Oo I is Is

I (3.27)

and Haero' Yaero' Laero' Maero' and Qaero are expanded
similarly;

17



w ._R tiP-+ Mq _ + Mr ._"

Blc _Is Mo o. M.o 6_£o. M fl + M"° . 6 + Ms 81c
6o fl ic 61s T 6o o Ic

o _o o (StiR "

. MBIsSIS . M_o _ . M'°_lc%Icfl. Mor.1s%Is + ManR_

_RSOR oo _o + o + o _Is + M + Ms Oo+ M_o M_Ic_IC M_Is o
)

+ M_ O ([3.28)+ M_ 01c ls
lc Is

and MlC, MlS, QO, QlC, QlS, and Qfl are expanded similarly.

The elements of the matrix W which are not zero are:

W = I
UU

SB
- Pfl2R4"r• Nb sin ORWu%zs _ •

W Pfl2R4_Nb S_- cos O
U_o m 2 f12 R

W --iw

W _ pfl2R4_z Nb S_
_lc m " -r'_

S
b

W = 1
#

!



I

s8
w . = p_2R4_• Nb •- cos eR
WSo m _2

WW%Is: onZR4=Nb S_m 2 _2 sin eR

w =
pp Ix

I Wpq = .ixy

I w - -I
pr xz

I Nb . .h'• = .p_2R5__ 18_
PSls 2 7 cos eR

I
= pn2RS_• CZNb) • sin OR

I Wp8o

i .18c_Wp81c = p_2R5_ Nb _ cos 8R

• IB_.___aCOS 8R

I
W • = .pfl2R5= Nb g___esin 8R

I P_o n

. = -p_2R5_ -_-n2 -"Wpglc

I
= _p_2R5_ __oo

Wp_s _2

19
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Wp_o p_2RS= (2Nb) I_ sin @
!

Wp_is: -PnZRS_'NbT cos oR 1

IW = -I
qp xy

W = I
qq Y

W = -I '
qr yz

I
SB Zhu b . Xhub

Wq8° = Pfl2RS_Nb n2 R sin OR + R cos OR

WqSlc= -p_2RS_Nb218_2

Wq81c -Ofl2R5= Nb

18_
= .pfl2R5_ Nb

WqSis

Nb S_ <Zhub Xhub sin 6R)W • = p_2R5_7 _ R cos OR Rq_Is

l_c_

Wq_,lc = _pO2R5_ Nb

W = -][
rp xz

2O



l
I W = -I

rq yz

I
' W = I

rr z

Nb .Isa

WrSls = -pa2R5_ --2-7 sin @RI
W = -p_2RSTr (2N b) cos ORr8 o

I sin @R
IBm

W = pfl2RS_ Nbr81c

I

W = _p_2R5_ Nb 8____sin @R

rBls ..

} Wr_o = pn2R5_ Nb I-_ cos.0R

if'

[ W.. : ofl2R5wNb S_ Xhub
r_ic 2 f_2. R

[ I .
Wr" = p_2RS wNb o*s _ cos OR:

t W = -pnZRS_ (2Nb) _-_ cos OR
i r_°

I W = -Pfl2R5wNb --d--sin ORr_Is

I
I

W_¢ = i
i
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Wse = I I

WW_ = i

W_ u = $8 sin eR
o I

W_ow = -Ss coseR I

W- = - $8( sin eR cos eR)8oq Zhub - Xhub

W. = I8Solo

W- = I gs _ +2SoBo S 8 I88

w. = 218_Bo_s

We _ -I

81cq Ba

W. = I8
81c81c I

W. : I gs u + 21Blc81c S B 8B

= 2I
W81cBls 8

= -I cos eRWSIsP 8a

W_isr= -IBasin eR
90
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W- = IBBIsBIs

l= -218

W_IsBIc

= I gs _B 21
WBIsBIs B + 8B

ll W8o80 = 1

I WBlcBlc = i

I ' = 1
WBIsBIS

W%op = I_c_ sin.8 R

I _or -I_ cos @R

i W. = I_o_o

W. = I_o_s _=

= + 21
W_o_o I gS _ _

w. = 21__o_S

W_ = S_Icv

23
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I

W. = -S_

_IcP Zhub i '

W- = S_
_icr Xhub (

w_1_1_

!

W_lc_lc = I_ gS v + 2I_% l

1 1 1

)

w. = 2I I
_ic_is

II
W._isu = S_ cos OR I
W_lsW= S_ sin 9R

W- = S_( cos OR sin 8R)_Isq Zhub - Xhub

W ° = I

_ls_ls •

W- = -2I
_Is_Ic

• = I gs _ + 2I_W_is_is _ _

W_s_s: i

_v_ : io_o

z4 j
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I W_Ic_ic = 1

1 = 1

W_s_s I

where

g = accelerationof gravity, ft/sec2

p = density of the air, slug/ft$

I m = mass of the rotorcraft,,slug

= referencerotor speed, rad/sec

I R = rotor radius, ft

Ix = roll moment of inertia = f{y2+ z2)dm, slug_ft2

I Iy = pitch moment of inertia= /(x2 + z2)dm, slug-ft2
l

Iz = yaw moment of inertia = /(xz +y2)dm, slug_ft2

[
,J I = x-y product of inertia = Ixy dm, slug-ft2xy

i = x-z product of inertia = /xz dm, slug-ft2Ixz

lyz = y-z product of inertia = /yz dm, slug-ft2
1

$8 = ! NB mbdr 1o All terms non-dimensional
1

= N mbdrS_ fo

where

N8 = ist flappingmode shape, N.D.

N = ist laggingmode shape, N.D.

mb = blade mass

" implies division by mR. e.g. p" = p/mR

2S
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5.3 HEASUREMENT EQUATIONS i

Forty measurement instruments are modeled in the program, i

from which the user may select any subset. Different measure-
!

ment equations are applicable depending upon the set of ]
equations of motion selected. I

3.3.1 Measurements for Complete Set I

The equations which evaluate the measurement estimates when I
the complete set of equations of motion is used are:

(i) longitudinal accelerometer [

= - r2 1ax u vr + wq + oa sin 8 (q2 + )Xcgx

+ (pr + q)z + b I+ (Pq r)Ycg x cgx x

(2) lateral accelerometer

a = v - wp + ur - a sin _ cos @ + (pq + r)x
Y _ Cgy

. + (rq p)z + by(r2 + P_)Ycgy cgv

(3) Vertical accelerometer

az.= w - uq + vp g cos ¢ cos o + (pr - q)x cg.

p2) •
+ (rq + p)Ycg z (q2 + ca + b_'Z Z

t " "

!
L
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(_) roll angular accelerometer

I CS) pitch angular accelerometer

(6) yaw angular accelerome_er

rm= r +b_

f,

] .(7) roll rate

/I Pm = p + bp

i (8) pitch ra_e

qm = q + bq.

(g) yaw rate
_;J'_

I. r = r+ b
m r

1 (I0) roll angle

Cm = € . b¢

(ii) pitch angle

= 0 +bem e

(12) yaw angle

_m = '_ + b,_

27
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(13) angle-of-attack vane

I

ry _ . q,-_ . ba 1
¢_a cga

(14) angle-of-sideslip vane I

_m = (I +ks) sin"I cgS cgS
VT . b_ [

where

VT = - +q'cg 8 -PZcg_

(15) total velocity

Vm = (i +Kv) _u2 i v2 + w2 + by i

(16) um = 11 + ku)U + bu ' I

(17) vm = (1 _- kv)v + bv I

(!8) wm = (i + kw)w + bw (

(19) XR = (I + kXR)_pa2R4, bxR Im (Taer° sin 9R- Haero cos 8R) +

(20) YR = (I + kv )_0f_2R4 y + bYR Im " R aero .

(21) ZR = (i +k z ).,v._fl2R4(-H sin _ - T cos +b. (
m R aero R aero 8R) JR

28



(ZZ) LRm = (i +kLR)_Ofl2RS{Qaer 0 .sin @R- Laero cos @R

- Yaero Zref ) + bL R

i

.(23) MR = (i )_pf2R5
m +kMR [Maer° +Haer°(xref sin OR

- Zref cos eR) . Taero(Rref cos eR

+ Zref sin OR) ] + bMR
[

' (24) NRm = (I +kNR)_0f2RS(Xref Yaero - Laero sin OR

I
Qaero cos OR)

. . +.bNR{
I

(25) 81m = (I +kSl) [B.o.8Oref (81c+81Cref) cos (fit+@i )

--(81s+81S.ref) sin(ft+@ I)] + bBi

(26) BZm = (l+ks2)[S°+B°ref" (81c+81Cref)c°s(ft+el+A81)

-(81s+BlSref)sin(flt+Ol+A@l)]+ b82

(27) BSm = (l+kBs).[Bo+Boref-(Blc+Blcref)cosCft+Bl+2A@l)

{ (81s+81Sref) @i+ I S3
- sin(fit+ 2A@ )] + b

(28) 84m = (l+kB4)[S°+8°ref-(61c.BlCref)C°S(nt+@l+3A@l)

-(Sls+BlSref)Sin(ft+@l+3A@l)]+ b84

29
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= (l+k8 )[Bo+BOr e "(Slc+61c )cos(_t+el+4a@ )(29) 8Sm 5 f ref i

• )sin(_t+8 +4AS )]

-(61s+flSref I i + bB5 I

(30) 86 : (i [Bo+ -(81c+Blc )cos(f_t+@ +5A@ )
m +kB.6) B°ref ref 1 1 I

-(81s+81Sref)Sin(_t.el.SA@l)]+ bs6

(31) 8. = (l+kB ) [6o+6 -(Blc+BlCr )cos(_t+el+6A@ 1)
'm 7' °re£ ef {

-(81s+Blsref)Sin(nt+el+6A%l)] + bB

(32) tim = (l+k_) [_o + - (< +_ )cos(_t+@ 11Ic1 r'°ref iCref

)sin(hi+@ )] + b

-(_is+_ISref 1 _i I

= (l+k ) [ _ -(_ic.+_iCre )€os(f_t+91+A@I)
(33) _2m _2 _°+ °ref f I

-(rls+rl )sin(nt+Ol+A8 )] . bSre f 1 _2

: .(1+k_3)[_o.:° -(_lc+_ic )cos(_t+@l+2A@ 1)(34) _3m. ref ref •

-(_is+_iSref) Sin(_t+el.2a@l )] + b_.

j
(35) _4 = (l+k_)[_o + -(_ic+_iCre )cos(_qt+el+3Ae )4 _°ref f 1

m I

-(_is+_iSref)sin(_t+el+3A@ I)] • p+ b_4

(36) _5 = (l+k_ S) [_o+Co - (_ _ )cos(nt+el.4Ae 1) t .m ref Ic+ ICref "

)sin(_t+@ Ael)] + b_
"(_Is+_ISref I+4 _S

• 130
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I
(37) € --

6m (l+kc6)[Co+COre f'(clc+clcre f)cos(nt+cl+sA@)l

J )sin(_t.e +SaC )] + b
" "(_Is+_iSref I I (6

I (38) _7 = (l+k_)[_ + -(_lc+_ )cos(nt+el+6A@l )m 7 o _Oref loref

.(_Is+_ )sin(nt.@l+6A@ I)] + b_7lSre f

I (39) (sin _R)m = (l+ks_R) sin _R + bs_R

(40) (cos _R)m : (l +kc_R) cos _R + bc_R.

