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AURM
A simple model to describe fast plasma heating by anomalous and inertial

resistivity effects is presented. A 	 small	 fraction of the plasma

contains strong currents that run parallel to the magmatic field and are

driven by an expaventciating electric field. The anomalous character of the

current ^Lssipatioa is caused by the excitation of electrostatic ion-cyclotron

and/or ion-acoustic waves. The possible role of resistivity due to geometrical

effects ( ' inertial resistivity') is also considered. Through the use of a

marginal stability analysis, equations for the average electron and Lou tem-

pastures are derived and numerically solved. No loss mechanisms have been

talon into account. The evolution of the plasma is described as a path in the

drift velocity diagram, in which the drift velocity v D/ve is plotted as a

function of the electron to ion temperature ratio TO/Ti.

For current layers with dimensions that are large compared to the effective

electron mean free path, inertial resistivity is not important and we find

that:

(1) Beating due to classical resistivity cannot make T e/Ti > 3 . 1 before

Instability sets in. This is always the ion-cyclotron instability.

(2) rather or not a situation with T./T i >> 1 will occur depends critically

on the saturation level of ion-cyclotron waves.

(3) Ion-acoustic wave heating produces a limiting Te/T i of 6.4.

If inertial resistivity is important much higher values of Ts/T i can be

attained, because inertial resistivity primarily affects electrons.

The assumption that hard X-rays, emitted during the impulsive phase of

a solar flare, are thermal in origin, requires a hot thermal plasma,

Ts 5%108 K. Our results indicate promising possibilities for the production

of such a hot plasma.

Key words: plasma heating - current dissipation - marginal stability -

solar flare.
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In a plasma, conversion of magnetic energy into heat can take place by

current dissipation. Often the heating proceeds slow4so that Coulomb relaxation

•	 between electrons and ions keeps the temperatures of both species equal. However,

if the energy input occurs sufficiently fast, T  and T i cease to be equal,

since the energy dissipation mechanism favours energization of either electrons

or ions, and this is what we wish to study in our present work.

We have two specific interests:

(a) In the plasma-astrophysics literature one often assumes To » Ti on the

general grounds that most of the dissipated energy goes into electrons

and the electron-ion relaxation time is relatively long (e.g. Kaplan and

.Tsytovich, 1973). we want to see if this assumption can be justified and if

so, what values for Te1Ti can be attained?

(b) A particular example of rapid plasma heating (1) is the solar flare. It

has been found that the hard X-ray emission during the impulsive phase

of a solar flare can be attractively explained as thermal  bremsstrahlunq

from a wry hot plasma; Teti S 108 K and Te ), ), Ti  (Brown at al. 1979;

Smith and Lilliequist, 1979). The authors quoted take the heating of

the plasma for granted and study the subsequent evolution of the hot

region situated at the top of a loop, leading to the formation of a

Conduction front. We wish to concentrate on the mechanisms that are

responsible for the rapid plasma heating. Observations indicate that it

must occur in a few seconds. The parameters of the numerical case studies

that we shall present are all tailored to the flare heating problem.

Rapid conversion of magnetic energy into thermal onergy must take place in

Localizedlizeedd regions, where the current is very concentrated. The reason for

this is that a large volume with the same current density everywhere would

give rise to unreasonably large magnetic fields at the boundarf. Also, because

parallel currents attract one another, they tend to clump together (tearing

instability; Spicer,1910; Schnack and Killeen, 1978). we shall refer to these

regions of high current density as 'current layers'. They coincide with the

surroundings of Neutral lines of the (fast) tearing mode configuration and

(1) Here and in what follows we unders-and heatinq to mean 'bulk snorgization'•

zlectron and ion velocity distributions are assumed to be roughly isotropic

and Maxwellian.
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their large scale spatial distribution can be quite chaotic (Spicer, 1980).

In the current layers the dissipation rate is datermined by the magnitude

of the current density and the resistivity of the plasma. The latter quantity

depends on whether or not the currant is unstable to the generation of waves

(see for example Yapedopoulos, 1977) and on the geometry of the current layers

(inertial resistivity). We shall consider electrostatic ion-cyclotron waves,

vMch heat primarily ions, and ion-acoustic waves, which heat primarily

electrons. In the presence of these waves we calculate the resistivity by

applying the marginal stability analysis concept (Manheimer, 1977; Manheimar

and Boris, 1977). In our analysis we shall derive and numerically solve two

temperature equations, one for the electrons and one for the ions. Special

attention will be paid to the ratio To /Ti , because this quantity determines

which wave" has the lower threshold (Kindel and Kennel, 1971).

♦ difficult question is how the locally high dissipation rates around the

neutral lines influence the evolution of the tearing instability. .. drastic

simplification is necessary. We shall decouple the heating from the evolution

of the tearing mode in that we let the electric field in the current lagers

grow with a constant growth rate.

II.

We consider a fully ionized hydrogen plasma of volume V, containing a

filamentary current distribution. The currant layers comprise a frag gion e

of the volume V and in these current layers there is a strong and growing

electric field in the fluid rest frame, virtually parallel to the local mag-

natic field. In the remaining fraction 1-e the electric field in the fluid

frame is assumed to be effectively zero. We define V somewhat loosely as the

envelope of thi current layers where rapid dissipation takes place. In our

discussion the actual size of V is imaterial. The dissipation occurs only



In the fraction a of V and t will be a small number.	 Though in general a

function of time, we shall treat t as a constant.	 Typically we shall take

s - 0.01, without much justification.

