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AN ASTMPTOTIC UNSTEADY LIFTING-LINE'TEEORY
WITH ENERGETICS AND OPTIMUM MOTION OF THRUST-
PRODUCING LIFTING SURFACﬁS
by
Ali Reza Ahmadi -

ABSTRACT

A low=frequency unsteady lifting-line theory has been developed for a
harmonically~oscillating wing of large aspect ratio. The wing is assumed
to be chordwise rigid but completely flexible in the span direction. The
theory 'is developed by use of the method of matched asymptotic expansions
which reduces the problem from a singular integral equation to  quadrature.
The wing displacements are prescribed and the pressure field, airloads and
unsteady induced downwash are obtained in closed form. The. influence of
reduced  frequency, aspect ratio, planform shape and mode of oscillation on -
wing aerodynamics is demonstrated through numerical examples. Compared
with lifting-surface theory, computation time is reduced significantly.
" The theory identifies and resolves the errors in the unsteady 1lifting-line -
'-theory of James  (1975) and raises questions about the complete validity of _
that _of Van Holten (1975) . '

Using the present theory,the energetic quantities associated with the .
propulsive performance of a finite wing oscillating in combined pitch and
heave, namely the power required to maintain the wing oscillations, the
thrust, the energy loss rate due to vortex shedding in the wake and the
leading-edge suction force have been obtained in c¢losed form. Numerical
examples are presented for an elliptic wing. The region of validity of the
present unsteady 1lifting-line theory is found to be considerably larger
than anticipated, containing the values of reduced frequency and aspect
ratio which are of greatest interest in most applications.

The optimum solution of Wu (1971b) for a rigid airfoil has been recast
in terms of the normal modes of the energy-loss-rate matrix to shed 1light
on the . structure of the solution. It is found that one of the modes,
termed the invisible mode, plays a central role in the solution and is
responsible for the nonuniqueness of the solution. Using the results of
the present unsteady lifting-line theory, the optimum motion of 'a. finite
rigid wing has also been analyzed rigorously. It 1is found that the
solution is unique (no invisible mode). Numerical results for the optimum
motion of an elliptic wing are presented.

Finally, an alternate approach has been presented for the calculation
of the energetic quantities in two and three dimensions, namely the use of
the integral form of the conservation laws. This approach has the
advantages of being quite general, physically enlightening and avoiding the -
"direct calculation of -the leading-edge suction .force. However, the
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distribution of bound circulation and pressure on the wing are required.

Suggestions for future work on the basis of the present investigation
are alsoAgiven.
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CHAPTER I

INTRODUCTION

Important unsteady and'three-dimenaional effects occur for a wide
range of problems of practical interest involving oscillating finite wings.
Many of Jthese cannot be caléulated By the use of  strip-theory.and
Qﬁasi-éteady aerodynamics. The high cost of nuﬁgbical implementatioﬁ of
qurrent unsteady lifping-surface theory,'on-the“one hand, ahd the success
»of Prandtl;s'lifting-iine thebry; oh_ the .other, “have broﬁpted several
investigators ié the past few Years to seek to exteﬁd the iifting-iine
ébncept to'uﬁsteédy flows. Another advantaée of the liftingfline theories
is that the' resuifs éan be obtained in 6losed'form which would be suited
fOr.optimizaiioqutgdies. 'Uﬁfdrtunately, . existing iunsﬁéadyv liffing-line
theorie§ are méstly iﬁcompléte and/bp';ncﬁfrect, Wifh almdsf novqumebical
results' availﬁble, | The prgsent wqu includes the rde§el§pment and
. applications - of = an . unsteady .,-iift;ng-line .H theory fo; " a
. harmonically;oScil;éting stra;ght_wihg .of viahge' aspedt. ratio which is

eomplétely flexible in the épan direqtion. Extgnsive.numerieal results are
‘presented.l | | |

Onéiaiea of apblicationlwhich has recéived_soﬁg -;tténtion in recent - -
years 1is the study of the propulsivé performande and optimum shapes and‘
motions of oscillating rigid.or flexible Qings. Obtimum refers to thdse

displacements.'of the wing which mihimize the évefage energy loss rate in

the wake due .to vortex shedding (1) - subject to the cordition of  fixed

R .

This quantity is alternately referred to as the wake energy since, as we
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average thrust. This would be helpful 1n'understanding certain modes of
animal propulsion in nature, such. as flapping flight of birds and
undﬁlations of lunate 'tails of some- fish which are typicallf associated
with high hydrodynamic efficiency. Studies in this area to date have been
mostly in two dimensions where the theory is well developed and the
closed=form results have been used to determine the optimum motion of a
rigid and a flexiﬁle airfoil. 1In three dimengions, the studies have been
based on numerical and appﬁoximate unsteady lifting-sﬁrface theories, where
the numerical results have precluded a rigorous determination of the
§ptimum; ~In the curreni study, using the present uhsteadyblifting-line
théory, the energetic quantities, namely the power required to‘maintain the
wing oscillationé, the thruét, the energy loss rate inlrthe wake and the
leading=-edge ;uctioq foprce are determined in closed form'for.a finite wing
éscillating in combined pitch ahd hea&é.v Then;Ausing the latter Vresults,
tﬁe optiﬁum- motion is determined ‘rigorously.  The presenp work also
includesAan altgrnate me thod of determining the»’enérgéticé ‘of_ flappihg
4 flighﬁ, hamely the use §f the integral formidf'the-conéerﬁation lawé._ This
approach, however, is found not to be well suited for optiﬁizatiqn studies.

The studies presented in. this work are based dp' 11heanized
anerodynamic ﬁheony . and vas such are restricted to _smallqamplituAe
transverse oscill;tigps of the wingﬂ The free stream velocity is assumed
to be small enough to considef the fluid as incompressible, and yet large
enough so that the Reynold}s number based on a characteristic length of the
wing is large. The viscous effects are then confined to a thin boundary

layer at - the wing and a thin tfailing wake. The energetic quantities are

will see 1n Chapter VI, it is related to the kinetic energy content of the
far wake. _ : :
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.0(62‘) where € > 0 is a small parameter denoting the order of magnitude of
the perturbations. The energetic quantities are, hence, alternately
referred to as fhe quadratic quantiﬁies. Since the quantities of interest
‘are primarily due to the inertial forces, fhey can be determined from
potential flow theory. The analyses are restricted to the purely unsteady
component .of the wing motion. '

Due to the diversity of the topicé under consideration, a survey of

the literaturé and furtheg introductory femarks are presented in the

introduction section of the following chapters.
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CHAPTER II
UNSTEADY LIFTING-LINE THEORY AS A

SINGULAR PERTURBATION PROBLEM

2.1 _Introduction

Prandtl's lifting-line theory (Prandtl (1918)) "was the first
successful attempt to solve the-linearized'problem of the uniform motion of
a wing of large aspect ratio. After six decades, Prandtl's theory is still

'in use in preliminary design and analysis. Since the advent of highespeed
computers,'however,"detailed design and analySis- has been inereasinély
carried out using: steady and unsteadyfnumerical lifting-surface theories
(see, e.g., Landahl and Stark (1968)) These generally involve the
numerical solution of a singular integral equation and typically require.
large amounts of eomputer time especially for unsteady flows. |

.In the area of_unsteady wing theory, in=the meantime, a large .number
of “app;oximate and ad hoe theories"have been developed. These may be
termed irrational approximate theories'sinoe the'order of magnitude ofA the
errors introduoed by the approximations is not'known{ There‘aiso exist a
feu rather_specialized eiaot'isolutions (see, e;g.,n Schade and Krienes
(1947)) which are, neuertheless; valuable in understanding certain aspeots
of finite wing problems-such as the floﬁ.field near the wing tips.

" Quite a different approach began with the bimportant discovery of
Friedrichs (1953) that the motion of a hign-aspeot-ratio uing can be
formulated as a singular perturbation probiem. Using the method of matched
asymptotio expansions (MAE), Van Dyke (1963) developed an asymptotic

lifting-line theory which reduced the problem from an integral equation to



quadrature and reprdduced Prandtl's result to the order of its validity.
Such theories can be carried out to higher 6rders systemaiically, as was
demonstrated by Van Dyke, although this is often unnecessary. Theories of
this tyﬁe may be termed rational approximations, since the order of
magnitude of the errors is known.

During the 1last few years, a few investigators have deyeloped
asymptotic theories for high-aspect-ratio wings in unsteady motion. These
have been termed unsteady lifting-line theories (1). These theories are
| still in their infancy,_ as canl’be seen from an examination of the few |
published works; one of which is incorrect and for-lthe. others some
questions reméin'about their validity and utility. Also, since there is an
almost total’ lack. of.’ numericalv examples and cornelation; with
" lifting-surface and experimental'résults in theée works, the assessment of
. their valte is more.difficult. |
.. JamesAt1975).has.published.a_work on an'unsteady .lift;hg-line ‘théory
. for a straight fiexible' wing in unsteady.motion; His treatment of the
problem uses a semi—intuitive MAE approaéh. His unsteady induced _d§wnwash'

.is found to be .in error (as weli as being'ihfinipe) which renders hig'
',1three-dimensional uns;eady results'incorrecﬁ. He also suggests that his
theory is valid for all feduced 'frequenoies, whereas the formulation

clearly assumes low reduced frequencies. Further, he does not treaﬁ and

(1) : : , . :
In the classical sense, this is a misnomer since in unsteady flow, as was
first pointed out by Reissner (1944), the lowest-order induéed downwash is
not a constant across the chord, except in the steady flow 1limit. Hence,
one can no longer speak of a loaded line. However, in analogy with steady
flow, we will use the term unsteady lifting-line theory for the asymptotic
solution, where the outer solution involves a loaded line and the inner
solution is an oscillating airfoil with an induced downwash that is not
constant across the chord. a '
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resol#e tﬁe inherent nonuniqueness of the solution in the gcceleratibn
potential formulation of the problem.

Cheng (1975) has.proposed an unsteady lifting-line theory fﬁr a wiﬁg
with curved and/or swept planform in harmonic oscillation. His formulation
is in terms of the velocity potential which he determines to leading order
in inverse_aspect ratio. - The work does not include calculation of the
aérodynamic loading, the unsteady"induped downwash and some of 'the
important qetails, nor is the work preéented in a form ideal ‘for such
calculations. To this author's knowledge, Cheng was the first to identify
the various freqﬁency dqﬁains fo} the iﬁfluehcé of unstead;ness on the
.induced downwash. These doma;ns are_described below..

© Van Holten (1974, 1975, 1976, 1977) has developed lifting-line
theories 'fqr a rigid fectangqlar wihg in ﬁniform motion, with ahd without
Yéw and trans%erSe harmonic oscillation, éhd;also as a heiicoptef rotor
blade in forward flight. It is implicit in his analysis that the unsteady
indycéd-dqwnwash is a constant across the chord;~ ‘AS alréady mentioned,‘
this is ngtAthé'case in uhsteéd& flow, except in the éteady flow limit. ‘He
also reéards his. theory as 'vélid :fbr all reéuéed frequencies; this is
unl;kely sinée it uses é conétaht induced déwnﬁash at each chord. His.
analyéis"léadS' to an integral equation whiqh must be solved humerically;
~Van ﬁolten was the first ﬁO'pAiﬁt out thé cdrrecf physical ,interpretation
of fhe' induced dowhwaSh in Steady‘ and unstea&y ‘flows. The same
iﬁterpretation comes out of the présent work. | |

The'éroblem of a harmonically osci;lating three dimensidnal wing
invqlves three chéractéristic léngth scales, namely the chord ¢, the span b
and ﬁhe wa;elength of the périqdic ﬁake A = 2TWU/was shown in Figure 2.1..