3.4 POLYNOMIAL EXPANSION OF COEFFICIENTS

Three hundred forty eight aerodynamiccoefficients appear

in the equations of motion in Section 3.3. Thesecoefficients

are listed in Table.3 2 by giving the index of the coefficient

in the row of the appropriate primary symbol and column of the

I appropriatesubscript. For example, coefficient46 is CL and
o

I coefficienti12 is T• • Coefficientswhich
are usually not

B
o

significanthave their entries enclosed in "( )", i.e.,
I coefficient (3) is C

xv

Each of these coefficientsis evaluatedwithin the program

as a polynomial (although in most applications the polynomial

I will consist of a single, constant term)• The procedureby
which this is accomplished will appear complex at first; but

once it is mastered, the user may appreciate_he great
flexibility which it gives him.

b

;
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Table 3.2

Indices of tile Aerodynamic Coefficients

PH114,_RY SUIISCRIPT
5YFU_(_.

o u v w p q r Po _lc _ls _o Pie ttls _'o _'ic t'ls stH t'u z-It t'ls _R o IJlc Uls 'XlR "_e 6a ,x _! SP_L5U a"

t. x • .... I 2 (31 4 151 6 (71 (81 191 (IU) 111 IiZ} 13-15

cy ..... lu (111 iu (19) 20 121) 22 23 (24) (25) (26 (tt} Z/1-30

t. 1 ..... J1 712 (.131 34 (215 36 (37) 13111 139} (40) 14J} 1421 43-45

1:t ..... 41, (411 4H (491 .50 (511 52 5.1 (54, (551 1561 (511 68-60

_:l,t ..... _,1 t_:,' 161 64 1651 66 1671 16111 16'.11 1101 1711 1721 73-1',

t N ..... /t, {71) 1_] 1/91 uo (el) 82 a] (u41 (05) (861 (tit) uu-_)

II ..... 'J1 92 9.1 94 95 96 97 98 99 10O' lOI 1112 103 i104):(1O5) 106 107 108 10_-110

1 . ..... Ill 112 i13 114 115 116 117 118 119 120! IZi 122 123 (124)1125} 12.6 127 128 129-130

L,z T ..... 1.11 112 133 1.14 135 136 137 138 139 140 141 142 141 1144)1145) 146 147 1481 149-150I-_

I ...... l_i 152 1571 154 155 156 157 1511 15'J lGU 161 162 163 11641 (ItJ5) 156 167 Ii_/1 1_,1J-17/1

H ...... Ill 172 113 174 175 176 177 il/1 119 180 181 1/12 183 184] 111151 ILIb 187 188 IU9-190

11...... l'Jl 192 193i194 195 lgb 197 19H 199 200 201 _'U2 203 (2041 |205) _Ob 207 208 ;LUg-ZIO

HtJ ..... ZII Zl_' ZIJ 214 215 216 217 _tll 'Zig 22Oi221 Z2Z 223 2241 225 225 227 2:'/1 229 (2.10)12311 232 23.1 234 Z.I5

HI" .... L]t, 231 238 2.19 240 241 242 L43 244 245 246 247 248 249 250 251 252 253 254 (2551 (256) 257 258 259 _61|

,," .... 26,i /6Z Z_,.1 264 265 266 267:2_8 269 270 271 2771 273 214 275 ;Lib 277 27/1 279 (2801 (2LI1} 282 203 284 285

I/'j..... 7_6 2131 288 28'J 290 291 292 293 244 295 296 291 Zgtl299 300 301 30Zi303 31)4'(305) 305) 3/17 308 3/19 310

i/I' .... ill .ll,' 313 .114 315 316 317 31_ 319 320 321 322 323 324 325 326 327 3ZLI 329 (3301 (3311 332 333 334 3.15

QI_ .... :tj_ J31 J18 3719 340 341 342 34"] "J44345 346 347 348 349 150 351 352 3571.354 (7155)|.1561357 :158 359 350

i,,':.... It,l 362' J53 7154 31,5 356 357 .168 359 310 371 372 31.1374 375 376 377 378 379 .1_I0]{Jdl) 382 303 384 J115-4_I

• . .; .
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Because of its complexity,the procedure is best introduced

by example, Suppose the rolling moment coefficientis to be
I modeled as

CL = CLo . CLB(d'S°) . CLsZ(S'8°)2 + CL=6 e6TR
TRt

where do is a constant (not necessarily S at t= 0). Let
[

= CLo' ' P3 = CL82' P4 = CLe6
Pl P2 = CL_ TR

= 0, z2 = 8, z2 = Bo, z. = _TR'Zl = _' Zlo O a

Then, Hq. (3.69) is identical to

CL = Pl + Pz(Z2 ZZo ) . P3(Z2- Z2o)2 .P_Zl'3

_ . ).o(z - Z3o)°CL = pl(.1 Zl )o (z2 z2 3
o o

" _O
- . v .. - Z. )

. P2{Zl Zlo)° {z2 "Zo )I <'_ "_o

: . p3{zI . Zlo)O (z2 . Z2o)2 (z._-z._joI o
II o I

+ p4(Zl - Zlo. (Z2 - Z20) (Z3 -Z30)

ba



) nij!
CL = r_ pj _ [I (zi - z. ) Ij=l i-i _o I [

where the erponents nij have appropriate values, i

The form of Eq. <3.72) which emerged in the £bove example

is simi!ar to the general form used Go evaluate each of the thirty-

three coefficients. Specifically, the k-th coefficient is

computedas (

! " I_2 m nij [= Z p _(:.-z. )
Ck J=ZI J i=l l l o !

where I

pj is a parameter which may be identified by the

program, I

zi is an "expansion Variable,"

z. is the reference • value of the i-th expansion I

_o variable, and

nij are integer exponents of the expansion variables.

The exponents and the expansion variable reference values are in-

puts to the program and remain constant throughout the entire run.

The parameters are constant throughout an iteration of the optim-

ization search, but they may vary from one iteration to the next i

if they are identified. The initial values of the parameters are

inputs. The expansionvariablesare functionsof the stateand I
control variables and are evaluated repeatedly by the program.

• 1
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Table 3.3

Expansion Variables

INDEX SYMBOL DESCRIPTION UNITS

1 _ angle-of-attack rad

2 B angle of sideslip• rad

3 p roll rate rad/sec

i 4 q pitch rate rad/sec•5 r yaw rate rad/sec

6 _ collectivepitch rad*

I °•7 BIc lateralcyclic pitch . rad*

8 81s longitudinalcyclic pitch rad*

9. _TR tail rotor col-lectivepitch rad*
10 • _ elevatorangle rad*• e

•I II _a aileron angle . rad*
I

12 _r rudder.angle rad*

13 af.. flaperonangle rad*.
14 u advanceratio N.D.

15 u" longitudinalvelocity (normalized)+ N.D.

16 v" lateralvelocity (normalized) N.D.

17 " w" verticalveloci.tY(normalized) N.D.

! .
Recommendedunits; actual units are determinedby the input
time histories.

u" = u/nR

v" = vl_R
w" = w/_R

3S
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• I
°

As many as five expansion variables may be selected for a I
i

run. Storage and run time constraints make more than five

impractical. All the polynomials describing the coefficients

must be expressed in terms of the same five (or fewer) expansion

variables. The selected variables are specified by input from

the list of 17 possible expansionvariables in Table 3.3. They {
may be chosen in any order, but once chosen, the reference

values and the exponentsmust be input such that they correspond I
I

to the same order. Of course, the units of the referencevalues

must also be consistentwith the units of the corresponding

expansionvariables.

The equations defining the expansionvariablesa, _, and
u are:

a = tan 1

• Z + w2 .[w

u - _R (u cos8R + w sineR)

3.5 PARAMETERS

NLSCIDNT was written with a capacity for 705 parameters for

use in evaluating the equations of motion, the measurment equa-

tions, and the expansion variables <see Table 3.4). This is more

than sufficient for the present model, so not all parameters are

used. Also, some parameters have been reserved for uses which are

not currently implementedbut are easily added if the need arises.

Finally, some parameters may not be identified; for example, the

aircraft mass and the air density may not be identified. I ..
I



Table 3.4

Parameters

INDEX SYMBOL .DESCRIPTION
i

1-400 These parametersare availablefor defining
the polynomialexpansionsof the aerodynamic
coefficients

401 u(O)

402 v(O)

403 w(O)

404 ' p(O)

40S q(O) .

406 r(O)

407 ¢(0)

408 e(O) ..

409 $(0)

411410 _BO(O) .Initialconditionsfor the state•
Ic(0) - > variables "

412• .Bls.(O) , "

413 Bo(O)

4•14 • Blc(O) . -.

415 B1s(O)

416 !o(0) ..

417 ._ic(o)
418 _is(O) _
419. ._R(O) - .. -

420 Co(O)
421 51c(0) ....

422 _ls(O) '

423 _R(O) ,

426 g Gravitationalacceleration(default-

32.174 ft/sec 2)

427 p Air density

428 eR Rotor shaft tilt inX-Z plane, (+).forward
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Table 3.4 (Continued) I

INDEX SYMBOL DESCRIPTION I

429 _ Rotor speed

430 R Rotor radius

431 _ NC/ R

432 y Lock number pacR4/Ib
433 a 2-D lift curve slope

434 m Mass of vehicle

435 xHUB Longitudinaldistanceof rotor hub from
vehicleC.G.

436 zHUB •Verticaldistanceof rotor hub from vehicle
C.G.

437 Ix L

438 ly r
439 Iz I> fuselagemoments ofinertia

(slug-ft2)
440 Ixy I

441 Ixz I "442 .. I ..
yz J

443 Io blade moment of inertia(slug-ft2)

444 IB blade flap moment of inertiaN.D.

445 I_ blade lag moment of inertia N,D.

446 S B
447 S,

448 IB_

449 IB_

450 IB_

451 I_ i inertiaterms - for definitionsee
452 I_ _ page xi, Definitionsof Inertial

453 I_ I Constantsin the final report [lO]

454 I_

455 I_
456 I,

457 I.

458 Nb Number of blades

38 i



Table 3.4 (Continued)

INDEX SYMBOL DESCRIPTION
i

459 _B '

460 _ ' Inertiaterms ..

461 gs i

LongitudinalAccelerometer

470 Rx Noisecovariance

471 bx • Bias " .

472 :kx • " Scalefactorerror .

473 " Xcgx X location

474 Ycgx . Y location. .

475 Zcgx Z location ..

•

LateralAccelerometer "

479 Ry ..Noise•covariance •,

480 by Bias ".

481- ky. Scalefactorerror •

482 Xcgy " X location ,

483 Ycgy Y location.

484 Zcgy.. Z location • •

VerticalAccelerometer

488 Rz Noisecovariance

489 bz Bias " •

490 kz Scalefactorerror

491 Xcgz.. • X location

492 Ycgz Y location

493 Zcgz Z location

39
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Table 3.4 {Continued) I " "

INDEX SYMBOL DESCRIPTION { "

VerticalAccelerometer(Cont'd) I
I

494

495

Roll Angular Accelerometer

497 R_ Noise covariance

498 b_ Bias

499 k_ •Scale factor error

Pitch AngularAccelerometer

503 R_ Noise covariance "

504 b_ Bias ,

505 k_ Scale factor error

!

-' {

Yaw An_ular Accelerometer

509 R_ Noise covariance

510 b_ . Bias "

511 k_ Scale factor error •

Roll•RateGyro I

515 Rp Noise covariance

516 bp Bias
517 k Scale factor error

p

I

j

4O

I



Table 3.4 (Continued)

INDEX SYMBOL DESCRIPTION

Pitch Rate Gyro

521 Rq Noise covariance

522 bq Bias

523 kq Scale factor error

I Yaw Rate Gxro , •

527 Rr . _ Noise covariance

I 528 .br Bias
529 kr Scale factor error

Roll PositionGyro,

533' R@ Noise covariance

534 b_. Bias. ....

