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Plasma Waves in a Relativistic, Strongly Aniso-
tropic Plasma Propagated Along a Strong Magnetic
Field.

0. G. Onishchenko

(3%
Introduction

It follows from the general concept regarding the nature
of pulsars that in the vicinity of a neutron star there may
be an ultrarelativistic plasma in a strong magnetic field,
Therefore, there is great interest in the problem of the gen-
eration and propagation of electromagnetic waves in a relat-
ivistic plasma occurring in a strong magnetic field [I], [2],

(33, [4].

The electromagnetic properties of a relativistic plasma
depend greatly on the particle distribution function (in
the relativistic plasma, the role of three-dimensional dis-
persion 1s great). Kaplan and Tsytovich [1], [2], noted that
close to a neutron star, there may be two processes, as a
result of which an arbitrary distribution function of rela-
tivistic particles becomes almost homogeneous with resvect
to impulse=-=it 1s extended along the magnetic field ‘§q .
The filrst process 1s the monomerization of the particle dis-
tribution function in terms of impulse as a result of losses
to synchrotron radiation, and the second process 1is the
monomerization ©of the particle distribution function according
to the conservation of the adiabatic 1nvariant Ry4§-caut >
where a is the transverse component of the particle impulse
when the particle moves in a slowly decreasing magnetic field.
We assume the following as the specific particle distribution

¥Numbers in margins indicate foreign pagination.



function in terms of energy [1], [2]
W b 4 Emar s> Eec
F;(E)'(EOE“)" D,np;" E 9 Epmarst

(I.I)

o

where My 1is the mass of a particle of the g -type; c- speed of
light., At §>2 the energy E, Plays the role of the
temperature, the average energy of the particles(&ﬁuﬁ@ . /4

The one-dimensional distribution according to 1mpu]se,§§09
which corresponds to this energy distribution, has the form

Emag
) 1, Ppu P< foapT "¢
.P . -‘ * .
‘ oly-1) 2 . ﬁ\; 2

In the reglon P,{_&fv’g the distribution of (I.,2), as was

noted in [3], 1s an Increasing function of p and consequently

wlll be unstable with respect to longitudinal osclllations

with K;C)(J 1 » where }?.‘. is the wave vector component along
the magnetic field ﬁ.a) - oscillation frequency. As a result

of the quasilinear relaxation in the distribution (I.2) a
lateau 1s formed in the region .

P SR A T e

The following function [3] is used by Suvorov and Chug-
unov as the specific distribution function:

. _2
Q=micimcsp) * (1.3)

In the distrlbution (I,3), the average particle energy 1is
(E).g-;mc‘.. The particles are ultrarelativistic only in
the aistrioution tail with the power index §=3, . As

was shown in [5], if the radiation cooling occurs in a strong
magnetic field of B)IO‘[ followed by G, then the first pro=-
cess of monomerization of an arbitrary lsotropic ultrarelativistic
electron distribution 1s more effective than the second
process, In this case, a one-=-dimensional distribution is

2
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established (I.3) in the time f:w’f H g - charge of
particles of the .- type. ’ ‘ '

Observations, particularly observations of the radiation
of a pulsar in the Crab nebula, provide a basis for assuming
[6]that the region responsible for radiation in the optical
and x-ray frequency ranges (in this region there is radiation
cooling) monomerization of the electron distribution function
due to synchrotron radiation) lies close to the lignt cylinder,
where Ba 10‘:. G. It may be assumed that in the lower layers/5
of the pulsar magnetosphere the particles are accelerated up
to ultrarelativistic energies by the longitudinal electric
fields Ez and plasma heating.

