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Abstract

A method for the estimation of cross-bispectra of discrete real time

series is developed. The asymptotic variance properties of the bispectrum

are reviewed, and a method for the direct estimation of bispectral variance

is given. The symmetry properties are described which minimize the compu-

tations necessary to obtain a complete estimate of the cross-bispectrum in

the right-half-plane. A procedure is given for computing the cross-

bispectrum by subdividing the domain into rectangular averaging regions

which help reduce the variance of the estimates and allow easy application of

the symmetry relationships to minimize the computational effort. As an

example of the procedure, the cross -bispectrum. of a numerically generated,

exponentially distributed time series is computed and compared with theory.
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Bispectral analysis is currently experiencing a degree of popularity with

applications in a number of diverse fields. The bispectrum was originally pro-

posed by Hasselman, Munk & MacDonald [ 1 ] as a statistical tool for investi-

gating; nonlinear interacting ocean waves, and Godfrey [2] used 0— bispectrum

for analyzing economic time series. The statistical properties of bispectral

estimation and variance were reported by Brillinger & Rosenblatt [3] and in-

eluded an application to the analysis of sunspots. Large sample theoretical

investigations of bispectral estimates are described in Brillinger &

Rosenblatt 14l . lluber et al. [51 used bispectra to investigate EEG

readings, and Roden & Bendliner 161 used cross-hispectra to study profiles of

oceanographic variables such as density and salinity. Various aspects of

spectral energy transfer in laboratory and atmospheric turbulence have been

studied using bispectral and cross-bispectral techniques by Lii, Rosenblatt &

Van Atta [71,  by Helland, Lii & Rosenblatt [ R, 9 ], and by Van Atta [ 10, Ill.

Sato & Sasaki [12] used bispectral methods to eliminate additive Gaussian noises

in the reading; of laser holograms. A real-time bispectral technique developed

by Sato, Sasaki & Nakamura 1131 was used to analyze noise in mechanical gear

trains. Kim & Powers [ 14] have shown that a bispectral analysis is useful in

distinguishins, between spontaneously excited modes and coupled modes in

plasma wave studies, and McComas [ 15] has reported on theoretical and experi-

mental bispectra calculations for studies of internal waves in the ocean.

The purpose of the present study is to review the bias and variance prop-

erties of the bispectrum, and consider the practical estimation problem of the
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general cross-bispectrum for a multivariate time series. The computational

simplifications which result when the bispectral analysis involves only one or

two separate time series are reviewed. A FORTRAN subroutine which imple-

ments these considerations is discussed and a listing of the algorithm is

available from the authors.

2. Theory

We are to estimate the cross-spectrum of three stationary real-valued

time series defined by X 1 (i),X 2 (i) 1 X 3 (i); i = 0, ... , T-1 with zero mean. Detailed

asymptotic results of the k-th order spectra can be found in [ 31 .

For computational purposes we define the discrete Fourier transform

T-1

F . (a) = L X. (t) exp f-i Xt }	 j = 1, 2, 3
J	 t_0	 J

(2.1)

and the bispectral periodogram

B 1, 2, 
3 (a 

1 9 
X 20 ), 3 ) _

3

1	 ^ F.(a.)
(2 rr ) 2 T j= 1	 J J

(2. 2)

where

`3
 

I. = 0 (modulo 2 17)

j=1 J

2 rrs.
a . = .r J with s, integers.

J	 J

If the mean is not removed before taking the Fourier transform, then set

F  (0) = 0. Now taking the average or expected value of the periodogram
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(2. 3)

where b(a it a,) is the cross-hi spectrum of the joint cumulant of X i , i = 1, 2, 3,

and E is the expectation operator. Also the asymptotic variance estimate (41 is

given by	 Var(Re B 	 , 1\ , 1\ )) ^1, 2, 3 	1	 2	 3 	 T--

	

	 fl(a1 2 (1, 2 ) f 3 l?\ 1 + X 2 1 (2. 4)
4 n

Var (Im I11 2 3
(X 1 , 1 2' X 3))

where f i (\. ) is the power spectrum of X i . The asymptotic covariance between

the real and imaginary parts is an order of magnitude smaller, as is the co-

variance between different frequencies. To reduce the variance of an estimate

we can average 11 1 y 30 1, X y ) from disjoint time blocks (i.e. partition a

long stretch of data into disjoint segments or records of equal length) and

smooth spatially (over frequencies). The spatial smoothing; should not he too

broad otherwise the bias of the estimate would become large. When the bi-

spectrum is relativel y smooth, the smoothing window shape is not critical.