535 k¢ Scale factor error

I Pitch PositionGyro

539 RB Noise covariance

540 bB Bias

541 kB Scale factor error

41
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Table 3.4 (Continued)

INDEX SYMBOL DESCRIPTION •

Yaw Position Gyro .I

545 R_ Noise covariance

546 b_ Bias I

547 .k£_ Scale factor error

548 I
549

Angle-of-AttackVane

551 R Noise covariance

552 . b Bias

553 ks Scale factor error

554 x X location Icg_

555 Ycg_ Y location

556 Zcg_ Z location I '
557

Sideslip Vane I
558 .RB Noise covariance

559 bB Bias

560 kB Scale factor error I

561 .XcgB X location

562 YcgB Y location
563 z Z location

cgB
564

Pitot Tube

565 RVT Noise covariance

566 bVT Bias

567 kVT ,Scalefactor error " •

I .,568 xVT X location

569 YVT Y location

570 zVT Z location
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Table 3.4 (Continued)

I INDEX SYMBOL DESCRIPTION

Pitot Tube (Cont'd)

571 Po Referenceair density

I 572 ' vs Velocityof sound

LongitudinalVelocityMeasurement

574 R Noise covariance
u

575 bu Bias ._.
576 • k Scale factor error

U

I " ., Lateral.Velocity.Measurement

-578 Rv Noisecovariance

I . 579 bv Bias
580 kv. . Scale factor error ....

_ Vertical Velocity.Measurement

582 " Rw. Noise covariance •

I •583 b w Bias .

584 kw Scale factor.error
585 ..

586 Rref Horizontalreference distance

588 Zref Vertical reference distance

. Rotor LongitudinalForce Measurement

590 RXR Noise covariance

591 bxR Bias

592 kxR Scale factor error

_3



Table 3.4 (Continued)

INDEX SYMBOL DESCRIPTION
!

Rotor Lateral Force Measurement I

594 RyR Noise covariance I

595 byR Bias I

596 • ky R Scale factor error

I "
Rotor Vertical Force Measurement

598. RZR Noise covariance

599 bzR Bias

600 kzR Scale factor error

Rotor Roll Moment Measurement

602 RLR Noise covariance

603 bLR Bias

604 kLR Scale factor error ..

Rotor Pitch Moment Measurement

606 RMR' Noise covariance

607 bMR Bias

608 kMR Scale factor error

Rotor.YawMoment MeasUrement I

610 RNR Noise covariance

611 bNR Bias i
612 kNR Scale factor error

I
614 @I Euler angle

615 4@ Increment I
616 81 Euler angle .

617 _e Increment .. t
{



Table 3.4 (Continued)

INDEX SYMBOL DESCRIPTION

618 Bo ref

619 Blc ref Blade flapping

620 Bls ref

Blade I FlappingMeasurement

622 RB1 . Noise covariance

623 bB1 Bias

624 kB1 Scale factor error

Blade 2 .FlappingMeasurement

626 RB2 ,_ Noise covariance
627 bB2 Bias

628 kB2 Scale factor error-

.. ., Blade 3 Flappin9 Measurement

630 . RB3 ' Noise covariance

631 bB3 Bias. "

632 kB3 Scale-factorerror
t

Blade 4 FlappingMeasurement

634 RB4 Noise covariance

635 bB4 Bias

636 kB4 Scale factor error

Blade .5FlappingMeasurement

638 RB5 Noise covariance

639 bB5 _ Bias

640 kB5 Scale factor error

45
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Table 3.4 (Continued)

• , 1
INDEX SYMBOL DESCRIPTION "

i

Blade 6 FlappingMeasurement I

642 RB6 Noise covariance

643 bB6 Bias (

644 kB6 Scale factor error !

645 I
Blade 7 Flappin9 Measurement

646 RB7. Noise covariance

647 bB7 .Bias

648 kB7 Scale factor error
649

650 _o ref

651 _ic ref Lag references

652 _is ref.
653

Blade 1La 9 Measurement

654" R_I •Noisecovariance

655 b_l Bias

656 k_l Scale factor error.
657

Blade 2 Lag Measurement

658 R_2 Noise covariance "

659 b_2 Bias

660 k_2 " Scale factor error
661

Blade 3 La9 Measurement

662 R_3 Noise covariance
663 b Bias

_3

664 k_3 Scale factor error
665

46
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. Table 3.4 (Continued)

INDEX SYMBOL DESCRIPTION

Blade 4 La9 Measurement
666 R_4 Noise covariance

667 b_4 Bias

I 668 k_4. Scale factor error
669

. .Blade 5 Lag Measurement

. .. 670 _ R_5 Noise covariance

. 671 b_5 • . ..Bias

672 k_5 .Scale factorerror

I 673 • Blade 6 La9 Measurement

l 674 R_6 Noise covariance __675 b_6 Bias- "

676 k_6. Scale factorerror• ..

I 677
. Blade 7 Lag Measurement.

•I. 678 R_7. Noise covariance ,
679 b_7 " • •Bias

680 k_7 Scale factor error "
681

•I • 682 RS_R .iNoisecovariance

683 ks_R Scale factor error•I • 684 b Bias
R

I. 685

I



l
Table 3.4 (Continued)

I
%

INDEX SYMBOL DESCRIPTION

l
686 RS_R Scale factor error

687 ks_R Bias

688 bs_R Noise covariance
689

701 .Zlo Referencevalu_for expansionvariable z1

702 Z2o Referencevalu_ for expansionvariable z2

703 Z3o ReferenceValu_ for expansionvariable z3

704 z4 Referencevalu_ for expansionvariablez40

705 ZSo Referencevalu_ for expansionvariablez5

-* (bias)

48
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Generally, most of the parameters which are identified in

a run are those used in forming the polynomial expansions ofthe aerodynamic coefficients. Parameters i through 400 are

reserved for this purpose. However. the user should always

use the low end of this range, when all locations are not

needed, as this will reduce the run time. Chapter IV will

I explain more expansions are accomplished.
in detail how these

I

I

I

i
I
I
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CHAPTER IV

I PROGRAM INPUT

Two forms of input are used by the NLSCIDNT program. Infor-

mation about the parameters and the selection of various options
are read from cards. The time histories of the measurements and

controls are read from a mass storage device, such as magnetic

I tape or disk.

I 4.1 CARD INPUT

j All data cards are read by subroutine INPUT. The forms of the
input fall into several types, which are listed in Table 4.1.

j The input sequence is as fol!ows:
(i) One card of type l. The informationon this card is

i printed at the top of every page of printout.0 (2) One card of type 2. For an explanationof "outer" and
"inner" iterations,see Section 5.2.2. A "prediction

I run" is one in which the trajectoryis simulatedusingthe control input time historiesand input parameter
Yalues; no identificationis attempted.

(3) One card of type 3. This-card sets various option
flags. If IPL@T = 2 or 3, the user must provide a
tape on logical unit 3 (see Section 5.3).

(4) Two or more cards of type 4. These cards tell the pro-
gram which states are to be integrated from the equa-
tions of motion, which states are to be looked up from
an input time history, which measurements are used and
their order, and which expansion variables are used and
their order. If no states are to be looked-up, then a
card beginning with "READ" is not necessary. Any state
variable whose value does not appear on a "STATES" or
"READ" card will automaticallybe held constant by the
program at its initial value, which is one of the input
parameters. These cards may appear in any order except
the "*" card must be last.

49
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Table 4.1

Input Card Types [

I

CARD VARIABLE I
TYPE COLUMNS FORMAT NAME DESCRIPTION 1

1 1-60 15A4 TITLE Program identificationinformation. I
' ' I

2 4-5 I2 KIMAX Maximumnumber of outer iterations

•> O, normally 1
= O, predictionrun

. =-1, only Oth iterationwill be
computed (usuallyselected
for diagnosticpurposesonly)

9-10 12 K2MAX Maximumnumber of inner iterations

> O, normally

= O, predictionrun

12-15 I4 NN Number of data sample points (_ 501)

16-25 E10.3 DELTA Time intervalbetween sample points
of the time history,data (in sec.)

26-35 EI0.3 RELERI Re!ativeerror bound for _ and

Bx/@e allowedinintegration algo-

rithm (defaultsto 10"5).

36-45. ' EI0.3 ABSER1 Absolute error bound (defaultsto

1.7x 10"4).

45-65 E10.3 FMARQ Initialvalue of.Marquardtpara-
meter (Defaultsto l.)

56-65 E10.3 XMARQ Factor by which the Marquardtpara-
meter will be increasedor decreased
as search proceeds. (Defaultsto 2.)

66-70 15 LLL =1, the Marquardtparameteris com-
puted as the currentvalue of.
FMARQ times the largestelement
of the gradient (BJ/BB).

=0, the Marquardtparameteris
FMARQ.

SO
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Table 4.1 (Continued)

i

CARD COLUMNS FORMAT VARIABLE DESCRIPTION
TYPE NAME

.I
3 5 II IPL_T =3, if both printerplots and a tape

i storingthe time historydata.. are to be made

=2, if only the tape is to be made

=I, if only the printerplots are to
be made

=0, if neither

I i0 11 IPLTC =1, if printerpiots of control
input time historiesare to be

I ' made
=0, if not

•: (IPLTCisignored if IPL_T = 0 or2)

12-15 14 IDATA .=+k,then thefirst k sample points
of the measurementand control
time historiesread into the

.. programwi.llbe printed•

=-k, then every kth sample.point
• will be printed •

= O, if they are not to be printed

I 20 11 IPRNT. Sets level of detail of thediag-
• nostic printout (seeSection 4.2)

i . =3, highestlevel=2, medium level
•- =1, lowest level

=0, normal printoutonly

22-25 14 INCPR2 .=k, if R, @R/@e,Y, @Y/BO, and y are
to be printedevery kth sample
point

26-30 INCPR3 Defaultvalue is 50. INCPR3 is ig-
nored if IPRNT < 3.

33-35 13 INCPLT =k, every kth data point is plotted
in the printerplots (default
=1)
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Table 4.1 CContinued)

CARD COLUMNS FORMAT VARIABLE DESCRIPTION
TYPE NAME I

J

3 40 11 IINFB =1, a priori informationmatrix is

to be read i
I

=0, a priori informationmatrix is
not to be read but assumedzero

^ I45 II IRCMP =0, estimatednoise covariance,R,
to be computedas the diagonal

" of the innovationscovariance !

(see AppendixA) [

=1, R computed from parameters

50 11 IRVARY =i, R is assumednonstationary(it I\
• is a functionof time which user

mustcode into subroutineMEAS).

=1, R is assumed stationary(con.... I
stant throughoutan iteration).

52-55 14 MAXNM1 Maximumnumber of integrationsteps
• .permittedin one sample interval.

56_60 15 MCYCLE If non-zero,it is the number of
parametersto be identifiedon this
run.

61-65 i5 ILVLI Flagto use linearizedstate and
measurementequationsif _ O.

4 .1-i0 A8,2X LTYPE = STATES, if the card lists the input
names of states.whichare to be
integrated•

= READ, if the card lists the input
.. •namesof the states which will

be looked-upfrom input time
•histories. I

= MEASURE, if the card lists the
input names of the measurement

variables I
= EXP VARS, if the card lists the

input names of the expansion o

variables I
=.*b, if no more cards of this type

are to be read ("b" indicates

a blank). I
Note that only the first two charac- ..
ters are actually read; these words
must be left justified. I "

I
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Table 4.1 CContinued)

CARD COLUMNS FORMAT VARIABLE
TYPE NAME DESCRIPTION

i

4 11-80 14(A3,2X) (LL(J), Input names of state,measurement,
J=1,14) or expansionvariablesas listed in

Table.4.2. Note that only the first
three charactersare actually read;
these words must be left justified.
Blank words may appear between input
names.

I . ..5 1 A1 ECHK = blank, if this card containspara-
• meter information

= *, if no more cards of this type
.... are to be read

2-4 13 " Jl Parameterindex (see Table 3.4)

[ .5 AI. J2 = *, if t_is parameteris to be
• identified

I "= blank, if not "

6-:11 A6 PLABJ1 Label for the parameterforprintout

I ,
purposes•

• 12-29 DI8.0 PJI Initialvalue of the parameter

. 31-32 13 II(1) =k, this parameterappears inthe
polynomialexpansionof the kth

• aero coefficient(seeTable 3.2),

i • Ignoredif Jl > 400.
I

34-38 511 II(J), Exponents of.the expansionvariables

I J=2,...,6 in the aero coefficientpolynomial.
term containingthis parameter.

