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Plasma Waves in a Relativistic, Strongly Aniso-

tropic Plasma Propagated Along a Strong Magnetic

Field.

0. G. Onishchenko

t3*

Introduction

It follows from the general concept regarding the nature

of pulsars that in the vicinity of a neutron star there may

be an ultrarelativistic plasma in a strong magnetic field.

Therefore, there is great interest in the problem of the gen-

eration and propagation of electromagnetic waves in a relat-

ivistic plasma occurring in a strong magnetic field [I], 123,

C3], [4].

The electromagnetic properties of a relativistic plasma

depend greatly on the particle distribution function (in

the relativistic plasma, the role of three-dimensional dis-

persion is great). Kaplan. and Tsytovich fl], I21, noted that
close to a neutron star, there may be two processes, as a

result of which an arbitrary distribution function of rela-

tivistic particles becomes almost homogeneous with resDect

to impulse--it is extended along the magnetic field B.,
The first process is the monorierization of the particle dis-

tribution function in terms of impulse as a result of losses

to synchrotron radiation, and the second process is the

wnarmri zzation of the particle distribution function according

to the conservation of the adiabatic invariant WAS COM-1
where Pi is the transverse component of the particle impulse
when the particle moves in a slowly decreasing magnetic field.

We assume the following as the specific particle distribution

umbers in margins indicate foreign pagination.
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function in terms of energy Ili, 121

(r'^)	 ^	 (I•I)
^^^= E f ^' ©^ spy' ^>^^w.c	 .,

where A is the mass of a particle of the at-type;  c- speed of

light. At 0 2 the energy F,, fplay s the role of the
temperature, the average energy of the particles(41WA	 14

The one-dimensional distribution according to impulse, t(})•

which corresponds to this energy distribution, has the form
 1, jP pM p4W

A 7C47e P. . 
«4, 

#P	 0 ^^+ P^^xj	
(1.2)

In the region A.0V rh the distribution of (I.2), as was

noted In 131, is an	 creasing function of p and consequently

will be unstable with respect to longitudinal oscillations

with XIC > W , where Ke is the wave vector component along
the magnetic Field $,4? - oscillation frequency. As a result

of the quasilinear relaxation in the distribution (I.2) a

plateau is formed in the region 

P<kC?WCC -

The following function 131 is used by Suvorov and Chug-

unov as the specific distribution function:

a

In the distribution (I.3), the average particle energy is

<E> _ I&CR. The particles are ultrarelativistic only in

thle alstriDution tail with the power index 	 As

was shown in 151, if the radiation cooling occurs in a strong

magnetic field of 8 > Ioe.followed by G, then the first pro-
cess of monomerization of an arbitrary isotropic ultrarelativistic

electron distribution is more effective than the second

process. In this case, a one-dimensional distribution is

2
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Observations, particularly observations of the radiation

of a pulsar in the Crab nebula, provide a basis for assuming

[6]that the region responsible for radiation in the optical

and x-ray frequency ranges (in this region there is radiation

cooling) monomerization of the electron distribution function
due to s ynchrotron radiation) lies close to the light cylinder,

where	 ... J041 G. It may be assumed that in the lower layers/5

of the pulsar magnetosphere the particles are accelerated up

to ultrarelativistic energies by the longitudinal electric

fields 42 and plasma heating.

This article studies the longitudinal (plasma) waves in

a relativistic plasma consisting of particles with arbitrary

one-dimensional distribution functions ^(p), 	 The waves

are propagated along the magnetic field 9 . The :-osul.ts are

compared with the results of [2], [3]. The ions may rot be

relativistic with an isotropic distribution function. Not

only ions may be particles with a positive charge, but also

positrons. The case is studied in greater detail when !;;

in the ultrarelativistic region decreases according to the

power law '; ',; I" ;the corresponding energy distribution1	 8E)..F^'') ,
.c

and in the nonrelativistic region ew is continued so that

TO)	 is not an Increasing function everywhere, and the aver-

age energy ^E>^^^	 The following expression is most suit-
able as the function having these nronertipR

t

where 0e=I . 2 r3,4... The distribution :^'.,^; is Wormed 
nou.^s 

ity

i.e.	 At 4^ I the coefficient 	 a-s.