If the heat spreads sufficiently fast around the current layers, it is

reasonable to introduce one avers.V electron temperature Ta and one average

Ion temperature Ti in V. Parallel and perpendicular temperatures are taken

equal, Tel - Te , and Til - Til . These assumptions about To and Ti require

some further consideration, for which we refer to Appendix I. We shall ignore

all energy loss mechanisms from the volume V. These include radiation losses,

expansion losses and conduction losses. Though in the case of the solar flare

the latter two will certainly be important when the plasma is very hot,

we deliberately ignore them in this paper, because we wish to concentrate on

the heating mechanisms. We plan to include these loss mechanisms in a later

study.

2.1. Dissipated eneray and its distribution over electrons and iocs

The frictional force that determines the resistivity depends very much on

the state of the plasma. If the resistivity is caused by Coulomb collisions,

it depends on the electron temperature only. However when the plasma is in a

turbulent state, the electrons carrying the current will also interact with

the electric field fluctuations in the waves, which changes the resistivity

(and other transport coefficients) of the plasm- -a a way that depends upon the

type of waves that grow. As waves that affect the resistivity we shall consider

electrostatic ion-cgclotron (IC) and ion-acoustic (IA) waves (c.f., solar

applications by Rosner et. al. (1978) and Rinata (1979).

Another factor of importance for the resistivity will be the geometry of

the current layers. Past electrons crossing ama:: current layers will remain

under the influence of the electric field only ? a short period of time and

therefore their contribution to the current der,-;._y is small. This is due to
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the inertia of the electrons. The corresponding resistivity is called inertial.

resistivity (Speiser, 1970).
L

	

	 Inside the current layers several independent scattering processes i occur at

the same time. Thus, the total dissipation rate Ptot is related to an effective

p	 resistivity nEF as follows:

ptot ' nEF j 2	;	 j • no v 	 (1)

VD is the drift velocity corresponding to the current density J. The electric

field E and j are related through Ohm's law:

E a nEF j	 (2

where the total resistivity is the sum of individual contributions:

nEF	
i n i	 (3)

Four res13tivitiea are distinguished in this paper (see also Appendix IIB):

(a) classical Coulomb resistivity "CL

(b) resistivity due to geometrical effects: inertial resistivity IN

(c) resistivity due to ion-cyclotron waves: JIC

(d) resistivity due to ion-acoustic waves: 71A-

Because we are interested in the behavior of T o and Ti , we want to know

how the dissipated energy is distributed over electrons and ions. Therefore

we introduce the quantity Xi as the fraction of the dissipated energy 1 j2
that goes into the electrons by scattering process i. Classical and inertial res -

istivities energize only electrons (to order (m/0):

XCL = 1
	

XIN 
0 1	 (4 a)
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Conse,luently, without waves, the ions are heated only as a result of classical

equilibration, i.e., by the' transfer of energy from electrons to ions by

electron-ion collisions. However, in the presence of waves, the ions can also

gain energy from the waves. In fact, what happens is that the waves act as

an intermediary, enabling a transfer of energy from electrons to ions. Thus,

despite the fact that the electric field does work only on the electrons,

Xi (i a "IC" or "U") is found to be less than 1. An expression for X i is

(Tanga and Ichimarum 1974) :

Xi a i <W 
>i /< k II vD ,i
	

(4b)

where k  is the component of the wave vector parallel to the magnetic field,

m is the wave frequency and the average is taken over the wave spectrum.

Equation (4b) follows from conservation of energy and momentum of particles

and waves. Now the dissipated power that goes into electrons (Pe ) and

ions (Pi ) is

Pe	
i X

i n i j 2 	 Pi	 i (1 - X i ) ni j2	
(5)

With expressions for Ji and Xi as a function of the drift velocity vD , the

wave level wi and the wave spectrum w i (k) it is possible, in principle, to

calculate the above dissipation rates Pa and Pi . Because in general the

wave level and wave spectrum are not known a priori, we must follow a special

procedure that is outlined in the next section.

2.2 Marginal stability analvsis

Recently, a method has been developed which enables one to derive values

for the transport coefficients of a plasma in a turbulent state, without solving

any microscopic equations (Manheimer and Boris, 1777; Manheimer, 1977). The
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method uses the fact that an unstable plasma evolves toward a marginally stable

star e and has already been successfully applied to computing laboratory plasma

pr...1as (Kalfsbeek, 1978; and references cited in Manheimer and Boris, 1977).

In this paper we shall use the marginal stability analysis only for computing

the plasma resistivity and its essence is as follows. Suppose we start with a

small current so that dissipation is governed by Coulomb collisions only.

From an analysis of the linear dispersion relation (see Appendix IIA and for

example Kindel and Kennel, 1971) one can find the minimum drift velocity for

which the current parallel to the magnetic field becomes unstable. One sees

(Figure IA) that for a plasma with TO, < 8, ion-cyclotron waves have the
lowest threshold. The critical drift velocity is denoted with v IC . Therefore,

if the current density grows, the plasma will first become ion-cyclotron un-

stable. As long as the ion-cyclotron waves are not saturated, the drift

velocity vD remains approximately equal to v IC and thus it is possible to

calculate the effective resistivity from

'Er = "I IC 1 J IC ' ne vIC	 (6)

From this and from Ttp n TICL + 1IC one can calculate TiIC.