51-60 DIO.O PLJI Lower bound of the parameter.•

61-70 DIO.O PUJ1 Upper bound of the parameter•. (If
both PLJ1 = 0 and PUJI =.0, then,

PLJI defaultsto -102•7 and PUJ1 de-

, faults to +1027).

$3
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Table 4.1 (Continued)

1
CARD COLUMNS FORMAT VARIABLE DESCRIPTION
TYPE NAME l

I
6 1-80 8F10.0 INF_(J,K) Jth row of the a priori information

K=l,...,m matrix; continueon anothercard if
necessary (m = number of parameters I
being identified).

i

• I7 I AI JA = T, the label which followson this
card is for time (the indepen-
dent variable)

" = Y, the label is for a measurement
•variable

= U, the label is for a control I
variable I

= X, the label is for a state vari-
able (only look-upstates are I
affected) . (

3-4 12 J The index numberof the variable..
If JA = T, then J is ignored. I

7-30 6A4 NAME A label of six 4-characterwords.
Usuallythe variablename appears in
the first 3 words and its units in
the last 3 words.

j • .

i

J
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l
(5) Asmany cards of type S as needed to input a!l informa-

l tion about the parameters; each card describes one para-meter. If a parameter is zero and is not identified,
no card need be inserted for it. A card with "*" in

i column 1 tells the program that all cards of this typehavebeen read. The system of units for the parameter
values is feet, pounds, slugs, seconds, and radians
or meters, newtons, kilograms,seconds, and radians.

It is the responsibilityof the user to maintain
con-

sistentunits throughout.

(63 Cards of type 6 are read only if IINF@= 1 on card type
3. These cards are used to read the a priori information
matrix. This matrix must be m xm, where m is the
number of parameters being identified. Furthermore,
the order of the rows and columns must correspond to the
order of the identifiedparameters as listed in the
cards of type 5. The matrix is read by rows; each row
begins on a new card and continues on more cards as
needed.

(7) As many cards of,type 7 as needed to alter the labelsof time, measurements,and controls in the printout and
printer plots of the-_ime histories. These labels
default to the output labels listedin Table 4.2. There-
fore, the mos_ common use of these cards is to change the
units shown in the labels. If none of'the labels need
altering, then no cards of type 7 are necessary.

4.2 EXAMPLE INPUT DECK

As an illustrationof the card input, consider the following
example. The data processedwere simulatedfrom a rotorcraftin

level flight at i00 knots at sea level. Longitudinalcyclic pitch

control inputs excited the longitudinaldynamics. However, some

i perturbationsin the lateral dynamicswere observedand of enough
significancethat they could not be neglected. A NLSCIDNT run

was made to identifythree aerodynamicderivatives.

Figure 4.1 shows the input card deck for this example run.
i The first card containsthe title of the run. The second card[

specifiesone outer iteration,a maximum of four inner iterations

permitted, that there are 101 sample points, and that 0.02 second
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Table 4.2

Input Names and Output Labels of Program Variables I

SYMBOL INPUT
OUTPUT LABEL2 !NAMEI

TIME t --- TIME !SECONDS) I

• . u U LONGIT VEL (MiSEC) _ "

v V LATERAL.VEL (M/SEC) I
Iw W VERTICALVEL (M/SEC)

P P ROLLRATE (RAD/SEC) I

q L PITCH RATE• (P_AD/SEC) I

r R YAWRATE (RADiSEC)

PHI ROLLANGLE (RAD)
S

9 THET PITCH ANGLE (RAD)
T

PSI YAWANGLE (RAD)

a 8o BOB BETAD_T (RAD/SEC)

T Blc BCD BETAIc DBT (RAD/SEC)

E Bls. BSD BETA Is D_T (RAD/SEC) 1

S B0 _BO BETA 0 . (RAD) {
Blc BC BETA Ic (RAD) I

Bls BS BETA Is (RAD)

_o ZOD ZETA0 D_T. (RAD)

_Ic ZCD .ZETA Ic DOT (RAD/SEC)

_Is ZSD ZETA Is D_T (RAD/SEC) I
ms .OME . OMEGA PERT. (RAD/SEC)

to ZO ZETA 0 (RAD)

Elc. ZC ZETA Ic (RAD)

:Is ZS ZETA Is (RAD)

_s RSP PSI-S PERT (P_AD)

f

56



I . •

Table 4.2 Continued)

SYMBOL INPUT OUTPUT LABEL2
NAMEI

I aX X •AXIALACC (M/SEC**2)

• ay AY LAT.ACC (M/SEC**2)

I M ax AZ VERT ACC (M/SEC**2)

E ' Pm PD ROLL ACC (RAD/SEC**2)

I A " qm QD PITCH ACC (RAD/SEC**2)
r RD YAW ACC (RAD/SEC**2)

S m --

I. Pm _ ROLL RATE .(RAD/SEC**2)
U qm _ PITCH RATE (RAD/SEC**2)

r R YAW RATE (RAD/SEC**2)• R m -

Cm PHI ROLL ANG (RADIANS).

E em .ITHE PITCH ANG (RADIANS)

I M -_m PSI _YAW ANG (RADIANS).

• •E._. .. am. ALP,. ALPHA " (RADIANS) .

I Bm .BET BETA (RADIANS)
N •Vm VEL TOTALVELOCITY (M/SEC)

{ T um ,_ 'LONG VEL (M/SEC)

l S vm _ LATVEL (M/SEC)
w W .VERT VEL (M/SEC)

i m -XR ROTOR LONG FORCE (N)

• YR -ROTORLAT FORCE (N)
YRm . ..

ZRm ZR ROTOR VERT FORCE (N)
LR ROTOR ROLL MOMENT (N_M)

LRm --

MRm MR ROTOR PITCH MOMENT.(N-M)

NR ROTOR YAW MOMENT (N-M)
I NRm . --

•BI FLAP ANGLE-BLADE1 (RAD)

} Blm --

B2m B2 FLAP ANGLE-BLADE2 (RAD)

B3 B3 FLAP ANGLE-BLADE3 (RAD)
m

37



I

1
I •Table 4.2 (Continued)

sYMBOL INPUT INAMEi OUTPUTLABEL2

B4 B4 FLAPANGLE-BLADE4 (RAD) {m

B5 B5 FLAPANGLE-BLADE5 (RAD) :

M m -- • I •
E B6m B6 FLAPANGLE-BLADE6 (RAD)

87 B7 FLAPANGLE-BLADE7 (RAD) I ". A m --

S

_l Z1 LAGANGLE-BLADEl (RAD) iU m
Z2 LAG ANGLE-BLADE2 (RAD)

•R _2m
Z3 LAGANGLE-BLADE3 (RAD)

E _3m
_4 Z4 LAGANGLE'BLADE4 (RAD) :

M m I "
_5m Z._55 LAGANGLE-BLADE5 (RAD) .

E

N -_6m Z._.66 LAG ANGLE-BLADE6 (RAD) } .,
_7 Z_Z7 LAG ANGLE-BLADE7 (RAg)

T m

S (cos_pR)m COS COS ROTORAZIMUTH (RAD)

(sinVJR)m SIN SIN ROTORAZIMUTH• (RAD)

I •
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Table 4.2 (Continued)

INPUT
SYMBOL NAMEI OUTPUTLABEL2

e TO COLLPITCH (RADIANS)
C o

0 elc TC. LAT CY PITCH(RADIANS)

N els TS LON CY PITCH(RADIANS)
T

R 6TR DTR TAIL.COLL. (RADIANS) ..

•0 ae DE ELEVATOR (RADIANS)

•L _a . DA AILERON (RADIANS).
S

6r DR RUDDER• (RADIANS)

•DF FLAPERON (RADIANS)6f
i

c_ ,ALPH. " ALPHA ..

E V B " BETA • BETA

X A p. " : P ROLLRATE

. P R q- L PITCH RATE .
AI

J NA • r R YAW RATE .
S B eo TO COLLECTIVE

I L ' TC LAT•CYCLIC• elI OE c

N S Ols TS_ LONGCYCLIC

CSTR DTR TAILROTOR

6 DE ELEVATORe

- 6 DA AILERON
a.

DR RUDDER

(Sf DF FLAPERON
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Table 4.2 (Concluded) I

SYMBOL INPUT INAMEI OUTPUT LABEL2

E V _ MU MU
XA

P R u U u (NORM)
AI - .-

N A v _V v (NORM)
SB
I L w W w (NORM) I
OE IN S

I

f
IThe underlinedcharactersof the input name are I
what the program actuallyreads.

I

2"MS" in the measurementlabels indicatesthe I
measured quantity;"ES" appears insteadin the
label to indicatethe estimatedquantity.

1

I
i
I

.
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I . .

Iis the sample interval. The third card asks for prlnter plots,

for the first ii sample points of the input time histories to

be printed, for the highest (third) level of diagnostic print- I
out at intervals of 25 sample points, and for the second level [

of diagnosticprintout at intervalsof 25 samplepoints. It l
also specifiesthat an a priori informationmatrix is not to be I

read, that the noise covariance R be computed flom the para-
meters, and that R is constant with respect to time. The

maximum allowablenumber of integrationsteps per sample :_
intervalis set to default to 50. i_

The fourth card tells theprogram which states are to be

integrated. The states which do not appear in the fourth card
will be held constant at their initialvalues. The fifth card

tells which states are to be read in from the test data.

Thesixth card specifies the measurementsavailable to the

run and their order. The seventh card indicates'theexpansion '
variables.

The first 21 parameters (specifiedoncards 9 through 42) "

are used in the expansionsof the aero coefficientswhich appear
in the equations of motion.

The parameterswhich are to be identifiedare P(9), P(20)
and P(21). P(16) is bounded such that the identifiedvalue

will not be permitted to become positive.

Cards 43 to 45 contain the a priori informationmatrix_.
Cards 46 to 47 give new labels to time and €

f

I
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4.3 MASS STORAGEINPUTl

The time historiesof the measurements,controls,and states

which are looked-up rather than integrated or fixed are read by

subroutine INREAD. The subroutine INREAD supplied with the pro-

gram assumes these data are stored on a mass storage device [tape,
disk, etc.)ireferenced by F_RTRAN logical unit 2 and read by an

unformattedREAD Statement:

D# I0 K=I,NNi0 P_EAD(2,END=900)T(K),(Y(J,K),J=I,NP),(U<J,K),J=I,NQR)

•( where
NN = number of sample points,

T(K) = the time at the K_th samplepoint,

I Y(J,K) = value of the J-th measurement at the K-th
sample point,

I NP = number of measurement variables used in
I

the run,

U(J,K) = value of the J-th control variable or a

state variable at the K-th sample time,

NQR = number of control variables (4) plus the

number of look-up states (those not inte-

I grated or fixed)

• T, U, and Y are single precision arrays.

I
I
t
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The user must ensure that the timehistory data conform to
these rules:

(i) The order of the measurements must be the same as their
: specified order in the card input (card type 4 in

Table 4.1).

(2) The controls must always be in the order of:

• collectivepitch • elevator
• lateral cyclic pitch • aileron
• longitudinalcyclic pitch • rudder
• tail rotor pitch • spoiler

(asthey appear in Table 3.1); each must be included,
even if it is always zero.

(3) Look-up state variables must be appended as if they
were additional controls. Their order must be the [ .
same as their specified order in the card input (card I
type 4 in Table•4.1).

• I(4) No more than four look:up states are permitted.

For the example run described in. Section 4.2, the k-th logi- l
cal record of the time history data must be: I

t k, ay(tk), _m.(tk ), Pm(tk ), rm(tk), Cm(tk ), Oe(tk ),

_aCtk ), 8r.(tk), _spCtk ), WCtk), qCtk), 8(t k)

The user will almost certainlyhave to rearrange his data to

conform to the structure required by this subroutine. If he

believes he will process the same data repeatedly, it would be
worthwhile to perform this rearrangementonce before the first

NLSCIDNT run and take advantage of the efficiency of this INREAD.

