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ABSTRACT

Accurate theoretical collisional excitation rates are used to detcrmine
the emissivities of CO rotational lines for 10“ cm™3 < n(H2), 100 K < T < 2000 K,
and J € 50, An approxinate analytic expression for the emissivities which {is
valid over most of this region is obtained. Population inversions in the lower
rotational levels occur for densities n(Hz) ~ 10%"° ¢m~3 and temperatures
T 2 50 K. Interstellar shocks observed edge-on are a potential source of
millimeter-wave CO maser emission. The CC rotational cooling function suggested
by Hollenbach and McKee (1979) is verified, and accurate numerical values given.

Application of these results to other linear molecules should be straightforward.



I. INTRODUCTION

The development of far-infrared spectroscopy is opening a new window on
the Universe. Rotational lines of astronomically abundant molecules often lie
in the far-infrared. Observation of these lines provides a powerful probe for
determining both the density and temperature of the emitting gas, as recently
demonstrated by the interpretation of the ch:airvations of the J = 21 + 20,

22 » %}, 27 + 26, and 30 + 29 lines of hot .0 in Orion (Watson et al 1980,
Storey et al 1981). Using collisional excitation cross—secticns calculated by
one of us (S.G.), Storey et al (1981) calculated the CO rotational level
populations and line intensities for a number of temperatures and densities
and showed that the observed intensities in Orion could be modelled by
emission from two components: a 2000 K component with n(Hp) 2 1 x 106 cm~3
and a 400 - 1000 K component with n(Hp) = 5-2 x 106 cm™3.

Inverting a 51 by 51 matrix to determine the level populations (as done by
Storey et al) is somewhat cumbersome for interpreting data, and is completely
impractical for theoretical calculations of the emission spectra of shocks,
etc. In this paper accurate numerical results for the line intensities for
optically thin CO collisionally excited by Hy are presented for a number of
points in the regime n(Hj) > 10“ cm™3 and 100 K < T < 2000 K (§II). In SIII we
use an approximation introduced by Hollenbach and McKee (1979; hereafter, HM)
to obtain an analytic expression for the level populations and line intensities
which {s accurate to within a factor 1.3 over most of this regime. Since the
theoretical collision cross—-sections have an accuracy of about 30% and
astronomical observations average over regions at a variety of temperatures and
densities, the analytic approximation should be quite adequate for astronomical
purposes. Inversion of the lower rotational levels is discussed in §IV. We

also use the numerical results to evaluate the



accuracy of the CO cooling rate found by M (§ V),
Although we have focussed on CO as the typically most abundant molecule
other than Hy, our methods s'iould also apply directly to other linear mole-

cules such as HCN, HC3N, and HCO*.

II. EXACT CALCULATION OF POPULATIONS

Calculation of the equilibrium population of each state requires'firct of
all a detailed knowledge of the entire matrix of collisional rate coefficfents,
Yyy', from every state, J, to every other state, J'. Although such detailed
information cannot yet be obtained experimentally, it has been possible to
obtain fairly accurate values theoretically. This involves two steps, computing
the intermolecular forces and then calculating the scattering dvnamics. In an
early study, Green and Thaddeus (1976) obtained the forces from a simple quantum
mechanical model and solved for the dynamics by an essentially exact numerical
method which {s tractable only at very low collision energies where few rota-
tional levels are accessible., Subsequently Green and Chapman (1978) extended
these results somewhat by using approximate scattering techniques. In a more
recent study, Thomas et al. (1980) have recomputed the intermolecular forcer via
accurate ab initio solution of the Schreedinger equation; these authors showed
that the {mproved potential predicted state-to-state rates which differed in
some cases by up to a factor of two from earlier values, although the total
excitation rate did not change very much. As discussed by Green and Thomas
(1980) available pressure broadening data can be used to provide some check on
the theory, and, in fact, agreement {s within experimental error.