If	 t , tnen	
Ate-- r,^

N	 2 r^

G
for	 2,	

cY ^WC 1 NcC 4-2 ?-M,, c MWC
3



I. Dispersion equation of plasma waves propagated along the

external magnetic field in a one-dimensional relativistic

plasma.

We shall assume that the distribution function TIO of

particles of the K-type is one-dimensional in the basic state,

i.e.

Xt 600Y^^ 3 ' "_"''^r' , (2.1)
where Nd is the concentration; P - impulse; p - pitch angle

(angle between JF and the magnetic field 51 ; i4* - delta-
function ; (/ - one dimensional distribution of particles in

terms of longitudinal impulses. The distribution ( .2.1) may

be regarded as the limit of distribution with the transverse

temperature T:w Q..

The dispersion equation for plasma waves propagated along

an external magnetic field ( K = RZ . gj,^ 0) in a one-dimen-

sional plasma has the form 123, 131 jl )^ 0 , where

?(W *,a) ,- 11,Y '*P. I

-,fV	
L

w
4rhec: ,

where W4,: 
A 
	 particle velocity along the mag-

netic field and

zV
a'

fix) =	 f̂ Cxl, tX1= fo
 `'` wi S z ^'C } ^---" ( 3)

?^ 	 .2^x	 2 .

The term 43 means that a singularity for X = 0 must be as-

sumed to have the meaning of the basic value. f^ x,^ - comp-

onent of the tensor of the complex dielectric constanta1..

4



If we use a one-dimensional velocity distribution r^^
then we obtain

^ fC

We shall omit the index .$ for xi • V4 + R below.

2. Long-wave plasma oscillations and plasma waves

with the phase velocity, 	 : W 0 in a one-dimensional

relativistic plasma.

Let us derive the dispersion equation of long-wave plasma

oscillations.	 Using (2.2), we may calculate the Hermitian

part '	 for a one-dimensional relativistic plasma with an

arbitrary particle distribution function under the approxi-

mation of long waves:

If the plasma is ultrarelativistic (<V:)"C1? )1,
then the approximation of long waves will have the form 	 /7

k"'Cl*W1 .	 The anti-Hermitian part tl^ 
and the Landau

damping decrement of the plasma oscillations equal zero.

In the approximation considered (3.1) the Hermitian part

has the form

?a	 % /	 H3
t

where & _c A : tf^pz . The brackets 4 >,, mean averaging over
the one-dimensional distribution function 	 i.e.

>=

In analogy with the non-relativistic plasma, we use the

term plasma frequency for the frequency of long-wave ('-► O
plasma oscillations

f	 5



:	 s	 a	 l	 +. ^3	 (3-3)WP :'^W 
WPB "'W.[sc` ^. 

The dispersion equation of the plasma oscillations in the

approximation considered,

	

__ Z	 X=. 1<V W^ d	 (3.4)rap ^^ ^. 3 
w=

Expression (3.2) in the zero approximation with respect to

K (!J• 4 ) and consequently the expression for the plasma
frequency (3.3) may be obtained from elementary considerations,

see Appendix I.