However, if the data will be processed only a very few times, he

may chooseinstead to•write his own subroutine INREAD, which

will accept the data in their original form. Figure 4.2 shows•

the source code of the INREAD subroutine supplied with:the pro-
_ram, which may serve as a model for the user's own.
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V. PROGRAM OUTPUT

Most of the program'soutput is written by the printer, in-

cluding optionalplots. The program also has an option for writing
data on a mass storage device, which gives the user the information

necessary to make off-line,pen-and-inkplots (e.g.Calcomp plots).

5.1 PRINTED OUTPUT

The informationprinted by the program falls into six classi-

fications. Not all classificationsmay appear since the user has

considerablecontrol over the detail of the printout through his
selectionof various options on input card type 3. The six classes
are:

(I) repetitionof the inputs to the program,

(2) informationon the integrationof the differential
equations,

(3) informationon the Levenberg_Marquardtiterativesearch,

(4) informationon the steps taken in the identifiedpara-
meters and their error standard deviations,

(5) the final parameter estimates (alwaysgiven), and
(6) printer plots showing: (a) the fit of the estimated .....

i measurementsto the actualmeasurements (IPLOT= 1 or 3),and (b) the control time histories (IPLTC= i)|

5.1.1 Example of Printed Output

Figure 5.I consists of selectedpages from the printout of
the same example run whose input was discussedin Section 4.2.

It contains examplesof all the availableprinted output.

The informationin Figure 5.1a is a repetitionof the input
and is self-explanatoryexcept for the flag arrays. ISFLAG(J)
contains: 0 if the jth state variable will be fixed to its initial
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value, +k to indicateit is the kth elementin the vectorof

state variables to be integrated, and -k to indicate it is the

kth element in the vector of look-up states. NSFLAG contains

the indices of the states to be integrated. NMFLAG contains the

indices of the measurement variables used in the run. NZFLAG

contains the indices of the expansion variables used in the run.

NZFLAG(1) will default to 1 if no expansion variables are used.

Figure 5.1(b) shows the parameter input information. If a

parameter does not appear in the list, its value is zero and it is

not identified. Figure 5.I(c) presents a sample of the input

time history data, Only the first ii sample points were printed

because IDATA was set to II by the input deck (refer to card type 3
in Table 4.1 and Figure 4.1).

The CV matrix in Figure 5.1d is

Yi
N

i=l ui z

XLi

i where

i Yi = measurement vector at t= t.i,
• = controlvectorat t= ti,Ul

I XLi = vector of look-up states at t = ti,
N = total number of sample points.

Eleven elements are zero because all controls except longitudinal

cyclic pitch are zero for all N points and because the four
look-up states are not used.

The IU array contains the indices of non-zero control

variables. Look-up states would be treated as additional controls.
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The initial noise covariancematrix, R, is also printed in
Figure 5.1(d). Because none of the instrumentnoise covariances

were specified by the input deck, each of the diagonal elements
of R was approximatedas

N

Rjj - 0.0SN i=IZ [Yj (ti)]2 (5.2)

That is, the variance of the nolse in the jth instrument is

approximated as 5% of the variance in the instrument's signa!.

Informationon the integrationof the state and sensitivity
differentialequations for the zero-th iteration of the Newton-

I Raphson search begins in Figure 5.1e. A "matrix" of initial con-

ditions appears in this figure. The first column is the initial

I condition of the x vector (estimatedstates). This column has
length four because only four of the nine states are being inte-

I grated. The Second column is the initial condition of @x/_l'i.e., the sensitivity of the estimated states to the first identi-

fied parameter, which is P(9) in the example. The third column
A

is the initia! condition of ax/ae2, etc. The second and succeed-
ing columns should always be zero unless the initia! conditions

of the states are among the identifiedparameters.

The four groups of values printed between the first line of

dashes and the line of stars in Figure 5.1e are intermediate
resul_s in computing the time derivativesof x and ax!_e. First

time (T) and the expansion variables (Z) at that time are printed.
In the example, there are two expansionvariables. Next is the

u-vector showing the controls and look-up states (appendedas addi-
tional controls) at time T. The four normal controls are zero.

The first look-up state, x(3) £ w, equals 9.4202. The second
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I

I and third look-up states, x(5) --q and x(8) --e, are zero. i

potential fourth look-up state is printed, even though it is not

I defined.

The x-vector printed next is the nine-element state vector.

I For example, x(1) --u - 179.75 and x(3) - w = 9.4202. Next are
printed a series of terms which appear in the equations of motion.

V=V

b

[ BVP= p
m

C

CBVQ = _ q

QD - oV__ - q_

qs- m

QB = q_Sb

J
Q¢ = q_S_

r
BVR = _ r (S.3)

The 33 aerodynamiccoefficients (C) are printedin orderacross

the page; hence, C(II) _ Cy_ = 0 3468 Last in this group appearr " "

the time derivatives of the state variables being integrated, DXI.

In this example, there are four: v, p, r, and _.

The second group contains information on sensitivities with

I respectto the firstidentifiedparameter,which is PC9) £ C£p.
" Time is repeatedand followedby ZTH,the partialderivativesof

expansion variables with respect to P(9). Next are the partial

derivativesof the quantities defined in Eqs (5.3). The partial

75



I

derivativesof the aero coefficientsare "DC." Note that I
DC(19) = 1 because C(19) = C£p = P(9). Last in this group is

DXTHI,which is d[ax/aP(9)]/dtfor the four integratedstate ivariables.

Groupsthreeand four are similarto group two exceptthat i
all partial derivatives are with respect to P(20) and P(21),

l

the second and third identifiedparameters, respectively. Note I
specifically that at T = 0, DC(17) = 0 in both groups three and I

four,even though I
!

" - 3
C(I/)= P(7) . P(20)(Z2-Z2o)I . P(21)(Z2 ZZo)

3
= P(7) + P(20)_sp+ P(21)_sp (5.4)

This is becausethe partialderivativeof C(17) with respectto
either P(20) or P(21) is zero when 6 = 0, which it does {

SD there.

The info._nn,ation printed between the line of stars and the I

second line of dashes in Figure 5.1e shows the results of the in-
I

tegration at the j-th sample point. In this instance, j = I. I
I

In the middle of the line of stars in Figure 5.1e is printed

KOUNT, which is a running tota! of the number of times subroutine I

STEP has been called. This is approximately the number of times

+4

I

the states' and sensitivities' time derivatives have been computed.

More will be said of its importancein ChapterVI. 1

Next is "XHAT(1)" which is the vector of integrated states ,,
I

and their sensitivities with respect to the identified parameters

at the (in this case) first sample point (tI = 0). They appear
in the order

^ I
xl' _-' _s' _4, a._ ael, a /ael, a ae!, ael,

,%

axl/ae 2, ..., a_4/ass



They are followed by "YHAT", the measurement estimates and theirsensitivities with respect to the identified parameters in similar

order. "Y-VECTOR" is the vector of actual measurements at the

same time.

i As the integration proceeds, the groups shown in Figure 5.1eare repeated at intervals specified by the program's input. These

pages are omitted from the figure to save space. Figure 5.1f has

I "the very end of this stream of information at its top.

The RCNP matrix is printed next. Its diagonal elements are

computed as

N

= _ E [YiCtj),YiCtj)]2RCMPi,i N j=l (5.5)

I
These are the variances of the errors between the actual and the

I measurements; a measure of the good-
estimated and, therefore, are

hess of the fit. Also, it is the best estimate of the measurement

i noise covariance (see Appendix A).

Figure 5.1gpresents the results of the zero-th (i.e., initial)

iteration of the Newton-Raphson search. The DJ vector is the

partial of J, the negative !og-likelihood cOSt function, with

• respect to the three identified parameters. The D2J matrix is

_2J/_ej_e k matrix. Also printed are its inverse, its eigen-
the

values, and its eigenvectors. The significance of the number of

"eigenvalues effecting a full-sized step" will be deferred to

Chapter VI.

Next are printed the values of the parameter estimates, the

lower bounds on the error standard deviations of these estimated

• values, and their F values, which are the ratios of the squares

of the parameter values to the squares of their respective standard

deviations. The value of the likelihood function and the length

of the gradient are printed. Of course, it is the likelihood func-

tion that the program is seeking to minimize, and the length of
the gradient will be zero at a minimum.
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At the top of Figure S.lhare the "new parameter values"

•found by adding the "step" to the "parameter values" printed I
earlier. These new parameter values are presumed to result in a

value of the likelihood function less than the one obtained for 1this iteration, and they are the parameter values whichwill be

used at the beginning of the next iteration. "Normalized step"

is the ratioof thestep vector to the parameter values in Figure I

5.1g, except that division by a zero parameter value is replaced by

division by one. This ratio tells at a glance the relative size 1
of the step, and it will decrease as a minimum is approached.

R is the measurement noise covariancewhich will be used

in the next iteration. What follows it is actually part of the

next iteration and parallels the printout of Figure S.le.

This example run was al!owed only one iteration and, there-

fore, the parameter search did not converge. Thus, the message

"maximum number of iterationsexceeded" appears in Figure 5.1j.
The matrix A is the sum of the a priori informationmatrlx,

Map, and the informationmatrix from the last iteration, _Ilast.
The vector B .is the sum

B = Map Po . Mlast Plast (5.6) I
where

Po = the initial (input) values of the identified
parameters, and

Plast = the values of these parameters used in the last 1

iteration (not the last "new parameter values")

Finally, (

l
PSTAR A-IB

= = (Map+Mlast)"I }(MapPo _ MlastPlast) (5.7)

}
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which is the vector of the optimal parameter estimateswhich com-

bine the informationobtained from this run and the information I
known a priori. Of course, to be valid this run should have

I

been allowed to converge. A, B, and PSTAR will not be printed I
if the a priori informationmatrix is zero. I

Next are printed plots of the actual and estimated measure- )
ment time histories and the control time histories. Figure .5.1k

l

is an example of the measurement plots and Figure 5.1£of the [
control plots. In the measurementplots, "A" is always printed I
for the actual measurement and "B" for the estimatedmeasurement.

Control variables are plotted two to a graph; and, again, look-up I
states are treated as additional controls.

I
5.1.2 Printout Control

In most cases, the detail of the printout is controlled by

the flag IP_NT in card type 3 of Table 4.1. For normal production I
runs this flag is set to zero, and the printout is shortened to I

essentia! results of each Newton-Raphson iteration. Setting
iP_NT = i, 2, or 3 results in increasingly greater detail of [

diagnostic information, as explained in Table 5.1.

Setting IP_NT = l results mainly in added information regard-

ing the computation of the parameter step in each iteration.

Setting IP_NT = 2 results mainly in the printing of _, _x/a_,

y, and _y/a% as the trajectory is integrated for each iteration.
Finally, setting IPRNT = 3 results in detailed informationon the
trajectoryintegration.

5.2 _SS STORAGE OUTPUT

An option is provided to write on mass storage: (a) the last

vector of identified parameters, (b) the last information matrix,
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Table 5.1

Printed InformationControlled by IPP_NTFlag

FLAG VALUE INFORMATIONPRINTED COMMENTS

' IPRNT= 0 I. Card input data repeated Only parametersmentioned

I in the input deck areprinted under "Initial
' ParameterValues." The

a priori informationmatrix

I printed only if it is
is
non-zero.