Figure 1A,B

The energy density of the waves wIC can now be computed from an expression

for JIC as a function of the wave level 
(see Appendix IIB, formula (B7)).

Next compare this wave level 
wIC 

with the saturation wave level wIC for ion-

cyclotron waves. If wIC < wIc ' the assumption of marginal stability is correct.

As soon as the waves saturate, the current density starts to deviate froc

JIC for ion-cyclotron waves and increases till the instability with the next
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lowest threshold sets in. This is the ion-acoustic instability. Again the

plasma evolves toward the marginally stable state, this time with j remaining

close to JIA for ion-acoustic waves (see Figure l.A).

Apart from the resistivity, the marginal stability analysis also proviZua

the frequency and the wave vector around which the wave spectrum is peaked and

thus enables one to calculate X i (i u 'IC' or 'IA') from equation (4b). For

the details of this we refer to Appendix IIA and the references cited there.

A graph of Xi as a function of Ta /Ti is displayed in Figure 18.. If the ion-

cyclotron waves are saturated, calculation of XIC becomes more difficult (see

Appendix IIC). For this case, the calculation of vD follows from Figure 2.

From the above discussion it follows that the heating process consists

of a -number of successive stages. The switch -over from one stage to the next

is determined by the threshold and the saturation level of the waves. We

have summarized this in a block diagram, see Figure 2. It is unfortunate that

the wave levels cannot be determined very reliably, despite the decisive role

they play in the computation.

Figure 2

2.3 Equations

Electron-and ion-heating and the growth of the electric field are described

by the following equations:

dT T - T

2 
nkB 

dt . - Z r
. kg -=-	 + c i Xi ^i j2	 (7i)

eq

3 nkB 

dT	 - T	
(

T

	.1

	

T
nk 	 T	 i+ c i (1 -Xi) ni j2 	

7b)
eq

dE i Y k	 (7c)at
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with

nom. • t^ ni :	 j • E/nom,
Oa)

3/2

t	
3	 1 m M k8 Tt	 (8b)

eR 8 (^^ In A ne4 	 m

Taq is the electron-ion equilibration time (Sivuhkin, 1966) y is the growth

rate of the electric field. We assume y to be a constant. The first term

on the right hand side of the temperature equations describes heat exchange

between electrons and ions by classical Coulomb collisions. Note that it does

not contain a factor c because classical equilibration takes place everywhere

outside the current layers.

We now introduce the following dimensionless variables:

T1 = Te/Tejo	 i Ti - Ti/Tejo : E' = E/Eo s t' + t/Tg(a)	 (9)

The subscript zero denotes values at time t - o and

1. S a kB Te

T (t)	 (10)
H	

E2/nCL

T8 (o)/c is the characteristic electron heating time at t - o. In terms

of the new variables the equations read (we drop the primes):

dTe	
- 7 Te Ti + c X	 E2 In	 (lla)

dt	 T 1.5	 EF	 EF

e

dTi a
-	 a Te Ti + c ( 1- X ) E2/n	 (lib)

dt	 T 1.5	 EF	 EF
e

dE=yE	 (11c)

V
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with

n 	 n i	 s	 XEF 3 
i (n i /n ZF ) Xi	

(12a)i
nEF	 MAO	 (m/M) ^ (va/vD ) E/Ted 	(12b)

T8	 1 m 
E(o)	 (o)	 2_	 D	 41Tne3 In A	 (12c)

a^
teq (e)	 3r M Eo	

s ED(o	 k8 Te,o

(12t,) is just the relation rEF 
E/j from (8a), re-expressed in the

dimensionless units (9).

It so happens that the dimensionless constant 7 can be written in terns of

the ratio of the initial electric field and the initial Dreicer field ED(o).

All I n s are expressed in units of TICL(e), the classical resistivity at t = o.

The growth rate y in equation (11c) is dimensionless and expressed in units

of r
-1 
(0). ve is the electron thermal speed, ve

III. RESULTS

In this section we shall present some scenarios of fast plasma heating

computed from eq. (lla-c). At t a o we always have equal electron and ion

temperatures. We shall start with an investigation of the classical heating

phase. Next we will choose a specific set of parameter values and show

numerically how the plasma evolves in the other heating stages as well.

3.1. Classical heatinS

In stage 1, XEF a 1 and 'M u 
Tl1.S 

(dimensionless units ). addition

of (lla) and (llb) gives

at (To ; Ti ) - c Tea/2 
Et s	 E • exp ( y t)	 (13)

It is easy to-solve eq. (13) for two limiting cases. The first Isc is strong

electron - ion equilibration which keeps Te and Ti equal. The sec-,nd e,iWiting
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case happens if the transfer of #tnergy from electrons to ions by Coulomb

collisions is negligible. In both cases the temperature growth is explosive

(Coppi and Friedland, 1971). More interesting than the temperature growth

itself is the behavior of the temperature ratio T./Ti during classical heating.

