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SUMMARY

The longitudinal and lateral-directional aerodynamic charac-
teristics of the RALS R104 wind tunnel model are summarized in
this volume along with comparisons for the E205 configuration.

The RALS R104 wind tunnel model is really a ''representation"
of the RALS R104 airplane configuration. The RALS R104 wind
tunnel model affords the opportunity to examine the effects of
changing the nacelle spacing (by reducing the strake area be-
tween nacelles as well as the fuselage cross sectional area
distribution aft of the nose and canopy), i.e., both planform
and cross sectional area changes, while maintaining the same
exposed lifting surfaces as the E205 configuration. In fact,
as noted in Volume I, the E205 wings, canard, vertical tail,
nose, canopy and nacelles are used in conjunction with the new
fuselage section aft of the E205 nose-and-canopy section to
simulate the RALS airplane configuration.

The trends observed in the aerodynamic characteristics from
the component buildup of the R104 configuration model were found
to be very similar to those indicated for the E205 configuration.
However, in general, the E205 configuration performed somewhat
better than the R104 model. The wider, flat strake arrange-
ment of the E205 configuration acts as a more effective lifting
surface inducing a substantially higher upwash on the E205
canard and wing which in turn results in the E205 wing and
canard each performing better alone (and in the presence of
each other) than with the narrow strake arrangement on the R104.
This improved canard/wing performance coupled with the lower
transonic and supersonic minimum drag of the E205 configuration
(resulting from a lower maximum fuselage cross-sectional area)
results better trimmed drag polars for the E205 configuration
at most flight conditionms.

The lateral-directional characteristics of the two configu-
rations were also found to be very similar at most flight con-
ditions.

Both configurations were found to suffer from the same
primary deficiency - the inability to trim to a's > 80 at low
speeds, power-off. Part of the problem stems from early wing
stall because no leading edge protection was afforded during
the current testing which should be alleviated with future
testing.



1.0 RALS R104 AERODYNAMIC CHARACTERISTICS

1.1 Component Buildup

Figures 1-1 through 1-14 provide the lift, drag, and
pitching moment characteristics for the component buildup
of the R104 conflguratlon for Mach. numbers from .2 to
2.0. This is a very valuable data base because (1) it is very
complete and should become an excellent test-~case-package for
future computational prediction methods, and (2) it provides
some insight into the mutual interference of the components,
especially the wing and canard.

Figure 1-1 compares the component-buildup variation of
minimum drag with Mach number for the R104 configuration. Its
The biggest increment .in minimum drag is produced by the
wing followed by the canard.

Lift, drag, and pitching moment increments for various
components have been plotted as a function of angle of attack
for Mach numbers from .6 to 1.2 and are compared in Section 2.1

with those of the E205 configuration in Figures 2-1 through
2-~11.

The mutual interference effects of the canard and the wing
are of primary interest for this type of configuration. The
interference effects of the canard on the wing and vice-versa
can be observed from the incremental (1) wing-alone data, (2)

- wing in the presence of the canard, and (3) the canard-alone
data. Subsonically, the canard is theoretically supposed to be
in an upwash field produced by the wing which has the effect of
increasing the local angle of attack of the canard (relative to
canard-alone) and increasing the magnitude of the local velocity
vector, thereby increasing the canard lift and drag. Super-
sonically the canard is unaffected by the wing since distur-
bances are propogated only downstream and not upstream as in
subsonic flow. At all speeds, the canard induces_a downwash
field on the w1ng inboard of the canard span resulting in a
reduced local wing angle of attack on this inboard section and a
reduction in the magnitude of the local velocity vector thereby
reducing the lift and drag over this portion of the wing.
Outboard of the canard span, the tip vortex from the canard
produces an upwash on the wing resulting in a higher alpha and
local velocity.

Enough experimental data is available to confirm the
expected effects of the canard on the w1ng, unfortunately this
is not the case for the influence of the wing on the canard.

While the canard and wing alone each exhibit the expected
1ift slopes and aerodynamic centers, the wing in the presence of
the canard exhibits less lift and a forward aerodynamic center
shift produced by the net detrimental effect of the canard on
the wing. The forward a.c. shift is a result of this reduced
lift on the w1ng (and probably increased lift on the canard).
This effect is noted in both the 1lift, drag, and moment curves
as well as the increment plots at all Mach numbers and for
alphas up to 15° (at larger alphas (> 15°) the interference
pattern is less clear).
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Figures 2-1 through 2-10 allow a comparison of the R104
increments due to the canard alone (no wing) with what appears
to be the increment due to the canard in the presence of the
wing. However, the latter increment is somewhat deceiving
because it is really the increment due to the canard in the
presence of the wing plus the incremental effect of the canard
on the wing, i.e., the increment is the net sum of the increased
1ift on the canard due to the wing plus the loss on the wing
caused by the canard. Thus a canard balance is required
to isolate the canard increments in the presence of the.
wing as this piece of the mutual interference is not available
from the present data. (Note that these increments for R104

are presented in Section 2.0 t6 avoid duplication in data
presentation.)