2. For each iterationof the Newton-

I. Raphson search:
a. Parametervalues at start of

iteration

b. Parameters'standard devia-
tions

c. Parameters'F-values
( d. Value of negative log likeli-
( hood function,J

e. Length of first gradient of J

I f.-Newparameter estimatesg. Parameter steps
h. Innovationcovariance (RCMP)

I 3. Final combined parameterset Only if a priori informa-(PSTAR) tion is non-zero

= 1 Same as for IPRNT=O plus:
" I pRN T

1. Values in ISFLAG,NSFLAG, NMFLAG, These arrays described in

NZFLAG, and IU arrays Section 5.l.l
2. CV matrix Described in Section 5.1.1

3. InitialR matrix

4. For each iterationof the Newton-
Raphson search:

a..First gradientof J (DJ)
. b. Second gradient of J (DZJ)

c. Eigenvaluesand eigenvectors Significancedescribed

of (D2J)-1 and number of in Chapter VI
eigenvalueseffectinga full-
sized step

5. Combined informationmatrix (A) Only if a priori informa-
tion matrix is non-zero.
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Table 5.1 CContinued)

I.
.FLAGVALUE INFORMATIONPRINTED COMMENTS I

I

IPRNT:2 Sameas for IPRNT= I plus for each
iterationof the Newton-Raphson I
search: l
a. Statesand theirsensitivityesti- I Printedfor the first !

mates (XHAT) _ 4 samplepointsand for Ib. Measurementsand theirsensitivity
estimates(YHAT) ( every(INCPR2)-th

c. Actualmeasurements(Y-VECTOR)) samplepoint I
d.

Numberof callsto subroutines Significancedescribedin I
STEP,CBEF,AND DCBEF SectionVI.

e. Inverseof D2J matrix

[
IPRNT:3 Same as for IPRNT:2 plus for each

iterationof the Newton-Raphson {
search: I
a..Initialconditionsof statesand

theirsensitivities
b. Time and valuesof expansion \

variables(T and Z)
c. Controlvectorincludinglook-up i

states(U-VECTOR)
d. Nine-elementstatevector

(X-VECTOR) Printedfor the first
e. Valuesof V, BVP,CBVQ,QD, QS, , 3 samplepointsand for

QC, BVP,BVR ! every(INCPR3)-th

f..Aero coefficients(C) samplepoint
g. Time derivativesof integrated

states(DXI)
h. Partialderivativesof variables

in b throughg abovewith respect
to the identifiedparameters
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I Cc) the time histories of the actual and estimated measurements,

and (d) the time histories of the control variables. The massstorage device Ctape drive or disk) is currently designated as

logical unit 3. The data are written in unformatted records by

I statementsequivalentto the following:

_RITE(3) NS,NQ,NP,NN,M,(PID(J),J=I,M),((INFOL(J,K),
I J=I,M),K=I,M)

I DO i0 K=I,NN
: i0 WRITE(3) T(K),(U(J,K),J=I,NQ),(Y(J,K),J=I,NP),

I _HAT (J,K),J=I,NP) "ENDFILH 3

where

NS = number of states integrared in the run,

NQ = number of control variables in the model plus
number Of possible .look-up states.(currently
NQ=8)

NP = numberof measurements used in the .run,

NN = number of sample points in the run,

M = number of parameters identified in the run,

PID = vector of identified parameters used in the
last iteration of the run,

INF@L =-last information matrix,

T = array of time values at sample points,

U = array of control and look-up state variables
at sample points,

Y = array of actual measurements at.sample points,and

YHAT = array of estimatedmeasurementsat sample points.
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CHAPTERVI

EFFECTIVE USE OF THE NLSCIDNT PROGRA_,!
b

This chaptercontainsinformationon selectedtopicsand

guidelinesfor effectiveuse Of the NLSCIDNTProgram.

6.I INTEGRATION ALGORITI_/

Bach outer iterationof the Levenberg-Marquardtsearch requires the

L '. integration of n(m+l) ordinary differential equations, where

n is the number of integrated states and m is the number of

parameters identified. This is the most time-consuming task the

program must perform.. Most of this time is spent evaluating

dx/dt and d(_x/Be)/dt .Therefore, an integration algorithm

which requires relatively few. evaluations of these derivatives is

more efficient than. one requiring more.

Adams formulas are well known for this desirable character-

istic, but most implementations are not self-starting (for ex-

ample, four Runge-Kutta steps may have to be taken first), they

have .a fixed order (usually they require four previous points),

I and they have clumsy machinery for-varying the stepsize (which

may cost them much of their inherent advantage in speed). A

recent implementation of an Adams formulation due to Shampine and

Gordon [3] overcomes all these objections. It is called a PECE

method because for each step it:

• predicts, the solution of the differential equations at
the end of the step using the Adams-Bashforth predictor

. of order k,

• evaluates the derivative at this predicted solution
- point,

• corrects its solution value at the end of the step using
the Adams-Moulton corrector of order k+l, and

• evaluates the derivative again using the corrected
solution.
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The PECE method was designed to be self-starting. Also,

the order and the stepsize are both varied routinely to reduce I

the number o£ evaluations of the derivativeswhile meeting relative i .

and absolute error bounds imposed on the solution by the user.

These bounds are imposed as follows. Let _i be any element
of the x and ax/ae vectors as computed by the PECE method I

at the i-th point, and let _i be the difference between _i I

and its true value, Yi' at that point. Because Yi is unknown, !

_i can only be estimated. However, the theory says that qi, I
the difference between the predicted and the corrected values for

Yi' is an upper bound on the error _i" That is,

I_il <_ Ini[ (6.1) I

The program bounds the error by requiring

Inil<_R_LERR*I_il+ABSERR (6.2)

where RELERR and ABSERR are inputs to the program.• If the user I

does not supply values, they default to 1075 and 1.7x 10.4,
-4

respectively. (The value 1.7x I0 is 0.01 degrees expressed in

radians.) Note that choosing ABSERR=0 will cause difficulties if

the solution _i passes zhrough zero.

If the error bounds are unnecessarilyrestrictive, then

the program will be forced to take many smallsteps and waste
time. If the error bounds are too lax, the solution of the dif-

ferential equations will be inaccurate,and the subsequently

computed step in the identifiedparameters will also be in error.

The user should experiment to find values of RELERR and ABSERR

which are best suited to the problems he solves.

The program constrains the order of the predictor equation

between 1 and 12. That is, as few as one and as many as twelve

i
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I

past time points of data may be used to predict the next. Obvi-

ously, this requires setting aside sufficient storage for themaximum of twelve past points, which is 12n(m+l)

locations. Thus, higher orders quickly become impracticaland pro-
I duce diminishingreturns anyway. In practice, twelth-order is

seldom reached.

I The maximum permitted integrationstep-size is ten times

the data sample step-size. The minimum is 0.02 times the sample

I step-size, unless another factor is read into the program (_N}II

in Table 4.1). In general, the ratio of the integration step-size

I or ratio is not an integer.
to the sample step-size the inverse

Hence, the "mesh" points of the integration (i.e., the time

points which mark the end of the integrationsteps taken) almost
never coincide with data sample times. The values of x and

I ax/ae must be found by interpolationbetween their values at
I mesh points. This is an inexpensivetask, however, since the

interpolatingpolynomial is readily available from the correction

equation. Furthermore, the theory says that this interpolating
polynomial is as accurate between mesh points as at them.

In a typical run, the integration step-size is initially

much smaller than the sample step-size. In fact, it may be

I repeatedly halved and the time derivativesof _ and 8x/Be

repeatedly computed until a small enough first step is taken to

satisfy theerror bounds. Once started, however, the integration
step-size is steadily increased until it is 3 to 7 times the

sample step size. Consequently,the run time is not directly
proportional to the numDer of data points (see Figure 6.1).

In the example run whose printed output is shown in Figure
5.1, the initial number of integrationsteps per sample step was

) 6.0. By the 100th sample point, this ratio was down to 0.32.
- l

The total number of steps taken is the number of times subroutine

STEP is called. Because STEP may occasionallymake more than one
I

I
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NUMBER OF THE S_PLE POINT

Figure 6.1 Variation of Integration Step-Size in a
Typical Run

attempt a_ a successful step in order to satisfy the error bounds,

the actua! tota! nut,bet of times dx/dt and d_Bx/ae)/dt are

evaluated may be slightly higher than twice the number of steps.

(if STEP made no "false starts," it would be exactly twice.)

The number of times subroutine C_EF is called reflects the number

of evaluations of dx/dt. Because subroutine DC@EF is called

once in evaluating dCa_/aOi)/d t for each 0i' i=l,...,m, it
will be called m times more often than COEF. !

The reader may now appreciate the efficiency of the PECE

algorithm. In 101 sample points, it needed to evaluate the time

derivatives only 118 times. The second-order Runge-Kutta algo-

rithm would have required 202 evaluations of the time derivatives,

for example. Greater savings are realized for longer data
records•

The cause and possible solution to error conditions in the use

of subroutine STEP will be discussed briefly in Chapter VII For
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more detailed information on the source of error conditions as wel!

as more details on the theory and use of the PECE algorithm, the

reader is referred to Ref. 3.

6.2 CONVERGING TO A MINIMUM (]ANDOTHERWISE)

6.2.1 Convergence Criteria

After each Levenberg=Marquardt iteration, the program performs

two tests to determine if it has found a minimum of the cost func-

tion. If either test gives a positive result, the search ter-
minates. These tests are:

l (i)
iiJk-Jk-I < i0-S (6.3)

Jk-II

where Jk is the cost afterthe currentiterationand
Jk-i is the cOSt afterthe orevi:ousouter iteration.

(]Z) ! T
m _, (AO)N (AO)N < I0-3 (6.4)

where (A%)N is the "normalizedstep" vector (explained
in Section 5.I.I),and m is the number of identified

parameters.

I 6.2.2 Step Cutting Procedure

These criteria have served the purpose well in all cases
t

except one--step cuts. If the value of the cost function for an

iteration is greater than the cost a_ the previous iteration, the

program cuts back on the parameter step it has taken until a lower

cost is found. Usually, this Works satisfactorily,and the program
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proceeds. However, sometimes round-off or other inaccuracies

(such as error bounds which are too lax) cause the step to have

been computed erroneously in the first place, and no amount of

step cutting will result in a lower cost. The result is that the

step is cut so much that one of the convergence criteria is met

even though the cost may be nowhere near a minimum. The user

shouldsuspectthis conditionwheneverhe sees a largenumber

Of step cuts occurring just before the search appears to converge.

A suggestedremedyis given,in Chapter VII. I
!

Nonetheless, the step cutting procedure in NLSCIDNT has

proved itselfvery effective. It is a commonoccurrencethatthe I "
cost function may be nearly insensitiveto one or more linear

combinations Of the identifiedparameters. In such cases, the I
parameterstep has largecomponentsin thesedirectionsof the

parameterspace. In AppendixA it is shownthat the parameter I
step vector is the sum of vectors whose directions are the same as I
the ='0 2 , i.e., the inverse of the infor-.loenVectorsof (_ J/_ez)"I Imarionmatrix,and whose lengthsare inverselyproportionalto

the eigenvaluesof the same matrix. Therefore, asmall eigen-
value corresponds to a large step component in the direction of
the associated eigenvector.

The NLSCIDNT step-cutting procedure works as follows:

(I) set k = 0;

(2) ifthe current cost is less than the previous Newton-
Raphson iteration's cost, proceed to the next iteration;
otherwise,

(3) set j = k + integer [i . m/S], where m is the number
of identified parameters, then set k = j;

(4) reduce the length of the components of the step vector
in the directions associated with the k smallest eigen-
values and recompute the step vector.

(S) add this new step vector to the previous Newton-Raphson
iteration's parameter vector and'obtain a new parameter
vector, compute its associated cost, and go back to
step 2.
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If step cuts have occurred previously (k > 0) and a Newton-

i Raphson iteration is completed successfullywithout resorting tomore step cuts, then k is reduced by one. When the lowest level

• of diagnostic printout is flagged, a message is printed to inform
the user how many eigenvaluesare permitted their full size in

computing the step vector (see Figure 5.1g).

6.2.3 Primaryand SecondaryParameters

The computer program can identify any or all unknown para-

I meters if enough informationis available about these parameters
•I from the data. To identify a large number of parameters, a very

i careful procedure is often required to ensure convergence. Inthe procedure which has been found to be most successful,•the

.. parameters are divided into two or more groups in decreasin£ order

of the effect they have on the rotorcraftresponse. Initially,only

the most important parameters are identified,leaving the remaining
ones fixed at a priori values. Once a reasonable convergence is

achieved on these parameters, the second group may be added to the

I list of identifiedparameters. The identificationis carried
out using this new set of parameters,which are identified until

a reasonable convergence is reached. This procedure is.repeated
until all the parameters are included in the identified set.

