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Abstract

A method for the estimation of cross-bispectra of discrete real time
series is developed. The asymptotic variance properties of the bispectrum ij
are reviewed, and a method for the direct estimation of bispectral variance
is given, The symmetry properties are described which minimize the compu-
tations necessary to obtain a complete estimate of the cross-bispectrum in
the right-half-plane, A procedure is given for computing the cross-
bispectrum by sutdividing the domain into rectangular averaging regions
which help reduce the variance of the estimates and allow easy application of
the symmetry relationships to minimize the computational effort, As an
example of the procedure, the cross-bispectrum of a numerically generated,

exponentially distributed time series is computed and compared with theory,
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1, Introduction

Bispectral analysis is currently experiencing a degree of popularity with
applications in a number of diverse fields. The bispectrum was originally pro-
posed by Hassclman, Munk & MacDonald [1] as a statistical tool for investi-
gating nonlinear interacting ocean waves, and Godfrey [2] used th~ bispectrum
for analyzing economic time series. The statistical properties of bispectral
estimation and variance were reported by Brillinger & Rosenblatt [3] and in-
cluded an application to the analysis of sunspots, Large saniple theoretical
investigations of bispectral estimates are described in Brillinger &
Rosenblatt [4]. Huber et al. [5] used bispectra to investigate EEG
readings, and Roden & Bendliner [ 6] used cross-bispectra to study profiles of
oceanographic variables such as density and salinity, Various aspects of
spectral energy transfer in laboratory and atmospheric turbulence have been
studied using bispectral and cross-bispectral techniques by Lii, Rosenblatt &
Van Atta [7], by Helland, Lii & Rosenblatt [ 8, 9], and by Van Atta [10, 11].
Sato & Sasaki {12] used bispectral methods to eliminate additive Gaussian noises
in the reading of laser holograms. A real-time bispectral technique developed
by Sato, Sasaki & Nakamura [13] was used to analyze noise in mechanical gear
trains, Kim & Powers |[14] have shown that a bispectral analysis is useful in
distinguishing between spontaneously excited modes and coupled modes in
plasma wave studies, and McComas [15] has reported on theoretical and experi-
mental bispectra calculations for studies of internal waves in the ocean,

The purpose of the present study is to review the bias and variance prop-

ertics of the bispectrum, and consider the practical estimation problem of the
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general cross-bispectrum for a multivariate time series. The computational
simplifications which result when the bispectral analysis involves only one or
two separate time scrics are reviewed, A FORTRAN subroutine which imple-
ments these considerations is discussed and a listing of the algorithm is

available from the authors,

2. Theory

We are to estimate the cross-spectrum of three stationary real-valued
time serics defined by Xl(i).XZ(i),X3(i); i=0,...,T-1 with zero mean. Detailed
asymptotic results of the k-th order spectra can be found in {3].

For computational purposcs we define the discrete Fourier transform

T-1
ij: Z xj(t)exp(-ixt} , i=1,2,3 (2.1)
t=0

and the bispectral periodogram
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where

3,

Z ). = 0 (modulo 2 1)

j=1

2 nsj

Aj = T with sj integers, 3

If the mean is not removed before taking the Fourier transform, then set i

Fj (0) = 0, Now taking the average or expected value of the periodogram
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where b() 1 2,) is the cross-bispectrum of the joint cumulant of Xi ,1=21,2,3,

and E is the expectation operator, Also the asymptotic variance estimate [4] is i

given hy . V1
Vdr(RL 1.2' S(Xl

VIR n)
v "2 73 T
o __fl()\l)fa()\z)f:,()\l* )\2) (2.4)

v ‘ 4
ar(ImB ()\l, )‘2’ )\3))