We found that the explosive temperature growth does not autocratically lead

to large Te/Ti . The reason for this is that before Te/Ti starts to deviate

considerably from unity, the plasma becomes electrostatically unstable. The

larger the electric field is the lower the electron and ion temperatures at

which the plasma becomes unstable. Therefore (Te/Ti)cr, the value of Te/Ti

at instability onset, decreases with increasing growth rote of the electric

field. In Figure 3 we have plotted (Te /Ti ) cr as a function of the growth rate

of the electric field for three different filling factors t. The instability
is always the ion-cyclotron instability. Obviously (Te/Ti)cr is largest for

y n o and c * 1, when it reaches the value 3.1. Therefore it is impossible

to make To /Ti > 3.1 by classical Coulomb dissipation in a plasma with an

exponentially growing electric field. As we shall show in the next section,

the subsequent evolution of the plasma after instability onset, is not necessarily

toward large To /Ti . This is due to the fact that ion-cyclotron waves preferen-

tially heat the ions. Therefor, we cannot confirm the conclusion of

Rosner at al (1978) that a large Te/T i can be easily produced. They reached

this conclusion by their assumption that after the classical heating phase

the two-stream (i.e. 3uneman) and ion-acoustic instability 	 will be excited.

This is not true beca mthe ion cyclotron instability has a lower threshold.

3.2. Results includinz anomalous heating (no inertial resistivity)

We shall now present some scenarios of fast plasma heating. With this

aim we choose the following dimensionless parer-eters:

__A
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a - 5 ;	 E - 0.01 ;	 Y - 10
	

(14)

Eqs. (lla-c) :kpend at first sight only on the constants specified in (14).

In reality, the density, magnetic field etc. all enter because the marginal

stability analysis requires us to compute wave energy densities and to switch

stages on the basis of this. Therefore we extend (14) with parameters

appropriate for impulsive heating as it is assumed to occur in solar flares

(Brown et al., 1979; Smith and Lilliequist, 1979):

n - 10 11 cm 3 ; B - 500 G	 Tejo,- Ti'o - 5 106 K	 (15)

The density and the magnetic field are kept constant; the Coulomb logarithm

is also kept constant, equal to 20. The above parameters imply a classical

heating phase first, because at t - 0 we have vD/vIC - 0.05 and vD/vIA - 0.02.

With (14) and (15) we find

Teq (a) - 1.4s ; Ta (o) - 7.1s ; Eo/ED (o) - 0.003 ; ED (o) - 10-3 V cm-1 (16)

We terminate the computation as soon as T . - 100 (i.e. 5 108 K). The growth

time of the electric field is T K(o)/y or 0.7 s. In all scenarios considered

below, increase or T. by two orders of magnitude takes place in approximately

7 or 8 growth times, that is in about 5 s, while increase of T e from 5 107 to

5 108 K happens in 1 or 2 growth times, or about 1 s. We defer all discussion

on application to the flare heating problem to the next section.

Figure 4,5
	

Figure 6,7

on left page
	

on opposing right
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In stage 2 the presence of ion-cyclotron waves keeps the plasma in a

marginally stable state. From Figure 19 we see that ion-cyclotron waves pre-

ferentially heat ions. Therefore they tend to decrease the ratio Te /Ti while

classical resistivity still tends to increase T ./TI . If the resistivity due to

Lon-cyclotron waves starts to dominate classical resistivity, the ratio

Te/Ti will drop. Whether this will happen or not depends on the saturation

level of the waves. Unfortunately, this saturation level is not well known.

Therefore we consider three different saturation levels (see also Appendix IIC).

(1) a low saturation level due to plateau formation ( petviashvili, 1964),

strictly valid for an infinite homogeneous plasma only. In this case the

maximum contribution of the ion-cyclotron waves to the resistivity is

of the order of the classical resitivity.

(2) a high saturation level due to ion resonance broadening (Palmadesso at al.,

1974). From (C2) we find that w 	 is approximately equal to 1, sometimes
IC

even larger than 1. For this reason we preferred to simulate saturation

by ion resonance broadening by taking a fixed w5 - O.S. In this case, the
resistivity due to icn-cyclotron waves soon dominates classical resistivit.'.

(3) An intermediate saturation level, w S - O.C1.
Note that all our wave energy densities include both the electrostatic and

the kinetic part. Therefore, because the resistivity is determined by the

electrostatic energy density only, equal total energy densities in ion-cyclotron

and ion-acoustic waves can give resistivitios that are .suite different. The

wave levels for icn-acoustic waves that occur in our computations, are arrays

low, so that they will not saturate. we will not pay much attention to the

behaviour of the electron and ion temperatures themselves as a functicn of time.

we found it to be much more interesting tc !fellow the evolution of the pla =3
in Figure IA, the drift velocity diaaran. Thcugh a point in this diagram does

not completely specify the state of the plasma, it shows which wave typ*s

are present and :`sew the energy is distributed over electrons and ions. A

part of the evelutionar.: oaths coincides with the marginal stability curves

(it is somewhat like the Hertzsrr ,;-Russell d:.acram with evclutionsry paths).

The drift velocity dtagraca snows the staces, def:^ed in Fi:rt:re 2, thr u,; :z

which the plasma yces during the ;:eating process. For t o three saturat_c:, levels

mentioned above, we have	 the r..l .__.as p s pst s :n the drift

diagram. :::e results are dis>_syed in	 're 4.	 11`;e	 ;a: -.at •	 . e•:e_
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-case 1- we illustrstq	 the temperatures T. and Ti , the fraction (Eg of the

dissipated energy going into electrons, the resistivitias CCL' ^IC' SF) and

the wave levels (w I` , w IA ) as a fu7ttion of time (Figure s). In Figure 4B the

plasma goes through stage I and ends in stage 2 with Te/Ti	0.3 and wIC 	 0.15.