6.2.4 InitialParameterEstimates

Good apriori values (e.g., from other wind tunnel data or

flight tests) should be used for start-up. If they are not avail-

able, it may be necessary to use a least-squarestype of proced-
ure to obtain starting values. If the start-up values•are too far

! from the true answer, the program may converge to a relative mini-!
' mum away from the global minimum of the cost function.
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i
6.2.5 Data Record Length

!:
Sufficient data length should be used to identify parameters.

If the data length is too short, the identified model may yield I
a good time history match even though the parameter estimates )

are inaccurate. A data length equal to 2 to 3 times the longest !

modal period of the system should prove adequate. I

6.2.6 Data Samplin_Interval i

In order to assure adequate informationcontent in the data, l
I

a sampling interval of at least 25 times the highest system

natura! frequency is required. A faster sampling rate provides
somewhat more accurate parameter estimates because of some addi-

tional information available in the sampled data. However, the

algorithm realizes diminishingreturns in terms of increased

parameter accuracy as the sampling rate approaches the continuous
l

time case. J
i

6.3 A PRIORI INFOrmATION J

Suppose a user has three data records at the same flight J
condition. Because the control input time histories differ I

among the three records, the informationcontents of the three I
records are different. By processing these records individually, I
the user will get three slightly different sets of parameter )
estimates and three sets of standard deviations. But what he I
wants is a single set which combines the informationcontent of
all three records.

When he has processed the first record and is about to pro-

tess the second, he has a priori information from the first l
l

)

record about the parameters he is about to identify in the

second record. He can combine the informationof the two records }
%

by reading into the second NLSCIDNT run: (a) the converged para-
i

I
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meter estimates of the first run as initial parameter estimates

i in the second, and (b) the converged information matrix of thefirst run as the a priori information matrix of the second.

• After the second run has converged, it uses this a priori infor-

mation with the second record's information to produce a statis-

tically combined final informationmatrix and parameter estimates
according to Eqs. (5.6)and (5.7).

Similarly,when he processes the third record, he should

read the combined parameter estimates and information matrix into

the third run as the initial parameter estimates and a priori

information matrix. After this run converges, the statistical

combining is again performed, and the user obtains his goal--one

set of parameter estimates and standard deviations combining the
information of all three data records.

The user must take care that each run identifies exactly

the same parameters in exactly the same order. The program has

no way of checking whether this is true. If it is not true, the
resultsare invalid.

The user may find•it more convenient to Perform this statis-

tical combining of informationhimself after processing each of
the three records individually. In this case, he must write a
program to do zhe fo!lowing:

i n
M = z M. (6.3)

i=1 I

p,=M.l nX {6.4)1:1 Mipi

where

Mi is the converged informationmatrix from the i-th
run,

Pi is the converged parameter estimates from the i-th
run,
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I
n is the number of runs whose answers are combined,

M is the final informationmatrix,and I

p_ is the combinedparameterestimates. I
The Mi and Pi may be storedon tapeby each run {seeSection

5.z) i

i
i

I
t

L

i

i
!

)
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CHAPTER VII

I DIAGNOSTICS

I
• 7.I NORMAL TERMINATION PROBLEMS

Even thougha run terminatesnormallyby announcingit has

I converged,theremay be problemswith the result. Threeprob-
i lems are discussedbelow.

7.1.1 Large Number of Step-Cuts

I If therewere severalstep=cutstaken just beforethe search

"converged," it may not actually be near a minimum, as explained

in Section 6.2.2. action:Corrective

(i) Delete parameters having low identifiabilizyfrom the

search.
(2) Restark the program using the parameter values from

I the final iterationof the terminated run.
....Incr£asingth@ step_qu; limit (maximumnumber_of_.iDneriterationsper-

- mitred) beyond 4 or 5 is generallynot helpful but may be tried•

i 7.1.2 High Value for a Measurement Noise's Variance

The diagonal elements of the final RCMP matrix are estimates

of the measurement noises' variances. If one or more are un-

reasonably large, a problem usually exists. Corrective action:

(I) Inspect the time history data for errors, particularly
for disagreements with the program's sign conventions,
for time lags (for air data errors, particularly), and
for lost data due to a telemetry dropout.

(2) Inspect the initial parameter values, particularly for
incorrect signs or units.
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C3) Verify that the model equations are reasonable given the

response data. t "

7.1.3 High Standard Deviation for a Parameter

If the standard deviation for a particular parameter is high,
it implies that its identifiabilityis low. There are several
possible causes:

(I) the parameter inherently has little effect on the
aircraft's response,

{2) there is insufficient excitation of the mode for which
that parameter is most influential,

C3) too many parameters are being identified relative to
the information content of the data record, or

(4) the parameter's influence is masked by the parallel
influence of a more important parameter.

Corrective action: I
I

CI) Fix the parameter and identify more important para-
meters, then fix them at their final values and try
again to identify the troublesomeparameter.

C2) Try to find a da:a record having more informationon
the parameter and process it;

7.2 ABNORMAL TERMINATION PROBLEMS

If possible, an error message is printed when the program

terminates abnormally. The conditions resulting in the error

messages and recommended corrective actions {if not obvious) are
discussed below.

I
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*** ERROR IN SUBROUTINEINPUT. P(j) .NE.0 BUT ._N

I INCORRECTCOEFFICIENTINDEXWAS SPECIFIED.
. Parameters1 through400 are set asidefor use in the poly-

nomialexpansionsdefiningthe aerodynamiccoefficients.The
, j-thparameterwas given a valuebut not assignedto the expan-

I sion of any aerocoefficient;i.e.,the inputcard describingthej-thparameter(cardtype 5 in Table 4.1)did not correctlyspeci-
fy the associatedcoefficientindexnumber. Valid coefficient

indexnumbersare in the range 1 to 384.

ERR@R IN SUBR@UTINE INPUT. A N@N-ZER@ EXP@NENT WAS

DETECTED F@R AN UNDEFINED EXPANSI@N VARIABLE.

If only n(! 5) expansion variables are defined for the run,

then values for exponents should not appear for expansion vari-

I ables Zn+I,...,Z5 in parameter input cards (type 5 in Table
4.1). However, one was detected.

I
*** ERRORINSUBROUTINEINPUT. LTYPE = xx, WHICH IS N_T _NE

_F THE ALL_WABLE SET:
Invalidcharacterswere detectedin the firsttwo columns

1 of a card of type 4 (Table4.1).

*** ERROR IN SUBR@UTINEFLAGIT. LL(j) = xx, WHICH IS N_T
IN THE ALL@WABLESET:

An ivalidinputname of a state,measurement,or expansion
variablewas detectedin an inputcardof type 4 (Table4.1).
Valid inputnames are listedin Table 4.2.
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I
*** ERROR IN SUBROUTINEFLAGIT. THE NUMBER OF ELEMENTS

SPECIFIEDBY INPUT IS j, _ICH EXCEEDSTHE _XIMUM ALL€WED, I.
k.

The number of variables specified in a card of type 4 (Table
4.1) exceeds the maximum number for which the program is dimen-

sioned. (

*** ERROR IN SUBROUTINEINREAD. DEVICEERROR DETECTED_,ILE

ATTEMPTING T_ READ DATA P_INT k. THE TI_ AT THE PREVIOUS 1

P01NT, TCK-I), WAS x.

Device errors usually result from selecting the wrong density

or )arity for a tape or attempting to read a damaged portion Of

the tape.

*** ERROR IN SUBROUTINEINREAD END _F FILEENCOUNTERED I
WHILE ATTEMPTING T0 READ DATA P@INT k. THE TIME AT THE

I

PREVIOUS P_INT, T(K-I), WAS x. l
f I ""

The number of data sample points specified in input card

type 2 (Table 4.1) exceeds the number of logical r:ecords on the II
time history tape.

*** ERR#R iN SUBROUTINEPRNTP. THE INDEX0F THE C_EFFICIENT
C_R_SPONDING T0 PARAMETER ( j ) IS ZERO.

Parameters I through 400 must appear in the polynomial expan-

sion of an aero coefficient. 1
f

*** ERROR IN SUBROUTINEUPDATE. INVALIDINPUTWAS PASSED :<
TO SUBROUTINEINTGR8. i

: The two most likelysourcesof invalidinputto INTGR8are: I :

(I) the maximum number of data points specified in card _.
type 2 (Table• 4.1) is < i, or

- I "

i
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I

(I) restart the program using the parameter values from
the final iteration of the terminated run, andl (2) increase the iteration limit.

1

I *** MAXIMUM STEP-CUTS LIMIT, j, EXCEEDED. PL_TS, IF _NY,o

WILL SHOW Y'HAT FR@M THE PREVI@US ITERATION.

I The parameter set used at the beginning of the last Newton-

Raphson iteration resulted in a higher cost than the previous

I iteration had. The program began cutting back the step in the

parameters in search of a lower cost, but the number of step-cuts

exceeded the limit specified in card type 2 (Table 4.1). Correc-
tive action:

il (l) Delete parameters with low identifiability Csmall F-
values) from the search •

(2) Restart the program using the parameter values from
the iteration of the terminated run.

Increasing the step-cut limit beyond 4 or S is•generally not
helpfu! but may be tried.

I IN'V ERROR DETERMINANT OF At0 RANK OF A=K

The program attempted to invert a singular matrix. The two

'i most•frequent causes are a singular inertia matrix in subroutine

• STATE or a.singular information matrix in subroutine S_IN.

Both are the result of errors in the program's .input. The infor-

mation matrix will be singular if, for the vector of measurement

i estimates y and for some one identified parameter = ay/_8._0
, _j, ]

for the entire time history. For example, if the user mistakenly

i tries to identify the bias in the roll attitude gyro, b_, but

- rol! attitude is not one of the measurements, then ay/_b_0.
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I

(2) either the relative or absolute error bound specified
in card type 2 [Table 4.1) is negative, or both are I
zero.

i
*** ERROR IN SUBROUTINE UPDATE. T_ ,v_LNYINCREASES IN THE

INTEGRATION ERROR TOLER_NCES. IE
If the program cannot integrate the differential equations

within the error tolerances specified by the user, it increases I
)

them, prints a message and continues. If this occurs twice, the

programterminates.Correctiveaction: examineinputerror I
Itolerancesfor the possibilityof increaseor examine data for

error. I

*** ERR@R IN SUBROUTINE UPDATE. M@RE TH.%N ,_[AX_NID!STEPS

NEEDED BETWEEN T = x ._'qDT = y. i

l

The program's integration algorithm has determined that in

order to meet the error bounds it must take more .steps between [.

times x and y than the maximum specified in input card type

3 (Table 4.19. Correctiveaction: I

I

(I) verify that the input parameter values are reasonable_

and i£ they are, then I
l

(2) increase the number of steps permittedj or

I "(3) relax the error bounds.

*** EQUATIONSAPPEART@ BE STIFF I

There are almost certainly errors in the input to the pro-

gram. However,the differentialequationscouldconceivably I
appearstiffbecauseof exceptionallynoisy controlvariabletime

histories. !
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*** b_XIMUM NUbIBER 0F ITERATIONS EXCEEDED.

The Levenberg-Marquardt search has not converged in the

- maximum number of iterations specified in card type 2 (Table 4.1).

Corrective action: re-examine convergence criterion in input

" data and adjust as necessary.

i
- 7.3 ERRORS NOT CAUSING TERMINATION

Sometimes errors are detected which are not critical to the
i
I program'scomputation,and it printsa messageand continues.

The conditions resulting in these error messages are described
.below.

***ERROR IN INPUTCARD DECKWHILEATTEMPTINGTO READ A

LABEL. ERROROCURREDON THIS CARD:

J The characterin the first columnof an inputcard of typei

i
7 (Table 4.1)was invalid. The program skips this card and con-
tinues to read the next card, which it also expects to be a card

of type 7.