For most purposes, the uniform window is adequate and greatly simplifies

the computation. In the course of computation, it is important to compute an

estimate of the standard deviation of the bispectrum. If	 have m records

of data and n points being averaged in the frequency domain, tlle:, the esti-

mated standard deviation (S. D. ) at (a 
I' 

X )) for the real part is

1 /z
S. 1). (^ t' ^.:) _ [Ill VAR Re 11(a 	 a 2 )]	 (2. 5)

whe. r
Ill

VAR Re 11(a I' ^'
1	Ill	

(Re. 131.(a 
1, 

a Z ) - Re 11(^ I, 
X2)]2	

(2.6)
1	 t
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with

n

i P 2	 n
j=1

>3	 (^ (j ' 	6) ^. G))
1, 2, 3	 1	 2 '	 3

m
— (	 1 C,li a 1 , X2)

B i  P x2)

The standard deviation of the imaginary part, Im l3, of our estimates is com-

puted by the analogous method. These estimated standard deviations give us

a picture of the relative resolvability of bispectrum at each frequency pair

0  a 2 ) and can be compared with that of asymptotic variance in Eq. (2.4).

The asymptotic formula Eq. (2. 4) for the variance can serve a fundamental

role during the design of an experiment. The power spectra, fi (a), are often avail-

able or are readily estimated from preliminary data. The asymptotic vari-

ance formula and preliminary computations of the bispectrum should then be

used to determine important experimental parameters such as duration of the

data, number of records, and size of the spatial averaging required to obtain

a desired degree of statistical resolution in the final bispectral estimate. Tire

directly estimated standard de viatien given in Eq. (2. 5) should be used to verify

that the degree of statistical resolution has actually been obtained from the data

analysis.

3. Symmetries

The basic symmetry of the cross-bispectrum of real time series is

obtained by conjugation

1) 0 	 = h (-a l ,-a y )	 (3. 1)
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where b * is the complex conjugate of b. Thus, we need only compute the

right half-plane of Figure 1. When dealing with a single time series, i. e. ,

X 1 = X 2 = X 3 , then by various symmetries we only need to compute region 2.

All other regions can be computed from region 2 using the relationships in

Table 1. When X 2 = X 3 = Y, then since

b XYY (I I' X 2 , -a- a 2 ) = bXYY( a 1 I - JA I - a 2 , X 2 )	 (3. 2)

we only need to compute regions 1-3. Regions 4, 5, 6 are obtained from

regions 3, 2, 1. respectively, using Eq. (3. 2) in the appropriate region.

Note that all these computations should be made away from X i = 0

to avoid introducing a severe bias in the bispectral estimates in the neigh-

borhood of a i = 0. If estimates are needed at a point B0 1 , X 20 ), 3) involv-

ing some a .i = 0 then interpolation via a continuity assumption or other

methods should he. made.

4. Computational Methods

The fundamental computation required for bispectral estimates is

given by Fq. (2, 2), the triple complex product of the three individual Fourier

transforms. While this computation is straightforward, limitations on com-

purer time, memory, and statistical variance impose severe limitations on

impler-► entation of the definition of the bispectrum. If record lengths are

short, then it is a simple matter to compute the triple complex products at

each pair of frequencies in the right-half-plane. Applications of bispectral

analyses usually involve long records, and spatial averaging is often

required in order to reduce the variance , f the bispectral estimates.
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Increasing the number of records is demanding on computer time and intro-

duces potential non.- tationarities. The spatial averaging can be implemented

by summing over triple products in a neighhorhood of a frequency pair (X 1 ,11 2).

The summation must be performed record-by-record because the number of

frequency pairs is large even for moderate record lengths. Computation of a

large number of b'spectral estimates is time consuming even on large main-

frame co;-iputers, and it is therefore desirable to compute the estimates over

an arbitrary set of subregions in the right-half-plane. This approach permits

taking full advantage of the symmetry relationships discussed in Section 3.