This article studies the longitudinal (plasma) waves in
a relativistic plasma consisting of particles with arbitrary
one-dimensional distribution functions e(p), . The waves
are propagated along the magnetic fleld § . The iocsults are
compared with the results of [2], [3]. The ions may rot be
relativistic with an isotropic distribution function. Not
only ions may be particles with a positive charge, but also
positrons., The case 1s studied in greater detail when <=/
in the ultrarelativistic region decreases according to the
power 1aw2,.’,.."3“'¢:the corresponding energy distributionf([}.f.‘f),
and in the nonrelativistic region 69 1s continued so'Zhat
2(;} is not an jingreasing function éverywhere, and the aver-
age energy <§Eé§bﬁh « The following expression 1s most sult-
able as the function having these pronerties

1 npu P{Reera, Pray® &AL

=4 . ! [py .i“” (1)
Q(P)'A.{ W\P P"" . olnpu P? Doy . |

where 0*1,2,3,4... The distribution 32?{#) 1s normed to rknity

i.e,. A/Q,‘ @)dp.—. I. at L?I the coefficient , . 2SN
If 3 %, tnen "2 Lea

oJ . ue
for §, = 2, ﬁf_én'_@r_-.t(!ng&-_s 1, LE R (&)2”%:)_1&%:3&:

mecd e’ T meY2 m,c2 My
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I. Disperslion equation of plasma waves propagated along the
external magnetic fleld in a one=dimensional relativistic

plasma,

We shall assume that the distribution function ?; of
particles of the of -type 1s one-dimensional in the basic state,
l.e.

Ne QO
v{P")'—_-.T ‘”’? 6‘(‘0'7) (2.1)

where ’VJ. is the concentration; P = impulse; § - pitch angle
(angle between i} and the magnetlc fileld B)’-ébv - delta-
function; Q@ - one dimensional distribution of particles in
terms of longitudinal impulses, The distribution (2.1) may
be regarded as the limit of distribution with the transverse
temperature 7T <s Q, .

The dispersion equation for plasma waves propagated along

an external magnetlc field (k= Kz 4 K= 0) in a one-dimen-
sional plasma has the form [2], [3] 7(%): 0 , where

ptw k)= 1458y,
J‘i? CJL‘ M /Va g(w_kav‘) @'(Pi)dpa, (2.2)

Yriel

where a,‘_‘- T , l\r/;‘- particle velocity along the mag-
netic field and

. o

X ; '
$=T &, (x), Q(x)zz%r- e“i/év,!f(dﬂﬁfaz-;t; (2.3)

The term 5-) means that a singularity for X = 0 must be as-
sumed to have the meaning of the basic value. ;%u‘i) - ccmp-
onent of the tensor of the complex dielectric constant ‘:n'“w"



If we use a one-dimensional velocity distribution Jﬂﬁv ,
then we obtain

Wi Joa, . d
Trux 28 [vpdco-avr g [(-BT T (2.0,
We shall omit the index £ for %2+ % ,AR below.

2. Long=-wave plasma oscillations and plasma waves
w
with the phase veloclt z-— =0 in a one-dimensional
p M - :E ,__~_
relativistic plasma.

Let us derive the dispersion equation of long-wave plasma
oscillations, Using (2.2), we may calculate the Hermitian
part 'l for a one-dimensional relativistic plasma with an
arbitrary particle distribution function under the approxi-
mation of long waves.:

kivd gw?, (3.1)

If the plasma is ultrarelativistic'( <Vz)=cz )’9

then the approximation of long waves will have the form /7
k't‘(lw’ . The anti-Hermitian part ? and the Landau

damping decrement of the plasma oscillations equal zero.

In the approximation considered (3.1) the Hermitian part

? has the form

z T ‘k® 2 )3, |
?’(w,k)f j'g%g[«_’giﬁf}* +5f‘§';“ v (%c;")%]fa.a)

V t
where &:c ﬂz‘*c *P‘ « The brackets (>‘ mean averaging over
the one-dimensional distribution functlon ?j‘(p) P

Lpy= SR,

In analogy with the non-relativistic plasma, we use the
term plasma frequency for the frequency of long-wave (K'-OO)
plasma oscillations



(3.
Wr=Z e, "’M"G&.‘(( f>.¢. 3

The dispersion equation of the plasma oscillations in the
approximation considered..

wz’j‘";(fl-S'( —%iv.("‘),g (3.4)

Expression (3.2) in the zero approximation with respect to
K (K=0 ) and consequently the expression for the plasma

frequency (3.3) may be obtained from elementary considerations,
see Appendix I.

v (,M)z> = c‘[((—;'-':‘ft}"}“- ((—-’"‘é‘)g}:] (3.5)

we may write (3.4) in the following form:

2
W =w;',4-36‘l<2€2, (3,6)

- 2CE
%‘( )> (3.7)

If the plasma 1s not relativistic(t*=l’),,,cz)l then from (3.4),
(3.,6) we have the well-known Vlasov dispersion equation and /8

50%&1. In the case of the relativistic distribution

is determined basically by the contribution by the par-

ticles to the non-relativistic and slightly relativistic
region, and does not depend on the ultrarelativistic "tail"
of the distribution. Substituting the distributions (I.2),
(I.3), (I.4) into (3.3), we obtain

4 =4 mot
Cpas < L s,

where

(3.8)



: 3% ..t
e %5 W 5 (3.9
ot X 1w,
bas® % i Cha s at L)I' (3.10)
it =1, then ,
: X 1 .
Wpas ' G20 e (3.11)

The coefficient § from the dispersion equation (3. 6% will
thus assume the following values: 5',: ‘, T J;""'" .

In [1], [2], instead of the coefficient Sii- in the .disper-
sion equation of plasma waves the coefficient ;'ﬂ is writ-
ten incorrectly in the long-wave approximation.

Let us examine plasma waves with the phase velocity
ui. %g = ¢ + In this case 2 will have the form:

kN
kS

where

wiset[2GRa) - CEL- 2B o),

If ‘&'>2 , then we may disregard the last term in the
brackets of (3.13). In the case of an ultrarelativistic
plasma, we may disregard the second term in the brackets as
compared with the first term. /9

Substituting the distributions (I.2), (I.3) (I.4) into
(3. 13), we obtain the following expressions for

Eew 2 &
el maer 72 " (rEnir-z) ‘J”‘“ m,c‘ at 03 (3.14)

X
;‘hh‘zlr-zr'Gdh,==4?4£n¢¢

’ A’a‘ J 2 2 I“h.
dca “’"‘C 6‘2 P‘J m.c x(’ z) ’J_ 3.16)

Ir L,z in the distribution (I.L), then

(3.15)




T e——

* x =
Weus =T “ta'Z, Prara (3.18)

i.e., if J‘ al for all types of particles, then there are no
]
plasma waves with -:fa € 1in such a plasma, and the dispersion
curve @(k) does not intersect the straight line = = c. .
Y PRI
The expressions for ")l:‘.l and ﬁ&'“ coincide with the
corresponding expressions in [2], [3].

We should note that 1f we substitute the one-dimensional
non-relativistic distribution into (3.3) and (3.13), then we

obtain 2 ‘ {p‘)
Wy ® Glx (f""'-"a’ ‘;:Q':),

Witgy » WL (1., g%) (3.19)

.
Here %« I .

Thus in a one-dimensicnal relativistic plasma non-damping
waves with the frequency gJ) are possible

W § W We (3.20) /10

The greater is the proportion of relativistic (ultrareiativistic)
particles in the distribution, the wider 1s the frequency range
of the non=-damping plasma waves. The f‘requency,w‘, separates the
non-damring (aXe, V/ﬁ)g} and the damping longitudinal waves
(wWrewe, “% <, 1f such waves exist, mee [2], The specific
form of the dispersion equation for plasma waves in the frequency
region < Q<we » and the answer to the problem of the exiet-

8

g
=4




ence of plasma waves with. wWhwk (#w/k 4{C ) require a more de=-
“talled examination with the specific particle distribution
function, As was shown in [3], there are no longitudinal
waves with the frequency 0)&5[(%(6) in a plasma with the
distribution function (I.3).

3. Plasma waves in a one-dimensional relativistic
Maxwell plasma.

Relativistic particles cannot obey the Maxwell distri-
bution function, since collisions of such particles are ex-
tremely rare, However, due to the fact that the "tail" of
the Maxwell distribution rapitdly decreases, the integral in
(2.2) has a simple asymptotic expansion and this single-
parametric distribution may be advantageously regarded as an
illustration.

Let us substitute the one-=dimensional relativistic

Maxwell distribution into (2.2): -
exp (. SYAEH" )
- “Tm -
ot

¢(P) :
(&s) (5.1)

where K.(!’ i5 the McDonald function. As a result of elemen-
tary transformations, we obtain the following expression for

th o
- . WL
2 )= 1-T 0l K1) x,f,_;ai,) L .