Using

	

^W 4—	 CE 1^ &L
we may write (3.4) in the following form:

GJ
Z
 wP 3b'k^cz.	 (3.6)

where

`l F )S,

^< C 	
A ..	 (3- 7)

If the plasma is not relativistic(t.., W a )then from (3.4),

(3.6) we have the well-known Vlasov dispersion equation and /8

In the case of the relativistic distribution

is determined basically by the contribution by the par-

ticles to the non-relativistic and slightly relativistic

region, and does not depend on the ultrarelativistic "tail"

of the distribution. Substituting the distributions (I.2),

(I.3), (I.4) into (3.3), we obtain s

Fr•t	 (3.8)

6



a	 (3.9 )

! •	 iat^ j^	 (3.10)

if 	 I , then
Z	 jr 1	 • 2

WAKj - 
1/ '^i►—g	 (3.11)

The coefficient J' from the dispersion +equation (3.6)i will
thus . assume the following values: ^+_ 	 ^!	 ass 4 .
In [1], [2], instead of the coefficient 	 in the AiLper-
sion equation of plasma waves the coefficient *v , is writ-

ten incorrectly in the long-wave approximation.

Let us examine plasma waves with the phase velocity

= k = C	 In this case ? will have the form:
IL	 i

	

w 	 (3.12)

where

	

E2 < .t	 F4a	 (3-13)

If	 (A >2 , then we may disregard the last term in the
brackets of (3.13). In the case of an ultrarelativistic

plasma, we may disregard the second term in the brackets as

compared with the first term. 	 I9

Substituting the distributions (I.2), (I.3) (I. 4) into

(3.13), we obtain the following expressions for

J" e' r-2 461)4-2) PKl sic• at A3	 ( 3.1 4 )

	

Wtat = a 	
^^	

wi.c:	 (3.15 )
_	 = ArA 1	 2	 s t'r«^ 8

tilde
If {̂ z2 in the distribution (I.4), then

7



MaPE W_

r^^t	 ^•^	 ^	 ^ .3.17 )

if	 then

g	
Md C'
	 (3.18)

i.e., if 14 =z for all types of particles, then there are no
plasma waves with k a C in such a plasma, and the dispersion

curve W(k) does not intersect the straight line	 • C.

The expressions for % and -''2	 coincide with the

corresponding expressions in 121, 131.

We should note that if we substitute the one-dimensional

non-relativistic distribution into (3.3) and (3.13), then we

obtain	 s	 z s<P
It

A(J'w.(j !^ ^ ^ ^	 (3.19)

s
Here IV

Thus in a one-dimensional relativistic plasma non-damping

waves with the frequency W are possible

tip (. W G we	 (3.20) /10

The greater is the proportion of relativistic (ultrarelativistic)

particles in the distribution, the wider is the frequency range

of the non-damping plasma waves. The frequency . Wseparates the

non-damping {	 w/4 > C) and the damping longitudinal waves
(wowe, &%'C	 , if such waves exist, see 121. The specific
form of the dispersion equation for plasma waves in the frequency

region 44 cj<c#4	 , and the answer to the problem of the exist-

8



once of plasma waves with. td>t4 (W/* <C ) require a more de-

tailed examination with the specific particle distribution

function. As was shown in 131, there are no longitudinal

waves with the frequency 4;>(*( * <c ) in a plasma with the

distribution function (I.3).

3. Plasma waves in a one-dimensional relativistic

Maxwell plasma.

Relativistic particles cannot obey the Maxwell distri-

bution function, since collisions of such particles are ex-

tremely rare. However, due to the fact that the "tail" of

the Maxwell distribution rapidly decreases, the integral in

(2.2) has a simple asymptotic expansion and this single-

parametric distribution may be advantageously regarded as an

illustration.

Let us substitute the one-dimensional relativistic

Maxwell distribution into (2.2):

_ !	 • P.,xp .. ='&'C%'L'e^Cp̂ 	 ^,	 l	 T/&C	 o, (4. 1)

where *(,(X) i* the McDonald function. As a result of elemen-
tary transformations, we obtain the following expression for

IL

Let us consider the case when the plasma is ultrarelativistic,

i.e.,	 a ^' j, . Let us use the result of the asymptotic
expansion of the 4ntegral ( :•:.2) with respect to the parameter

2 <C I for waves with &?> kC	 see appendix 2. We use jll
the fact that K^Q),.el at Z ,% j	 As a result we obtain