*** INTEG_kTION ERROR TOLERANCES ARE TOO SMALL TO CONTINUE.

THEY HAVE BEEN GIVEN NEW VALUES AT SAMPLE POINT j. RELERR = x

ABSERR= y.

The program has determined that it cannot meet the error

I bounds specified by the user and replaces them with the smallest

bounds it believes i: can meet.

P

*** ERROR. A NEGATI'v'£ EIGENVALUE, x, WAS C_b_UTED FOR THE

INFORMATION MATRIX. IT HAS BEEN SET = 1.E-2 _.
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Because the informationmatrix is theoreticallypositive I
Isemidefinite,none of its eigenvaluesshouldbe negative. A

slightly negative eigenvalueoccasionallyresults from numerical I

error when it should actually be slightlypositive. A large I
negative eigenvalueinvalidatesthe run, and a serious error

exists. I

74 CONTROL CARDS [

Figure 7.1 shows a typical set of control cards needed tO 1

run NLSCIDNT. The job and accounting cards are installation

dependentand so are not shown in detail. The syntax of the I
other control cards may also be installationdependent;the

cards shown are for the SCOPE 2.1 operatingsystem on the CDC I
7600 computer.

Tape 2 is the flight test or simulationdata to be used } _.
as input. Tape 3 is the output generatedby NLSCIDNT (see

Section 5.2); if the output does not need to be saved, remove I
the REQUEST and CATALOG cards for tape 3.

t

I
I
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I JOB CARDACCOUNTCARD

I Other cards requiredby installationtoinitiatea job.

ATTACH, TAPE 2 = RSRA3, ID = RSH

REQUEST, TAPE 3, *PF

ATTACH, NLSCIDNT,ID = BJB

NLSCIDNT, PL = 7777

CATALOG, TAPE 3 =.RSRANL,ID = RSH..

I 7/8/9 (End of Record)

INPUT DATA CARDS (seeSections4.1 &4.2)

6/7/8/9 (End of File)

{
I

._ Figure 7.1 Control Cards
I
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APPENDIX A

[ MAXIMUM LIKELIHOOD IDENTIFICATION OF PARAMETERS
OF A NONLINEAR SYSTEM*

l
A.I INTRODUCTION

The maximum likelihoodmethod is one of the most flexible

techniques in statistics for identificationof parameters from
input-outputdata. Suppose it is possible to make a set of ob-

servationson a system, whose model has m unknown parameters e.
For any given set of values of the parameters @ from the feasible

I set e, we can assign a probability p(Z(e) to each outcome Z.
If the outcome of an actual experiment is z, it is of interest

I. to know which sets of values of .e might have led to these obser-
vations. This concept is embedded in the likelihood function

_Celz). This function is of fundamenta!,importance in estimation

theory because of the likelihoodprinciple,of Fisher and others

[6 - 8] which states that if the system model is correct, all in-
I( formation about unknown parameters,is contained in the likelihood

function. The maximum likelihoodmethod finds a set of parameters
to maximize this likelihoodfunction

= max _C@/z) (A.I)

In other words, the probability of the outcome z is higher with

parameters e in the model than with any other values of para-

meters from the feasible set. Usually it is more convenient to

work with the logarithm of the likelihood function Cit is possible

. to do so because the logarithm is a strictly monotonic function)

This appendix is a shortened version of Appendix A in Ref. i..
Only portions applicableto the NLSCIDNT program are included to
provide a ready reference for the NLSCIDNT user.
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The great asset of the maximum likelihoodmethod is that it

can be used with linear or nonlinear models in the presence of
process and measurement noise. The maximum likelihood estimates

are asymptoticallyunbiased, consistent and efficient. These
terms are defined below.

(i) Bias: 8 is an unbiased estimator of 8 if

where E standsfor the "expectedvalue." In physical
ter_s, this implies that if the data were-collected [
a large^number of times, the mean of the different esti-
mates 9 is 0.

(2) Efficient: e is an efficient estimator of % if it is I
unbiased and if for any other unbiased estimator
of 8

E(_ -e)z i E(_-s)z (A.3)

(3) Consistent: _ is a consistent estimator of % if the
accuracy of the estimate improves with increasing amount
of data and approaches, the true.value as the amount of
data tends to infinity. In other words, for any
positive n and

PC @n el < _) > I - n n > N (A.4)

This definition is analogous to the definition of con-
vergence, in real analysis+.

A.2 GENERALNONLINEARSYSTEMS

Considerthe generalnonlinearaircraftequationsof motion
(without process noise)•

I: fCx,u,_,t) 0 i t < T (A S)

l l I { •



l
where

x(t) is n x 1 state vector
u(t) is _x I input vector

e is mxl vector of unknown parameters

Sets of p measurements y(tk) are taken at discrete times tk

y(tk) = h(x(tk),U(tk),e,tk) + V(tk)

k = 1,Z,3,...,X (A.6)

v(tk) is Gaussianrandomnoisewith the followingproperties

E[vC:k)] = o

E[v(tj)vT(tk)] = R(e,tj)6jk (A.7)

The unknownparametersare supposedto occurin the functions

f and h and in matricesR and xo. In the analysisto fol-
low,the model and the functionalformof f and h is assumed
knowncorrectly.

The set of observationsY(tl),Y(t2),...,y(tN) constitutes
the outcome Z in thiscase. The likelihoodfunctionfor %,

which has the same formas the probabilityof the outcome z for
a certainvalueof parameters e, is givenby

( ~
._'(elz) = p(zle)

. = p(y(=l) , YCt2), ..., yC=N)Ie)

- = P(YNIe) (A.8)
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where Ii

Yk = {Y(tl)"'''Y(tk)}' k --1,2,...,N

p(YNJO)- p(y(:N)IYN.l,O).p(yN_llO)

--p(y(tN]]YN.l,6 ) P(Y(UN.1) IYN-Z,e) p(YN_Zle)

N

= _ pCyCt i) [Yi. 0) (A.8)
i-i I,

The log-likelihood function is

N

log [_(el-]]= i=17 log {p(y(ti)l Yi-l'8)} + cons=ant
(A.9]

To find the probability distribuzion of y(ti) given Yi-! and
8, the mean value and ¢ovariance are de=ermined firs=.

E(Y(ti);IYi.l,6]A y(i/i-l] (A.IO)

The expected value or :he mean is the best possible estimate of

measurements at a point given the measurements until the previous
point.

cov(Y(ti.) {Yi.l,6] = E{ [y(ti)-Y(i/i-l)] [y(ti)-._(.i/i-l)]Ti_

E{v(i)v(i)T}

l
__B(i] (A.II)

i
v(i) are the innovations at point i and B(i) is the innova-

tions covariance. Since [ .
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I y(ti) - ECyCti)IYi_l,s)- _Ci) CA.IZ)

it followsthat y(ti) given Yi-i and 0 have the samedistri-
°_ buZion as v(i). Kailath [9 ] has shown that as the sampling rate

is increased, the innovations v(i) tend towards having a Gaussian

density. Assuming a sufficiently high sampling rate, the distri-

I bution of vCi) and, therefore, Y(ti) given Yi-i and 0 is
Gaussian, i.e.,

[
exp{- 1 v(i)TB-l(i)v(i)}

1 P(Y(ti) IYi'l'%) _ (2w)m/ZlB(i)[I/Z CA.13)

log p(y(ti] lYi.l,8 ) - - ½ v(i)TB-l(i)v(i)

1
_[log lB(i)I + constant (A.:I4)

The log-likelihood function of Eq. (A.9) can be written as

J _ I N
l log[_-_(91z)] = D" Z {vT(i)B'l(i)v(i) + loglB(i) l}(A.I5 )i=l

An estimate of the unknown parameters is obtained by maximizing

the likelihood function or the log-likelihood function from the

feasible set of parameter values.

--max log[._(elz)] (A.16)
e_@

N

= max [- ½ Z {vT(i)B-l(i)v(i) + logIB(i) } ] (A.17)0c8 i=l
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• IThe log-likelihood function depends on the innovations and

their covariance. To optimize the likelihood function, a way must Ibe found for determining these quantities. In the absence of '
process noise, this is a simple task.

I

The state prediction is done using the equations of motion I

J

(A.S). The innovation is

" v(i) = yCti) - hCxCti),u(ti),9,ti) (A.18)

From Eqs. (A.6) and (A.7) it can be seen that the covariance of
the innovations is

B(i) = R(O,ti) [A.19)

A.3 OPTIMIZATIONPROCEDURE

>lany possible numerical procedures can be used for this op-

timization problem. Modified Newton-Raphson [1,2] or Quasilin-

earization [4] have been found by experience to give quicker con-

vergence than most procedures like the conjugate gradient or the
Davison me=hod. The modified New=on-Raphson is a second order

gradient procedure requiring computation of first and second

order partials of the log-likelihoodfunction, which, after sub-

sti=uting Eq. CA.I9) into CA.I5), is I

N
I vT -Ivlog [_(Oiz)] = [ g .(i)R (i) + log iR (A.20)i=l
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log [_(e[z).] =_ £ { Tci)R-l(i ) _v(i) 1 T 1
_ej i:l _ej - 2- v Ci)R- (i)

• (_e. (i)_(i). Tr R-l(i)_R(i) (.%.21)
. j _ej

N I _T(i) R'I _(i)
J _" lOg_ej_ek[_-(eJ:)]=. i-lZ- _ek (i) _ej

_T(i) R-I _R(i)R-l(i)_(i)
• _ek (i) _e---_

B_(i) R-l(i)._R(i) R-I

J - _ej _e k (i)_(i)

+_T(i)R-l(i ) BR(i)R-l(i) _R(i).R-l(i)_(i )
_ej _ek

Tr R'l(i) -_-- R" (i)

+ _2_(i) R-I_e ._8 (i)v(i)
J k

T -i _2R(i) R-I
- _ (i) R (i) aej_ek Ci)v (i)

, + Tr R'l(i). _ejsek
i
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The last threeterms in the equationfor secondpartialof the

log-likelihoodfunction involve second partials of innovation and [
its covariance. Those terms are dropped because they are much

smallerthan the other termsnear a minimumand theyare expensive Jto compute.

Solving Hq. (A.21) for unknown parameters in R, when R is
not a function of time, gives

= r v (i) _ (i) (A.23)
i_l

The equality in (A.23) holds only for those elements of R which

are not known a priori. For instance, even if R is known to !

be diagonal, the right hand side matrix will not be diagona! in

general, but the off-diagonal terms should be ignored before they I
are equated to R. Using (A.23) in (A.20)

N I
log[_(elz)] 1 T -i2 E (i) _ (i) + constant (A.24)

i=l I

The firstand secondderivativesof the log-likelihoodfunc'- I
tion with respect to unknown parameters (which do not appear in

R) are !

N

a0W log[_(01z)] = - z vT(i) _-i _ (A.2S)i=1 . aej

log[ (01z)]=. N{ T<i)
aeja8k i=1 88k _ej j

+ vT(i) _-i _2v(i) t (A.26)
_%ja8 k

1
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The terms in the second derivative are approximated as

[ 2 N
8ej aek _e k _e. (A. ZT)i-I J

One Newton-Raphsoniteration evaluates the first and second

gradients for the parameter values given it and computes new para-
meter values as follows

e -- e + z_e (A.28)
I new old

m |

,_e: b-_/ CA.zg)
where "

Ae = the step vector,

[ J : -log[ _(el z) ],,

• aJ
' ae - 1 x m row vectorwhose j-th element is aJ/_ej,and.

I _2j

= m_xm symmetric,matrix _whose (j,k)th element is
a'J/(sej aek).

Because _Zj/_%2 is real and symmetric,

/_zj_1 m 1 T
= Y_ _. _i_i (A.30)
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where

_" is the i-th eigenvalue of _ZJl_e_-,and

_i is the i-th eigenvector.

Let g & [_JIT
- \,'_e'l• for simplicity of notation; then

m T m (_Tg_ae = - Z i

I

I

I
I

L
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