1.2 Aerodynamic Center

The aerodynamic center variation with Mach number for the
baseline R104 configuration model is presented in Figure 1-15 .
This variation is similar to that observed with the E205
configuration as shown in Section 2.0. The addition of the
canard to the baseline R104 wing body shifts the a.c. forward
approximately 20 percent subsonically and approximately 5
percent at supersonic speeds.

1.3 Canard Effectiveness

Figures 1-16 through 1-30 illustrate the effects of R104
canard deflection on lift, drag, and pitching moment for various
canard longitudinal locations, wing trailing edge flap deflec-
tions and Mach number ranging from .2 to 2.0.

The canard effectiveness observed for the R104 configura-
tion is basically the same as that discussed for the E205 con-
figuration in Volume III. The moment produced by the canard
deflection deteriorates rapidly at the subsonic and transonic
Mach numbers for negative canard deflections for alpha > 20°
with and without the flaps deflected; however with higher flap
deflections (25°) and Mach = .9, the alpha for flap-moment
deterioration is reduced to from 12° to 16°. Supersonically the
canard moment does not deteriorate with alpha. Subsonically, a
large part of whatever moment is being produced at high alphas

by the canard is probably from the drag vectors from the
canard.

Figures 1-31 through 1-37 illustrate the effects of varying
the longitudinal canard location relative to the baseline loca-
tion at Mach numbers from .2 to 1.2. The effects of canard
longitudinal movement are about the same as observed for the
E205 configuration. The primary effects of canard location are
the change in the moment increment produced by the canard and
the change in a.c. The forward canard movement causes a more
positive canard moment increment and a more forward a.c. as
expected. However the “:ir.’for forward or aft canard move-
ment from the baseline mid poSiiion is approximately constant.
In general, the mid location produces larger lift increments and
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less drag than either the fore or aft positions but the real
test of which canard position is best for a given Mach number
and c.g. can best be determined by examining the trimmed polars
for each canard position as shown in Section 1.6.

Figures 1-38 through 1-43 illustrate the variation in lift,
drag, and pitching moment increments between the canard on and
the canard off (in the presence of the wing) for Mach numbers
from .6 to 2.0. These increments include the loads and moments
on the canard plus the influence of the canard on the wing (as
noted in the previous section, a separate canard balance is
required to isolate the canard loads and moments in the presence
of the wing). As the canard deflection is varied from positive
to a negative deflection, the detrimental downwash on the wing
is apparently reduced at M = .6 and .9 because the lift and
moment increments continue to increase at high alphas as §¢
becomes more negative. Supersonically, the incremental lift and
moment variations are much more linear because the wing does not
influence the canard supersonically.

1.4 Wing Trailing Edge Flap Effectiveness

The wing trailing edge flap effectiveness for the R104
configuration was determined by examining the lift, drag, and
pitching moment curves of Figures 1-44 through 1-55 for Mach
numbers from .6 to 2.0; these curves represent variations in
canard and flap deflections. The lift, drag, and pitching
moment curves are also presented in Figures 1-56 through 1-58
comparing the flap performance with the canard removed.

The 1lift, drag, and pitching moment increments due to deflecting

the wing trailing-edge flaps(relative to zero wing trailing-edge

flap deflection) in and out of the presence of thecanard (at various
canard deflections) were obtained from thecurves above and are shown
in Figures 1-59 through 1-67. The canard presence or incidence has a
negligible effect on the trailing-edge flap increments at all Mach numbers.

1.5 Canard Leading Edge Flap Effect

The canard leading-edge flaps were tested at a dellection
of 15 degrees for a limited range of canard deflections and at
Mach numbers from .6 to 1.2 in Figure 1-68 through 1-70. At the
low alphas, deflecting the canard leading-edge produces an
adverse effect (Figure 1-68); however, as the local angle of
attack is increased, the untrimmed drag polar becomes more
favorable. The real value of canard leading-edge flap must be
determined on the basis of what it does for the trimmed drag
polars as discussed in Section 1.6.