9



s
_	 TM

LXILO~'	 (4.3)

Thus the dispersion equation of plasma waves

i
k't L t,, !^^	 (4.4)r

The plasma frequency is determined by particles with a lower
temperature *& . The dispersion equation (4.4) is similar

to the dispersion equation for transverse electromagnetic waves

in an isotropic non-relativistic plasma when there is no ex-

ternal magnetic field, but (4 . 3), (4.4) cease to be valid at
Cdow

We should note that if there is no external magnetic field,

and the electrons have an ultrarelativistic isotropic distri-

bution, then the frequency of longitudinal oscillations of such

an ultra-relativistic electron plasma 171 (x-r o)

a	 s	 L-	 i  	 ADIr^'

(4.5)

For waves with the phase velocity Irp s C we obtain.

t^s ` -^ W ^^wl.. jl :Z wL.^ T̂•s ZwI^'	 s1, (4.6)
C	 Qs^ t	 stn

Thus there are non-damping longitudinal waves in the fre-

quency range &^ 4 G1 jtjg , in this plasma, where 44 and
4l*	 are determined in (4.4), (4.6). The dispersion equation

of such waves at %jWj&V	 is (4.4).

4. Plasma waves in a one-dimensional ultrarelativistic

plasma with a power function of particle distribution.

Let us assume the distribution function of particles of

the e(-type has the form (I.4). Let us consider plasma waves

i

10



for which the following condition is satisfied

7Jtk4..►^'1
	

(5.1)

at	 ` I , and at JL _ we have	 /12
W	 AlkC

}'^ s
Ow-

 oJ't . —

	
..	 (5.2 )

The conditions (5.1), (5.2) are satisfieA in a very wide
Interval of a change in w and k, since 	 411 and

Pei
We should note that at 94 

t 
90 the value of kki has a simple

physical meaningJ 40f
,(-^- where A is the impulse of a par-

ticle in resonance with the Jave ( uj.c kttf j,	 As a result
of asymptotic expansions of the integral in (2.2) with the

distribution function (.1.4) with respect to the small parameter-

(or	 at ^,R a I. ) , we obtain
J	 .4 nPV C94 

lei

lit	 kt^s
	
k5.3)

.....^r + 
)7Pw C. K/4J > !1 cyt,'^s-!

where

	

a s = +	 i + 4 	 .

	

1t1 04 71 . iy	 at	 "'tea 1".x__ at d'^ ^j (5.4 )

If (5.1) (or (5.2) at	 ) is satisfied for all types of

particles, then

atC,K/w(I

$ (5.5)
+ at cz >I+ ) 

c
where to GJ	 It may be seen from (5.5) that in the

approximation considered.(5.1)((5.2) at f = I ) the imaginary

11



part in the expression for #	 is comparable in terms of

the modulus with the real part, just as in the case with

the distribution (I.3) 131. The dispersion equation *k) •

= 0 in the region examined W, IC has a solution only at C A tCJ

riv 1- 41r 1 f1tt
Cis s
	 2	 ,	 (5.6)

1

where tr_ W: . It may be seen from (5.6) that in the
plasma considered non-damping longitudinal waves are pos-

sible at QKTA I, , i.e. waves with a frequency CilWp are
possible. In the approximation ^^•-^ 0 from (5.6) we may

obtain the dispersion equation &j&& ,%i?,t%! , as follows

from (3.6) with ^'y	 from (3.11). For waves with the

frequency t l.*Oc j and (tr4g j) the following dispersion
law follows from (5.6)

kw^i j t
: (5.7)

Since the condition (5.1) must be satisfied, then (5.7) holds

for the frequencies

Y	 . t s

>> 2 /N^tdt Mar 	 ( 5.8 )
GJ	 ` !L

If the plasma consists of "hot" (with the distribution func-

tion (1.4) electrons and cold ions (the ions may have a

distribution function which is isotropic with respect to

impulse), then the dispersion equatiT of plasma waves will
Ohave the form of (5.6), where Lra W s,	 In this case

the plasma waves are possible witn tN frequency Cd.; tC v

Let us consider plasma waves with the dispersion equa-

tion
j(Ca'w^j ♦d^, 10^,^^

(5.9)