The ion-cyclotron waves that dominate the heating process apparently ne,er

saturate. In Figure 4C the plasma goes through stage 1, excites ion-cyclotron

waves (stage 2) that saturate (stage 3) and stays in stage 3 till the end of

the computation (Te % 100?; then Te /T i % 1.1. The reason for T aiT i to remain

close to unity in stage 3 is that the fraction of the dissipated energy that

is put into the electrons by the wavesincreases the further the drift velocity

is above the ion-cyclotron critical drift velocity 
v 
1 (Appendix IIC, eq. (C3)).

In both Figures 4B and 4C the increasing resistivity due to ion-cyclotron waves

prevents the fast growth of the current density to the ion-acoustic threshold.

In Figure 4A ion-cyclotron waves saturate at such a low level that they are

not important for the final evolution of the plasma. The growi:g electric field

drives the plasma ton-.acoustically unstable (stage 4) and the plasma evolves along

the marginal stability curve for ion-acoustic waves to the right in the drift

velocity diagram. That is the electrons are preferentially heated and we end

with Te /Ti ti 6 . 3. The fact that Te /Ti stabilizes at about this value when ion-

acoustic waves are dominant can be easily explained ( Kalfsbeek, 1978). With

eqs. (11a ,b), ignoring all terms exce t the ian-acoustic one, we find

Te/Ti	
XIAf 

(1 - X IA )	 (17)

With the help of equation ( Ad) and the introduction of x + TelTi we find

for x + 6:

dx/d(ln Te) ' x - (m/'.-O ^^ exp(O .Sx + 1.5).	 (1:,)

It follows that x always approaches the value for which the r.h.s. of eq. (18)

vanishes, that is Ta /Ti approaches the limit 6.4. This value only depend-. on

M/m. If energy losSAs are included, this value 6.4 will probably become loner.
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3.3. Inertial resistivity

We now want to discuss how the site of the current layers influences

the heating process. We assume that the electrons outside the current layers

have a Maxwellian distribution. The electrons that enter the current layers

with a (thermal) velocity parallel to the electric field are decelerated

(they lose energy), while the electrons with a (thermal) speed in the opposite

directi-in are accelerated (they gain energy) . Becau3e the gain is somewhat

larger than the loss, the net result is an increase in the energy of the

electrons. The directed energy they gain in this way is randomised in between

the current layers by Coulomb collisions and by scattering off chaotic mag-

netic fields. Therefore, the effect of inertial resistivity is to heat the

electrons in volume V. Of course, inertial resistivity will only be important

if the time during which a thermal electron crosses a current layer is of

the order of, or less than a typical (effective) collision time. This means

that current layers with a characteristic length scale L (see appendix IIB)

smaller than the effective mean free path of an electron will carry a

current that is determined mainly by inertial effects. Inertial resistivity

heats only electrons (to order (m/0) and hence its effect is to increase
Te /Ti , offering the possibility of quite different paths in the drift velocity

diagram, see Figure 6. Three different length scales will be considered,

namely L • 1, 3 and 10 km. For the L a 1 km case the influence of inertial

resistivity is most obvious, because here T a /T i has increased till just above

8 while still in stage 1 so that ion-acoustic waves are the first to be

generated and the saturation level of ion-cyclotron waves is irrelevant. For

L a 10 km, wIC • 0.5, inertial resistivity is lest dominant and ion-cyclotron

waves are generated first. However, instead of covin; along th' a ion-cyclotron

marginal stability curve to the left as in Figure +B without inertial resiz.tivity,
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the plasma now evolves to the right along this curve. For the intermediate

case L a 3 km, A0.01, again ion-cyclotron waves are generated first.

However, they quickly saturate and soon ion-acoustic waves are excited. For this

intermediate case, inertial resistivity is also important in stags 4 as is illustrated

by the fact that T O /Ti increases above 6.4. In Figure i we also show the

temperature, YEV , resistivities and wave levels for this case.

IV. DISCUSSIONr

4.1. Summary of behavior of TG /Ti during the heating

Though in principle classical heating could make T. >> T i , this never

happens because the current becomes unstable before Te/T i attains high values.

The maximum valie that we found at instability onset was 3.1. There appear

to ;.e two possibilities for the production of a plasma with T e >> T i . The

first is that the ion-cyclotron waves saturate at a low level, so that ion-

acoustic waves will be exci,ad. Then T./T i will stabilize at 6.+. The second

possibility is that because of the small dimensions of the current layers,

inertial resistivity is important. In that case, large T./T i can ye obtained

even for high saturation levels of the ion-cyclotron waves.

4.2. Application to solar flare problem

If the observed hard X-rays from the solar flare plasma are int_rpreced

as thermal bremsstrahlung, it is readily calculated that a plasma with an

electron temperature of about 5*10 8% (corresponding to =3 ke y') and a volume

V	 1023 cm3 (corresponding to an emission measure 'n'd." - 10 45 cm-3 when
Y

a	 10 11 cm -3 ) is necessary. This hot plasma must be produced fast (in a

few seconds) because heat conduction will prevent a slow temperature rise

to 5%10 8K. Therefore, for all cases that ;:e have presented, ^,e used a fi:ced

growth ti--e of the electric field of 0.7 s so that we ;et just about the
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required heating time. Not all the possibilities treated in this paper are

equally suitable as a mechanism for impulsive electron heating.

TO /T i increases considerably above unity, we expect that the neglect of ex-

pansion losses can be justified during a large part of the heating process.