1,2,3

where f (1)) is the power spectrum of X,, The asymptotic covariance between
i i

the real and imaginary parts is an order of magnitude smaller, as is the co-

variance between different frequencies, To reduce the variance of an estimate

(*»,, X\,) from disjoint time blocks (i.e. partition a

we can average B y Ay
1,2,3 1 2

long stretch of data into disjoint segments or records of equal length) and
smooth spatially (over frequencies), The spatial smoothing should not be too

broad otherwise the bias of the estimate would become large, When the bi-

spectrum is relativelv smooth, the smoothing window shape is not critical,
For most purposes, the uniform window is adequate and greatly simplifies
the cormputation. In the course of computation, it is imporiant to compute an
estimate of the standard deviation of the bispectrum, If we have m records
of data and n points being averaged in the frequency domain, theu the esti-

mated standard deviation (S, D,) at () 1 \,) for the real partis
‘

1/2

| i
S SR . » B
S. 1),(xl,x ) — VAR Re ! (xl,xE)J (2.5)

)

-

whe: e
m

VAR Re B 20— O [ReB.(A ,2,) - Re B0y 0,0 2.6)
1 h | i te )

ny e
i




s artanataenie 3 20

SUoRRTEE

e

with
n
B.Oa) =T 2 B, 00, SIS
j=1 0t
m
B, 2, = — 2_1 B0,

The standard deviation of the imaginary part, Im B, of our estimates is com-
puted by the analogous method, These estimated standard deviations give us
a picture of the relative resolvability of bispectrum at each {requency pair

(O 1+ },) and can be compared with tijat of aqymptotic_variance in Eq. (2.4),

The asymptotic formula Eq, (2. 4) for the variance can serve a fundamental
role during the design of an experiment. The power spectra, fi()\). are often avail-
able or are readily estimated from preliminary data, The asymptotic vari-
ance formula and preliminary computations of the bispectrum should then be
used to determine important experimental parameters such as duration of the
data, number of records, and size of the spatial averaging required to obtain
a desired degree of statistical resolution in the final bispectralrestimate. The
directly estimated standard deviaticn given in Eq. (2. 5) should be used to verify
that the degree of statistical resolution has actually been obtained from the data

analysis,

3. Symmetries

The basic symmetry of the cross-bispectrum of real time series is

obtained by conjugation

B, A, b A, =) (3. 1)
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' where b" is the complex conjugate of b, Thus, we need only compute the
right half-plane of Figure 1, When dealing with a single time series, i.e,,

‘ Xl = Xz = X3 , then by various symimetries we only need to compute region 2,

E All other regions can be computed from region 2 using the relationships in

)

; Table 1. When X, =X, =Y, then since

b

!

: bXYY(X" )\Zv'x’}z)=bXYY(xlv"k1‘kzn )\2) (3.2)

we only need to compute regions 1-3, Regions 4, 5, 6 are obtained from
regions 3, 2, 1, respectively, using Eq. (3. 2) in the appropriate region.
Note that all these computations should be made away from )\i =0
to avoid introducing a severe bias in the bispectral estimates in the neigh-
borhood of )‘i = 0. If estimates are needed at a point B()l. A 2 A 3) involv-
ing some )i = 0 then interpolation via a continuity assumptionor other

methods should be made,

4, Computational Methods

The fandamental computation required for bispectral estimates is
given by Eq. (2. 2), the triple complex product of the three individual Fourier
transforms, While this computation is straightforward, limitations on com-
puier time, memory, and statistical variance impose severe limitations on
implementation of the definition of the bispectrum, If record lengths are
short, then it is a simple matter to compute the triple complex products at
each pair of frequencies in the right-half-plane, Applications of bispectral
analyses usually involve long records, and spatial averaging is often

required in order to reduce the variance (f the bispectral estimates,




Increasing the number of records is demanding on computer time and intro-
duces potential nonstationarities, The spatial averaging can be implemented

by summing over tripie prodncts in a neighborhood of a frequency pair (A l.k 2).
The summation must be performed record-by-record becnuse the number of
frequency pairs is large even for moderate record lengths, Computation of a
large number of b’'spectral estimates is time consuming even on large main-
frame computers, and it is therefore desirable to compute the estimates over
an arbitrary set of subregions in the right-half-plane., This approach permits
taking full advantage of the symmetry relationships discussed in Section 3,