12



and let us assume the following for particles of the -

type with C4

1,4>> 1 .	 (5 .10)

For waves with the phase velocity le { C condition (5.10) means

that the resonance particles are found in the tail of the dis-

tribution (PPp,1yt ) . The contribution of particles of the
a - type to the Hermitian part t will be

z
ft ^s - ^l c	 (5.11)

G+1 _

The expression for 44; can be seen in (3.16). If (5.10) is
satisfied for all types of particles, then

2 k 	 ar^t^lc	 (5.12)

The dispersion equation of plasma waves

Pc Ar W •^ cJ^
(5.13)

If Yt-C 3 , then in order that (5.11) hold, it is necessary j13
that the following condition be satisfied to a greater extent

than (5.10)

A,et-* 1. 	 (5.14)

When the condition (5.14) is satisfied for waves with 	 ;r

there are no resonance particles ^t 1^) , and consequently
there is no Landau damping.

_	 Let us consider in greater detail the most interesting

case of plasma waves wit [	 If these waves exist,

then they will undergo Landau damping (if Ajd< l ). Tn this

plasma "Chernekov" generation of longitudinal waves by beams

13



of electrons is possible.

Let us assume that the condition (5.10) and 	 T
is satisfied for particles of the a-type. Let us use

asymptotic estimations of the integral in (2.2) with

respect to the parameter ^• " { 
Ala

i , and we obtain
IL

4#a'

...^...--.^Jit"	 `.	 ^"M9 ., "2 t i ^,^^r^	 ,
	 (5.15)

If (5.10) is satisfied for all types of particles and r,^t 4

then

	

,` A
ll
	 (5.16)

Thus the dispersion equation of plasma waves

—
c^l (5- 1 7)

WX
The ratio of the increment of the plasma oscillations 

te 
(„^j ^: j'^ )

to the frequency of the oscillations is	 2

I-W - 2( =-V

i wr L

If the plasma consists of electrons and positrons with identi-

cal distribution functions 1j1 {R^R,^.^'^) , then the dis-
persion equation of plasma waves will be

Kee	 wt &Js̀  2 C r- 3) M*r.
i' - ^^

`
	• 

Rs	
(5.19)

and the ratio of the oscillation increment to the frequency
2

	

r rt^'-^1 Z tr•3t^ zc^

Ô , `

	
(5.2o)....+

2	 yr• 9	 ^

since according to condition (.5.10) XaZ I , we have

1.4



(5.21)

If the plasma consists of "hot" electrons with a power dis-

tribution function (I.4) with (,.*44 and "cold" ions (the

ion distribution function may be isotropic), then in the

approximation kX and Ĵ t -4 I (in , .the frequency region
sv*gk ) we may disregard the contribution of ions to the

Hermetian and anti-Hermetian part t	 (since "*&Q }.,

The dispersion equation of plasma oscillations and the ex-

pressions for the oscillation increment have the form 3.19),

(5.20)  and ( 5.21) if we set k42*W4# l=xt . In the frequency
region W such that A;41 A'*1 (if the ions are colder than
the electrons) It, has the form (5.3); ,jtc - (5.15). In

this plasma, in the approximation considered only waves with

w> k C are possible. Tpe dispersion equation will havethe

form (5.6), where tja 4000
7 ORC&̂.j ^A

	

Let us conside the case when 's 3	 and	 I)k"61 ().* ,a().,l ,.

Then the contribution of particles of the ol-type to I will
have the following form:

	

ti	 •'-.

