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SUMMARY

This volume presents the aerodynamic characteristics of the
components of the baseline E205 configuration; geometry varia-
tions from the baseline E205 configuration are also presented
including a matrix of canard longitudinal locations and strake
shapes.

The component build-up for the E205 configuration is instruc-
tive in illustrating the canard/wing interaction although the
magnitudes of the interaction would probably be different if the
early wing stall experienced had been avoided by using the avai-
lable wing leading edge flaps.

The investigation of the canard location/strake-shape matrix
indicated there are major "first order" effects for varying
canard location or strake shape; however, the influence of the
strake shape on canard effectiveness and the effect of the canard
location on the changes produced by the strake shape are '"second
order'" for this type of configuration.

1.0 COMPONENT BUILDUP FOR BASELINE E205 CONFIGURATION

The aerodynamic characteristics of various combinations of
the components of the E205 baseline configuration were investi-
gated by performing a series of model component-buildup runs at
various Mach numbers. The effects investigated include the
lift, drag, and pitching moment characteristics of the (1) wing
alone (canard removed), (2) wing in presence of canard at
various deflections, (3) vertical .tail, (4) canard alone (wing
removed), (5) canard in presence of wing (plus interference on
wing), and (6) the baseline body-nacelle-strake. All figures
and tables are placed at the end of the text.

Figures 1-1 through 1-11 present the Cp vsa, C;, vs Cp ,
and Cj, vs CM curves that illustrate the effects of building up
the complete E205 baseline configuration by adding varioug con-
figuration components (such as the wing, canard at 8,.=0", and
vertical tail) to the baseline fuselage + strake + nacelle.

The effects of these various components are presented for Mach
numbers from .2 to 2.0 where available (all of the component-
effects are not available at each Mach number). The effects of
varying canard .longitudinal location are also included. These
figures form the basis for the following discussions and for
developing the 1lift, drag, and pitching moment increments due
to the various configuration components (and combinations of
components); these increments illustrate the magnitude of the
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effects of the individual configuration components as well as the .
mutual interference of these components. Figures 1-12 through
1-20 were developed from the data illustrated in Figures 1-1
through 1-11 and illustrate the variation of increments due to
the configuration components (and combinations of components)
with angle of attack and Mach number. Additional data has been
used to develop the increments due to the canard (relative to
canard off) at various canard deflections. (A comparison of

the E205 and R104 component-buildup characteristics is presented
in Volume IV and reiterates many of the observations in this
section).

The increments in lift, drag and pitching moment due to the
vertical tail vary little with angle of attack and Mach number.

The "wing-alone'" 1ift, drag, and pitching moment increments
(in the presence of the body-nacelle-strake) indicate that the
wing exhibits the expected characteristics in the linear «-regionm;
however, wing stall beings at approximately a= 8° at all Mach
numbers. This is a profound effect because it carries over to
adversely affect the remaining aerodynamic coefficients. The
early stall of the wing is the result of failing to employ the
available wing leading-edge flaps on the model; these flaps were
not used because test time limitation precluded an optimization
of the leading edge flap. Had these been employed and optimized,
the wing performance and canard/wing interaction would be sub-
stantially improved.

The addition of the canard (at each canard location tested)
complicates the characteristic aerodymamic picture. Figure 1-12
compares the incremental effects of the isolated wing-alone to
that of the wing in the presence of the baseline-location canard
at several deflection angles; the mutual interference of the
canard on the wing and the wing on the canard can be deduced from
this figure. The upwash, € , at the baseline canard location
was developed in and out of the presence of the wing for M = .2
as shown in Figure 1-21. The variation in upwash with angle of
attack was determined by plotting Cp vsa for the cases of canard
on (at a given 8. ) and canard-off. The intersection of the two
curves yields the angle of attack for which no moment exists on
the canard at that S according to the equation €= Q& + 3,

The bias of 2.5 degrees in the upwash due to the wing acting on

the canard (Figure 1-21) increases the loading on the canard be-

cause the wing increases the effective angle of attack and the

magnitude of the velocity vector on the canard. The downwash

due to the canard acting on the wing decreases the loading on

the wing (which is carrying more of the total airplane 1lift than .
the canard) resulting in a negative interference effect of the
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canard on the wing. This can be seen in Figure 1-12 as a de-
crease in slope of the wing lift coefficient with respect to
angle of attack in the presence of the canard (at zero deflec-
tion). The aerodynamic center (ac) also shifts forward because
of the positive interference of the wing on the canard and the
negative influence of the canard on the wing as reflected in
Figure 1-12. As the deflection of the canard is decreased (to
—20°), its load is decreased which in turn, decreases its nega-
tive interference on the wing because the downwash on the wing
is decreased thus increasing the lift on the wing. This expla-
nation of the canard/wing interaction holds at all Mach numbers
while the wing-canard 1s operating in the linear range. After
approximately 8-10° airplane angle of attack, the interaction
story becomes more obscure. With the use of the wing leading-
edge flaps, this deterioration could be delayed to higher angles
of attack at all Mach numbers.