As far as the influence of unsteadiness on the three-dimensional effecﬁs
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are concerned, Cheng (1975) has identified five ranges of A for a

high-aspect-ratio wing (¢ << b):

I. ¢ <'b < A very low frequency

II. e« b=0(A) . low frequency
ITII. ¢ << A <K b intermediate frequency
IV. ¢ =0(A) <KD high frequency

V. A < ekhb ~ very high frequency

Domain I correspondsﬁ'to very low frequencies where quasi-steady
aerodynamic theory is adequate. Domain V, on the other hand, corresponds
to very high frequencies where the self-éveraging effect of tﬁe

" high-frequency- peri_odic wake rendefs the p?-oblem loealvly'twb-..d:l,mensional. ,

o(1),

In domain II, the the reduced frequency based on the span ® b/U

o(1).

twhereas in_domaip IV the réduced fréquehcy based on the chord we/U
The analysis of .the proplem in domains IIiand IV involves two disﬁinct
rggiohs in spéce correspbndihg to length scales c¢ .aﬁd b, _whereas»'thé
analysisziéf démain:III invblves fhree regions_ih spéce corresponding to ¢, -
b and A .
Cheng further points'oué that an important result of ‘the condition
A <<‘b is that the thbee—dimensional ef fects produced bj the far wake"
vanish with A /b aﬁd become much smaller than the local. ﬁhree—dimentionai
effects. The above. ffequency domains are depicted qualitatively in a
reduced frequeﬁcy aSpect ratio diagram in Figure 2.2. | | |
Chapters II f_Y are devoted to the development apd applications of an
unsteady lifting-line theory valid in domains I and II. It seems; from the
numerical results, that the theory méy be valid in parts of domains III - V
as well. Thev wing model used is shown in Figure-2.3a where the chord is

0(A~") and the span is 0(1). A similar asymptotic theory can be developed
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for domains IV and'AV using a wing model with chord of 0(1) and span of
0(A). Such a theory may also be valid in parts of domainé I = IIi, in
which case the twb theories together might fqrm a unified pnsteady
lifping;line theory for the entire frequency spectrum. Otherwise, a third
theory would be needed for domain III to bridge the gap between the low-
and high-frequency theories. The latter will probably be the 'most
‘difficult of the three. However,'since most applications of interest fall
in domains I and II, this region will be our focus.

The present theory 1is formulated in terms of the acceleration
potential ¢ . The advantages of this formulation are that 4’ is continuous
across the wﬁke and the pressure on the wing is obtained directly ffom‘# .
" However, the solution is not unique since.multiples'of~eigensolutions with
341/32:0 at the wing may be added. Uniqueness is achie?ed by detefmining
the downwash by integration of 4’ from far upstream to some pdint on the
wing. |

An ésymptotic.expansiopvis carried out to leading order in . inverse
aspect ratio. All of the results of the present theory are‘obtaine& in
closed form and are 'thﬁs suited for optimizatio.n studies. ﬁmerical
results for the presgnt ﬁheory compare favorably with other theories
inclﬁding unsteady lifﬁing-éurface theories. Compared with the latter, the -

required computation time is reduced significantly.

2. r t'

Consider a thin almbst plﬁnab wing of large aspect ratio, exeéutiné_.
smaii-amplitude harmonic osgillations normall to the wing planform, in a
uniform stream of inviseid ihcbmpressible flﬁid. The wing has a straighﬁ

mid-chord line positioned normal to the free stream. -
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The wing planform is described by
X=xc(y) /A MES) 2=0 (2.1)

in a coordinate system (x,y}z) fixed to the mean position of the wing as
shown in Figure 2.3a. The free stream velocity U is directed along the

positive x-axis. Here, A is the wing aspect ratio defined as

A= (2b)? /S 4 o (2.2)

where b is the semi span length and S; is the wing planform area. e(y)/A
is the semi chord. Both b and c(y) are assumed to be 0(4°).
The transverse displacements of the wing (mid-camber surface) are

described by

_ . L et
2 = hix,y,t) = [hoty1/A + ) x]) e

(z. 3)
IX1 < cLyy /A Ivigb

or, equivalently, by

- : 4 o it
Z = h(X,Y,t) = {j,;(g/A) $o¥) + Lé,(\/) +J §ztv)}x}e

IX) € Cuy)/A IYigb \2.4)

where %c,.é' and §z aré nondimensional quantities; co/A is the root semi
chord; j 1is the temporal complex unit; <« is the radian frequency of
oscillétion; and t is time. The above relations define a vﬁing which 1is
flexible in the span direction, capable of executing arbitrary torsional
and bending oscillations. The wing sections, however, are rigid airfoils

performing heaving motion of amplitude
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hoty)/A = 4 (carA) £, 1Y) - (2.8)

and pitching motion, about.the mid chord, of amplitude

[ty = | 5,¢9) +J 85 vyl (2.6)

with phase angle
tan 1_'§2(V)/§ (Y)] o o 2.7)

leading the heaving motion. The heaving motion is taken as positive in the
positive z-direction and the pitching motion is taken as positive in the |
- direction of nngtiye rotation about-the y-axis as shown in_Fignre é.3b.

We require that the arbitrary functions h,(y) and X (y) (or, :i
'equivalently, § (y), § (y) and §'(y)) be such that the wing displacements

satisfy the conditions of linearized theory, namely

_a_l«/’bx ' _ak/by:, Uf‘fah/é't < - (z8

>
Implicit in the above restrictions on the choice of h(x,y,t) ‘and. c(y) is
the ~fundamental - assumption of lifting-line theory that the spanwise flow |
perturbations,are small compared with_those,in planes normal to the span.

' In this work, we use the‘fOrms (2A3) and>(2 h) interchangeably, nith
| the latter being especially convenient in numerical calculations. The wing
shapes and motions described by (2;1),-(2.3) and (2.4) embraces a broad
class ‘of interesting problems involving unsteady motion ot‘ spanwise—'
flexible wings.

VThefabove problem can be formulated "in terms of the acceleration

potential LP defined as

Y(x,t) = ['Pm.-“P(Xt)J/P . (2.9)
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. where X = (x,y,z), p is pressure, P is fluid density and p_, is the free
stream pressure; It fo;lows from the linearizéd Euler equation and the

continuity equation that lP is governed by the Laplace equation
2 - .
vV, $(X,t) =0 (2.i0)

where the subscript (‘)3 indicates a three-dimensional Laplacian, The

linearized boundary condition at the wing specifies the downwash.

wX,e) = (35 + U ) hogy,t) = We (1,%)
X< /A b zmok - (z.na)

For h(x,y,t) in (2.3), this becomes
Wo (X,Y, %) = _.[Jw kg_o/)/A +UALY) + jwoty) x| e
Ixig C(\/)/A \Yi <b Z2=0+ (2.01b)

Substituting (2.11a) in the z-component of the linearized Euler equation,

we can express the tangeney condition in terms of‘#

I

? = 1\ S
2 WE ) t+U%X)w O,Y, )
= (2 +UZ Y houy,t)
\x\g-_c(y)/A ng'b . z=o0% 2.12)

Along the trailing edge, the Kutta condition requires that the pressure

remain bounded. -

WX, 1) | < o Xx=cw/A  Yigkb  Z=o (2.3
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Since LP is an odd‘function of z, it follows that
Y(X.,t) =0 IxIy c)/A  z=o0 (2.14)

Further, we require the pressure disturbances to vanish at infinity.

.W(?,t)»o \]x1+\/l+z’- —~ (2.i5)

The solution of the linearized boundary faiue pfoblem (1) défined by
(2.10)° = (2.15) can be expressed in terms of a distribution of
threé—gimensional pressure doubletsA:0ver the projection of the wing
‘planform oﬁ,the'xy-pIAne.'. - | |

b cly)/A

5 - 4rn° "'lJ ds A-P(§'] %—é— (2.16)
' -fb ) W—CLY)/A
':whére._i . .
[-H% % v-m?2 +2217% an

ahd_A.p‘z pl'; p“'ié the igcalvpreSSﬁfe Juﬁp'abrosslihelﬁing,vwifﬁ (.)q and
( )1 denoting the ﬁppér»and‘lower wing surféées respectively. fhis can be
.readily_geéd fromi(2.16) by faking thé limit as z-?-O::wiﬁh x and y5fixéd;
A - . L _
PLW (X, Y,04) — P (x,y,0-)] = 8P IX,Y) (2.18)
In the fol;owing $ec;ions; Qsing the MAE method,’ﬁe find bhé solution

for_LP , for given wing Shapeé and motions, which is uniformly valid

(1) - ‘
We are justified by linearity to write 2all dependent~ variables as

IED = FF)
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throughout the flow field. The value of LP at the wing ylelds the wing
‘pressure distributiou (see (2.18)) which can be integrateu to obtain
various aerodynamic quantities‘of interest.

Formally, as aspect ratio tends to infinity, we consider | two
simplified asymptotic limits of the problem: the outer limit and the inner
limit. The outer limit corresponds to holding the span fixed and letting
the chord tend te zero, where the wing collapses to a loaded 1line. The
inner 1limit 'corresponds to holding the chord fixed and letting the span
tend‘to infinity, where the two-dimensional unsteady airfoil selutien is
emphasiied. ‘The outer and inner limits are both incomplete'representations
of the full problem, each lacking some essential features‘of the problem:
the basic uneteady airfoil solution in the outer limit end. the
three—dimensionel effects in the inner limit. Matehing the two expansions
resolveS'tuis incompleteness. As mentioned earlier; however, this soiution
is not unique since multiples of eigensolutions with 'D‘V/BZ=O at the wing
may be present. Uniqueness is achieved by determining the downwash by

.integration of qurrom far upstream to some point on the wing.

2.3 _Outer Solution for the Acceleration Potential
. Here, we seek an expansion for LP valid in the outev region (distences‘,
from the wing of the order of wing span, viz. 0(a%)) where'the wing shrinks
to a 1oaded‘line'ae'Ana»ob. Formally, this is obtained from (2.16) by
expanding the kernel function 52;4 in a Taylor Series for small € and

integrating across the chord. Using

- - N oy 2 32, ' _
R =rR -85 R f)+zl§ =z (R hy 4+ og3)

2

R? » % gt (2D
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where
: iz
[r2+ %2]
(2. 20)
r2=x?+ 2% ¥ = Y-7

we obtain the three-term outer expansion

oL (n] by

4rrp

ol 'b“wst S AT
m iR : F) .,
™ 'axaz__J_l; Y dr+z WEoE L = 9

+ HOT} oz

o L L | - g
where ( ) . indicates the outer region, HOT denotes higher order terms and

CLY)/A

_2(..‘/)‘—'__[ 2% (sy) d3 ~ O(A™") | T+ (2.22)
—cun/A ' A B A
N C(V)/A R o A
mm=-j 5 A«p(g V) d3 ~ 0(A™% G (2.23)
-CLY)/A _ .
N CW)A o | |
F W) = J g.’“'A-'E(s,,y)d% ~ O(A™%) G (2.24)
~C(Y)/A ' ' . ,

This outer expansion is in agreement with that of James (1975) who gives
the first two terms of (2.21).

Thé.outer expansion, thus, consists of- spanwise distributions of
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three-dimensional multipoleé along the loaded line. The first terms is a
distribution pf dipéle; of strengfh:equél to section iift. The second term
is a distribution of qﬁédrupoles of strength equal to éection mdment about
the mid chord (positive nose up). The higher order terms consist of
distributions of higher order multipoles of strength equal to higher
- moments of section lift about the mid chord. Hence, retaining more terms
renders the outér expansion an increasingly accurate representation of the
full problem. The sign and order of magnitude of the sﬁrength of the first

- three terms are indicated in (2.22) - (2.2%).

ér i ya angio

Later, for thé pgrpose of matchiné, we will need an inner expansion bf
" this outer expanéion,‘i.e., an approximation for (2.215 as fr;a-o.’(or as
A oo with ?j! Ar = 0(A®)). To this end,bfirSt we carry out the'indicated

differentiations to obtain

| %%y ~ =30 Jon -z
q{‘(x) - L‘ Ly A M
| b ‘ .
+—J"b -.Y] Cr2+ 2752 1

b . .
+J 3 (1) szl ax?evt]
J i T2 [r21y2] 2 d

+Ho‘r} R - (2.25)

‘Due to .the increésingly singular nature of the kernel functions- of .