At high energies, where many levels are accessible, the problem becones
unwieldv due to the number of state-to-state rates which must be considered.

Fortunately, when the kinetic energy {s large compared to the rotational



energy spacings, it can be shown that the various rates are not all
indepenaent; in particular the entire matrix of rates can be obtained simply
in terms of one row vjo (Goldflam et al. 1977):

2
]
Yy = (23'4) E (2L+l)(g 8 g ) v, I < (2.1)

LO

where (J L J') is the usual three-j symbol. Eq. (2.1) applies only to
000
downward rates, but upward rates can be obtained from detailed balance,

Y ((2341)/(23"+1)] exp(~A4E/KT) (2.2)

g T Yoy
For a given collision energy, this approximation becomes less accurate for
higher rotational levela since the energy splittings increase with increasing
J. As shown by DePristo et al. (1970) one can approximately correct for this
defect by a simple modification of Eq. (2.1) which takes into account the
rotational energy splittings:

2 2
- M J J* '
Yyqo = (23'41) E (2L+l)(0 8 ) ALY v, 3 < (2.3)

0 H]
The correction factor 1is given by

A(L,J) = [6+a(L)2)/[6+2(J)2), (2.4)
with

Q(n) = 0.13 n B 2 / (uT)1/2, (2.5)

where the rotation constant B s in cm™!, the collisional reduced mass u is in
atomic mass units, the kinetic temperature T is in kelvins, and the scattering
length £ 1is {n A, with a typical value L = 3A,

The vy o needed in Equation (2.3) have been obtained from new scattering
calculations. Using the accurate {ntermolecular forces of Thomas et al.
(1980), we computed cross-sections at eleven collision energies ranging from
100 to 5000 cm~! using the 10S scattering approximation, which has been shown
to be accurate for this system (see Goldflam et al. 1977 and Green 1979). Rate

constants Yy g for L < 32 were obtained by averaging these cross-sections over

[ I SIS S



Boltzmann distributions of collision energies at the appropriate temperatures.
The resulting values, which are given in Table 1, were then used with Eq.
(2.3) to provide all the necessary collisional rates. (Note that yrg with L >
32 were set to zero.)

It should be noted, finally, that all of these calculations have
specifically treated excitation of CO by collisions with He atoms. It has
been argued (e.g. Green and Thaddeus 1976) that excitation by Hy is quite
similar, the main difference being the greater velocity of Hjy at a given
temperature due to its smaller mass. This factor will increase the rates for
Hy excitation by abcut 50X from the values for He. Experimental evidence in
support of this procedure can be found in available pressur: broadening data
(Nerf and Sonnenberg 1975; ses also Br;chignac et al 1980).

The population of each rotational state can now be calculated from the
cnllisional rates Yj3' by solving the equations of of statistical equilibrium
for these states. For the particular case of shocked CO, certain simplifica-
tions can be made:

1) Each line 1is assumed to be optically thin.

2) Infrared pumping by dust emission is assumed to be negligible.

3) Unly the ground vibrational state contains a significant population.
Observational evidence to date supports these assumptions. The equations of
statistical equilibrium are set up as follows. In steady-state, the rate at

which molecules leave each state 18 equal to the rate at which they enter

{¢:
ny(4; + n(H)) §'YJJ') = (nCH) Lovp e tngg Agy) =0 (2:6)

i where nJ 1s the density of molecules in state J, n(Hy) is the density of Hj

molecules, and Ay is the A-coefficient for a radiative transition from state
J to J-1. There is one such equation for each rotational state J. Together

with the normalizing condition, J nJ = n(C0), these expressions make up a
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complete set of linearly independent equations, the solution of which is

straightforward.
In the optically thin case the line emission coefficient I; for the
transition J to J = 1 1s given bdy:

I - %% Ay n;/n(C0) [erg sec”! molecule™! sr”!l 2.7)

whire v, the transition frequency, is just 2J times the rotational constant B
(neglecting centrifugal distortion). Figure 1 shows the line emission coeffi-
clents as a function of J for J < 50, at several temperatures and densities.