The addition of the canard acts in the same manner as a
leading-edge device to maintain the wing effectiveness.

The '"canard alone'" increments are developed for the E205 .
configuration at M = .2, 1.6, 1.8 and 2.0. The lift slope of the
isolated canard is predictable in the linear angle of attack
range. The isolated canard begins to lose effectiveness near
8-100 fuselage angle of attack at all Mach numbers.

Figure 1-21 shows the M = .2 upwash field at the canard
(deduced from the experimental data) due to the baseline body-
nacelle-strake combination (wing-off) compared to the upwash
at the canard with the wing on. With the wing removed, the
gradient of upwash with angle of attack is approximately one
near zero angle of attack. The wing biases the upwash at the
canard by about 2.5 degrees but does little to the upwash gra-
dient until the wing begins to lose effectiveness. Because of
the higher upwash induced by the wing at the canard, the local
effective angle of attack and dynamic pressure are higher at
the canard with the wing on (subsonically and transonically)
resulting in higher loading on the canard than with the wing off.
However, a separate balance would be required to isolate the
canard load in the presence of the wing so the increments be-
tween canard off and on in the presence of the wing presented
in Figures 1-12 through 1-20 also include the lift loss on the
wing caused by the canard. Canard loads in and out of the pres-
ence of the wing are not possible with the experimental data.

Supersonically the wing induces little effect on the
canard. Figure 1-22 compares the untrimmed minimum drag
variation with Mach number for various combinations of com-
ponents. It is noteworthy that the wing supersonic drag incre-
ment (including the wing-body interference) is a major contri-
butor to the total supersonic drag. '
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2.0 EFFECTS OF ALTERNATE LONGITUDINAL CANARD LOCATIONS
WITH BASELINE CONFIGURATION STRAKE S;

The aerodynamic characteristics of the baseline E205
configuration wind tunnel model and its components have been
described in Volume II and the preceding section of this
volume. One of the primary goals of this research is to
investigate the effects of geometry variations from the
baseline configuration. The effects of varying the canard
longitudinal location on both the longitudinal and lateral-
directional aerodynamics of the baseline E205 wind tunnel
model (with baseline strake S1) are presented in this
section. (In the next section, the effects of varying the
strake shape with the baseline and other canard locations
are investigated.

2.1 Effects on Untrimmed Lift, Drag and Pitching Moment

The objectives of varying canard longitudinal location
with the baseline strake S3 (in this section) and in com-
bination with various strake shapes (in Section 3.0) are to
determine the effects on (1) canard control power, (2)
canard/wing interference, (3) static balance and ac (as a
design consideration), (4) optimum canard location, and
(5) the lateral-directional characteristics.

Table 2-1 presents a catalog of the 1lift, drag, and
pitching moment curves illustrating the effects of canard
longitudinal location with the baseline strake for Mach
numbers ranging from .2 to 2.0, with varying canard de-
flections and trailing-edge flap deflections (Figures 2-1 to
2-18 and 2-33 to 2-35).

Table 2-2 catalogs the plots of the increments in 1lift,
drag, and pitching moment due to the canard plus wing in-
terference at various canard longitudinal locations relative
to the canard-off case (Figures 2-19 to 2-31). These incre-
ments were developed from the curves described in Table
2-1.

Canard Control Power

The plots cataloged above indicate that at M = .2 for
all §¢'s tested, the baseline canard location, C1, (which is
the mid position) produces the highest net airplane lift
(increased canard 1ift and decreased wing lift) but has less
actual control power (pitching moment increment) than the
forward position, C2, but more than the aft location, Cj3,
because of the larger canard moment arm to the c.g. While
the forward and aft canard locations produce about the same
lift increments for a given ¢ and §¢, the drag increment of
the forward canard is less, especially at higha's. The
absolute value of the ratio of the change in a.c. produced
by the canard (at a given location) to the geometric tail
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Table 2-1: CATALOG OF LONGITUDINAL i
CANARD LOCATION PLOTS WITH BASELINE STRAKE ;
0 = o° brg = 10° Org = 25°
M | CANARD LOCATION/STRAKE dc FIGURE NO bc FIGURE NO oc FIGURE NO
.2 | cisl. v 2-1 v 2-32 v 2-33
.2 | c2s1 v 2-2 -20 2-35
.2 | c3s1 v 2-3
.2 | cis1, c2s1, c3s1 0 2-4, 1-1
.4 | c1s1 v 2-5 0 2-34
.6 Clsl v 2-6
.6 C2S1 Vv 2-9
.6 | c3s1 v 2-12
.6 | cis1, c2s1, c3s1 0 1-6
.9 Cl1ls1 -V 2-7
.9 | c2s1 v 2-10
.9 | c3s1 v 2-13
.9 | cis1, c2s1, c3si 0 1-7
1.2 | cis1 v 2-8
1.2 | c2s1 v 2-11
1.2 | c3s1 v 2-14
1.2 | c1s1, c2s1, c3s1 0 1-8
1.6 | cis1 v 2-15 v 2-36
1.6 | cas1 v —
1.6 | c3si v —
1.6 | c1s1, c2s1, c3s1 0 2-16
2.0 | cis1 v 2-17 v 2-37
2.0 | c2s1 v ——
2.0 | c3s1 v —
2.0 | cis1, c2s1, c3s1 0 2-18
V : VARIES