1.6 Trimmed Aerodynamics

Trimmed lift and drag polars for the R104 configuration
were plotted in Figures 1-71 through 1-81 for Mach numbers from
-6 to 2.0. Three methods were used for trimming (1) trimming
with varying canard deflections at a constant trailing-edge flap
deflection, (2) trimming with the optimum canard and wing
trailing-edge flap combination (which yields the envelope 1lift
curves shown in these figures), and (3) trimming with the wing
trailing-edge flap alone and the canard undeflected.

4




Figure 1-74 compares the M = .6, .9, and 1.2 trimmed lift
curves and drag polars obtained by trimming with the wing
tra%llng-edge flaps only (with canard undeflected) and with the
optimum envelope obtained from trimming with both canard and
wing trailing-edge flap. There is virtually no difference in
the drag polars obtained with the two trim methods. However,
the trimmed 1lift curves do differ somewhat; the difference
probab}y lies partly with a lack of flap-deflection data to
determine a very accurate trimmed envelope. The data is
so limited at M = 1.2 that only a small portion of the
envelope trimmed 1lift curve can ‘be determined with
any confidence. - It does appear that the complexity
of using Dboth the canard and: the flap is not justi-

fied at these Mach numbers and that trimming with the wing
trailing-edge flap alone is acceptable. At M = 1.6, 1.8, and

2.0 (compare Figures 1-75, 1-76, and 1-77) for CL's greater
than approximately .l to .15 (depending on Mach number), trimming
w;th the optimum canard/wing trailing edge flap combination does
y%eld a substantially better trimmed polar. However, since the
airplane is not designed for supersonic combat maneuvering, the
comp}exity of moving both surfaces at these speeds would not be
required. Figure 1-78 therefore, summarizes the M = 1.6, 1.8,
and 2.0 trimmed lift and drag obtained by trimming with the
canard alone.

Figures 1-79, 1-80, - and 1-81 demonstrate the effects of
deflecting the canard leading-edge flap on the M = .6, .9, and
1.2 trimmed lift curves and drag polars obtained by varying
canard deflection with ‘a fixed wing trailing-edge flap deflec-
tion. Although the data is quite limited, transonically the
canard leading-edge flap saves about 55 counts of trimmed drag
while it costs about 55 counts supersonically.

1.7 Lateral-Directional Characteristics

The lateral-directional characteristics of the R104
baseline wind tunnel model configuration are presented in
Figures 1-82 through 1-97.

At M = .2 (Figure 1-82), the vehicle exhibits positive,
directional stability. As angle of attack is increased this
stability level increases slightly, then decreases to become
unstable near an angle of attack of 21 degrees. With the ver-
tical tail removed, the wing-body-canard characteristics are
unstable but become slightly more stable with increasing angle
of attack. The difference between these two curves is the tail
contribution to directional stability. The sidewash gradient as
a function of angle of attack was derived from the low speed
test data as shown in Figure 1-83. The sidewash gradient is
small until the wing loses effectiveness; then, the average
gradient increases rapidly until it approaches 1.0 at large
angles of attack. This is evident from this figure as well as
from Figure 1-82. The gradient is nonlinear with sideslip angle
as well. At small sideslip angles (|B| < 2°) and large angles
of attack, the gradient is on the order of that at small angles
of attack. However, past |8l = 2° the gradient is very steep
indicating that at these angles of attack and sideslip, the flow
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at the vertical tail is very destabilizing. Although sidewash
data is not available with the canards off, the shape of diree-
tional stability as a function of angle of attack at high angles
of attack indicates that the canard is the disturbing element.

The effects of canard location on dihedral effect and
directional stability are shown in Figure 1-84 for Mach number
= .2. The location of the canard has a profound and detrimental
effect on the vertical tail effectiveness. The directional
stability with the canard off is also indicated in Figure 1-84.
The canard introduces an effect that destroys much of the
effectiveness of the vertical tail. Apparently any location of
the canard other than the mid location is detrimental to the
vertical effectiveness. The dihedral effect in the same figure
shows that the forward canard location is the worst location;
this is also true for the directional stability.

As the speed is increased to the transonic ranges, the
directional stability characteristics for the baseline canard
location remain approximately the same but the angle of attack
for instability decreases. Figures 1-85, 1-86, and 1-87 indi-
cate the variations of the directional stability at Mach = 0.6,
0.9, and 1.2. The angle of attack for instability decreases
from 17 degrees at Mach = 0.6 to 15 degrees at Mach = 0.9. At M
= 1.2, the angle of attack for instability (Cng = 0) is beyond
the alphas tested. The directional stability characteristics at
supersonic speed are shown in Figure 1-88 and 1-89. The angle
of attack for zero staiblity decreases from the trasonic value
to near 6° - 8° at M = 1.6 and 2.0.