These curves result from cormgciter solution of the equations (2.6) with J < 60,

as descrided abdbove.

III. ANALYTIC ESTIMATE OF POPULATIONS
In order to make progress in obtaining an analytic estimate of the level
populations of the CO molecule, it is necessary to make a drastic
simplification in the collision cross-sections 0jj' connecting levels

J and J'. Here we follow HM and adopt

Y330 = <ogyr v> = 83" exp(~ zJ‘/“T) VT (3.1)

where Z {s the partition function, v = [8kT/wm(H2)]1/2 is the mean speed of
the Hy molecules, g;' = 2J' + | 1s the degeneracy of the state J', and o is
the total collision cross—-section out of level J:

-

z (OJJ' vV = ovr, (3.2)

J=0
Equation (3.1) for the cross-section has the advantages that {t satisfies
detailed balance and it facilitates solution of the level population equations.

tions. Its major disadvantage is that it depends only on the final state



and therefore omits a conspicuous feature of the calculated cross-sections,
namely that collisions with small AJ are strongly favored over those with
large AJ (cf. Table 1). Numerical evaluation of o shows that it {s about
10715 cn2, as assumed by HM; the effective value required to determine the
level population is smaller, as we shall see below. With expression (3.1) for

the cross-section, equation (2.3) for the level populatione readily simplifies

to
ny(Aj +i n o vr) = njgel AJel +l nng* ovr (3.3)
2 2
where
ny* = n(cO) 8J e;EJ/kT (3.4)

1s the LTE population, n {s the number density of hydrogen nuclei, and n(H3) =
n/2 in a fully molecular gas. In deriving equation (3.3), we set o553 = 0
although it is non-zero according to equation (3.1); we also set

J'ZJ ny+ = n(CO) (3.5)

Although in this paper we are focussing on the case of optically thin
emission, it {s a simple matter to include the effects of line opacity via the
escape probability formalism (e.g., deJong 1973, HM). If €3 < 1 is the
probability that a photon in the J + J-1 transition can escape the emission
region, then the transition probability Aj is replaced by Ay €3 in equation
(3.3). Making this substitution, we introduce

ay = Ay € (3.6)
navT

Then, in terms of the departure coefficients by = nJ/nJ*. the population

equation becomes
*

bJ (lJ +1) = bJ+1 ajel nJ+] + 1 (3.7)
ny



This equation can be readily solved by changing the dependent variable

to agby. For J » 1, the result is
ajby = f ﬂJ'* ;; ag~ (3.8)
J'o) ;% J=g T+ ag
The ground state population is then given by

®
by = b ay :'_1' +1 (3.9)
Bg

In view of the approximate form of the cross-section used in obtaining
the solution (3.8), considerable simplification is warranted. For simplicity,
assume J >> 1 so that

Ay = Ay 33
By = EgJ2

(3.10)

where, for €CO, Ay = 1.118 x 10~7 =1 and Eq/k = 2,765 K. Define y and Jp by:
2

y £ EJ = EgJ =z 352 (3.11)
KT %r 12

For kT >> E,, the partition function is simply Z = JTZ. The energy difference
AE; between levels J ind J-1 is about 2E,J so that
AE+/kT = 2y/J (3.12)
The quantity aj defined in equation (3.6) can be expressed
A Ber ¢ (3.13)

n
where

2
nee = 8IT Ao (3.14)
ovr

is the density of hydrogen nuclei at which collisional de-excitation becomes
important in an optically thin gas (HM).