Table 2-2 CATALOG OF LONGITUDINAL
CANARD LOCATION PLOTS: LIFT, DRAG AND
PITCHING INCREMENTS (CANARD ON-CANARD OFF
IN PRESENCE OF WING)

M | CANARD LOCATION/STRAKE OpE Sc FIGURE NO
.2 | c1s1, c2s1, C3sl 0 +10 2-19
.2 | cls1, c2sl, C3sl 0 0 2-20
.2 | c1s1l, c2sl, C3sl 0 -10 2-21
.4 | cisl, c2s1, C3s1 0 0 2-22
.6 | cis1l, c2sl, C3sl 0 +10 2-23
.6 | cis1, c2sl, c3s1 0 0 2-24
.6 | c1s1, c2sl, c3s1 0 -10 2-25
.9 | cis1, c2s1, c3s1 0 +10 2-26
.9 | cis1, c2s1, C3s1 0 0 2-27
.9 | cis1, c3s1, c3s1 0 -10 2-28
1.2 | cis1, c2si, c€3sl 0 +10 2-29
1.2 | cisi, c2sl, C3sl 0 0 2-30
1.2 | c1si, c2s1, c3sl 0 -10 2-31




arm, ly/¢, is approximately constant for the three longi-
tudinal canard locations. As speed is increased these
trends basically continue to hold although there are some
slight variations at the transonic Mach numbers with some
0c's. There is virtually no effect of the canard location
on the variation of canard control-power-gradient-with-
canard-deflection (4Cy/é¢) .

Canard/Wing Interference

When the canard is shifted from the aft to the forward
position the a.c. of the total configuration is shifted
forward and a more nose-up moment is produced but with less
net airplane lift and a corresponding reduction in drag.
Shifting the canard location forward also results in in-
creased effective configuration camber which in turn pro-
duces a change in Cmor CDMIN' and C @ Cop N One of the
reasons for these changes with canard locaélon are the
variations in the mutual interference between the canard and
wing. As stated throughout this report, at all speeds, the
canard produces a downwash, or reduction in the effective
angle of attack of the portion of the wing inboard of the
canard tip as well as a reduction in the magnitude of the
local wing velocity vectors. An upwash or increased ef-
fective angle of attack as well as an increase in magnitude
of the local velocity vector is induced on the portion of
the wing outboard of the canard tip. The wing, however,
only influences the canard flowfield at subsonic and
transonic speeds where it induces an upwash on the canard
and an increase in the local velocity at the canard. The
result of this mutual interference is an increased loading
on the canard and a decreased loading on the wing. The
design objective is of course to obtain the most favorable
interference by placing the canard in a position relative to
the wing to achieve the best possible trimmed 1lift curve and
drag polars. The effects of canard location on the trimmed
characteristics are discussed in Section 2.3 but the un-
trimmed data presented in this section does indicate that,
at the subsonic Mach numbers, the wing does influence the
canard substantially and that the highest net 1lift is
achieved with the canard in the mid position. As supersonic
speeds are approached, the wing interference on the canard
is diminished and the canard behavior is primarily influ-
enced by its own induced, local angle of attack and that of
the body-nacelle-strake. At M = 1.2 the forward and mid
canard locations produce higher net loadings than the aft
position indicating that opening the "gap" between the
canard and wing may also avoid the detrimental effects of
the canard trailing-edge shock being imposed on the wing (or
the wing leading-edge shock imposing on the canard).

The limited amount of canard effectiveness data ob-
tained with wing trailing-edge flap deflections are not adequate
to deduce differences produced by canard location with the
flaps deflected. These data are used, however, to develop
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optimum trimmed characteristics using combinations of canard
and trailing-edge flaps. They also provide an excellent
data base for future design efforts, especially the low
speed data covering the full ninety-degree angle of attack
range which will be invaluable for VTOL transition studies.