In the proposed algorithm the bispectral estimates are computed by

averaging over rectangular regions which may be located anywhere in the

right-half-plane and bounded by the Nyquist frequency constraint imposed by

the discrete Fourier transform. The rectangular regions may be reduced to

a single point if the variance properties of the data justify the sharp resolu-

tion. Coordinates for the averaging rectangles are passed to the subroutine

and the location of the rectangles is arbitrary. This permits easy computa-

tion of the bispectrum for selected regions when strong interactions are

expected for isolated frequency combinations. The bispectrum and vari-

ance estimates are indexed by the averaging rectangle. The bispectrum

computation is divided into a number of subregions which depend on the loca-

tion of the averaging rectangle. This is done to eliminate most of the condi-

tional tests from the inner loops thereby substantially improving the compu-

tational efficiency. The algorithm requires that the Fourier transform be

defined out to twice the Nyquist frequency index in order to eliminate



conditional tests in the first quadrant. Some discrete Fourier transform

algorithms already contain this symmetrical part and the user is responsible

for the existence of the extension. A sample computation to extend the trans-

form beyond the Nygiiist frequency is included in the comments of the hi-

spectral algorithm.

In the first quadrant the bispectral estimate at a point is given by

B (i, j) = F I (i) F 2 (j) F 3 (k)
	

(4. I )

where i + j + k = 0, or k = -(i + j). Note that the range of indices i, j, and

k are assumed to contain 0 and the scale factor 1 /(2rr) 
2
T has been surpressed;

the Fortran implementation incorporates a shift by one to avoid the zero index.

The llermitian property of the Fourier transform of a real time series implies that

F 3 (Ic) = F3 (-k)	 (4. 2)

and thus the bispectral estimate in the first quadrant becomes

F I (i) F2(j) F3 (-k)	 (4. 3)

As shown in Section 3 bispectral estimates do not need to be made in the

second and third quadrants. In the fourth quadrant i > 0, j < 0, and k may

be either positive or negative. The dividing line is i = J. Thus depending

on the relative magnitudes of i and j, the expression for the bispectral

estimates becomes: For k < 0,

11 O,.j) = F I (i) T' 2 (-j) F 3 ( -k)	 (4. 4)

and for k -> 0 ,

b(i, i) = F I (i) 11 , (-j) F ; (k)	 (4. ^)
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In the implementation of these considerations, there is a strip along i = -j

where k may be of either sign; this is a result of the finite size of the averag-

ing rectangles. In the algorithm, the fourth quadrant is divided into three

separate computation loops, one with k > 0, one with k < 0, and a third with

k taking on positive and negative values. The point-wise conditional test

remains in this third loop but not in the first and second loops. We feel

that the small loss of efficiency of including the conditional test to select

Eq. (4. 4) or (4. 5) in the third lo.)p is worth the simplification gained over

eliminating even more of the required conditional tests. Tn a global bi-

spectrum computation only a small percentage of the loops will actually

include the point-wise conditional test.

The algorithm does not perform the final scaling for the number of

records used in the bispectral computation, the conversion to physical units or

the 1/(2rr) 2T factor in Eq. (2. 2). The final scaling depends on the particular imple-

mentation of the discrete Fourier transform used in the computation.

5. Application

The proposed method for computation of bispectra is applied to an

exponentially distributed process.	 Let X 1 (i), i = 1, ... , N be independent,

identically distributed time series with X(i) exponentially distributed with

1parameter a . Then X(i) has a probability function P(X) _ exp (-X/a}

X 1-- 0, and the kth cumulant of X(i) is C  = (k-11! a k . Consider two

useful test cases:
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(1) If X I (i) = X 2 (i) = X 3 (i) then

bX X X ()` 1' ^ 2' X 3 ) = 1 2 C 3' E x i = 0 (modulo 217)	 (5.1)

	

1'	 1'	 1	 (2 TO

0

(2) If X (i) = M	 X (i + j), application of the running mean	 (5.2)2
)iI 

1

filter to the exponential process with P = (M-1)/2 integer and X 3 = X1

C 3 Sin (X2M/2)

1,X 1' X2' X 1 (^ 1^ ^2) - (217)2 M Sin(?,2/2)	
(5.3)

for -17 < a 2 s 17. The power spectrum for signal X 1 and X2 are

fX (a) = 2n C2 	for all a ,	 (5.4)
1

and

1 _ F Sin(XM/2) 12 	
(5, 5)fX2 (a) = 217 M Sin(a/2)

respectively.