First, consider the high density limit in which aj+0 and the levels are
nearly in LTE. Treating both aj and J! as small and keeping terms to 2nd

order {n small quantities, we find that the solution (3.8) reduces to



by = 1 + (nep €3/n) y

T+ %.(“cr‘.!/“)?‘ (3.13)
Next consider the low density limit in which ay + =, so that
» *
agby+ 1 gy (3.16)
T

Replacing the sum by an integral, we find for J >> 1

by ~ 1 (3.17)
1 (ncpeg/n)ys
2

A generalization which is valid at J = 0 as well {is

! (3.18)

by =
So-‘ 4'%_ (ncr tJhD yé

There is considerable latitude in combining equations (3.15) and (3.18)
into a general approximation for all densities. Since the quantum mechanical
calculation of the cross-sections shows that ¢ decreases slowly with J, we

expect that ncy will increase slowly with y. Hence we make the replacement

Rer €3 + wyB (3.19)
n

and treat w and 8 as parameters to be determined by comparison with the
numerical results for the level populations presented in $II. A simple
expression which reduces to equations (3.15) and (3.18) in the appropriate
limits is

1+8

by = 1+ wy . (3.20)
BT + é.";f*ﬁ;(j + wyl¥B)

At high densities, b, ~ 1, as {ndicated in equation (3.15).
With this expression as a foundation, we have developed the following
approximation for the departure coefficients in the optically thin case by

trial-and-error comparison with the detailed numerical results:

10

o
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1.3

by = [ 1 +wy J1 (3.21)
k}

2.2

f=(14_ 0.5y )2 (3.23)
‘r3’0.2 + 6'-0055

[+ }

wa 2.75Ty (3.24)
ng

a = 0.74 + 0.16 T41/2 (3.25)

vhere ng = n/(10% cn~3) and Ty = T/(103 K). The factor f has been inserted to
reduce the populations at large values of J, thereby accounting for the in-
efficiency of collisions with large 4J. There is an upper bound on b, deter-
mined by the condition that all CO molecules be in the J=0 level, which gives
by € 2 = Jrz; however, this limit is reached only for densities below that at
vhich the above approximation is valid (see below). At T3 = 1 and J = Jp =
19, the value of w in equation (3.24) corresponds to n., = 2.8 x 106 ca™3, or
0= 4 x 10716 ca2, As mentioned above, this effective value of the cross-sec-
tion is several times smaller than the total de-excitation cross-section.

This analytic approximation is remarkably accurate over a wide range of
physical conditions. Let Jp be the rotational quantum number of the highest
level which produces a iine with an intensity within a factor 50 of the
strongest line; {f the strongest line {s at J,, then typically Jp = 2Jp. Com=
parison with the numerical results shows that our approximation {s correct to
within a factor 1.33 for 0 < J < Jp € 50 over the range 2 x 104 c2”3 < n and
250 K € T < 2000 K, except at low densities and high temperatures: at n =
2 x 10% cm™2, the accuracy drops for T > 1750 K and is 1.4 at 2000 K; st n =

2 x 10* K, the accuracy drops for T > 1000 K and 1s 2.0 at 2000 K.



The accuracy of the approximation was checked at 5 densities, n= 2 x 104
em~3, 2 x 103 cm™3, +.e2 x 108 ca~3, and at {ntervals of 250K from 250 K to
2000 K. ar T = 100 K, the accuracy is 1.5 for n » 2 x 10" ca™3,

The approximation developed here is readily extended to the case of fi-
nite optical depth in the lines by multiplying the value of w given in equa-
tion (3.24) by the escape probability €3 (see HM). We have not attempted to

assess the accuracy of this procedure, however.