2,2 Effects on Aerodynamic Center

The variation of aerodynamic center (a.c.) as a func-
tion of canard location is presented in Figure 2-38. The pre-
dicted curve from Volume II is presented for the baseline (mid)

canard location also. Subsonically, the a.c. can be predicted
rather well using the Woodward procedure. Supersonically,

the test a.c. is approximately 5-percent forward of the
predicted a.c. The shift in a.c. with canard is 7.5-percent
forward with the forward shifted canard and 5.5-percent aft
with the aft shift. It is evident from this that there is
more canard-wing interference at the aft (overlapped)
location. At the supersonic speeds, the a.c. shift due to
canard is reduced considerably. At Mach = 2.0, there is no
shift for the forward located canard and only a 2-percent
shift aft for the aft located canard.

2.3 Effects on Trimmed Lift on Drag

The effects of varying longitudinal canard location
(with the baseline strake) on the power-off, canard-trimmed
lift curves and drag polars for the E205 configuration at M
= .6, .9, and 1.2 are shown in Figure 2-39, 2-40, and 2-41
respectively. The & -range for trim is limited by the range
of §¢'s tested. The low speed (M = .2) trimmed data was not
developed because for this configuration, the power-off
characteristics are of little interest because the configu-
ration relies on power effects and ejector thrust to trim
over a reasonable angle-of-attack range. The supersonic
trimmed data for trimming with the forward and aft canard
locations was not developed because only zero-degrees canard
deflection was tested for those configurations; however, the
M= 1.6 and 2.0 trimmed polars were developed (Figure
2-42).

At M = .6, (Figure 2-39), the aft canard, C3, has a
higher trimmed C,, than with Cy or C; but there is
a substantial minimum trimmed drag penalty relative
to the mid and forward canard locations. The trimmed
drag polar obtained using the forward canard, Cj,
provides the lowest trimmed drag for a given C  at M = .6.
These same trends are exhibited at M = .9 (Figure 2-40).
However, supersonically, at M = 1.2 (Figure 2-41) the mid-
canard trimmed polar is so much better than with the fore or
aft canard locations that if any supersonic maneuvering is
required, the mid-canard location would be selected. The
mid-canard location would also be selected because of its

8




superior lateral-directional characteristics across the Mach
number range as demonstrated in Section 2.4.

2.4 Effects on Lateral-Directional Characteristics

The lateral-directional characteristics of Configura-
tion E205 at low speed (M = .2) are indicated in Figures
2-43 through 2-47. Figure 2-~43 contains the lateral-
directional aerodynamic characteristics of the basic wing-
body (BSNW), the wing-body-vertical (BSNWV) and the wing-
body=-vertical plus canard (BSNWCV) configurations. The
wing-body directional stability increases with angle of
attack until at 20 degrees it is almost stable. The wing-
body~-vertical also shows increasing directional stability
with angle of attack. The vertical tail effectiveness
decreases only slightly with increasing angle of attack over
this range of a's. The addition of the canard changes this
condition markedly. Initially, the addition of the canard is
slightly destabilizing for both vertical tail-on and off.

At approximately the angle of attack where the basic wing
begins to lose effectiveness, the canard begins to influence
the vertical tail adversely so that at a = 22°, the vertical
tail contribution to stability is almost zero. Although the
data was not obtained to verify it, this is probably caused
by an adverse change in sidewash characteristics due to the
addition of the canard as noted in the transonic data. This
is true for the aft and nominal longitudinal canard posi-
tions (C3 and Cl). The forward-canard (C2) influence on the
vertical tail is even more pronounced as shown in Figure
2-46. Although vertical-tail-off data was not obtained with
the forward canard, it is presumed that, since the wing-
body-vertical data did not change significantly from that of
the forward-canard-location case, Cl, the changes due to C2
must be due to an adverse change in sidewash due to the
location of C2 relative to that of Cl or C3. '

Canard location lateral-directional characteristics
were not obtained at M = .6 but that of the baseline con-
figuration is indicated in Figure 2-48. The trends are
about the same as seen at M = .2. Aileron effectiveness is
presented in Figure 2-49 for M = .6 and exhibits the same
characteristics as those of the wing; that is, the aileron
effectiveness deteriorates as the wing (and flap) effec-
tiveness decreases.