In the proposed algorithm the bispectral estimates are computed by

averaging over rectangular regions which may be located anywhere in the
right-half-plane and bounded by the Nyquist frequency constraint imposed by
the discrete Fouricer transform, The rectangular regions may be reduced to

a single point if the variance properties of the data justify the sharp resolu-

tion, Coordinates for the averaging rectangles are passed to the subroutine
and the location of the rectangles is arbitrary. This permits easy computa-
tion of the bispectrum for selected regions when strong interactions are

expected for isolated frequency combinations, The bispectrum and vari-

ance estimates are indexed by the averaging rectangle, The bispectrum

computation is divided into a number of subregions which depend on the loca-

tion of the averaging rectangle. This is done to eliminate most of the condi- j

;
tional tests from the inner loops thereby substantially improving the compu- ﬁ
tational efficiency, The algorithm requires that the Fourier transform be {
defined out to twice the Nyquist frequency index in order to eliminate H

-1




conditional tests in the first quadrant, Some discrete Fourier transform
algorithms already contain this synimetrical part and the user is responsible
for the existence of the extension. A sample computation to extend the trans-
form beyond the Nyquist frequency is included in the comments of the bi-
spectral algorithm,

In the first quadrant the bispectral estimate at a point is given by
R, = Fl(i) F,({) Falk) (4. 1)

where i +j+k=0, or k = -(i +j). Note that the range of indices i,j, and

2
k are assumed to contain 0 and the scale factor 1/(27) T has been surpressed;
the Fortran implementation incorporates a shift by one to avoid the zero index.

The Hermitian property of the Fourier transform of a real time series implies that

3(-k'} (4. 2)

F3(k) =F
and thus the bispectral estimate in the first quadrant becomes
B, j) = Fl(x) FZ(J) F3(-k) . (4. 3)

As shown in Section 3 bispectral estimates do not need to be made in the
second and third quadrants, In the fourth quadrant i >0, j<0, and k may
be either positive or negative. The dividing line is i=-j. Thus depending
on the relative magnitudes of i and j, the expression for the bispectral

estimates becomes: For k < 0,
B b
B(i, j) = Fl(” F,(-i) F3(-k) ' (4. 4)

and for k> 0,

Bl ) = F () F) () F 00 (4. %)
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In the implementation of these considerations, there is a strip along i=-j
where k may be of either sign; this is a result of the finite size of the averag-
ing rectangles. In the algorithm, the fourth quadrant is divided into three
separate computation loops, one with k> 0, one with k< 0, and a third with

k taking on positive and negative values, The point-wise conditional test
remains in this third loop but not in the first and second loops. We feel

that the small loss of efficiency of including the conditional test to select

Eq. (4.4) or (4.5) in the third loop is worth the simplification gained over
eliminating even more of the required conditional tests, In a global bi-

spectrum computation only a small percentage of the loops will actually

include the point-wise conditional test.
The algorithm does not perform the final scaling for the number of
records used in the bispectral computation, the conversion to physical units or
the 1/(2rr)2T factor in Eq.(2.2). The final scaling depends on the particular imple-

mentation of the discrete Fourier transform used in the computation,

5. Application |
The proposed method for computation of bispectra is applied to an
exponentially distributed process. Let Xl(i). i=1,,...,N be independent,
identically distributed time series with X(i) exponentially distributed with
parameter a. Then X(i) has a probability function P(X) =-:; exp f—X/a} '
X 2 0, and the kth cumulant of X(i) is Ck = (k-1)! ak . Consider two ' i

useful test cases:



1

bX X X “l’ 12, )\3) =— C3, E)‘i = 0 (modulo 2m); (5.1)
1" 1" (2m)
!
(2) 1f Xz(i) = %/I- Z Xl(i+j), application of the running mean (5.2)
j= -t
filter to the exponential process with ¢ = (M-1)/2 integer and X3= Xl
C3 Sin()\ZM/Z)
b (A, A)) = : (5. 3)
XI’XZ’XI 1’ "2 (Zﬁ)Z MSm()\Z/Z)
for -m < AZ < m, The power spectrum for signal Xl and X2 are
£, -—I-—C f 11 ) (5.4)
X, Tzm oz 0 TR ’ :
and
1 [Sin(AM/2) 2
i
fx, M - 'z"ﬁ‘[M sm(x/z)] (5.5)
respectively,
From Eqs. (5.4) and (5.5) for the power spectra of _\fl and XZ the
theoretical variance of the estimates are calculated from Eq. (2,4) to give
T 3
VAR . = —— C (5.6)
XI,XZ,X3) 32174 2
for case | and
2
T 2 Sin(XM/Z):,
VARMy o) s ) | Sin(1/2) 6.7

for case 2,




- i T c - bkl i T o b M e e e ]

While both cases have been tested, we choose to repert on the second
case because the cross-bispectrum exercises all the loops of the algorithm,
Case 1 is useful for checking the simple bispectrum computation, but does not
involve all the possible loops, Case 4 was implemented in a test prograin and
the cross-bispectrum was computed using the method described in Section 4. The
parameters chosen are the transform length T =256, the nuraber of points included
in the averaging rectangle n = 11 x11 = 121, and the number of records m = 100,
In addition, M in Eq. (5. 2) is chosen to be 5, and the exponential process parame-
ter a=1. The time series was generated and discrete Fourier transformed using
standard IMSL subroutines. The numerical estimates for the real and imaginary
parts of the cross-bispectrum together with the standard deviation of the estimates
are given in Tables 2 and 3, respectively, An extra column is inciuded in Tables 2
and 3 giving the thcoretical values for the real and imaginary parts of the cross-
bispectrum and the theoretical standard deviations. A single column is sufficient
since the theoretical values given in Eqs. (5.3) and (5.7) are constant for
A 2 = constant, The cross-bispectrum was computed in regions 1-3 of Fig. 1(a)
and Fig. 1(c). These results are shown in Fig, 2,

Table 2 shows that the real part of the estimated cross-bispectrum is
an order of magnitude larger than the estimated standard deviation, and the
result is considered to be well resolved, Table 3 shows that the estimated
imaginary part is effectively zero since it is comparable to or smaller than
the estimated standard deviation. A comparison of estimated and theoretical
values for the real part in Table 2 shows that the differences are small relative

to the standard deviation whereas the estimated and theoretical standard

1"




deviations are comparable. The comparison between numerical and theoretical
cross-bisnectra has been statistical in nature and clearly exact agreement
should not be expected. The accuracy of the algorithm was tested by a deter-
ministic sine-cosi..e signal, as wz2ll as the application just discussed. The
comparison obtained between the numerical and theoretical cross-bispectra
provide strong support for the accuracy of the algorithm in estimating both

the mean and standard deviation of bispectra and cross-bispectra.

6. Concluding Remarks

We have described a method for computing the bispectral and cross-
bispectral estimates of up to three separate time series at any point in the
right-half-plane, Proper application of the algorithm involves:

(i} The computational domain must be chosen to minimize the cemputation
time required by observing the symmetry relationships.

(i) The averaging rectangles should be of optimum size to both keep the
ratio of mean to standard deviation as large as possible without making the
rectangles so large as to lose the spatial (frequency) resolution of important
features in a particular application, If there is no theoretical guidance avail-
able in a particular application, then the user must proceed in a trial-and
error technique to find the optimum computational parameters,

A source listing of the computer subroutinc which implements the pro-

posed method is available from the authors.
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Table 1, Bispectral symmetries

Corresponding bispectral coordinates

b(l‘. 12) in in Region 2

Region 1 b} ,, \1)
s
3 D E RS W O
* 3
4 XA, A+ 1) i
5 b(X‘. —XI—XZ)
6 b(-).l-)\z, )\l) |
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Figure Captions

Fig, 1 b.spectral domains for discretely sampled data:
@ At A+ A =05 ) A N, + A, = -2m

(c) 7\1+ )\2+ )\3= 2.

Fi., 2 Comparison «  cstimated and theoretical cross-bispectra,
(a) Theoretical real part; (b) estimated real part;

(c) estimated imaginary part,
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