Otherwise, shock formation and disruption of the tearing mode structure

might occur. also, the anomalous heat conduction front theory (Brown et al,

1979; Smith and Lilliequist, 1979) has been carried out only under the

assumption Te /Ti >> 1, so that it is uncertain if in the case Te /Ti	1 the

thermal model emits hard X-rays more efficiently than the beam target models

(Brown, 1971). If it does not, the main advantage of the thermal model

namely the gain in radiation efficiency, disappears. In 4.1 it is summarized

under what circumstances a plasma with Te >> Ti is produced.

4.3. Exeonentiatin-z electric field

A drawback of our work is the absence of any coupling between heating

and the evolution of the tearing mode. One might even argue that a factor

100 increase in T. in approximately 5 s as.illustrated in the numerical examples is

meaningless because an exponentiating electric field eventually produces any

desired heating. This is true but it must be realized that the largest

electric field that we used is only about 5AO -3 V/cm, which is very small

compared to the maximum electric field available, Emax. The latter can be

estimated as max - v x B/c	 170 V/cm, where v 0.1 B /(4rrol) ^, B - 500 G

and n - 10 11 cm-3 . In practice Emax will be smaller because of neglect of

angular factors, but it will certainly be much larger than 5010 -3 V/cm.

Apparently we have quite some freedom to use larger electric fields. We may

need these larger fields to produc? I . , 5;L108K if losses are included or

if for exampl#. t is much smaller than,0 '1
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In our calculations we , did not take into account electron runaway. Comparing

E with the classical Dreicer field E D (formula 12c), we find that at t - 0

the ratio E/ED .3X10 -3 while at the and of the run E/ED 500. However,

whether or not electron runaway occurs in the current layers depends on an

effective Dreicer field ED Ep, which differs from the classical Dreicer field

in that the classical collision frequency is replaced by an effective colli-

sion frequency vim, (ne t /m),EF .	 With EDEp - (mve /e) v Ep, it is easy to show

that E/ED,EF - vD/ve < 1.	 Neglecting electron runaway is justified

along most of the evolutionary path in Figure 4. In the case that inertial

resistivity is important, Figure 6, the small sire	 of the current

layers prevents electrons from running away.

4.4. Slowlv chaneing total resistivity

The behavior of the total resistivity (c.f., Figures 3B 44d 7B) contradicts

the popular view in that it jumps 	 discontinuously by many orders of

magnitude. The essence of the marginal stability analysis is that the time

scale for changes in the effective resistivity (and all other transport

coefficients) is reduced to the MHD evolution time. In our case, the final

resistivity is between one and two orders of magnitude larger than at t - o.

Of course, the classical resistivity decreases a factor 1x10 3 since

TICZ a,Te
-1 ' S

 and T. increases by 100. Hence one might say that a factor

104 to 105 in resistivity is gained. Vote that this happens only in the

current layers, not in the bulk of the plasma.
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`	 APPENDIX I

Heat conduction around -current lavers temoe_ tuna isotrocv and homo¢eneity.

With the parameters that we use for the solar flare (:.. 10 11 cm-3;

To . Ti ... 5)1106K in the initial phase, sea (15)), we find that the mean free

path for electrons as well as ions is about 10 km. Because we expect the

'	 current layers to have a typical transverse length scale of a few kilometers,

we mist assume that heat transport from the dissipation regions is non-classical.

Ion heat transport parallel to the magnetic field will then take place with

approximately the ion thermal speed (convection) which is a hundred kilometers

par second or more ;Ti > 5 x 106K). This is enough to explain the ion-temperature .

uniformity parallel to.the magnetic field during the heating. In the aame

way we can argue that the electron temperature will be uniform along the

magnetic field. Perpendicular to the magnetic field the situation is more

difficult. The classical heat conductivity is reduced considerably for both

the electrons and the ions. However , in the presence of ion-cyclotron waves,

the ion perpendicular heat conduction is strongly enhanced (Ionson at. al., 1979).

Thus, within the current layers where ion-cyclotron turbulence is present, ion

perpendicular heat conduction is relatively efficient. Note that beat flow

away from the current layers is primarily along the magnetic field. However,

the magnetic field structure itself is probably quite chaotic (e.g., through the

effects of tearing instabilities) thereby enabling the particles to distribute thermal

energy throughout the volume V by simply following the field lines. Di_ -ences

in Til and Tio 
as well as in Teo and Tt, may in principle develop. For

instance ion-cyclotron waves increase T il rather than Ti, (Dakin, 1976,

Ionson, 1979). However, temperature anisotropies will drive fast electro-

magnetic instabilities (Davidson, 1972 Ch. 10,11,12; Davidson and Ogden, 1975),

that maintain isotropy, both for electrons and ions.