The baseline wing-body-canard configuration of E205
(i.e., vertical tail off) at transonic speed has a different
trend with angle of attack than that displayed from the low
speed test. The trend at Mach 0.9 indicates the body-wing
canard is becoming more unstable with angle of attack. This
is contrary to the trend exhibited from the low speed test.
Testing was only accomplished to 12 degrees angle of attack
so this trend may reverse at the higher angles of attack.
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The effect of canard location for Mach = 0.9 and 1.2 is
shown in Figures 2-50 through 2-54. This shows the addition
of the canard to be slightly unfavorable in directional
stability at low angles of attack as was the result from the
low speed test. At larger angles of attack, the entire
configuration is directionally unstable but the addition of
the canard is not degrading. The forward canard is more
destabilizing for all angles of attack than the mid canard;
the aft canard is slightly stabilizing at the high angle of
attack tested. At Mach = 1.2, the effect of canard location
.at low angles of attack is insignificant. At the larger
angles of attack, moving the canard in either direction from
the mid location is destabilizing. Supersonically, the
effect of the canard changes again. At Mach = 1.6 (Figures
2-55, 2-57, 2-59, 2-61), the aft canard is slightly more
stable than either the mid or forward canard. At higher
angles of attack, i.e., 6 degrees or higher, the mid canard
is the most destabilizing of the three locations. At Mach =
2.0 (Figures 2-56, 2-58, 2-60, 2-62), the forward canard
location is more stable at low angles of attack while with
increasing angles of attack it becomes more destabilizing
than the others. The aft location (C3) generally is more
stable at the larger angles of attack tested.

The directional control effectiveness of the all moving
vertical tail is presented in Figures 2-63 through 2-68. The
control effectiveness holds up well with angle of attack. The
derivative slopes change little with control deflection indicating
the surface is operating in the linear region.
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3.0 EFFECT OF STRAKE SHAPE WITH ALTERNATE CANARD
LOCATIONS

In the preceding section, the effects of varying the
canard longitudinal location on the canard effectiveness,
the static stability and balance (a.c.) and the lateral-
directional characteristics with the baseline E205 configu-
ration were considered. 1In this section, the effects of
varying the longitudinal canard locations with three dif-
ferent strakes (including the baseline strake) are examined
to determine the relative importance of the mutual inter-
actions of the canard location and strake shape on the
overall airplane design. (See Volume I, Section 3.4, for a
description of canard locations and strake shapes as well as
sketches in Figures 3-68 through 3-76.) The "first order"
effects of the geometry variations on the untrimmed 1lift,
drag, pitching moment, the aerodynamic center, the trimmed
lift and drag, and the lateral-directional characteristics
were examined.

3.1 Untrimmed Lift, Drag and Pitching Moment

Table 3-1 summarizes the 1lift, drag, and pitching
moment curves developed to illustrate the effects of the
matrix of canard longitudinal location and strake shape
variations across the whole Mach number test range. Three
types of comparison plots have been developed: (1) strake
variations with a constant canard location and deflection,
(2) canard location variation with a constant strake shape
and canard deflection, and (3) varying canard deflection
with constant canard location and strake shape. Table 3-2
summarizes the plots of 1lift, drag, and pitching moment
increments due to varying strake shape (relative to the
baseline strake) at each canard location and deflection.

"First order" changes are observed for changing strake
shape at a given canard location or changing canard location
with a given strake shape. In general, reducing the strake
area across the Mach number range from S1 to S2 to S3 at a
given canard location and deflection tends to produce a
slight reduction in Cpg and 1lift loss near Cp ... with a
reduction in o -BREAK (departure from linear characteris-
tics): the most significant effect of reducing strake area
(and changing shape) is a marked aft shift in aerodynamic
center for a more positive stability level. The primary
effect of the strake shape is seen at high a's near Cig,,, -
The strake shape can definitely be used to tailor the shape
of the pitching moment curve near stall and even produce a
stable break at CLy,, . Reducing the strake area also
produces small changes in drag, especially at high a's but
the drag trends with strake shape are not as clearly defined
as the lift and moment. Obviously, the real test of the
optimum strake shape for a given canard location is
determined from the trimmed lift and drag as discussed in
Section 3.3.
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Table 3-1 , CATALOG OF CANARD LOCATION/STRAKE
VARIATION PLOTS INCLUDING THE EFFECTS

OF CANARD DEFLECTION

M CANARD LOCATION/STRAKE dc FIGURE NO REMARKS
.2 Clsl, C1s2, c1s3 0] 3-1/3=2 A
.2 c2sl, c2s2, c2s3 0 3-3/3-4