(2.25), straight forward expansions are not adequate and will give rise to
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divergent integrals. This can be avoided by f‘irfst integrating under the
integral with respect to y and placing 9/3Y in front of the integral; an
idea familiar from slenderfbody theory for related integrals (see Heaslet

and Lomax (1953)). Repeated applications of this idea to (2.25) leads to

P ~ 4W, {;iz 3\/3 j 'fuq) R \/r7~+‘/°

4 2 deg (Yo +/ r’--+ yf )] clv\ -
xz 23 (%~ .' [ —
+ —'4'_ W3 ,:yb m(") \/o- r?-~+ \,Z. le

.33 ?f__ ! rz?i.-‘f(?-‘?'*-' 4x%) 3’2'
"‘z, '3 ' 5 { . 45 S \'_r

+ — 3 \/ +‘/o }A'H HOT .}y(-z.zs)

We can now expand'the integrals,_ First; we break vdp_ each integral

into three parts.

b | ‘/—é o ‘/+e b | | R

Y+ €

= L, + I + IRZ
where € > O‘is a small neighborhood of y = q ; In I' and'Iz, we expand the'
kernels .f‘or r—>0 with € t‘i;xe'c.l,. noting that y, > 0 for ‘the former and
.yo < 0 for the latter. In Ie, we expand the integrand for €->0 with r

fixed. 1In each case we find
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I~ oW | | (2.28)

| which vanishes as € 0. Next, we combine I, and I, for each of the
integrals in (2.26), let €->0, take the indicated derivatives and

introduce the magnified (inner) variables

A A
5 - Az =Ffsne o (2.29)
’r\‘=AY‘=AVxZ+\Iz

to obtain the. inner expansion of the three-term outer expansion.

~ol _, I \ SIn g .__L_ A |
v (X)N’?r?iﬁ WS hgg NS
[_'%- j (q)ﬁogly N sn 9= 17 dv] 3
Y7 2y 3
+Orzdy ) I'm] + o0
- AF Ao 2R
m(y) sn 28 + Of A"’z YR) =

i
4

A
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S8 -~ Sin 39

‘ ‘ ~ /f
- AT WY < 9
-
+ 0w 'g)
+ HOT A>o F~OWR) Yi<b - (2.30)

where ( )' denotes derivative with respect to the indicated argument.

Here, the terms denoted by "dipole"” ére the inner expansion of the
first term of the outer expansion, (2.21)) As r—0, ﬁhe spanwise
' distribution of three-dimensional dipoles reduces to a two-dimensional
dipole plus édditional terms of higher order which represent the
three—dimens;opal correction. A similar éxplanétion applies to the terms
denoted by "quadrupolé" and "octabblé".'

Van Holten (1975), using the method of separation of variables, has
solved the outér 'problgm for a rigid rectangular wing in steady flow and
obtained the dipdle and the quadropole'expansions, as ih_ (2,30), but the
corresponding ‘resdlt for the qscillafing rigid wing is hot-g;ven; The two
expansions are iq ovérall agreement, though detailed correlation of the
: corréspohding.coefficients is not feasible. James (1975) has also obtained
the first term of the dipole and the quadrupole expansidns as well as the
-order of mégnitude of the h;gher order.terms; Except for a missing factor

of A, his result is in agreement with (2.30) (apparently a misprint).

2.4 Inner Solution and gigen§olq§19ns for the Acceleration Potential
" The inner region is that part'of.the flow field where distances from

the wing are of the order .of the chord, i.e., O(Kf‘). ‘As A> o, the chord . -
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and, hence, the inner region become vanishingly small. In order to study
the details of the flow near the wing, we magnify the variables in the’
cross-éectional pléne of the wing so that the two-dimensional (airfoil)

character of the flow is emphasized. Thus,

K = AX
;,_.\/ (2.31)
%, = Az

The characteristic length scale in the inner region is the magnified semi
chord c(y).

In the boundary value problem at hand, time enters in through the
boundary condition at the wing. In the Laplace equation and the remaining
boundary conditions, it appears only as a parameter. In terms of the inner
‘variables, the wing boundary condition becomes

wio (L2 2.\0
o =(FmaTVUax)h 0 |
' . (2.32)
A , A
Ix1<cyy  IYiI<h z2=0+%

N . v ) |
where h = Ah and ( )L denotes the inner region. In (2.32), we may think of

At as a stretched time

A
+ = At (2.33)

This is strictly for mathematical convenience and does; not change the
solution.
In tbe inner region, we further assume that the acceleration potential

may be expanded in an asymptotic series in inversé aspect ratio of the form




. © oA _ C A l\ . :
A KA+ A2 lga P X LE) (2.34)

_ |
+A'ZLP: MEB)+-+ A

where ?: (:?, y,:".)_. Since in inviscid flows physical 'quantities are
independent of .scale (see,e.g., Ashley anc Landahl (1965), pp. 5~7), the
first term of the expansion is 0(A°). Jemes (1975) assumed an expansion
whose leading term is oA~ ') which is 'incorrect. This is, however,
balanced by the missing factor of A in his g° “ and hence the structure of
his solution is not ‘affected. We have included logarithmic terms in (2 314) '_
because ., of the anticipated matching . to. ’~P°' , (2.30), which contains a
logarithmic term. 'Amother source of logarithmic terms in the inner
- solutiom- is. tbe low=reduced=-frequency eicpansion of Theodorsen!s function
discussed later in this section.A Matching ﬁi‘ll “show, however, that the ' |
0(4" log A') term in (2.34) is not needed.

~ Introducing (2.31) = (2 34) into the full problem, (2 10) - (2.15), we:
obtain a series- of‘ simplified problems for the LPL . 'rhe lowest order inner
solution '-P satisfies the following boundary value problem.

AN &',;y - (;; . 'g;) e =o

3——41‘(&‘%)_(3—+U——)w Lx‘lt)
X} €cy)  Wlgb 2 =0 . - (2.35)

,£) =o Ry ey) Z=o
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95 F, D)) <o X=c Wige 2o
LP:(Y,%.)—%-? E ?‘—?co

where the subseript ( )2, indicates a two-dimensional Laplacian. The main
simplification here is in the reduction of the three-dimensional Laplace
equation to a two—dimensional one. We have assigned all of the boundary
condition at the wing w,, to ‘-Poé. It can be shown that this dee’s not
affect the complete inner solution LP The reason for this choice is that
it makes the lowest order inner solution LP: the exact twd-climensio‘nal
‘ unsteady airfoil solution 2D whlch is the dominant f‘eature of the inner
solution: | |

The loss of the beundary condition at. infinity is ‘due to the
stretching of » the _ variables and implies the presence of certainv
‘ 'eigensolutions in the solution, Hence, LP consists of‘ multiples of‘ _these
eigensolutions, LPZ.D and multiples of eigensolutions with 'bq} /32 e at
the wing. The eigensolutions will be determined later in this section. .

The boundary value problenm governing LP q-’ and LP is:

A 2 _/\_s A
2 Lp(x,t) =0
D% - ) =09 IX! £ ey)  WYigb 2= o
(X, t) =o X1 > <) 2=0 (2.36)

) g
i
o

Y
\_kP(i‘,%)'\<oo x = Cly) 1yIsh
15!
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The solution of this hoﬁogenous boundary value pz:oblem consists of
eigensolutions alone.

1. b
LH‘is the solution of the boundary value problem:

A

AZ oA A 3% CoAL A
‘zl LH4 (x,t) = "'{;;;z q): (X,t)

C AL A
a%(x’t)=o l;qscﬁ‘l) igbh Z=ox%
0z
LP;('Y,@;):o IXI1>cwy) ==o0 (2.37)
A

9y (OB <e  K=ean ngb 2=

Py, t) > 7 Fome

- The solution of (2. 37) consists of a homogeneous solutlon, a particularb
solution and eigensolutions of the Laplace equation. LP4 enters into the

'solution to determine higher orqerrthree-dimensional effects.

Wu's Unsteady Airfoil Theory »
To de#ermine'the solution of (2.35), we note thep with she additional
boundary condition..
AL A A
Y (X, t)—=>o C —>
(P: is .the solution of a elassicai’tse-dimensional boundary value problem.
Wu (1971a5 has obtsined the generel solution.of this problem which is valid

throughout tﬁe flow field.- For steady-state harmonic oscillations and in
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o terms of the inner variables, his solution, for Varbitrary shapes and

motions of the wing sections, is given by

b ]
~F—(S, t =1;_[3’ er r+§]”‘w4§ (2.38)

3 +C C-% £-3
Px,Y,t) = UALLY, £) + 8 (R,Y,¢) (2.33 Q)
| X .
LYy =-(2 +U WS v 1vds X
Py, by =~ (% '+U5’A‘)_J¢ Wo (3,788 Rise)
(z.38b)

"T—i' -——— LP.(%)\/,‘E) (2..38C)

- N
L, ) baE) cosme (238

n=|

b, (y,t) = 'Tir. J (X, Y, %) Cos n® d& n=0,,2,- (2.38F)
o

l: A A ’ - . .
Here, £ (Y ,y,t) is the complex acceleration potential with respect to the

inner variables defined as
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LA A LQ.A ) A".LA
Py =9 (1) 4007 (X ) (2.39)
wheré (TC is the conjugate harmonic function of LP‘ and i 1is the spatial

complex unit (nbte, ij # =1). Further,
A ~ . A
3*: X+t %
(2.40)

X = Cly) Cos 6

‘and k is the reduced frequency based on the local semi chord, namely

- ky = W) o) A=) - 2.4y
In (2.38d),'d:(k) is.Theodorsen's:functiOn defined as

(2)

PR N » (k) |
Cl) = Flk) +j Gle) = —— (2.42)

Hy™ (k) -'t-) Thati (%)

@) , 4 .
: where H is the Hankel function of ‘the second kind of order n defined as
(2) . - - - (2.43
Ho (2) = In (2) =) .\(n(z) | . - 43)

Jy and Y, are Bessel functions of the first and second kindv of order n

'respectively. It follows from (2.&2) and (2.&3) that

"F(k) —_ ';yl(:r\*ﬂfo)‘+ J|(\f‘— jo);

(Tv+ Yo)* + (Y, = 3,)*
*(YIYO -+ J. Jo) |
(3i+ Yo)? +(%,- 3>

(2.44)

QL) =

where the argument of all Bessel functions is k. € (k) is plotted as a

complex vector in Figure 2.4,
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. Wu's solution yields the acceleration potential throughout 'the flow
field- as 1is needed t‘or the present MAE analysis. Wu's solution is als§
unique having been f‘ormulated directly in terms of the downwash at the wing
W: instead of the vertical aceeleration'bLP /DZ .
o Calculation of the pressure field from (2.38) for most . wing

displacementé of interest requires evaluation of integg'als of the form

C

A ¥ L5 2 ’ﬁ\n A
QR (y,y)= ["C—-'-vé] = d
" " _jc._ -5 ) 1.3 °

(2.45)
n= o\,2, ~- |
The first five members of this family are evaluated and iisted in part 1 of
Appendix A.
Using Wu"s‘ method, the exact two-dime.n‘siona; unsteady airfoil solution
LP;D .:Ls determined. For later use, we list here the .acceleration pote‘nfial

ih cbx_nplex form,

o0 = = {B.m -3+ (5" res + S\
+B, i [-3 +/FF - ]
+83U’l)'|—_x"'}} - (2.46 a)

where,' . . ' | |

LP;D (X) = Gac l-_wf;_co» ('f,V)] o '(2.46 b)

@’[ denotes the real part of a complex quantity with respect to i and

S4+C




38

e 2 2
B )= < U k’fog | (2.48)
B, (Y) =_-é—U7“[_kok(%)-- zjkot] (2.49)

iSs ) = U §~ (k.-— Za)k )

- [Jk,., Qi‘c-) + (1+ JZ L) o«] (lj(k)} (2.50)

where
ko = -6- EA.. (28N

is the reduced frequéncy based on the the root semi chord c¢,/A. The lowest

order inner solution is then given by

~

LPQ (Y) = LPZL.D ()?) 4+ eigensolutions ' (2.52)

Eigensolutions of the Acceleration Potential

Next, we détérmine_ tvhe eigensolutions of the inner solution. These
satisfy the homogeneous problem defined in (2.36). We consider two cases.
First, we assume LP(x t)—>0 as I‘+cn.' The solution of this problem can be
obtained using Wu's method. However, first we must express the boundary
condition at the wing ‘ati)/z,%w in terms of .downwash. This can be done by

'inverting the z-component of the linearized Euler equation

D= A 3 ) < ohan (2.53)
— i - . -~ \V X, . *
F¢ER = (5 r U v R

written for convenience in terms of the'i,nner‘.variables. The downwash at
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the wing is given by

X 2 Sya-t
T L0 Xy o SBG=RAT
W, (x,Y,0%) =g o ,\—gt})(%,‘/‘,z) e d3
2> 0 o © '
X! € <) Yih (2.54)
whére w=w/U, Using Ble% =0 on the wing, this becomes
- - A |
LA A ~o -jBx AT JjwtA
W (X,Y,0%,t) = Wg(¥) e €
IXI< ey  1Yigh (2.55)
where
~N ‘ -.CLV) ~NOOA A N -3
— PY(E,Y,2) JsA (A -
W3( =T 4 j Ji( v éwg ds (2.56)
&> Yo D2 .
Phyéically,,the above result indidates that, in the preésence of a

harmonically oscillating wing, a fluid particle traveling from far upstream

attains a sinusoidal downwash velocity of

gust). Since for the present eigensolution

complex ampliﬁude of the
chord, although' it varies with vy.

essentially the solution "to the Sears

Therefore,

varying amplitude (a convecting

‘bLP/BE =0 at the wing, the

~
sinusoidal gust Ws(y) is constant across the

one eigensolution 1is

problem: the interaction of a

convecting sinusoidal gust of constant amplitude with an airfoil. -

Using (2.55), we can rewrite the boundary condition at the wing in

terms of downwash as




| . _ ~ = -1 Do AL
W XE) _ (& +U %) [L'Ws.\‘l)-ﬂija S -}:o

A A

IXigcwy) Wisb =z =0t (2.5%)
Using Wu's method, the’' solution of (2.36) with ql—r 0 as r—»co is
determined. For 1later use, we present here the acceleration potential in

complex form.