IV. POPULATION INVERSION

Population inversions result in maser action and can produce extremely
intense sources of radiation. Because of high abundance of CO in molecular
clouds, {nversion of CO levels could be particularly important. Goldsmith
(1972) suggested that the J = 1 level of CO could become inverted because
collisions from J = 0 to J = 2 occur at a rate comparable to those fromJ = 0
to J = 1, whereas radiative transitions from J = 2 to J = 1 occur much more
rapidly than from J = 1 to J = 0. In a detailed calculation including
radiative transfer, Leung and Liszt (1976) found that at 40 K the 1 + O
transition became suprathermal (excitation temperature > kinetic temperature)

but not inverted. Because of the lower optical depth in 1300, much higher

12

excitation temperatures were achieved (n 13co than tn 12C0. Actual inversions

were predicted {n the CS molecule at this temperature (Liszt and Leung 1977).
Calculations of the populations {n cyanoacetylene (HC3N), which is a linear
molecule like CO, indicate that the | + 0 transition can bde inverted for

103 ca™3 <ng 105 ca~3, wheress the 2 + | transition is inverted over a
narrower range (Morris et al. 1976). The latter authors claimed evidence for

a weak cyanoacetylene maser in Sgr B2.
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Using the detailed numerical calculations discussed in $II, we have made
a systematic search for population inversions in CO over a wide range of
tenperatures and densities. We have not included any radiative transfer
effects, because that would entail making additional assumptions about the
geometry of the source and the intensity of the background radiation. We find
that the 1| + O transition can dbe inverted for T ~ 50 K over a narrow range of
densities; as the temperature is increased, the range of densities over which
an inversion occurs incresses and higher levels become inverted as well., The
mechanisn for producing the inversions is a direct generalization of that
suggested by Goldsamith (1972): collisional rates vary more slowly with J than
do the radiative rates, so it is possidle for molecules to become trapped at
high J.

Our results are summarized in Table 2 and Figure 2. The magnitude of the
inversion nyg;~!/(nj-1 gj-1"!) and the "saturation column density” Ng4¢ are
presented as a function of J, n(H3), and T. When the CO colunn density equals
Ngat» the optical depth in the J + J-1 transition is -1. For N(CO) < Ng,¢,
our optically thin approximation is valid but the amplification is small. For

N(CO) > Nggr, the amplification could be large in priaciple, but a detailed

radiative transfer calculation would be needed to make certain. The value of
Ngat is determined by the optical depth T3 in the J + J-1 transition. At line

center we have

3
g8y A3 - NJ 83-1
T, =N —_— 1 = & 570 (4.1)
J J=1 3301 8%y ( Njy=1y )

where Nj is the column density in level J. The line width 4v is taken to be
the half width to 1l/e points of the line, expressed in velocity units; for a
thermal profile, Av = 12.9 (T/A)Y/2 1 ¢=1, where A is the molecular weight.
Noting that Aj = u2 A3, where u is the dipole moment, we can soive equation

(4.1) for N(CO) when t = =1 and obtain
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13/N N -1 -2
N =2,74 x 10°°[2J=1 J J 8J-1 - ) cm 4.2
sat [ﬁTtb5 (23-D)7T Nj-1 8] )] )

where the ratios Nj._;/N(CO) and Nj/Nj-] may be obtained from the calculations
described in $II. The values for Ngu¢ given in Table 2 are minimum values
because we adopted the minimum line width - the thermal width. CO has
unusually large values of Ngo¢ because of its small dipole moment.

The conditions required for a popuiation inversion may be understood as
fcllows. Llet Jg be the level at which nj is a maximum; obviously, an
inversion 1s possible only for J € Jy. If the density is too high, then the
populations approuch their LTE values and no inversion is possible. If either
the density or the temperature is too low, then Jy will drop below J and again
no inversion is possible for level J. The upper limit on the density can be
estimated from the approximation developed in $III; unfortunately, the lower
l1imit occurs at a density too low for the approximation to be valid. Since an
inversion is possible only for low values of J, the quantity y = JZ/JT2 is
small and the factor f can be set equal to unity in equation (3.21). Hence by
depends only on the two variables w and y, and not on n, T, and J separately.
The condition that an inversion occur for a specified y can than depend only
on w. Since an inversion is possible only for densities below some critical
value (which depends on T), the condition must be a lower limit on w; i.e., we
require w > werqe for an inversion. Inspection of Table 2 suggests werqt = 4,