Let us %k sider the case when the plasma 18 ultrarelativistic,
l.e., '.E- Z €I.. Let us use the result of the asymptotic
expansion or tne integral (~.2) with respect to the parameter
2 L 1 fror waves with WYy ke » see appendix 2, We use /11
the fact that 'K(J~g™ 2t g4 1 . As a result we obtain




' 2' 2 S
T

Thus the dispersion equation of plasma waves

w-u -kt q.qfw‘ Muct (4od)
T
The plasma frequency is determined by particles with a lower
temperature Z; . The dispersion equation (4,4) 1s similar
to the dispersion equation for transverse electromagnetic waves
in an isotropic non-relativistic plasma when there is no ex-
ternal magnetic field, but (4.3), (4.4) cease to be valid at
A)»U,,kcew, .

We should note that if trere 1s no external magnetic fileld,
and the electrons have an ultrarelativistic isotropic distri-
bution, then the frequency of longitudinal oscillations of such
an ultra-relativistic electron plasma [7] (3»0)

,

: Mec®
F‘J"‘\)’. “”C ._%: r. (’f"?} .
. (4.5)

'

For waves with the phase velocity ¥p® € we obtain
?:j-....‘ ‘J‘.:A};,_ w¢-2w.¢..;;.*2 (o) (n gl) (4.6)

Thus there are non-damping longitudinal waves in the fre~
quency range (J"‘Q‘U( » in this plasma, where “» and
e are determined in (4.4), (4.6), The dispersion equation
of such waves at ywibey 1= (4,4),

L, Plasma waves in a one-dimensional ultrarelativistic
plasma with a power function of particle distribution,

Let us assume the distribution function of particles of
the ¢{-type has the form (I.4), Let us consider plasma waves

10



for which the following céndition 1s satisfied

L Y
< T B (5.1)

at 5T , and at “ =1 we have /12

& (5.2)
i;f“‘“"‘ ﬁuu - :.

The conditions (5.1), (5.2) are satisfied in a very wide
interval of a change in w and k, s:I.nce--"--@.r and& &2,
We should note that at LYW the value of \é has & simple
physical meaningk Au'-— where ﬁ is the impulse of a par-
ticle in resonance with t ave (w._mr, ). . As a result
of asymptotic expansions of the integral in (2.2) with the
distribution function (1l.4) with respect to the small parameter -
Ad (or Ry at ‘*a I ), we obtain

I__ ,mw %<
S&~-.&‘2 -]+ Vi-ee%

ket [
l' chkx.-‘ N cx/”)l

(5.3)

where

U,:' &g% atle > I, “)H’“ng at f=I (5.4)

If (5.1) (or (5.2) at L= I ) 1s satisfied for all types of
particles, then

l

041+ W
%’lk) s j ..KtC‘ d e 1
tm r at Z) '

v
where ‘df’*Z“'R . It may be seen from (5.5) that in the
approximation considered.(5.1)((5.,2) at [‘3 I ) the imaginary

* (5.5)

11



part in the expression for f "1s comparable in terms of
the modulus with the real part, just as in the case with

the distribution (I.3) [3]. The dispersion equation mk) "
= 0 in the reglon examined &), K has a solution only at € K{w

.'E:‘:g 1-110'-&\/1 +8v

wr 2 , (5.6)

t

where 0“%’;" . It may be seen from (5.6) that in the
plasma considered non-damping longitudinal waves are pos=-
sible at OKV'{ I, , 1.e. waves with a frequency Wi Wp are
possible, In the approximation %-’ 0 from (5.6) we may
obtain the dispersion equation ({ﬁt*‘oek'c‘- , as follows
from (3,6) with S,-é from (3.11). For waves with the
frequency U»u, and (d‘& I) the following dispersion

law follows from (5.6)

ket i
wtgj"?v‘. (5.7)

Since the condition (5.1) must be satisfied, then (5.7) holds
for the frequencles

wy ’ ”'?tct
—F > 2max (—';i- (5.8)

If the plasma consists of "hot" (with the distribution func-
tion (1.4) electrcns and cold ions (the ions may have a
distribution function which is lsotropic with respect to
impulse), then the dispersion equatiqn of plasma waves will
have the form of (5.6), where ‘f-;“‘-)!-'i-. . In this case
the plasma waves are possible witn T frequency UZW .