N(: A . ’ . ~ .
Sears (3,¥) == U W3 ) D U‘) [) -"] (z.58a)
where _ | .
N A ) |
@Seargx ) - @' ¢ [ .-F5ears L‘S,\f)] ' ~(Z..>.8b)

>\ is defined in (2.47) and S(k) is the Sears function defined as

Stk) = 'J‘(k) + [300«)..;3”5i (k)] € ) o @s9)

S(k) is shown as a oomplex vector in Figure 2. 5. (2 58a) is a

generalization of Sear's or'iginal result (Sears (19111)) in that it gives
the pressure throughout the f‘low field. .

~In passing, we. note that a similar analysis yields the eigensolution
for the steady case as a flat plate at an angle of attack. This result can .
also be obtained from (2 58a) in the limit of steady flow (w— 0)

In addition to Qseﬂs, there are an infinite number of eigensolutions
whieh satisfy (2.36) but do not vanish at infinity. They can be found by

inspection as

— —_ . \ _E .
(P| ‘X) - l.\JZD,\\er,wc -KX ) + (win) '({'Z.GO)
'iL (i‘] NS ) (w'm)z.“i —2j w43 (2.61)
2 - 2p, }h“’ck (X) + X ] J A °© _ .
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The first member of this family, (2.60), consists of the pressure field of
an airfoil in heaving motion of unit amplitude and the pressure field
necessary to cancel out the resulting vertical acceleration at the airfoil
so that B*P/'b%_:o. The second eigensolution, (2.61), consists of the
pressure field of an airfoil in pitching motion of unit arplitude aﬁd the
pressure field necessary to cancel out the regulting vertical acceleration
. at the airfoil. The other eigensolutions involve oscillating airfoils with
chordwise bending. In each eigensolution, while the airfoil term vanisheé
at infinity,. the remaining terms do not. As we will see; in fhe present
theory to obtain the leading ‘three-~dimensional corrections, only SD_S&WS is

required. The other eigensolutions enter in at higher orders.

In the present mo;iel, sinée the- wing cho.rd c(y)/A~d(A-‘) .(see
Fisure$ 2.3a and 2.3b), the reduced frequeqcy b;sed on the chord
k(y) = (@/U)el(y)/A is also O(A~ 'Y. Hence, k—» 0 as A->eo. 'i‘heref‘orei, we
must expand all elements of the inner' solution for small k These contain

Theodorsen's function which we expand first.

Clkt ~ 1 +jk g (Yik/2) - Tk 4 00FLog®k)  (2-62)
L) ~ 1= [3=j by (vwr2) ] = jo A Loy A
+ O(A™* icjzﬂ) ’ (2.63)

where log ¥, = ¥ = .57721... is the Euler constant and V (y) =we(y)/U is

the reduced frequency based on the magnified semi chord c(y). The
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expansion in (2.63) displays the aspect ratio dependencies explicitly.

\

The expansion of LP.ZD for small k is obtained f'rom (2.46b) using
(2 63).

s AN - o
Yoo (X)~ LP2DI (XY + A 'onA q}zoz(x_)

A A, ,
+A ‘ LPZD,B (X) +O(A-; lvjzA) : (2.64) |
where o |
el | - -
W, X) = -U gt [7\] ~ (2.¢4Q)
quo,z@X) = YU« 5{_ [X] _- B (2.64b)

,. q‘JZD 3 k?): "J'VUZ {{[ﬂo‘j (\60)/2:)‘!':) %J A 4 %}. ) N

5[\]1— 5[x+—\/3~ "-:\} | (264<:)*

are all 0(4°%) quantities. We note that the A~ log A term in (2.611)
_ originates in the expansion of Theodorsen's f‘unetion as mentioned earlier.
g denotes the imaginary part ot‘ a complex quantity with respeot to i.

We will see shortly that there is no need to expand ‘.-Pbmrs for small
k. The' expansions.f‘or the other eigensolutions are rea_dily obtained from
the ‘above expansion f‘or' LP;D | Setting ® =0 and h,=1 in . (2.64) -

(2. 6110), we obtain the expansion for LPZD heave Which leads to

lE (X) ~ (w/A) 2 -A' WU 5/ [)]+om’%3 A) (2.65)

Similarly, setting o0 = 1 and h, = 0 in (2.6&) - (2.64c),  we obtain the
(‘ - .
expasion for. 4',20. pitch and, hence,
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P, %)~ (@) 82 -2 2U g LUt G (2]
+A™ dog A jW .U2 i [\] |
- Ut §dy (w2 L] G [N
2 g (-3¢ [T )} + ot lnta)

Similar expansions can be obtained for the remaining eigensolutions.

(2.66)

The inner expansion, thus, becomes

P (x)~LP°)‘»(X)+A'~Qo3A Wofzu) |
_ : e (2.67F)
A=) AN -2 y '
+ AT W (X)) + 0 (AP dgA)

Each element of this expanéioh contains all possible eigensolutions, i.e.,

L A oA

N AL A Ny ay
¥, x)= LP;D,,,\(x_)% Fr () ¥ sears (X)

o,n
(2.68)

~ o~
F R B £ 9. T ) -
. .('\__.-\,:2_)3)...

where the vas-.yet-unknown functions F.» fn, By1 eee ax.'e | tﬁe respective
weighting functions for the eigensolut_ions present in LP;),; + These will Be
determined 5y matching . the acceleration potential in ﬁhe field and the
downwash ét the wing. Withouf loss of generality, we assume that f‘“, ‘f‘n,
g1+ are 0(a°). 'Alsb,A

~ ¢

b

' R
where we have absorbed the terms multiplying gL- [A] in ':P Sears (2.58b),

Sears

(X) = gg.D\] o (2.69)

‘ ¢
into the unknown function F,(y). Hence, there is no need to expand iP Scars
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for small k since- lp

[ d ..'
Seurs is independent of:k

Outer Expansion of Inner Expansion
In the next section, for the purpose of matching, we will need the
outer expansion of the inner expansion, i.e., an expansion for (2.67) as
;-»eq of, equivalently, an expansion for A-> o with r = ?/A = 0(A°). Thisv
c;n be done uéing the folloﬁing expansions (written in.terms of the outer
fariables) | | | | | |
g [ﬂ (-C—) 28 -2 (%)?" R + (&) 230 o4

(Z.F0)

29 [ 3’ +Js’~—-c ] —‘Z— (£) 218 +om-3) (2.71)

 Using (2.70)'and (2.71), the outer expansion of (2.64a) - (2.64c) is

" found td‘be |

"-'(.

o | '..s}e
LP:.D\(’()”‘— '{[“MPU ( NS ':. |

c[revt ()] e @

r

S [ompUt(5)x] e 4 o) ]

-

~Co o a, o : |
' 3 i) 2.5 (<) . ] SN e
Tanz X ~m§[wv P (R) <] ==

_."— {-nPUZ.‘j'V (%)7‘“ :\ é‘_“:’-?e 4+ ‘Q(A‘a)}' (2.33)

B X)L $oamen® {[J&j (Wv/2) +5 L 0]+ b&‘}

u(%%) 552163 +
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V_Hrpuzjv {[«ch(‘l\wz) +J ]o&+ }( \

+°<A’33} | (2.74)

S Ze

¢
The outer expansion of L‘szrs is given by (2.70). The outer expansion of
the other eigensolutions are obtained from (2.65) and (2.66) using (2.70)

and (2.71). Thus,

~{o

= 2 o o -
PG~ & rane w g [—anppy 4 Bne L o)
~io L | (2.%5)
a5 (Y) ~ —:‘Z wzrz sSm 28 — ij Ur sne
cy sSne | -2
- ")
o m [ -2rpu? (A) + 0]
. . | - '(2.36)

] This complntés thé_inner expansion and its outer expénsion. ) The
resu;t of Jameé (}975) for LPC is basically correct, except it lacks the
‘ eigensolutions, it has not been expanded for k— 0 and has an extra factor
of A™ ' Van Holten (1975) does not give an expression for LPéo. In the
nexn section, the 1nner and outer éolutions for the acceleration potential

are matched.

2.2 Matching

As mentioned earlier, the inner and outer solutions are incomplete
Arepresentations of the full problem, each lacking some essential features.
The inner solution is incomplete since it lacks the boundary condition at
infinity which gives rise to eigensolutions, the amount‘of which are still

nnknown. The outer solution is also incomplete in that it lacks the
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' boundary conditions at the wing. As a result, the load distribution in the
outer solution is unknown (A p or the strength of the multipoles, i.e., 1, |
m, ay ) | |

The solution is completed (except fer determining the amount of some
of the eigensolutiens) by matching the inner and outer.solutions for the
acceleration potential. The emount of the remaining eigensolutions is
determined when the downwaeh at the wing is matched. Here, we employ the
aeymptoticfmatching_prihciple'of Van Dyke (1975). Eor the sake of brevity,

we employ the notation:
mT % m-term inner expansion

.

‘'n @ : n-term outér expansion

The asymptotic matching principle then beads" o
ML (ng) =n¢ (mI) - (239
We now summarize a step-by-step application of the matching principle\
to the Jpresent problem, The matching order is depicted schematically in .
Figure 2.6. We will use the omter expaneien (2.21);ithe inner expansion of
the outer expansion (2.36); the inner expansion (2.67) emd (2.68); andvlthe
outer' expaneion of the inner exmansien (2;76)-4 (2.76). The innem and
euter 'expansione must be matched'twith respect to the same - spatial

veriables.
1¢: '

LT) (X) N‘-ﬁ;-;o %-%j - dn . 'v(.z.?-as_

cwhere R =\ xZ ¥ (y-myZ 4+ 2% .
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1I(19):
No‘: ~ : ‘ . .
P (X)) ~—=4— At Swn € (2.79
d (%) 2 A L4CY) = : )
where * = Ar = A\x2Z 4+ 2%,
1I:
s ~ A e s
4) )y~ = $ )+ R Ysas X)
T s, = O A,
+ NP )+ 3 ) CEZ (X) +~~+  (2.80)
1¢(11)

LP» (X) ~ '— [-éirpuzoa + ,zmo A& pLES |

~ {0 A ~ (0 A
~ammade

+Jr(v)d} (x)+3(~/)‘{' (X) 4+~ (280

. (.O (e o ' ’
where ‘I’ - and ‘L‘ are given :I.n (2.75). and (2 76) Matching (2.79). and

(2.81), we obtain
L) = -amPu® (R) o +2TP(5) Fly) (2.82)

Thus, to leading order, the solution contains no eigensolutions, except
possibly U"SQWS . Section 1lift consists 'of‘ the two—dimens:.onal

- quasi-steady value plus a possible contribution from L\)

bcurs

_2.¢ :
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. % m1) . % A (z.84)
+-—— . . -
KT §b_ LS 1 , |
11(2¢): | _
DG~ Sally) e _ A% 3y Sin 26 (2.85
1I:
I S W e A -
) ~ Py XD+ Ry LPSW__S (X)  (2.86)
26 (11)

LP‘ (X) ~ amp i[ WPV + 2{\'€ Ff'k\,.)l(A) 5’—‘-’1;-

Matching (2.85) and (2.87), ve obtain

~

ACE —a’mDU (A)oa +:UTP( %) F vy - @8

Ay = —tpu* (5)? oa-i-T-P( YR (29

At this stage, section lift and moment have their two-dimensional

quasi-steady value plus possible contributions from LP&M <*

-b | ©(2.90)
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21(29):
Tt Sme Sin 20
o - ( AL Lo (2.9}
Bt~ gy § Al 252 % R = )
2I:° |
~C oAy, L A T
q’ (X-),”‘ Lpzol| (X) + F(Y) qjs,q,s"kx.)