1
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APPENDIX II

A. The calculation of vIC, VIA, X IC and XIA 
under marginally stable conditions.

The critical drift velocity is obtained as follows. With the linear

dispersion relation the growth rate y of the waves can be determined as a

function of vD and of the wave vector k. For small vD , Y is negative for

every k and all waves are damped. With increasing vD , the growth rate Y will

increase. The v  for which the maxim= of Y(k) equals zero is the critical

drift velocity. Together with the corresponding wave vector, it can be found

from:

Y = o r ak	
o	 (Al)

If TO /Ti is not too different from 1, an approximate expression for the

growth rate is (Lee, 1972):

v

_	 2	 T	 ^- v	 1
7M - T •	 i2 f 

Ti ( rte I D 1 + r 1 ( 1 + ^) 0 O ( -0 2 ) t
1	 ` e ` 2} `i l e/	 J

where

^(k) - f! _	 r 
d =
	 tt	 1 - G+ Ti^+e

	

kj2 v 2 	 k T	 k T

r	 e u I (u) : u =	 2 i	 ; vi2	
M 
i J	 vet =	

m 
e

n	 n 
n

G(u) = r 1 (u) + 1 uro 	
n ` M c

_m- n
0	

3 2 ki) vi

In is the modified Sessel function of order n. The condition y = o gives

(Le, 1972) :

(A2)

(A3)
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`
1/2	 3/2

vD • 
T (1+ a )0 I Ti 1	

1^+ r T1 ) r1 a-p2

e	 e	 r M	 ` i J	 (A4)

Minimizing the above expression with respect to p and µ is equivalent to

(Al) and in this way vIC is found. The values of 4 and p for which (A3) is

minimized can be used to calculate XIC with (4b):

	

XIC 0 1 - (2m/M) (Ti/Te ) h0 0 + 1/a ) (ve/vIC )	 (AS)

For a we found the following fit

0.1(5 Te/Ti - 2.1)^ Te/Ti > I.

a ^^ 0.01+ 0.16 Te/Ti 	Te/Ti IC

The values of p that we used, can be retraced with the help of (A5), the fit

for 0 and Figures lA and 1B .

For ion-acoustic waves we took for T./Ti < 6, the critical drift velocity

vIA as liven by the graph of Fried and Gould (1961). This graph is also

reproduced in Kindel and Kennel (1971). For larger values of T O /Ti we used

an analytical expression (Krall and Trivelpiece 1973, Chapter 9):

vIA/ve - (m/M) 1/2 + (Te/Ti ) 3/2 exp(-0.5 Te/Ti - 1.5)	 (A6)
for Te/Ti 1,

With the help of (4b), Kindel and Kennel (1971) and (A6) we find:

1

X IA ' 1 + %M/M) 	 for T	
(

e/Ti 	 1	 A7)

X IA/(1 - X IA )	 (M/m) 1/2 ( je
/Ti ) 3/2 exp (-C.5 Te/Ti - 1.5)	

(A8)
for Te/Ti > 6

a
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where we also used that w/k „ (m/O ve for large Te/Ti . For TO /Ti betweei

1 and 6, an expression for )(IA was obtained by linear interpolation.

B. Resistivities

The following expressions for classical and inertial resistivity have

been used:

(a) For classical resistivity (Spitzer, 1962):

riCL - (87r/9) 1/2 mi/2 e
2 In A ( k8 Te) -3/2	 (Bl)

(b) For inertial resistivity we start from the general expression

4v(we 2 T ) -1 (Papadopoulos, 1977), where we - (4rr n e 2 /m) h is the electron

plasma frequency. Usually T is the characteristic scattering time, but now

we set T equal to L/ve, the average time that an electron stays inside the

current layer of characteristic dimension L (Speiser, 1970):

v

n^ - 
m2 

L	
(B2)

no

Note that if the current layer is very elongated, L is of the order of the

transverse dimension of the current layer. The reason is that B will cross

the current layer at some angle 	 (E and B are not necessarily parallel),

so that a particle will cross the current layer by just following a field

line.

The resistivity due L-o electrostatic wave turbulence is derived from

the relation (Tango and Ichimaru, 1974, Papadopoulos, 1971):

v	 r	 d3k	 (B3)
e	 I1	 1 	 -

We n kBTe vD	 2„) .	 Il e	 e
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where Ae ve/We is the electron Debye length and

1	
I

d3k	

2w•	 I dm <V Ik, W>n kaTe	
(2T)3 J

is the electrostatic wave erergy density normalized to n k 8 To.

The electronic susceptibility 
x  

is given by (Ichimaru, 1973; Davidson, 1972):

2

Im 
Xe 	 *n	 d3 °

	 nn
 as	 + 

kU 
av	

fe (v) Jn 6 (x
11 vii "

w- ftQ)
k	 1	 1	 q

(BS)

The argument of the Bessel function Jn is k^v :/:1. We now make the following

assumptions:

(1)only the n a o resonance contributes because for ion-cyclotron waves

kl vl /A << 1 and for ion acoustic waves kl % o

(2) fe (v), the electron velocity distribution function is a drifting Max-

wellian with v  parallel to 8.

(3) 1w - kQ vD, < kli ve

Then we find for both wave types:

nti T^ v e < ll
 VD 1' w

2) VD	 (k A ) 2
	 W 2

e	 •

For the plasma in a marginally stable state we approximate < ( k, l v  - w )/( k ae)2 >

as (
NI 

VD- w)/(kA e ) 2 , where k 1 
and w are those of the ma rginally stable

wave. The factor (ka e ) -2 is awkward, in particular for ion-acoustic waves

which have for--mally k - o for the marginally stable wave (Fried and Gculd, 1961).

we eliminate (k A e ) -2 by using total (electrostatic + mechanical) wave energy

densities. Withcut proof we mention, for ka e << 1:

(M)

(86)
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T
(kae )

-2 [i + T u - o+f i /C2 )]	 for IC
i

a NOaW

2 (k ae ) -2	 for ZA

(c is the dielectric coefficient). This then leads to:

II

	

_ r	 1 Ve	 VD W

	