=•
446%

t t 3 • ^^^^^

t^

	 4-l-tc ^re I 	 (5,22)

If (^ = 3 andk*0 ( Jik t,for all types of particles, or
if the electrons "are hot" withl,,= 3. , J1 t* t (Aje4 j)^ 3nd the ions
are "cold", then the dispersion equation 	

tat
	 in the

frequency region examined does not have a solution. The sit-

=	 uation is the same if

Thus in an ultrarelativistic one-dimensional plasma with

a power distribution function for the;particles with respect

to impulse (1.4) (or in a plasma where the electrons are "hot"

with the distribution function (1.4) and the ions are cold)

plasma waves are possible with the frequency Grlt.c`'=	 and

the dispersion law (5.6). The phase velocity of these waves

is greater than the speed of light and consequently, they do

p	 not undergo Landau damping. If the ultrarelativistic "tail"

15



of the particle power distribution decreases rather rapidly,

and the exponent A> 3 ( It > 3) , , then slightly damping plasma
waves are possible with the phase velocity 44C 	. The
frequency of these waves is 61%44(14) , where O<d 491 .
If the exponent 9 4 3 , then there will be no plasma waves
with the phase velocity IttC and the frequency W>Wt

Appendix I

Let us consider one-dimensional oscillations of a rela-

tivistic plasma along the Z-axis. We shall assume the plasma

is one-dimensional (thermal motion only along the g axis),

uniform and stationary. We shall disregard the collisions.

We shall assume that the electric field and the velocity of

particles of x-type change in time according to m harmonic

law, i.e.,^
	

e& and p'ZVI
 
*C	 We shall consider the os-

cillations in the approximations of long waves K-+ 0,. The

equation of motion for particles of the a(-type

d^E	 ^
	 UI.I.I)

where P - impulse; Cc - charge of particles of the al-type.-
Since the oscillations are considered in the linear approx-

imation, then f 14AMt C and the particle velocity tr Ttj f#
where IrIk is the velocity of "thermal" motion. We obtain

the following f? ,om (II.1.1) and the condition K-1-0

.^4. 

From this we have

LtrLw

Since	 we ma.) assume that the particle energy
remains constant, i.e.

R

16



^C ` 10 09 } 3 : of).	 (II.2.I)

	

to	 1
Ge =	 a	 C ' Âxte 	 I.4 )

	

FI- 9 ;OR, 	 117

We obtain an expression for the average velocity of particles

of dL-type from (II.1.3) and (II.1.4)

Ll .̂t ^` j ^ 11 ^ r^	 { T I . I.5 )

From this we have the current density

.c	 Jl^re W	 E«

i.e., the conductivity

Q < <^ .01 Mat

Thus

. 4
S

m,Cs

If in analogy with a cold plasma we write=/_ 1% , then
vs

we obtain the following expression for the plasma frequency

W 2 	 <
1

where 414 is the Langmuir frequency of particles of the

P-type.

Appendix 2

Let us consider the approximation k = x	 I for waves

with W > kt	 In this case the integral in (4.2) does not
have singularities and is calculated in the regular sense.

The integral in (4.2) may be represented in the following form

0
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where

WO i

	

J+ tx̂ = e J s ^.	 d^,	 cII.2.2)

—^ /~ f stt ^ .P dfEx1= a 	 1cz . 2 .3)
118

To expand the integrals I(itand Ys" in an asymptotic series

with respect to the small parameter Xj , we use the method
of successive approximation j8]. As a result we obtain the

following at X'r^

-- X

	

(x^^.^ ^'	 skk	
(II.2.4)

The notation f(e).-a-10) at 2 ♦29 is equivalent toks)=4 	.
Similarly

ey fXj^ =^itX _ _mss fA.^
(II.2.5)

where C is the Euler constant,( C of 0 9 577), and

t
I

-_ o^

A , I^ 	 + I f a 1 f	 I	 J&11 (-II.2.6)
• R^

.^^  

Thus at X --► rO
t

7(X) e 4! k Oct 
lX^ tXJ ^-	 (11.2.7)
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