which gives
n(Hy) < 105+3 T32 cp~3 (4.3)

as the condition for an inversion. At T ~ 50 K, the upper and lower limits on
the density converge at n(Hp) ~ 3 x 10 cm™3; the numerical calculations show
that an inversion is {mpossible for T < 50 K. As T increases above 50 K, Jg

rises so that higher levels become inverted as well.
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As emphasized above, our calculation of population inversions is valid
only in the optically thin limit, N < Nga¢, which seemingly precludes large
amplifications. However, if the CO is in a thin sheet, then our calculations
may be directly applicable even if the amplification is large: in most
directions one could have N(CO) < Nga¢ so that the level populations are
unaffected by radiative cransfer, but when viewed edge-oir the sheet could have
N(CO) >> Ngatr, producing a source of high brightness. Tne optically thin limit
may also be preserved if the gas has a large superthermal internal velocity
dispersion. Such conditions are expected for interstellar shocks.

Observations of regions containing interstellar shocks, with sufficient spatial
resolution to resolve the shock thickness, could reveal regions of anomalously
high brightness in the lower CO rotational lines. A possible example of such a
region is IC 443 (De Noyer 1979a,b) where some components may be edge-on,
although the excitation seems too small to produce inversion. Unfortunately,
in Orion, the best-studied example of interstellar molecular shocks, the
observed CO emission originates in gas which is too dense (n[H3] ~ 106 cm=3) to
produce a population inversion.

Detailed calculations are required to determine if significant amplifica-
tion can occur in actual interstellar shocks. Reference to Table 2 shows that
relatively large column densities of warm gas are required to produce one e-
folding in the intensity: N(H) ~ 1020-21 =2 at n(Hp) = 10* cm™3 and N(H) ~
1021.5-22.5 cq=2 gt n(Hp) = 103 cm~3, under the assunption that n(CO)/n ~ 1074,
If the emission occurs in a magnetic precursor to the shock (D;aine 1980) then
n 1s the pre-shock density; if the emission occurs in the shocked gas, then n

is the shocked density, which is typically 10-30 times greater (HM).



16

V., OPTICALLY THIN COOLING RATES
Because of its relatively high abundance, CO {s often an important cool-
ant in molecular clouds (e.g., Dalgarno, et al 1975). We define the rota-
tional cooling rate coefficient Lp,e by setting n n(CO) Lpoer equal to the to-
tal CO rotational emission rate; assuming that the gas is optically thin, we

have

n n(CO) Lyge = ) ny Ay AEj = 4wn(CO) | Ig (4.1)
Je1

J=]
vhere AEj is the energy difference between levels J and J-1 and Ij is defined

in equation (2.7). HM obtained the approximate result

2
Lrot = 4(kT) ™ Ao (4.2a)
nEg[1 + (Pcr/R) + 1.5(Rcr/n)1/2)
1
- 2 k T ovr (4.2b)

1+ (“/ncr) + 1.5 (“/hcr)l/z

where the equivalence of the two expressions follows from the definition of
n.r, equation (3.14). The factor 1/2 in equation (4.2b) is simply n(H2)/n.

Using the numerical results discussed in $II, we find that this
expression for the CO cocling rate is quite accurate. Setting

n.e = 3.5 x 106 T32/3 w73, (4.3)

which corresponds to o = 1.6 x 10-16 cp? at T3 = 1, we find an accuracy of 20X
for 2 x 10% cm™3 < n < 2 x 108 ca™3 and 250 K < T < 2000 K. However, HM's
numerical value for the critical density (n.p = 6 x 103 T31/2 .a=3) 1s almost
an order of magnitude too low, primarily because they set ¢ equal to the total
de-excitation cross-section of about 10~13 cm2; in addition, they used a ther-
mal velocity appropriate for atomic hydrogen. This underestimate of n., would

lead to an overestimate of the CO cooling at low densities by almost an order

of magnitude,
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In order to see how the o in equations (3.14) and (4.2b) 1is related to
the collisional rates presented in Table 1, we proceed as follows. In the

low=density limit

« N(H2) -Ej/kT
Leot = —3 § Yo 8y 0 Ej (4.4)
- %L‘%)_z. [ ¥y ye 7 dy (4.5)