The configuration buildup for the forward canard location
is shown in Figures 1-90 and 1-91 for Mach = .9 and 1.2.
Shifting the canard forward from C; to C2 reduces the
angle of attack for instability at all Mach numbers. The
effects of shifting canard location forward or aft of the
baseline midlocation are compared in Figures 1-92 through 1-94
for Mach numbers of .9, 1.6, and 2.0. At Mach 2.0, the direc-
tional stability does not deteriorate for the aft canard loca-
tion as occurred at the lower Mach numbers. Sufficient data was
not obtained to explain this trend.

The directional control effectiveness is presented in
Figures 1-95 through 1-97 for M = .2, .9, 1.2. The level of
control remains approximately constant with deflection up to
dytr = 15° indicating the control characteristics are linear in
that region. This is true for all the Mach numbers tested. The
vertical control effectiveness remains constant up to near 30
degrees where only a slight reduction occurs.




2.0 COMPARISONS OF E205 AND R104 AERODYNAMICS

The longitudinal and lateral-directional aerodynamic char-
acteristics of the E205 and R104 wind tunnel models are compared
in this section. To obtain meaningful comparisons, the aero-
dynamic coefficients of the R104 model are re-referenced to the
E205 wing area and mean geometric chord (mgc)exceptas noted.

2.1 Component Build-Up

Lift, drag, and pitching moment increments for several
components of the E205 and R104 configuration models are com-
pared in Figures 2-1 through 2-10 for Mach = .2, .6, .9, and
1.2, 1.6, 1.8 and 2.0. Although not all of the components are
available at each Mach number, those discussed include the
following: the vertical tail, the wing alone (canard removed),
the wing in the presence of the canard, the canard alone (no
wing), and the canard in the presence of the wing.

At all Mach numbers, the increments due to the vertical

tail are virtually identical for the E205 and R104 configura-
tions.

For the "wing alone", the E205 configuration exhibits
higher lift and drag increments, and a more nose down moment at
all Mach numbers indicating that the wing is performing more
effectively and is therefore experiencing a more favorable body
interference with the E205 configuration, i.e. the wide, flat
strake area of the E205 is effectively acting as a lifting
surface.

When the wing is placed in the presence of the canard, the
wing suffers a substantial lift loss resulting in more nose-up
moment and reduced drag for both the E205 and R104 configura-
tions. The data is limited to showing the magnitude of this
change only for the R104 at M = .2 but comparisons with the E205
and R104 "wing in presence of the canard" are available at M =
1.6, 1.8, and 2.0 (Figures 2-6 through 2-10) and indicate that
the E205 wing continues to preform better than the R104 wing
with about the same differences noted for the wing-alone case.

The "canard-alone" increments are available only for the
R104 at low speed but comparisons of E205 and R104 increments
are available at M = 1.6, 1.8, and 2.0. These comparisons
indicate that the canard on the E205 configuration performs more
effectively than on the R104. The wide, flat body of the E205
configuration probably induces a higher upwash field on the
canard and hence a higher effective canard alpha than the more
narrow R104 strake/fuselage arrangement. The fact that the
canard moment increment is more positive than that of -the R104
is explained by the fact that the moment arm from the c.g. to
the mgc of the canard on the R104 is enough larger than that of
the E205 to produce a more nose-up moment with a smaller canard
lift increment. The supersonic drag increment of the “canard-
alone" is higher for the E205 as expected with the higher 1lift
increment.



The increments due to the canard in the presence of the
wing plus the influence of the canard on the wing are available
for the E205 at M = .2 (Figure 2-1) while comparisons between
the E205 and R104 increments are shown in Figures 2-2 through
2-10 for Mach numbers from .6 to 2.0. As noted above, a sepa-
rate balance would be required to isolate the canard loads in
the presence of the wing.

Subsonically, the increments due to the canard-plus wing-
interference indicate a higher net loading for the E205 con-
figuration, probably a combination of higher canard loads (in-
fluenced by a better performing wing even with wing alone) and
less negative interference on the wing. The same trends are
indicated supersonically, although the differences are not
nearly so pronounced as noted in the subsonic cases.

Figure 2-11 compares the untrimmed (power off) minimum drag
variation with Mach number for the E205 and R104 configurations.
The R104 has about the same minimum drag at subsonic Mach num-
bers but the transonic drag rise is more severe; the probable
unfavorable fuselage shape resulting from using the E205 nose,
the much narrower channel between the nacelles and fuselage
causing higher interference drag, and the larger maximum cross
sectional area of the R104 model results in substantially higher
supersonic minimum drag than obtained with the E205 model.