Let us conslder plasma waves with the dlspersion equa-

tion .
ke=e(i+a), 181414

(5.9)



and let us assume the following for particles of the ¢ -

type with L)3

For waves with the phase velocity 3“ condition (5.10) means
that the resonance particles are found in the tail of the dis-
tribution (#PPr« ) . The contribution of particles of the

a = type to the Hermltian part ? will be

ot
The expression for &leg can be seen in (3.16)., If (5.10) is
satisfied for all types of particles, then

)
2”' ‘{-.g.‘ﬁ. , W("SUI: (5.12)

%W
;?9._ [V (5.11)
k 3

The dispersion equation of plasma waves

kee =)t (5.13)

If LC 3 |, then in order that (5.11) hold, it 1is necessary /13
that the following condition be satisfied to a greater extent
than (5.10)

Au»i' (5.14)

W
When the condition (5.,14) 1s satisfied for waves with x<C
there are no resonance particles Pr»p_‘,‘ ) , and consequently
there is no Landau damping.

Let us consider in greater detall the most interesting
case of plasma waves with f-’(c . If these waves exist,
then they will undergo Landau damping (if /l,‘(I )« In chis
plasma "Chernekov" generation of longitudinal waves by beams

13



of electrons is possible,

Let us assume that the condition (5.10) and ‘é‘/
is satisfied for particles of the oa-type., Let us use
asymptotic estimations of the integral in (2.2) with
respect to the parameter l“ R Ald ¢ I) » and we obtain

5?.«' ‘\ku U& 4'"9 1’2{( ,l(’ 3) Rw

‘J‘ - ‘ (5015)
If (5.10) is satisfied for all types of particles and ‘.\)4 .
then
ié— r,.fz
2% 8(5-2 -2
0=1-7=- +c§€«(C Ve (5.16)
’ Thus the dispersion equation of plasma waves
| ket e
w? = E I &d (5.17)
20L-3) me*

The ratio of the increment of the plasma oscillationsfe (j,(‘)z-)" )
to the frequency of the oscil]ationq is

- 02
_(_(‘_:_ Z&g&((ﬁ)(ﬁJ Z"’& m;.—.vg, J ~(5.18)

W :?6Jk
If the plasma conslists of electrons and positrons with identi-
cal distribution functions @ (Ru=R,&>f) , then the dis-

persion equation of plasma waves wlll be

K whewe 201 3) mke*

|

i and the ratio of the oscillatlon increment to the frequency ¢
fo. vr-2) m-.v) rw N & (5.20)
| W " T2 47- '

since according to condition (5.10) A‘»I , we have

14
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] \ 3
ot & (5.21)

If the plasma consists of "hot" electrons with a power dis-
tribution function (I.4) with (,?4 and "cold" ions (the

ion distribution function may be isotropic), then in the
approximation ),_\I and kc‘ Ii(intthe frequency region
Wty ) we may disregard the contribution of ions to the
Hermetian and anti-Hermetian part ¢ (since ,liePeli )e-
The dispersion equation of plasma oscillations and the ex-
pressions for the osclllation increment have the form (5.19),
(5.20) and (5.21) if we set u‘5ﬁdal51§ . In the frequency
region &) such that A;#i,ﬂ;»i (1f the ions are colder than
the electrons) ;’, has the form (5.3); .l". - (5.15). 1In
this plasma, in the approximation considered only waves with
é)kc are possible. T{ne dispersion equation will have the

form (5.6), where y‘--%",—:;:. .
=Ya

Let us conside > the case when ‘L =3 and A}I (R,.<¢1).
Then the contribution of particles of the d-type to ? will
have the following form:

. . 2 -2 -t
;7“=_ z:-t R g.w(u-xd-gl& ;8 & U’d Pad. y&-i (5.22)

2 L ot mc

If JJ_= 3 andA-“»I (LJ. ‘,‘If‘or all types of particles, or
1f the electrons "are hot" with{,= 3, ,h’SI (A,,(I), and the ions
are "cold", then the dispersion equation I+Z$? in the
frequency region examined does not have a solution., The sit-
uation is the same 1if (‘(3 .