.2 C3s1l, €3s2, c3s3 0 3-5/3-6

.2 Clsl, c2Ss1, ca3si 0 2-4 B
.2 Cls2, €2S2, €382 0 3-7/3-8

o2 Cls3, €283, c3s3 0 3=-9/3-10

.4 Cclsl, c2si, c3s1 0 - B
4 cls2, c2s2, C3s2 0 3-11

.4 Ccls3, c3s3, c3s3 0 3-12

.6 Clsl, cls2, Cls3 +10 3-13 A
.6 Clsl, C1s3, Cl1ls2 0 3-14

.6 Cclsl, c1s2, cl1s3 -10 3-15

.6 C2S1, C2S2, C2S3 10 3-16 A
.6 Cc2s1, C2s2, C2s83 0 3-17

.6 c2sl, €382, C2S3 =10 3-18

.6 C3S1, C3S2, C3S3 10 3-19 A
.6 c3s1l, €3s2, C3s3 0 3-20

.6 c3s1l, c3s2, €3s3 =10 3-21

.6 Cls1 v 2-6 C
.6 c2s1 v 2-9

.6 c3sl \' 2-12

.6 C1ls2 Vv 3-22 C
.6 c2s2 v 3-23

.6 C3s2 v 3-24

.6 C1S3 v 3-25 C
.6 c2s3 v 3-26

.6 C3s2 v 3=-27

.9 Clsl, C1S2, Cl1S3 10 3-28 A
.9 clsl, cl1s2, cl1s3 0 3-29

.9 Clsl, Cl1s2, C1s3 -10 3-30

.9 C2S1l, C2S2, C2S3 10 3-31 A
.9 C2Ssl, €282, C2s3 0 3-32

.9 Cc2s1l, €282, C283 ~10 3-33

.9 C3S1, C3S3, C3S3 10 3-34 A
.9 Cc3s1l, c3s3, c3s3 0 3-35

.9 C3sl, €3s3, C3S3 -10 3-36

.9 Clsl v 2-7 C
.9 c2sl \Y% 2-10

.9 | €381 \" 2-13

.9 Cls2 v 3-37 C
.9 c2s2 \' 3-38

.9 Cc3s2 v 3-39

.9 Ccls3 v 3-40 C
.9 Cc2s3 \' 3-41

.9 Cc2s83 v 3-42
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Table 3-1 CATALOG OF CANARD LOCATION/STRAKE
VARIATION PLOTS INCLUDING THE EFFECTS
OF CANARD DEFLECTION (CONT'D)

M CANARD LOCATION/STRAKE 6C FIGURE NO REMARKS
1.2 Clsl, C1s3, C1s3 10 3-43 A
1.2 Cls1l, Cl1s2 0 3-44
1.2 Clsl, ClS83, C1S3 -10 3-45
1.2 C2s81, €282, C2s83 10 3-46 A
1.2 C2s81, €252, C2s3 0 3-47
1.2 Cc2s1, C2S2, C2S3 -10 3-48
1.2 C3sl, C352, €383 10 3-49 A
1.2 C3s1l, C3s2, C3s3 0 3-50
1.2 C3sl, C3s2, C3s2 -10 3-51
1.2 Clsl v 2-8 C
1.2 C2s1 \Y 2-11
1.2 C3sl \' 2-14
1.2 Cls2 \% 3-52 C
1.2 C2s2 \' 3-53 \

1.2 C3s82 \'A 3-54

1.2 Cls3 \' 3-55 C

1.2 C2s3 \ 3-56

1.2 C3s3 \Y 3-57

1.6 Clsi, C1s3, Cl1s3 0 3-58 A

1.6 C2s1, €282, C2s3 0 3-59

1.6 C381, C3S2, C3S3 0 3-60

1.6 Clsl, C2S81, c3s1 o 2-16 B
Cls2, C2s2, C3s2 0 3-61
Cls3, C283, C3S3 0 3-62

2.0 Clsl, Cls2, C1s3 0 3-63 A
c2sl1l, €282, C283 0 3-64

2.0 Clsi, C2sl1l, C3s1 0 2-18 B
Cls2, €252, C3s2 0 3-66
Cls3, C2s83, C3s83 0 3-67

NOTES:

A = CONSTANT CANARD LOCATION, VARY STRAKE, GC = CONSTANT

B = VARY CANARD LOCATION, CONSTANT STRAKE, 6C = CONSTANT

C = CONSTANT CANARD LOCATION, CONSTANT STRAKE, J§c = VARIES

LOW ¢ -RANGE/HIGH 0-RANGE FIG NO'S WERE APPLICABLE
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"Second order" changes were observed for the effects of
canard location on the changes produced by varying strake
shape or the effects of varying strake shape on the canard
effectiveness at different canard locations.

Table 3-2 provides a catalog of the plots of transonic
lift, drag, and pitching moment increments due to changing
strake shape (relative to the baseline strake) as a function
of angle of attack, canard location, and canard deflection
(Figures 3-68 to 3-76). These plots indicate that the
canard location and deflection has little effect on the
increments due to a particular strake. As an indicator of
this, Table 3-3 is provided which shows a comparison of the
pitching moment increment due to changing strake shape at
each canard location. The comparison is shown for M = .6,
0c = 10° and a's of 10° and 20° and demonstrates that the
changes in moment due to the strake-change are not affected
appreciably by canard location. This trend holds for other
Mach numbers, angles of attack, and canard deflections.

Table 3-4 indicates that the moment increment due to
changing canard location from the baseline location is
virtually unaffected by the strake shape for Mach number =
.6 and ¢ = +10°. This trend holds for other Mach numbers
and a's.