2.2 Aerodynamic Center

A comparison of the aerodynamic center location for the
E205 and R104 configurations is presented in Figure
2-12. Subsonically, the two vehicles are very similar,
differing in a.c. by approximately 1 percent. An extra data
point was obtained at Mach = 0.95 and 1.1 for the R104 vehicle
with canard off giving more definition to this curve
transonically. The a.c. appears to be farther aft
transonically (wing body) for the R104 than the E205. However,
at supersonic speeds, the a.c. is 2-5 percent farther forward.
The addition of the canard tempers the transonic a.c. shift for
the R104 making it very similar to the E205. The addition of

the canard makes approximately the same a.c. shift for both
vehicle. '

2.3 Wing Trailing-Edge Flap Effectiveness

The 1lift, drag, and pitching moment increments due to the
deflected wing trailing-edge flaps (Spf = looand 25°) in the
presence of the undeflected canard were compared across the Mach
number ranges tested for the R104 and E205 models. These com-
parisons showed that there was virtually no difference in flap
effectiveness on the two configurations.




2.4 Trimmed Characteristics

Comparisons between the E205 and R104 wind tunnel model
(unpowered) trimmed drag polars are shown in Figures 2-13
through 2-23 for Mach numbers from .6 to 2.0 . The M = .6, .9,
and 1.2 trimmed drag polars represent the envelope polars
obtained by trimming with optimum canard and wing trailing-edge
flap deflections. At M = 1.6 and 2.0 the trimmed comparisons
were obtained by varying the canard deflections with zero and
ten degrees of wing trailing-edge flap deflection. Comparisons
are made at each Mach number on a common-reference-area basis
(E205) and on the individual-reference-area basis. Comparison
on a common reference area basis affords the ability to measure
which configuration ma erform better with a given thrust while
the comparisons on the individual-reference area basis affords
the ability to measure which configuration is aerodynamically
more efficient. (In this case, the reference areas are very
close, E205 = 384 ft2, R104 = 357 ft2, so that there are
only small changes in the polars.) At the transonic Mach
numbers, the E205 has a better trimmed drag polar than the R104
for CL's > .35 so for combat maneuvering the E205 looks
superior; the R104 appears slightly superior for transonic
cruise at the lower Cr's, At M = 1.2 the E205 is superior
at all Cp's primarily because of the large differences in
Cbmin; however, the E205 would still yield a superior polar

even if the Cppin's were the same because it has a better
polar shape.

The supersonic, untrimmed minimum drag of the R104 model is
higher than that of the E205. The trimmed minimum drag however
is less for the R104 at some supersonic Mach numbers primarily
because of the differences in Cpo and a.c. of the two con-
figurations (even though the canard, wing, and trailing-edge
flap ?ffectiveness are about the same on the two configura-
tions).

At M = 1.6, the E205 has a lower minimum trimmed drag and a
better polar shape than the R104 configuration when trimming
with the canard and zero wing trailing-edge flap deflection.
When trimming with the canard and 10° of wing trailing-edge flap
deflection, the R104 has a lower minimum trimmed drag but a
worse polar shape than the E205; using a combination of canard
and flap yields a better envelope polar shape for Cils < .5
for the R104 but the requirement to maneuver at much higher

Cr's would be required to show a benefit for using trailing-
. edge flap deflections with the E205.

For M = 2.0, the R104 has a lower minimum trimmed drag but
a worse polar shape than E205. Using the wing trailing-edge
flap indicates that a better envelope polar can be obtained at M
= 2.0 for both the E205 and R104 models. :



2.5 Lateral-Directional Characteristics

The lateral-directional derivatives for the E205 and R104
configurations are compared in Figures 2-24 through 2-29. The
coefficients for the R104 have been adjusted to account for the
difference in reference area and span. There is only a slight
difference between the directional stability for the two con-
figurations at any Mach number except at Mach = 1l.2. Apparently
there is a more favorable flow at the vertical tail at M = 1.2
for the R104 than for the E205. This is not as evident at any
other Mach number. There is a slight improvement at M = 2.0 but
it is not of the same order of magnitude as at Mach = 1.2. The
dihedral effects are similar at all subsonic speeds. At the
supersonic speeds, the E205 seems to have some less dihedral
effect than the R104 although the trends with angle of attack
are similar. '
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Figure 2-19 Trimmed Lift and Drag Comparison for E205 and R104 Baseline
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