Thus in an ultrarelativistic one-dimensional plasma with
a power distribution function for the particles with respect
to impulse (l.4) (or in a plasma where the electrons are "hot"
with the distribution function (1l.4) and the ions are cold)
plasma waves are possible with the frequency 4&fpi'f and
the dispersion law (5.6). The phase velocity of these waves
1s greater than the speed of light and consequently, they do
not undergo Landau damping. If the ultrarelativistic "tail"

15



of the particle power distribution decreases rather rapidly,
and the exponent &>3 ( ¥p> 3),, then slightly damping plasma
waves are possible with the phase velocity Up<C . The
frequency of these waves 1s edncle(f*4) , where 0(3‘.1 .

If the exponent ‘"‘3 , then there will be no plasma waves
with the phase velocity %(C and the frequency WP»&Je .

Appendix I

Let us consider one-dimensional oscillations of a rela-
tivistic plasma along the  -axis. We shall assume the plasma
1s one-dimensional (thermal motion only along the g axis),
uniform and stationary. We shall disregard the collisions,
We shall assume that the electric field and the velocity of
particles of x-type change in time according to a1 harmonic
law, 1. E.,%Fo\ce and mlc . We shall consider the os-
cillations in the approximations of long waves K-»0,. The
equation of motion for particles of the el-type

%ﬁd:e‘[ﬁag (1LI.I.I)

where p - impulse; < - charge of particles of the a{~type.
Since the oscillations are considered in the linear approx-
imation, then [Vpul€C and the particle velocity U'dgl&n}u;‘,
where Vg, is the velocity of "thermal" motion. We obtain
the following from (II.1.1) and the condition K-=0

L 15'4%&-( = e-{f;,

m"‘b‘( r—ﬂ
- -’ndir A - f;

Since hf“"‘c' , We may assume that the particle energy

(II.1.2)

From this we have

remains constant, i.e,

16




: (II.I.4)
e e m

We obtaln an expression for the average veloclty of particles
of g-cype from (II.1l.3) and (II.1l.4)

7y e ((BEPSE
Chad=ipm {(Q j’z E, (I1.1.5)
From this we have the current density

Jg' ";Q/g(ﬁu)‘, "Cg <(m..c )}FN(II 1.6)

i.e., the conductivity

. e-t/’-,‘ /”-c¢
8 =i )"} (I1.1.7)

Thus

ur, ) s l
2= 1+ %’a=1-§~,mf<( " (I1.1.8)

If in analogy with a cold plasma we write?:/. ,9{" , then
ry)
we obtain the following expression for the plasma frequency

CU‘P ZU <( )Zn (II.1.9)

where WQ is the Langmulr frequency of particles of the
P-type.

Appendix 2

Let us consider the approximationz’ls XD I for waves
with e)»K¢ . 1In this case the integral in (4.2) does not
have singularities and 1s calculated in the regular sense.
The integral in (4.2) may be represented in the following form

j(x)"y,(") “Ay:(x)' (II.2.1)

17



where

F iz

-7
J (’) =€ Aviaxes

C.;d'é (II.2.2)

-3 f‘}& é "5
-7(X/ /'c (uwxw‘e di, (I1.2.3)

/18

To expand the integrals J(ﬂuand ZQ in an asymptotic series
with respect to the small parameter 'x' » We use the method
of successive approximation [8]. As a result we obtain the
following at X->®°

!
¥ x
,7(*) e : (II.2.4)

The notation f{g)~@: @) at 2+2s 1is equivalent to/(a)ra‘?n)-
tO(’{ay + Similarly

| Cnx c_
-Z.(x)”ut_k'ct -u‘.k‘c"'A" (II.2.5)

where C is the Euler constant,{ C= 0,577), and
/“"" / V% 2¢ L .— odd(11.2.6)
JEY YY) KYS i) ﬂ)‘ wii* ¢,

Thus at X_—""

][X}"' } Ug k; T (x*&r) ~ _—;—g. (I1.2.7)
18 ORIGINAL PAGE I
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