-\ o o, ;.\' “'L AL | S '
A iojA W, () + A7 QP (X) (2.92)
L 2¢(21):

~C0 A

4 [WPU 0‘-—TPF \\/)] (,A) '~:>m 28 }

'-2.

n e
o

103;\ {LRWPU I +:zrrpx=2m](

""LO AL
+2rﬂ¥ (\/)‘P (x)-n—erPﬁz(‘/)LP (X) + - }
+A" Z‘Ff’i —2MP LW %\__%(W/l) ¥y *“}"“
o sng <\ sin@
PR} (§) 22 v are R () 28
~ .A NLQ :a . v
+arm pdiCy) ‘I—‘ LX) +5UH°33W)‘I) X) + } (2.93)

Matching (2.91) and (2.93), we obtain
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2= —anpU? (£) & + amp () Fiy) |
+ A“%A [:mPU’“.i‘V () x + 2P (§) Fa () |
+A;‘ {-anpu_’u’v {[103(\{.4?/1)- +J';T-{-A+']°‘ |
R (R RmY s
\:‘a@gs = T PO (S) 2 4&9(—}}” R @98 s
"(':1(7) = Jz W) = _~  ~ . =o | | . - (2-9é)*-
| ;3; _(,_) = 3, = S ERE)

'I'hus, we find that to O(A ) only the sears eigensolution ‘-pSCMS
présent in the solution ' Furthermore, while section moment remain; the -
same.as in the previous level of matching (see (2.89)), section 1lift is
f‘urther ref‘ined with two-dimensional unsteady inf‘ormation plus a possible
contribution t‘rom ‘Ps‘ms . We will see in the next section that the latter

. represents the three—dimensional unsteady correction.

3¢:
L|'3'°(x)~:'— 2 Sb :'(_q)_.plq_i_'?s?‘ bfi(_’llolr\
4’“(032 ‘b R boaxpE K
+\_ 3’> _jb F) dq} - (2.98) .
Zv?x?’az R - |

1s



21(3¢):

PR~ g 3 ALY PE S AT ™

+A%q(y) 2328 } @99
F

2I:
. ‘ ~ L‘ .VL‘ A

c§‘<’)~ Bap,, OC) + Fit) . &)

c

g
+A ‘103 A YLPZD 2 (X) + Fp (Y) LPSCMS (3{)}
\ -~ A ' ~C A '
+A [LPiD,.a (X) + F3 (V) ¥sears (X)} (2.100)
3»¢(2:I):"

_ "",Co L.N e\ =wn@
'+_ (x) m%[—lﬂf’u o(+2T\'PF(\/):)( —

2
SLweut - R (3 2522
3
4| -TPU% +TF"F.W)]KA) 5———-‘“:’38}
+A"'-onﬂ —-‘-—i\.—lnp U _)’V\‘X-'l-lf\'o FZ(\“](A) S\r\ev

~{mPu*ive + PR D] () 5‘;29}
+ A" ;‘-—p {—zrrpuzjviwojuﬂlz)»ejU,—_ +t] X
it ' :

pe he. '} ( sme
Z-Slf\ 29_‘,

| +TPLE W %Y_%Uwz +JZ]°‘*%}(%) -2
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+aMPF3Y) (F) 28 —wp Ry (F) 5_____"‘:7‘_9}
| o ' (2.101)

Matching (2.99) and (2.101), we find that section lift is given by (2.94)

and

MYy = TP Uz(—j—)zoa +‘rrP (%)Z FiCy)
w47 g A [ TPV (£)%0 + TR ($)* R
+A"‘ % —rrPUZJ y i [L)j (Tiv/2) +j—T% ] oL + ic_a}

(&) + e (5)° FJV_)} (zte)

Ty = - mPUT(R) 2 +re ()7 RW)
| - ‘ o (2-103)

In this lew)el of matching, we ‘find ‘that, while éectio’n' lift. _remains
the same as ixi',the pr&ious level, section moment is fux;thér r-efinéd with
two-dimensional unsteady information .plus a '.'possible eontribution from
' ‘-P;m's . We will see, in the next sect;ion, that the_ latter represent the
three-dimensionél gnsteady correction. At this level, we also note the
appearance of the second moment of section 1lift, namely q(y), which has its

two-dimensional quasi-steady value, namely -TPU 3 (C/A) 3« -

, (R
The next level of matching (m = n = 3) involves '-P4 - which is the
solution of the Poisson equation in (2.37). The outer expansion of LP4 has
the behavior r log r sin@ y» rsin® and sin 26 which will mateh with

0L : . _
higher~order terms of ‘-}J , (2.30). Further, at this level, for the first
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time, the -eigensolution LP‘LV , which also has the behavior r sin® in the
. outer regioh, may enter into ﬁhe'solution. However, for.reasons we already
mentioned, we will not carry out the analysis to higher orders. We will
see in the next section that the present aﬁalysis through (m = 3, n = 2)
level contains the leading three—dimensional correction.
We can now construct a composite solution, namely one which  is

uniformly valid (to O(A‘z)) throughout the flow field. Such a solution is

- given by

T A

| “(2.104)
' ¢ o o( -
S . ’ _ ’ ¢
where LP‘: me. is the common solution. To O(A 7'), LP is given by (2.100)
which, using (2.64) - (2.6l4c), may be written asi'
¢

Soa o mO oA - R ~C oA
P = B, ) +LRm+A"49A Faty) + A B ) P LX)
(2.105)

without alte'ring its accuracy. We will see in the next section that using

(2.105) instead of (2.100) will facilitate downwa'sh calculation greatly.

To O(£ %), . _ |
~Q N i -a Sb ‘5 ('H cj (2
W(X) = =— = 2 .106)
§oky = 0%y

B (2.10%)
= ‘ 0 Sin @ = _L__
207P ) AP L x4 22
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where

~

9, (y) = —2m PD? (%) o (z-109)

is the two-dimensional quasi-steady section lift. Here, quoonsists of a
spanwise distribution of three-dimensional dipoles of strength Q (y) and
LPLO is a two-dimensional dipole of strength ﬂ (y). ‘4JL° is  chosen in
sucn a way that it is equal to lP in the inner_region to O(A-z).end it is
equal to- qJ‘ in the outer region to,O(EZ ). ' |

Clearly, tne problem is not compiete yet since »the' solution'-as_ it
standS' is nonunique due to tne_ presenceA of multiples of (U;‘urs,as
indicated by the as-yet-unknown weighting functions F, (y), Fz(y) and F (y).
~ In the next section, we will determine E y F; and F3 -and, .thus,‘ complete

; the solution to O(A )

To achieve uniqueness for the solution, we determine the downwash - by .;-

' .integrating the composite pressure field 41 from far upstream:to some f”

point on the wing.

The linearized Euler equation in the z-direction is given by

| -2 2\ w(s - '___ . ‘ 2.109
_(M +sz) Wi, b = & LP_ ,(x,t) ‘ (, )
.Inverting-this; we obtain the downwash;
. X R . .
w(xX)=U" % '-P'c(f,‘/,'z) e ds - (z.110)

~od

where the linearized path of integration is the straight line, parallel to
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the x-axis, from far upstream to the point in question. For points on the

wing, the path is defined as

£ = -0 = X Ixi € cey)rA
V = fixed iyl <b (Z.111)
2 =0+t

which passes over (or under) the 1leading edge where one might expect
difficulty due to the singular behavior of pressure and downwash there. An

. c :
examination of Y /9% near the leading edge reveals that

- L : | )
5—-2— ~ B‘P & (5 +¢) 3’7‘] S —wy)  (zaz)

which is not _integrabl"é'.

First, We calculate the downwash due to LP , say w , which is obtained
from (2.110), after replacing '+' by LP and introducing the inner
variables. The di‘fficvulty. at the leading edge can bez resol ved by
considering the general case of z 4 0. After bex.pressing the integral in
terms of complex \Vraria‘bles,‘ an integration by parts can be performed. This
reduces the order of the~ leading~edge singularity to =-1/2 which is
integrable. Then, we can take lim 2’—-704._' Since the downwash field is an
even function of 2, it suffices to consider lim §—>0+ only.

Introducing the complex variable § = ; + 1 'E and the - complex

acceleration potentlal for L\J , namely £ (K ,y,t), (2 39), into (2 110), we

obtain, for z #0,




~C A ~( ’5('&-? Sl oA
W(X)= L{ g—mﬁu,v)é T Jx.lj
Sotid O | .

(2.114)

A A A :
where 3, =35 +1z., Integrating by _ parts and noting that

t‘ (-°° +1z ' y) = 0 (because both f 20 and =F | (see beiow) vanish

as r-a»w), we obt:ain

~L

C.d_f)

. . A
—m+¢.‘&

where f‘" has a Squaré-root singularity at the leading edge which is

ihtegrable. Henee, we can take lim z-a-0+-, resulting in

| Wldm‘uoﬂ - U 9 H (X+»0+ 7)] @ ns)
S Q . R P S S
-+ %BT\- _jmgc [-F.L(g +c’0-i-)\/):].e‘w)(g | X)A ds

*\)?\g cy)  IYigh

The above proeedure is depicted schematieally in Figure 2.7.
To O(A ), £t oonsists of fzo and -'Fs , Where ={=5 cars 13 the complex
< A
f‘ox'm of '-Ps <° ¥S<m_$ is obtained from (2.58a) af;er removing the factor
, UW(y)S(k) which is absorbed into the function " F,(y). As expect_ed; _
substituting f‘;o, (2.46a), in '_(2.116) yields the prescribed downwash at the

Wing, i-eo,'
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~ -

W, (X,¥,04) = Wy (X,¥)  IRigey) MYigb  (2.1%)

In arriving at this result we have made use of some of the analytic
A ~ A .
properties of the functions [( ¥ - ¢)/($ + c)]"z and [S%- ¢® 12 which
" are listed in Table 2.1 below.  Each of the functions has a branch cut
from f: -c to "f = ¢ defined by
. A

ogarg (3 4+c)<am ‘

| | (2.u8)
A

ogarg (3-c) <L2amw

Further, wé have made use of the integrals developed in part 2 of Appendix -

A,

X
n
1)
(>
|
o
|
h

s
AN
[

n
(w
[
0

4
\V
N
>
fl
o)

-
| ] | v
|

~ "

% 2

7———] | Xt_ ¢z
X4+ <

Table 2.1. Some of the analytic propertles of [\‘s - Q)/('s fc)] bz,
and {gz- 7-_]/2'
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The downwgsh at the wing due to =Fs¢m ’ Y Sears’ is obtained from
(2.58a) and (2.116), using some of the above mentioned integrals and Table
2.1, '

~ n— ~Jja xA! 2), . .
Wsws %, Y, 0+) =?in k e [H7 W+ H:z)(k)] |

(2.119)

Clearly, the dowmwash at the wing due to féeafs is that in (2.57).

Putting the above results for W‘: in (2.110), for points on the wing,
and setting the computed downwash equal to the prescribed value wo ) We
obtain the following equation for F|,F and F |

¢, a- ~

+ JET—'- k 'e [Fcy)+ A-ugj A th‘/)+A \-‘;(V)][H‘ 2y rindoo]

=x |
4 L [w Xy, z) - w° kx v, E)] - (2:120)
E~ero+- , _

yx\_écu)_/ A LYIgh

where
SBX o N N BRI 1C S z.zn)
e W (x,\l,z)----T-J S —S%‘P (s Yz)e ds | (2.
: —o0 : _
z wx\woi : _ A " 2 | Jw(§.—><)dl b(z 22)
(Y =25 ,a%LP (Eyz)e 3 e
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are the downwash velocities due to the outer and common solutions
respectively. They. are grouped together, in (2.120), because, as we will
see below, while each of them is singular as z—~>0, their -difference is
finite. Further, in ‘(2.120), we. note that the downwash due to qJ 2D
identically cancels out with the presaribed- value at the wing. . This
demonstrates the advantage of assigning all of the wing boundary condition
wo‘ to the lowest order inner solution LP; which makes ‘-P" ZD (see
(2.35)) and of replacing the two-term expansion of LUZD in LP by UJ 20
- (see(2.105)).