In summary, the primary consideration at the prelimi-
nary design stage should be canard location and strake shape
and not the interaction between the canard and strake be-
cause these interactions produce second order effects com-
pared to the canard location and strake shape.

3.2 Effect on Aerodynamic Center

The change in aerodynamic center with strake configu-
ration is presented for the three strakes tested in Figure
3-77. The a.c. is shifted aft as the strake area and sweep
are varied from the baseline to S2 and S3. These changes
are on the order of 3 to 4 percent at Mach = 0.6 and 1l.2.
The variation is less at Mach = 0.9. Strakes 2 and 3,
though different in sweep and area, have little impact on
aerodynamic center variation. The primary effect of the
strake shape can be seen in the incremental effects that are
presented in Section 3.1. There, it can be seen that there
is a very small variation in Cph, at small angles of attack
(i.e., aerodynamic center). As the wing becomes less
efficient near eight degrees angle of attack, the forebody
strake-canard contributes more to pitching moment. The
changes in incremental lift or drag are small until angles-
of-attack of 18-20 degrees is reached. After the wing
begins to lose effectiveness, the local pitching-moment-
slope changes as a function of the strake configuration.
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Table 3-2 CATALOG OF PLOTS OF LIFT, DRAG,
AND PITCHING MOMENT INCREMENTS
DUE TO CHANGING FROM THE BASELINE
STRAKE SHAPE (AT Jc = CONSTANT) AT
VARIOUS CANARD LOCATIONS

M CANARD LOCATION/STRAKE FIGURE NO
.6 clL 3-68
c2 3-69
c3 3~70
.9 c1 3-71
c2 3-72
c3 3-73
1.2 cl 3-74
c2 3-75
c3 3-76
Table 3-3: EFFECT OF CANARD LOCATION
ON PITCHING MOMENT INCREMENT
DUE TO CHANGING STRAKE SHAPE
(RELATIVE TO BASELINE STRAKE, S1)
M= .6
0c = 10°
STRAKE ACM AT CANARD LOCATION:
a INCREMENT Tl c2 Ca3
10° S§1-82 +.135 +.120 .10
20° §1-83 +.10 +.07 +.07
Table 3-4: EFFECT OF STRAKE SHAPE ON
INCREMENT IN CANARD MOMENT DUE
TO CHANGING CANARD LOCATION FROM BASELINE, C1
M =.6, 0c = +10°, Q= +10°
CM DUE TO CHANGING CANARD LOCATION
FROM BASELINE
STRAKE cl-C2 c1-—<C3
sl -.065 +.090
s2 ~.034 +.106
s3 ] ~.052 +.088
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3.3 Effect on Trimmed Lift and Drag

Figures 3-78 through 3-86 summarize the effects of
varying strdke shape at each longitudinal canard location on
the trimmed, power-off 1lift curves and drag polars obtained
by trimming with the canard only (no trailing-edge flap
deflection) at M = .6, .9, and 1.2,

With the canard in the baseline location, Cl, reducing
the strake area from S1 to S2 and S3 tends to improve the
trimmed lift curves and drag polars at a's > @®-BREAK for the
baseline strake at M = .6 (Figure 3-78). At M = .9
(Figure 3-81), changing strake shape produces almost no
changes in the trimmed l1ift, an improved polar shape but
increased minimum drag penalties from S1 to S3. At M = 1.2
(Figure 3-84), reducing the strake area from S1 to S2 and S3
produces substantial increases in trimmed C,and C“MIN but
the lift slope and polar shape are identical.

With the canard in the forward location, C2, the same
trends are exhibited with strake—area reduction that were
noted above for the baseline canard location at M = .6 and
.9 (Figure 3-79 and 3-82). At M = 1.2 (Figure 3-85), the
trimmed C;, is reduced, the C| yis increased, the polar
shape is improved but with an accompanying minimum drag
penalty.

At the aft canard location, C3, the trimmed Ci, is
increased with no change in C, as the strake is varied from
Sl to S3 at M = .6; there is a very small increase in mini-
mum drag but with a substantially improved polar shape at
the higher a's (Figure 3-80). The same trends observed
above were noted at M = .9 (Figure 3-83); however, at M =
1.2 (Figure 3-86) reducing the strake from S1 to S2 has
little effect on trimmed lift or drag but S3 produces a very
substantial increased minimum drag and reduced polar shape.

Figures 3-87, through 3-92 provide a comparison of the
trimmed 1lift curves and drag polars for a given strake shape
and varying canard locations on the same page.