From Eqs. (5. 4) and (5. 5) for the power spectra of X I and X2 the

theoretical variance of the estimates are calculated from Eq. (2.4) to give

VAR (b
	

T	 3	
(5.6)

X 1' X 2' X 3 )	 32 174 C2

for case 1 and

VAR (b	 ) _ 'r C 2 Sin(XM/2) 2 	
(5. 7)

X 1' X 2' X 1	 32x74 2 [M Sin(X/2)]

for case 2.
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While both cases have been tested, we choose to report on the second

case because the cross-bispectrum exercises all the loops of the algorithm.

Case 1 is useful for checking the simple bispectrum computation, but does not

involve all the possible loops. Case 2 was implemented in a test program and

the cross-bispectrum was computed rising the method described in Section 4. The

parameters chosen are the transform length T= 256, the number of points included

in the averaging rectangle n - 11 x 11 = 121, and the number of records m = 100.

In addition, M in Eq. (5. 2) is chosen to be 5, and the exponential process parame-

ter a= 1. The time series was generated and discrete Fourier transformed using

standard IMSL subrotttines. The numerical estimates for the real and imaginary

parts of the cross -bispectrum together with the standard deviation of the estimates

are given in Tables 2 and 3, respectively. An extra column is included in Tables 2

and 3 giving the theoretical values for the real and imaginary parts of the cross-

bispectrum and the theoretical standard deviations. A single column is sufficient

since the theoretical values given in Eqs. (5. 3) and (5.7) are constant for

% 2 = constant. The cross -bispectrum was computed in regions 1- 3 of Fig. 1 (a)

and Fig. 1(c). These results are shown in Fig. 2.

Table 2 shows that the real part of the estimated cross -bispectrum is

an order of magnitude larger than the estimated standard deviation, and the

result is considered to be well resolved. Table 3 shows that the estimated

imaginary part is effectively zero since it is comparable to or smaller than

the estimated standard deviation. A comparison of estimated and theoretical

values for the real part in Table 2 shows that the differences are small relative

to the standard deviation N^, ,hereas the estimated and theoretical standard

11



deviations are comparable. The comparison between numerical and theoretical

cross -bisnectra has been statistica'. in nature and clearly exact agreement

should not be expected. The accu--acy of the algorithm was tested by a deter-

ministic sine-cosi..e. signal, as wall as the application just discussed. The

comparison obtained between the numerical and theoretical cross-bispectra

provide strong support for the accuracy of the algorithm in estimating both

the mean and standard deviation of bi.spectra and cross bispectra.

6. Concluding Remarks

We have described a method for computing the bispectral and cross-

bispectral estimates of up to three separate time series at any point in the

right-half-plane. Proper application of the algorithm involves:

(i) The computational domain must be chosen to minimize the computation

time required by observing the symmetry relationships.

(?i) The averaging rectangles should be of optimum size to both keep the

ratio of mean to standard deviation as large as possible without making the

rectangles so large as to lose the spatial (frequency) resolution of important

features in a particular application. If there is no theoretical guidance avail-

able in a particular application, then the user must proceed in a trial-and

error technique to find the optimum computational parameters.

A source list.;.g of the computer subroutin( which implements the pro-

posed method is available from the authors.

11
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a,	 Table 1. Bispectral symmetries

Corresponding bispectral coordinates

	

b(a 1 . X 2)	 in 	 in Region 2 ^
	

--

	

Region 1	 b( 1 2' ^1)

	

3	 b(a1+ a 2 . -^2)

I	 4	 b(-^2. a l + ^2)

	

5	 b(X1. -)I 1 - x2)

	

6	 b(- ) 1 - I 2 . a1)

1 E,
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Figure Captions

Fig. 1	 L.spectral domains for discretely sampled data:

(a) X l + 2 + 
x 3 = 0; (b) X l + X2 + a 3 = -2rr;

(c) N i + 2 + a 3 = 2sr.

Fi_;. 2	 Comparison	 estimated and theoretical cross-bispectra.

(a) Theoretical real part; (b) estimated real part;

(c) estimated imaginary part.
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