We now consider the balance of the two remaining terms in (2.120).
After -cancellir;g out t.he common Sindsoidai dependence on x, we conclude
that, since the first term is independent of x, the. secorid‘ term must be
_ -inc'iepéndent .,of x too. Hence, we xieed'to evaluaté the sécond .term for one
value of x only. It is cénveniept to._éﬁdosé x =0, T(o,y,z') is then the
downwésh. du’e to ‘-Po near vthe loaded line which corisists of a spanwise _
distribution of three-dimensional dipoles of strength 1 o(y) (see (2 106)). |
Similarly, 71 (0,y,2) is the downwash due to 4’ near the twp-dimens:.onal
dipole of strength lo(y). Clearly, both downwash velocities are singular
for X = 0 and z = 0. Hence, we seek an expansion for each, for x=0 and
small positive z'.. In each case, ‘lim‘ x‘—>o must be carried out b'ef‘or_e lim
z-> 6, otherwise infinite downwash velocities will  be encpuntere&.
Physically, this can be seen by considering the downwash, as a concentratefl
vortex, sé.y at ‘the origin, is approached -along the z- or alternately the
x-axes. |

In order to be consistent, first we iexpand the Hankel functions in

(2.120) for A->co (or k—>0). Using the definition of Hankel function of
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the second kind (see (2.43)) and the asymptotic expansions for Bessel
functions of the first and second kind of order zero and one fob small

arguments, it can be shown that
<1 .
{—J—k[n (k) +] H‘Z’(k)]} ~ L4 0(A oy A)  (223)

Using this result, (2.120) becomes

R+ A g A Fpy) 4 A iy~ U dim

Z2—>0 +

[W°y,2) - WG,z [ 1+o Laj AY} (z.124)

To determine F , F, and F,, it only remains to determine lim [W (O,y,z) -
' 2 3 20+

WOt(O,y,z)).

Calculation of HO(Q,x,z.t) as z—> 0+
Substituting qjc, (2.106), in (2.121) with x = 0 and interchanging the

ordér of integration, we obtain
~Ic. \
(o, %) = e () i =2 j.
W eY2) = 200 ) " Ve e +z‘
(2.125)
We recognize the expression in- the braces as the three-dimensional,
nonplanar (z # 0) unsteady kernel function of liftingésurface theory in

incompressible flow for x, = 0. The general form of the kernel function is

_quX

K3D (XO,YO,Z) —-
| Qz:zc)

with the corresponding integral equation of unsteady llfting-surface theory

given by
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W, (x,Y o+ 4 AU ﬂ AP (5,9) Q\m _K3D'_(X§,Yo',%)d§a(q .
(2.12%)
where .
Xe = X=5
(2.128)
\/o' = \/"Y\

To evaluate the kernel function of (2.125), we start with the general
form in (2.126). K3D can be evaluated in terms of special functions. For
example, SeeIWidnail (1964) for z # 0 and Watkins, Runyan and Woolston
(1955) for z = Q. The lﬁtter contéins many usefﬁl integrals and relations
for the evaluation of the kernel functioﬂ._ The full nonplanar K:?pis given

by .- —
_ed T ;<3D (e, ¥0,2) = 22 § K@)+ [T, @) -

i K, (mn)_’-jfg__ [1,@n) -

z I erd Xo jm)
- “”r"]*jwr' "3’} - ii‘-‘.’— Ae 4\
\:dr' r-|3 ’ r! S 'A?___'_’-‘_r‘z_
JwXe T
Kq €
2 + { 42
Jr + Xo } ' 5 \[)14_\12
. rye | , IS X, .
JE z é)m e N (2]“‘2_’_)(2'))(0 e ) (Z[Z_Q)
2 Va2 +x.2 ...Y'\z (xZ +r2)¥2 - |

WHere I,» K,and L are modified Bessel functio'ns of the first and second
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kind of order n and modified Struve function.of order n respectively and

= \!\/‘,'Z + =% - (z.i30)

For x, = 0, (2.129) reduces to

Kap (0,%,2) = % i K, @) +i LT (&) —L, @M]—j}

- 52‘22{K ‘(Gr)—' Iz (mr\—L- &y )}\."5\’\ _3
nz L2 Iz L2 20hn 2 STy == E‘JF-} (2.131)
In order'to understand the nature of the singularities vinvolved in
(2.125), we note that, frcm"the ivortexh viewpoint, the outer solution
- consists of a loaded line which is a harmonically oscillating concentrated
.vortex with the accompanying wake of. shed and trailing vorticity. As in
the steady flow case, we expect the contribution of the: trailing vorticity:
vto the downwash at - the loaded line (x = 0, z—»040 to be finite.a This
'.contribution can be. expressedm as an. integral with a second ) order
singularity in the span direction (or after an integration by parts,'a'
g‘Cauchy singularity). The contribution of the straight loaded line isi
clearly zero. . The‘ contribution of.the shed vorticity is logarithmically
: infinite; an ideaifamiliar from lifting surface theory,‘ namely' that the
downwash at the'"edge of a vortex sheet,‘containing vorticity parallel to.
the edge and of finite strength, contains a}logarithmic:singularity.
Formally;.we substitute (2.131) into (2.125) and, by-inspection, group:
the terms in the kernel so as to identify-the above mentionedl-logarithmic.

term and the classical second order singularity of wing theory. Let,

\7\’10(0,\/,2) = W:'(OI\I/ %) + \NM; (01712)
o : - 3 (2.132)

‘~© ~. O S
+Wz (o,y,2) + W4 (0,9, )
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where b )
~°k ) .= i . ”~ —‘ ___“-'- . LB az_ . '
W, (o,Y 2) Aty j‘ odn) ‘Qo {n) [ ) = + ) = } (2.i33)
~ C ‘ b '
Wz (o,Y, E.) =m ;]-b (')) [ K (uur,) - ______ Kz (mr‘)}
(2.134)
~NO | b ~ - — .
- —_— ) w ~ - ,
.‘W’_J, (Q,‘I, Z) = “'TPU —‘]; df) go(']) J 7 {q [I.‘ \w\'.) --—L‘ (® r])}
-2_2Z ’ .
' [Iz(ar.)-Lz@r\‘\-X} (2.i35)
~0 . —_3 z
| , = — w_z (2.136)
4 0 2) 4WPUJJ70(7)[ e ] | -

W'o, (2.133), contains the logarithmic term which can be isolated using
the following procedure familiar from slendex_'-body theory '('s.ee, Y-
Ashley and Landahl (1965), pp. 102-103). We note that the logarithmic term

arises from the term (-j&/r,) in the kernel of the integral in (2.133).

Un) Yc

~NO -
/ olv
\Nl (O;Y/%) 4[TPU + 21]3/2 ']
b o2
_ =i R .
= 4—-WFU" { Qo\\/) Jb [\/°2+ 21:] s c{\r\

(4

b - o
-~ ~ o \’ -
' S = 4o ( e ai]] (2.137)
+ :Sb[{ ’\) \”] e 2] L

~a
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It can be shown that the last term here can be approximated as

b oo L Y, 2
:I; [A'Qo('l) -4 (‘/)] [v.2 +az]3,z "l"]
=jb Z,('])—-Fo-(‘ﬁ
~b ‘3‘ﬂ|

(z.i38)

dv\ + O(%Zjoj 2)

where the last integral has a removable singularity at y = q .The first'

term on the right hand side of (2 137) can be integrated and expanded for
small z, to obtain

5 =-z;—-zia /by
J [Y. +2] 2 ‘j (2.129)

2
+Jloj 4 [l—(Y/b)Z] +o (% Jloj 2)
'_‘Combihing‘ the ‘above results, we obtain an expansion f‘or W, f‘or ‘small z.

w (o,\,,%) - Z)?G p(y,{ 2.2 ﬂcj (2/b)+ 4og 4[1-(%)1]}

: Jw_‘- (’(q) 4,
4rrpu 9=l

(Y)"?"l-+.>o<z-‘-i“3;§> | (z.i40)

W, (2.134), contains the classical second order span singularity of"
. wing theory. 'First.we break down the integral ihto three parts.’
‘ . ‘H—é ‘

wher.'e_é > 0 denotes a small neighborhood of the singularity at y-'= ’] . In

the integral containing the singularity, we introduce  the expansions

K, (2) ~ 2"—;—0(2-29352-_) 2-—?0' | (z.142)
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-2 ) .
K,@)~2Z + 0(2%lgz) z=>o (z.143)
~ n .‘ Py ’ ‘ . 7 N/, _
L~ LW+ -4 )+ & (-n% & ) + .- (2.144)
and the change of variables
S=1-Y
Theti, we integrate térm by tern_x and take lim z —»- 0+, to obtainv

-2 4, ) +oce) | s (z-145)

Clearly, the first term here is the 'conﬁribution' of the first terhA in
(2.1&&). The second term of (2.143) makes no contribution ~and the
contribution of the highef-ordér.terms 1s 0(€) which vanishes as €->0. |
As z-»0+and €0, we'r-ecognize (2.1145) together with the remaining
-tw.o no:is’ingular iﬁte_gfals in (2.141) as the definit_ion of the principle
valﬁe of an integral with a second .order singularity givgn, e. g;; by
Mangler (1951), namely -
b - y-€ R, e
e Ol I =R R L
4 -z e>o L 2 ']_) Vte Y-1)

—(2/€) F(V)} (z-146)

In (2.1311)_, since the obntribution‘ of the part of the kernel
containing K, to the integral is 0(z7'), .as z —» 0+, it vanishes 4everywhere-
except .riearf the'singularity, where it together' with the rest of the kernel
gives rise " to (2.145). Therefore, we may drop the part of the kernel

containing X, and put an x on the integral sign to signif‘y the principle

2
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.véluevdefined in (2.146). q:, then, becomes
W, (o, = — d
0Y,2) WU} i AR q+o<z )
(2.14%)
where .
Bo= By - (2.148)

and we have written the integrand so as to. display the (y - 1 Tz
singularity explicit;y. | _

Next, wefcohsider G;, def ined. in (2.135) . First, we break down the
integrai into _three' parts as “in- (2.141). In'the,iﬁtegral containing
N=Y ; we.e%pand the iﬁtegrand using the following. asymptotic expansibns

for small arguments 5 
oI, (2) — L, (2) ~ 'JZ' z + o(z2) - | -L_z'._\4<a'-)
I,@ =L,(@) ~ Lz*+0@E?) ' (2.150)

tp obtain the appéoximation
Y+ €

f 0"1 &V)) JEe® +oech sy

It is seen that the contribution of the part of the kernel qontaining

I, - L, to the integral is 0(22) everywheré and thus vanishes as z > 0+,

On the other hand, the contribution of the rest of the kernmel is 0(1) and,

hence, they are retained. w3 then becomes
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A

~ O i Qo S
W, (0,VY,2) = — T.(M) =L, d -
3 ameu ¢, (vq)ZJZ/‘[ 4 = L] 'I(*O(%))

2.182

This integral is nonsingular. Here, we have written it in a form to be

~0
combined with W,, (2.147), later.