All of the above comparisons yield the following
general conclusions: (1) Strake effects on the trimmed
lift curves and drag polars become more pronounced with
increasing angles of attack and speed. The increment in
minimum trimmed drag at M = .6 is approximately 30 counts
for changing from S1 to S2 and 15 counts for S1 to S3. At
Mach 1.2 the differences are 56 and 82 counts respectively.
(2) The location and strake-shape combination exhibiting the
best overall choice of trimmed lift curves and drag polars
from M = .6 to 1.2 is the baseline canard location Cl and
baseline strake shape, Sl. (Although the S2 strake provides

16




a better trimmed drag polar at M = .6 with all canard
locations, the advantage of ClS1l at the higher Mach numbers
outweighs the advantage at M = .6 for Cl1S2.)

3.4 Effects on Lateral Directional Characteristics

At low speed, M = .2, the effects of varying strake
shape on the lateral-directional characteristics are shown
in Figure 3-93. There are small changes in the dihedral
effect, 43 due to changing strake shape. The principal
effect is 'in the directional stability parameter, C;

Slight improvements are noticed by changing strake shape
from S1 to S2 or S3 at low angles of attack but as angles of
attack are increased past 8-10 degrees (where the wing loses
effectiveness) the directional stability deteriorates
rapidly changing from srakes Sl to S2 to S$3. Changing from
strake Sl to S2 and S3 produces a rapidly decreasing level
of directional stability that is unstable with strake S3 at
a's as low as 17° (Figure 3-93). It can be speculated from
this plot, that as long as the wing is working, the vertical
tail can work effectively. After the wing effectiveness is
lost, the resulting flow at the vertical tail renders it
ineffective also. To verify this, the vertical tail-off
runs are required to examine the wing-body-strake effects at
large angles of attack.

The transonic testing examined vertical tail-off with a
strake variation (Figures 3-94 through 3-97). Transonic-
ally, the vertical tail rapidly loses effectiveness at the
higher angle of attack tested. At Mach = 0.9 and 18 degrees
angle of attack, the difference in vertical tail
contribution to directional stability for the three strakes
is:s

ACnB (sl) = 0.0018 AC“B (s2) = 0.0017
ACWB (s3) = 0.008

These values ofAC, B indicate that strake $3 causes an
interference that deteriorates the vertical tail contri-
bution by a factor of 2. There are small changes in the
lateral or sideforce derivatives, and Cy . with strake
configuration but these are second dBder effects compared to
the effects of strake shape on C"B

The trends are essentially the same at Mach = 1.2. The
vertical tail increment to Cnﬂ'deteriorates more rapidly
with angle of attack than for' the subsonic case. At low
speeds, the overall best canard/strake configuration from
the standpoint of lateral-directional characteristics is the
baseline canard location Cl and baseline strake Sl1. At
transonic Mach numbers, the limited amount of data precludes
determining the best canard/strake combination for lateral-
directional characteristics. The baseline canard/strake

17



combination did however yield the best overall longitudinal
trimmed configuration characteristics.
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Figure2-15bEffect of Canard Deflection on Drag with Wing Trailing-Edge Flap
Undeflected, (Expanded Drag Scale), Mach = 1.6




%6

llllllil:‘
C-9X7 — 324

Flgure2 lScEffect'of Canard Defle‘ctlon on Drag With Wing Tralling—Edge Flap
Undeflected, Mach = 1.6




l6aEffect of Canard Longitudinal Location on Lift and Moment With Baseline

igure?2

Fi

Mach = 1.6

Strake,



96

RN
B

P R I I S N T A 1]\ ;'
Figure2-l6bEffect of Canard Longitudinal Loca
(Expanded Drag Scale), Mach = 1.6

tion on Drag With Baseliﬁe“Strake,



!
[ IS

~l16cEffect of Canard Longitudinal Location Drag With Baseline

LR N N I N I

[T S T IR
Strake,



86

EXER

R

F{ CE3 FOON U URR PR IO W P41 IEFS T L B i
'ARC —9X7 - 324

Figure2-l7aEff'ect of Canard Defiéétion on”I;i'ft'and' Moment With Wing Trailing-Edge
Flap Undeflected, Mach = 2.0



66

ey A b V wW"§Qm”5,' Wm,wimﬁwwm:' m“w@.rnbwymmww”@ ;. '  E.Aw..;‘nw%fff
—aF PR R P N PO N RSO YRR PR PP I . U . \ . ;;\' Cedans S I! . : ol ! N . . e ... ...E,_. . ‘, .. ‘. _I .. I
oL . ol I _NgmuhiﬁmﬂaLihx;_mwjm.L N A SRR ER N ER RN
Figure2-17bEffect of Canard Deflection on Drag With Wing Trailing-Edge Flap
Undeflected, (Expanded Drag Scale), Mach = 2.0




001

Figure2-17cEffect of Canard Deflection on

Undeflected, Mach = 2.0

Drag With Wing Trailing-Fdge Flap
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Figure2-39 Effect of Canard Longitudinal Location on Trimmed Aerodynamics With
Baseline Strake, Mach = .6
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