(c) SIC ( 2	 7)	 vD 'IC	 Te	 2	 (87 )

1 + T (1 - G + P 1 /1 )
i

v
(d)	 nIA • 2 ( 	

2 
ve w

IA (kil vD - W)	 (B8)
^	 We	 D

where wIC and wZA are total energy densities. Finally, k
11 VD-"' is

rewritten in terms of X, as follows:

	

XIC	
0 + a) n	 for IC	 (99)

1 -XIC
k,	

V - W

	

Il V
L1 - W ^	 ' W	 W 'S'

1 X X	 [ M J^ We	 for IA	 (B10)
IA `

C. Saturation of ion-cyclotron waves

In an infinite homogeneous plasma, saturation of ion.-cyclotron waves cc=:xs

at a low level due to the for-ration of a plateau in the electron distribution ft:ncticn.

The contribution of the saturated ion cyclotron waves to the resistivity then is

(Petviashvili, :964):

s	 v 
SIC JCL	 v
	

(C1)
e



-zs-
However, due to spatial inhomageneity of the plasma, it is quite

possible that ion resonance broadening will be the non-linear process that

saturates the instability. In that case the saturation level ;electrostatic +

kinetic) is much higher and is given by (Palmadesso at al., 1974):

T	 /T 2
wIC 2 1 + T• (1 - G + t' 1A	 C Ti 	 d2

i	 ` •

We assume that the wave level corresponding to 
nIC 

from (C1) and the resistivity

nIC corresponding to (r,2) can be calculated with the help of equation (37).

rwt us assume that in the saturated state the wave sped--= is still peaked

about the wave vector where the growth rate of formula (A2) has a maximum.

Introduction of the variable y w/(/2- ^,ve) in (A2), so that

A ' (1•1/m) (b/ (1 + 4) ) (Ta/Ti) 
h y , teaches us that for a given Ta /Ti and 6, the

derivative 
2y 

(y/1.1) is a function of y only and does not depend on vD/va.

Because for the maximum growth rate 
lay 

(Y/n	 • o, the value ox
.] y • ymax

ymax does not depend on v D/va , or, equivalently, Wu i v0) is a constant for Ta/Ti

fixed. In the saturated state we thus have, starting frog (ib):

XIC	i - ( w/k11 ve) (ve/vD) • 1 - Cont. 
(ve/vD ) 	 X IC) (vIC/vD )	 (C3)

where the constant has been found by requiring )L s
IC	 XIC if ''D	 vIC'

Formula (0) implies that as vD increases above vIC a progressively larger
traction XIC of the turbulently dissipated energy goes into the electrons.

(C2)
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FIGURE CAPTIONS

Figure IA: Critical drift speeds for ion-cyclotron waves 
(vIC) 

and ion-acoustic

waves (vIA) as a function of the temperature ratio Te/Ti . Also, vIC

vIA 
are normalized to the electron therrsl speed v e M (kB Te/m)^ .

The numbers 1, 2,3 and 4 denote the different heating stages (see

also Figure 2). For Te/Ti < 8 ion-cyclotron waves have the lower

threshold while for Te/Ti > 8 ion acoustic waves are the first to go

unstable.

Figure 18: Fraction of the turbulently dissipated energy that goes into the

electrons for ion-cyclotron waves (X IC) and ion-acoustic waves

QIA) under marginally stable conditions.

Figure 2: Computation of the drift velocity and the component resistivities in

the four different plasma stages. An affirmative answer to the

question posed in each stage, exce pt the r6ourth, implies the switch-

over to the next stage. The diagram pre-supposes T e/Ti < 8 and does

not continue beyond saturation of ion acoustic waves. For Te/Ti >8

in stage 1 the diagram is different in that ion-acoustic waves are the

first to be excited. Inertial resistivity is included by replacing

nCL 
by (nCL *nIN). The symbols and expressions used are explained

in the main text and Appendix II. The superscript s denotes the

value at saturation.

Note that for the calculation of 1 1 3 and w ' s at a given time,

the previous history of the plasma is immaterial.

Fixture 3: The value of the electron to ion temperature ratio when the current

first becomes electrostatically unstable, is shown as a function

of the growth rate of the electric field y, for three different

values Of the filling factor c. (Te/Ti)cr is found numerically

by solving the temperature equations in the classical phase until

Instability sets in.



Illustration v.f the evolution of the plasma in a drift velocity

diagram for three different ion-cyclotron saturation levels:

(A) a low saturation level due to plateau formation (Petviashvili,

1964); (B) wig - 0,5; (C) wIC • 0.01. The dashed lines are the

critical drift speeds of Figure 1A. The current layers are assumed

to be large (formally L - a), to that inertial resistivity is not

important (jIN - 0).

Fi u e : The low saturation case of Figure 4A in more detail. Time is in

units of the growth time of the electric field, which for our

choice of parameters is 0.7 sec.

Figure 6:	 The evolution of the plasma in a drift velocity diagram, with

inertial resistivity dominant (° I^ 0 0). Three different length

scales L of the current layers are considered. (A) L - 3 km; w3CM

0.01; (B) L - 1 km, wIC - 0.5; (C) L - 10 km, wIC - 0.5,. Again

the dashed lines are the critical drift speeds of Figure 1A.

Fixture 7: The L - 3 km, wIC - 0.01 case of Figure 6A in more detail. Time

is in units of the growth time of the electric field, that is in

units of 0.7 sec.
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