ﬁ:, defined in (2.136), is given by

Y |

~o - | - =32 ‘0 (q) :

w 0,9, — (=2 yWT - (2.153
< ) ) A )

This integral appears in slender body theory where it 1is shown to be

0(log z) as z -0 (see,e.g.,' Ashley and Landahl (1965), pp. 102-103).
Hence, . - |

‘\7\12 Lo,¥, 2) ~ 0 (2%4og 2)  (z.i54)

Combining the above results, we-obtain__thé following expansion for
W (0,y,z) as z—»0+.
' b

. A~N0 | \ X [ (q) -—
W (o,Y,2) ~ — 'IT \v 1)
o 4rrPU (- '])7' ( “) e

G jﬁ&(ﬂf—(otw_

Zl IV R R | i
- 2= -2 -' A (i"/b «06‘4 \-—(‘//b)2 }
4rp U { <9 )+ [ | ]
+ 02l 7) Y1 < b | (z.|ss.¢)
where

T =4 { K oI ~Lu)} sy
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The unsteady induced downwash of James (1975) is élosely. related to

o .
w°. In the present notation, it is given by

b
" L '! 5 d (2.156)
.WI( )Y, 0+) 4_1TPU_§: o) 1T( lY=n1) 1 |

‘where . . :
au (ﬂ) ‘IT(/“)—J)A | - (z.183)

Thus, ﬁ' is just the first t‘.erm of the three;dimnsi.onal unstea..d"y_ kernéi
funetion Kap ftm X, = 0 v(see (2.131)). James does not show that.the
integra.'l in (2.156)_15 a prinéiple ,vg.lue integral as indicatgd. In t"ave‘t,
it is not. This integral.contains a nonremovable iogarifhmic singularity .
discussed in the above" (arising from (-J)*) term in TT )" and is, hence,

infin.ite. .

Cglggla;ign of ﬂc‘fg,z,z,“' as. 'z—>Q+ _
Substituting ™ ,(2.107), in (2.122), with x = 0, and interchanging

. the order of integration, we obtain

. . ~ o . .)
~ ot : ) . 2 .
oW to,‘l,'z):—‘— 0, (y) {9— 5 —— ¢ dk} z isa)'
S Py T L N+t
" We recognize the expression in the braces as the two-dimensional, nonplanar
(z # 0) unsteady kernel function of airfoil theory in incompressible flow

with :Eo = 0.. The general form of the kernel function is

, Xo e .
.J u.X fa 2 JWN ('

-0
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with the corresponding integral equation of unsteady airfoil theory given
by ‘
TE

S Apes) bm Koo e, z)dE

Z2>0+

W.(Xx,04) =

JWPU
(z-160)

To evaluate the kernmel function of (2.158), we start with the general

form of the kernel in (2.159). Using partial fractions, K,pmay be written

as
- o . : ‘ X° Ve xo jmx
i JBA '
‘ "wao [ € € .
> I S
Kzp (X0 2) = - Rz Ld wzE T a-)z :
(2.161)
In the first integral, we make the substitution
s=a (h+yz) ] (2162)
and, in the second,
s = R (A-)z) | (z.163)
to oBtain - ;
w(xe'*'jz-)
' s iy wz (. js
KZD kx”z)—-{ﬂ 3z ie . s e ‘
| )i Z
o WXe=)E) : A
-WZ -t \s _ : ,
— e j s'e olsj (2.164)
-co—")c-u‘?:A |

‘T_o evaluate these integrals, we make a further substitution

t=3js o | (2.165)
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resulting in.

. G(—E#JX.’)
P =)@ Xe o7 -1t
J ) _
L _T(Btie)
-2 -
e J et _At} | (2-166)
;;(fgéjoa) o ' o

We evaluate théSe i'ntegrals by contour integration. For reasons. mentioned
earlier, we consider z > 0. .x is arbitrary. ‘ _ o
The contours for the evaluation of the first integral in (2. 166),' say

-1,, for x, > 0, 5:6 = 0 and x, < 0, are shown in Figux!e 2.8_. In gach case,

the integrals along C > 'Czand Cs,.in the indicated directions, are denoted
by I, , I, and 13' respectively. C3 consists of a circular ard of "rad:!.us R-

- centered at the origAin.' Aceqrd_ing to the residue the’ofem- '

I, -1, + 15 =0 S (=63
It can be shown that, as R-»e ; I vanishes, resui'ting' in

I, = Ii"z = Etl (ﬁ;,) o o | (2. iée) _

whére N _ o

G =W (=2 4+ %) . (2.i69)
.and Ei is the complex exponential integral’definéd as

Ei () = f et dt - (2070)

e _ o _

_with a branch cut along the positive real axis.
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The contours for the evaluation of the second integral in (2.166), say
'J|, for x, > 0,.x_° = 0 and x, < 0 are shown ;n Figure 2.9. The 1integrals
C; and C,, in ﬁhe indicated directions, are denoted by J,,

A

J,, J, and J, respectively. 'C3 and C, are circular arcs of radius R and @

along C,, C,,

correspondingly. Again, J; vanishes as R—oo. In the following, we apply
the residue theorem to each of the contours.
1) %550
J,— 32+ J3 = 2m) Res (t=0) (zi#)

. The residue of the simple pole at the origin is unity. Hence,

| (2.172)
= 2mj & Bl (%)
where
42.: B (2 +) %) | (z.123)
ii) x4 =0 -
3, ~3, + 33 =34 = 2TJ Res (£=0) (2.134)

J4 is one half the residue of the simple pole at the origin, as P—>0.
Hence, |

' - (z129)
Ty + BU(%F,)

I

iii) x <0
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3, ~Jz+ 33 =0
Hence,

3= SZ. .=-ELY (q'z) A (2.17¢6)

The three cases in the above can be coinbined to obtain, for all x, ,

- (2.!#7-) |

3, = E¢ (ﬁ-z) +1TJ [H—
\x \
" where the generalized‘i function'in the brackets is defined as
| Xo Yo D
—-—-Xof =\ 0 Xe=o . o (z.i%8)
IXol T '
- -\ Xg <.°:_‘.

Substituting I,, (2 168), and 3 (2. 177), in (2. 166) and earrying out

the indicated differentiation, we - obtain

Kap (Xe, 2) = e J, J_‘E ic’s" Ei (%)
. | . Xo +EZ . ‘. . -
| (2-129)

+e [EL(%_} +1) U“‘—-)]}

' 'i'his is the .two-dimensional, nonplanar unsteady kernel f‘unction of airfoi-l ..
' theory. The firet term o't‘. ('2.179) is the steady two-dimens_ional ker'nel.
.f‘unctio.n. | | | _ |

To find the limiting form of the kernel function indicated in (2 158),
we use the f‘ollowing expansions. (2n-+1)

= 3 . |
ST '-J°) = E‘( “R)FMF Zz (2'\+t)‘. (2n+1) S >

(2.180)



73

< .

El(~ SR) =X 4+ 003 SR -+ Z (‘SR)N/(n‘, n) SK o |
Lo (z.v21)

where Sg is the real part of the complex argument S’ . The first expansion
is found in Erdélyi (1953) and the second in Grdbner and Hofreiter (1961).

It is seen from (2.180) that Ei(q,), whose argument has a positive

real part (z > 0), 1is discontinuous for x,= 0. However, in (2.179),

E:I.(qz)' and the generalized f'unction wi(1 + x,/1x01), which is als§

discontinuous for x, = 0, together form a .con'tinuous function, which i..bs

what we expect on ph'y'sical grounds. .The liniiting form of K ;D'as Xg>0

: (actually, x~>0:t) is obtained from (2.179) and (2 180) as

KZD (o,2) = _g’- ge‘ai Ec_'(—GzH- e [EL (—wzs

(2n+1)

(& 2) _ ] ’ .
- 2.i82
+IT‘) + z Z (2n+1) ! (2n+\) ( )

‘As z >0+, using (2.181), we obtain |
. . . - | -n- ‘ »— ) '. '.
Kop (02) ~ j@ [Y+J‘Z‘ ‘+--on v(wz)]+0(z) - (z ;sa)

"In' order to check the above two-dimensional analysis, this result was also
obtained from a-vortex model.
Substituting (2.183) into (2. 158), we obtain the following expansion '

for w (O,y,z) as z—> 0+,

Liw [3+jT -5-»4_6) (@z) | + o@)
(2-184)

Physically, this represents the self-induced downwash just above (or below)

’\'\\foc(c Y, )
I o Y

a harmbnically-oscilléting two-dimensional presstire' doublet, or a




harmonicallj}-oscillating two-dimensionél vortgi with the accompanying wake
of shed vorticity. From the 1latter viewpoint, it is evident that
;°£(d,y,z) is entirély due to the unsteady wake and, hence, vanishes in the
limit of steady flow, as seen from (2.184). The logarithmic term in z in
gOE(O,y,z) is due to the previously mentioned pﬁénomena of approaching the
édge_v of the shéd vortex sheet.‘ .As expected, this singularity‘ is
identically equal. to ‘that in W (0,¥,2). |
It follows fromi(2.155a) and (2.184) that, as 2z =0+, [ﬁo(o,y,;) -
.ﬁ°£(0,y;z)] is-a finite quantity given by ”

| “g‘m [ W-O(OJY; Z‘) - Qo‘. (O)\Ilz)] ‘

Z~>o+

b L
\ 4('1) TT(RIY=n1{) dn.
4ITPU§ b (".'_“.Z_ | (N YY\” ']

b ¥ 7 ¢ |
f =4 y) dy

o (2.185
¥4 _‘5“'1" )
+2Jw (Y){l—Y J 9«3)‘0' -
___.ﬂc34[\-(\//b) ]}} NO(A')'
where _ » , .
My =".c"ul,, | N . (z.ige)

is the reauced freQueﬁcy basea on the_éemi span 1engtﬁ b-ahd TTfiBly‘-iql )
is givenrby (2.155b). The order of magnitude of (2.185) follows " directly
from the fact that 1 o(¥) ~ o(a” ') | |

Now, we. return to (2. 12&) and, using ‘the above results, determine F,,

Fz and . FB..- Examining the order of magnitude of the terms in((2.12h) and’
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recalling that the unknown weighting functions are 0(a%) (by construction),

we conclude that

F(Y) =o (z.18%)
Fz (¥) =0 (z.188)
B = UA dm [ Wo@y2)-Wr0yz)  (2189)

Z=> 0+

We have‘thus determined the amount of the eigensolutions present in the
solution and, hence, completed tﬁe MAE analysis of the unstéady
* lifting-line theory to O(K 2).
In summary, we note that, té O(A_z), the pressure field "is given by
(2.104) - (2.107) and 'section 1lift énd moment are givén'py (2.94) and
(2.102) reSpectively, with F, ,'F and F3'given by (2.187) - (2.189).
Further, we now list the results of the matching in symbolic form and

indicate the order of magnitude and the type of each term.

.:é’(\/);.»\-' O(A™) o A(Z}I9O‘)

'EW) ~ 0(A™) |
. -—_— (z.1ay

m) ~ 0(A"2)

Q) ~ 0(A™"), o(a2 lgA), O(A®) , OwA™?)

my) ~ O(A"Z) (z-192)
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0 ) ~ oA™Y, ﬁoi A), O(A™%) ,0(A"2)

M) & 0(AT%), O(A7 deg A), oA™3), O(A~3)

g (y) ~ O(A—3) (2.93)
where

(): denotes two-dimensional quasi-steady information,

): denotes two-dimensional unsteady information and .

|~~~

I

~~

): denotes three-dimensional- unsteady infoi'mation.

It is thus ‘seAen that, in the M,Al‘i"analysis of. the problem, section -lif‘t,‘ |
moment,... as well. as the pressure _f‘ield first take on their
two-dimensional quasi-stéady va'],ue’s. As ‘the aﬁélysis is carried. out ¢to
" higher  orders, thef " are tin‘creasingly 'ref"i‘.ned with - t@ao—- and

" three-dimensional unsteady informétiqn'. :
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CHAPTER III
CALCULATION OF AIRLOADS USING UNSTEADY

LIFTING-LINE THEORY

3.1 _Introduction

Vln this chapter, we extend, improve and apply the unsteady
'lifting-line theory of Chapter IT to a number of oscillating wing problems.
First, we’ identify an unsteady induoed downwash, analogous to that in
'4steady_lifting—line theory. -The importance of the induoed downwash lies in
“the fact"thaﬁ,' in ' the present theory, it represents all of the
three-dimensional unsteady effects. - Then, an improvement to.the asymptotic
results is presented which increases the accuraey and extends the range of -
validity of the theory. - |

As’ mentioned earlier, presently there are almost no reliable numerical

'results available for’unsteady lifting-line theories.' Here, for comparison
we present the unsteady'induced downwash of.Reissner's approximate unsteady
lifting-surface theory (Reissner (19M7)) which,.although is based on an ad
hoc analysis, has good experimentalvconfirmation. Computational schemes
for the calculation of the unsteady induced downwash for both theories are
presented in related appendices. Numerical examples show.good agreement
hetween the two theories for a range of values of k,.