0

For 2 < J < Jr, the results in Table 1 can be approximated as vjo = Y20(2/J)%;
for J =1 and J > Jp, vjo is smaller. Evaluation of the integral gives Lyo¢ =
2kTy(C, where the factor C allows for the smaller values of yjg for J > Jr
(y > 1); we somewhat arbitrarily set C = (1 - e~!) = 0.6. Comparing this
result with equation (4.2b) in the limit n << n.p, we obtain
ovp = 2.4 Y90 (4.6)

If allowance is made for the mass difference between He and Hj, one finds that
Y20 = 3.2 x 10-11 T31/3 em3 871 for Ho. Finally, inserting these results into
the defirition (3.1') of n_, gives n.p = 4.3 x 106 T32/3 cm~3, quite close to
the value found above. Equation (4.6) should allow one to estimate n., for
molecules other than CO, provided their excitation rates behave similarly.

Finally, we note that equation (4.5) applies only in a gas of molecular
hydrogen. Behind fast shocks, relatively large concentrations of atomic
hydrogen can build up (Hollenbach and McKee 1980). If x3 = n(H3)/n, then

i{n the presence of atomic hydrogen the critical density (eq. 3.14) becomes
2
4 J_ A
- T o (4.7)

ey ’
ovr [x2 + on (1 - 2x2) v2]
]

wvhere oy, 18 the effective cross-section for rotational excitation in
collisions of atomic hydrogen with CO. In a fully molecular gas, xp = %,and

equation (3.14) {s recovered.
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VI. CONCLUSION

The numerical and analytic results we have presented for the rotational
spectrum of CO should be useful in interpreting observations of interstellar
CO emission from warm molecular gas and in generating theoretical models of
shocks in molecular clouds. The results are valid for optically thin CO which
18 collisionally excited by Hy collisions; infrared pumping has been ignored.
The analytic results can be extended to the optically thick case in an approx-
imate fashion by using the escape probadbility formalism.

An important result of our analysis is that population inversions in the
lower rotational levels of CO can be expected to occur in warm molecular gas
with density in the range n(Hj) ~ 103-5 co™3. The number of levels for which
an inversion occurs the column density required for significant amplification
both increase with temperature (see Table 2 and Figure 8). Interstellar
shocks appear to be promising as sites of CO masers. The expression for the
CO cooling rate obtained by HM has been verified. However, we find that the
effective cross—-section which determines the cooling rate is significantly
smaller than they assumed (o ~ 4 x 10716 ¢n2 rather than 10-15 cm?), and that
the cooling rate at low densities is correspondingly reduced. The effective
excitation cross-sections for OH and H70, the other dipolar molecules which
are {famportant coolants, are probably also less than the value 10-15 cm2
assumed by HM; however, since the AJ required to obtain a given energy differ-
ence is much smaller for these molecules than for CO, we anticipate their

effective cross-sections are closer to 10-15 cm? than that of CO.
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Figure 2

Figure Captions
Line emission coefficient I3 for the CO rotational transitions
J + J=1, as a function of J for sever:l temperatures and molecular
hydrogen densities n(Hz). The Iy distributions come from computer
sol:rlon of the statistical equilibrium equations, as discussed in
$§I1. Also shown, for comparison, are the 1; distributions resulting

from thermal equilibrium (LTE) level populations.

Population inversion njgj-1/nj-18y as a function of temperature and
molecular hydrogen density for the J = 1 and J = 2 states of CO.
These curves were generated using computer solutions of the

statistical equilibrium equations, as discussed in $II.
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