Inorder to assess the utility of the present theory, we then use it
to calculate sectional and total lift and moment coefficients for a family
of,uing planforms in pitch and heave. The calculations'are carried out for
a range of reduced frequencies and for several aspect ratios. hhenever :

posSible, ‘the results are correlated  with numerical 'lif‘ting-surface
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theories and Reissner's theory. The overall agreement is found to be good.

3.2 _Unsteadv Induced Downwash

In order fo determine the ﬁnsteady induced downwash of the present
' unstead& lifting-line theory, we return to (2.120) which states that the
computed downwash from integration of the composite pressure field is equal
to‘the prescribed downwash at the wing. ‘The functions ﬁ ,‘Fz_ and F3 are
given in (é.187) - (2.189). fhe first term on the right hand side of
_(2;120) is the downwash at the wing due to the two-dimensional sblution
4120 which is exactly.eQual.to ﬁhe prescribed downwash and, hence, capcels
out with the left hand side (the prescribed value).

The third term on the right hand side of (2.120) is the downwash at
the wihg due to the outer‘soiution minus the common solution. The second
termjis'the downwish-at the wing due to QJ;e“,s. Physically, Qlicq;s
represents the .hodification ofv the- two-dimensional part of the inner
§6lgtion-which ariées in response to the three-dimensional ef fects and
cancels them out as seen iﬂ this equation. Therefofe,Athe last term on the
right hand side.is Just phe unsteady induced downwash. ‘ | .

According to ﬁhe discuSsion following (2.120), the balancé of the last
two»terms on the right hand side gf-';his equation leads us to the
conclusion that the last term, apért from the common sinusoidal dependence
on x, is ipdependént of i. Hence, in the last term, x can be set equal :to
any constant value on the wing (i.e., 1x\ £ ¢/A). For convenience, again
we choose x = 0. ' This means that the upper 1limit of the integrals. iﬁ'
(2.121) and (2.122) are set equal to zero. ' .

The induced downwash is then given by
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' -_)wx Jwt ”
Wr iy, 1) = W3W) e e TR

where ' - ) 3.1)

~No A ~o. ~NOL -\
Wa(y) = dm Wo,Y,z)-W y,z)]|~ O~ (3.2)
3 24 7
Zz->0+
is the complex amplitude of the induced downwash ‘given by (2.185). in
(3.1), since x ~ 04~ ), to be consistent, we must expand the exponential
factor in x for large aspect ratio. This can be done, af'ter normalizing b 4
vwith the root semi chord co/A, to obtain
CSEX Loy (3.3)
It follows from (3.1) - (3.3) that, to leading order, for the present
low-frequency theory the unsteady induced downwash; like its steady
‘counterpart, s a constant across the chord and of oti Yy, Wy is gi#en by

o '(O't ’ - - _
S WNLOYE) = W) e.Jl. S XI& ay)/A gD (2.4)

P Int . : .

It follows from the above discussion -and those following (2.122),
(2.131) and (2.184) that.the.unSteady induced downwash for a straight wing,
piaced in a uniform stream normal to the epan, has the'following physical
interpretation. ' |

Again, we adopt the vortex viewpoint for its physical perspicuity.
According to (3.&) and (3.2), to vleading order,»the unsteady induced.

downwash at a spanwise station Q consists of the downwash due to vortex
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system @ minus that due to vortex syStem @ ’ 'as shoﬁn in Figure 3.1 .'
Vortex system @ is the outer solution consisting of a harbohically
oscillating loaded line (vortex) of strength f:(y) with its accompanying
wake of shed and trailing vorticity (or, équivalently, a spanwise
distributionl;of three-dimensional pressure doublets of strengthli;(y)).
Vortex sy"stem @ is the common solution which is a harmonically
oscillating two-dimensional vortex of strength ﬁ(y)_ (of, equivalently, a
two-dimensional pressure doublet of strength i;(y)). A3 we saw in " Section
2.6,‘_ tﬁe downwash at Q due ﬁo both vortex systems is'singular but their
difference, which is the unst_:eady induced downwash, is_ finite.
o This aiso resolves,ﬁhe main error in the unsteady liftingéiine theory
of James (1975). As pointed out in Section 2.6, his induced downwash is
}essentially“atko;y,b+)'and likewise contgins a logarithmic singularitf’ in
zr' In ﬁhe present_thebry, the induced downwash is determiﬁed a posteriori,
being inferred frﬁm " the $olution, James, on ﬁhe otﬁer.hand, intﬁitively
. writes down an expression for the indﬁced downwash based ‘on. the outer
solution alone and uses it as the means for connecting the inner and outer
splutipns,; |

The physical interpretation of steady induced downwash vis quite
similar to ‘the uﬁsteady'case in the above, except that the shed vorticity
is absent from both vortex systgms (:) and (:), as shown in Figure 3.2.
As pointed out in Section 2.6, go((o,y’o+) is entirely due to the unsteady
effects, Hence, - in the steady case ;:'_“'(o,y,of) = 0 and the induced
downwash is eﬁtirely due to the tr'aj..ling vortici_.ty“gf system @ wpich is a
finite quantity. ‘ The above physical vinterpretation- of (steady and
ﬁnsteady) induced downwash was first given by Van Holten (1976).

In passing, we note that, both in Steady and unsteady flows, spanwise
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sweep and/or curvature 'ot‘> the wing planform give »rise to important
additibnai contributions to the induced downwash. For a brief .discussion
of these for incompressible flow, see Cheng (1975).
We now express the results of the unsteady 1lifting-line theory
directly in terms of the induced downwash. Substituting (3.4) and (3.2)

into (2.189), we obtain
Fan = U A LWy /U) 3.5)

where ;;I(Y)/U may be thought of a’s_thé unsteady. induced angle of 'attack
which va:‘iés harmonically with time, Using (3.5) and (2 69), the results

of the unsteady lifting-line theory, to o(s ), are given by
Y
Z ~| 2
e(y),__zrrpu ()u+A J.,gA[_.zrer va% ’} |
+A_"{ zrrpu J’V {[ch Y, Wz) +J +\]o<+ }G\

+2WPU A ( [WT_(Y)/U]} ‘(3-'7')"

)

NL

(?‘a‘) Py ) + VR [ W, /U] I, [k] (,3'5)

SRy = -'_r&pué (%)204 _+'n“ Ly a [meu*jr (5) o«]
Cea{omeutin § [ (i) 5T ] e (R
arouta (5) [Wwn/ul]  e®

where log Y, =Y = »57721... 18 the Euler constant. ‘The outer solution LIJ°

-and the coinmonAsolution ALP?L are given by (2.106) and (2.107) respectively.
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An_Inpproyvement
The present asymptotic analysis involves a number of exact solutions
and functions which have been expanded for large ‘aspect ratio 6r,
alternately, small reduced frequency k. 'In each case, only the first few
terms of the expansions have been retained in agccordance with the ordering
of thg asymptotic analysis. As an example, we cite the expansion of the

exact two—d;ﬁensional unsteady airfoil solution LP;D in (2.64).

We expect that rgplacing such expansions by thé exact functiénal forms |
will'improve the accuracy and extend ;he range of validity (in k) of the
results, This can be seen in the following way. Consider a function f(e)
vwhich 1is well. behaved for all.e . In an asymptotic expaﬁsion of £ for
- small € , as é is increased i) the accuracy of the expansion deteriorates
and ii) beyond a certain value of € the expansion often diverseéa Hence,
whenever the eiaét functional form f(€) is available, repiaéing the
expansion by f should improve the results. In the present analysis,
however, s.ince the overall theory is derived asyﬁlptotically’ for large
aspect nati.o (or small k), as we Wil? see, the three-dimensionpal results
ultimately diverge with increasins k. This is due to the divergence of the
unsteady induced downwash at higher k. |

In this way, we make maximum use of the available exact solutions,
The errors intrddu;ed by the substitutions, 1n‘e§ch case, are of the order
of the errors of the original asymptotic expressioﬂs; Therefore,
asymptotically speaking; the accuracy of the results is not influenced,

To improve the unsteady induced AOanash, we restore. the sinusoidal -
dependence'on x (see (3.1), (3.3) and (3.4)). We aléo replace E;(y), which
is tﬁe strip-theory quési-stead& section lift, with its exact unsteady

counterpart Tzo(y).' 120(Y) is given by
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o CY)A _
Lo = [ by (3,7) 4% (3.9)
‘ -CWY)/A
where A ,
A’IFZD (x,y) = P [LTJZ"D (X,Y, o+) — LP;D (X,‘{,O—)] (3.10)°

which can be obtained from (2.46a) and (2.46b) using Table 2.1 (p.S3).

~ A
lzo(y) is found to be

Ly ) = -pL? (§) ijk& - kol (."E-)

Qesosesk(len ) e
The improvéd unsteady induced doynwash then becomes
' ~ Jox Jut ,
Wy Lx,y,t)-:\v’j (Y) e e IXIge/a Wik (312a)
whe;e )
Wa (Y) = 3(’—2"—-7]"51\/—(01
g = {_\, Gomz [T (EY =10 e
' b ~ . :?
_Jm-j LpN -t (Y)
‘ b Y=

~

+2;@ .QZD(Y) {\—Y—J.Tzr - "Q°j Mo |
_% A’j‘* [‘_. (Y/b” }} \ylg_sa (3.12b)

) (Eﬁl y'-"]l ) is given by (2.155b). The real and imaginary parts of [| are
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spown in Figure 3.3.

.It is seen from (3.12a) ahd (3.12b) that, in the present problem, the
three-dimeﬁsional effects are manifested in the fbrm of a convecting
sinusoidal gust at each section of the wing. The complex amplitﬁde of the
gust qa(y) 1s a constant across the'ehord but varies across the span in a
manner determined by the wing displacements and planform. We may thus
refer to Wy as the induced gust.

Since the. problem is- 1linearized, we conclude that the
three-dimensional correction to the basic two-dimensional inner solution is
" the pressure field due to the interaction of ﬁhe induced sinusoidal gust
with the wing. This is the full Sears eigensolution ‘:E ’:Se“ ~s G&lven by

(2.58b). Hence, the improved inner solution, to O(E-z), is given by

~EOA ~NCON, CTC A .

P = o, + P (3.13)
Consequently, the improved three-dimensional section 1ift and moment,

say 1l(y) and m(y), consist of the exact two-dimensional unsteady

. ~ ~ $ L.
quantities, ;ZD(Y) and m, (y), and the lift .and moment due to '}fsea's,

which we denote by ISQ“¢£Y) and ;Skarsyﬁ. Hénee;
L) = L, () 4+ -Q&Ns (Y) (3.14)
'v';'\w) = Y’;J\ZD y) + msmrs ) (3.i5)

~

lzo(y) was evaluated in the above and is given by (3.11). In a similar
way, we determine ‘;2D(y) which is measured about the mid chord line

(positive nose up). Hence,
' CW)A

Ry =-f 0 sbp, s Ay Gue)
| ~CCONIA o
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Mo =T 02 (5] Gk-4 1)«
- \'_(z+3k)o<' +2jke ()] C(k)} 3.1%)

LO .
Likewise, section 1ift and moment due to QESears are determined using

(2.58b) and Table 2.1 (p.S57). They are found to be
v 'Q_Seé\rs.p” = :UTPU‘Z (%) [\X‘lﬂ(\” /U]S(k) ' (3.i3)
Mmoo () = T Pu? (.2_)"_(__@9 (Y) ./U_j S (k) (3.19)

where S(k) is the Sears function defined in (2.59).
The improved‘fdrm of LPO and 4’09 are obtained respectiveiy - from
: . ) o~
(2.106) and (2.107) after replacing 1 (y) by lio(y). The results are

A

- -'4".? E- \]x?-\-(‘i-'])?w-?z o
| 5’0;';‘ '.-; | ~ 'ié o o o . » .
¥ ox) = T, _'Jzz-u S Y o (3.21)

As é_ che_ck,_ it can be shov}n that if‘ the above imprbved results-_:are
exﬁanded for large aépect rafidi kéeping the appbopfiate_nuﬁber of ferms in
each ;éase, the briginalA asymptotic results are reco#ered. All of the
necessarj e,xﬁansionshavé alréady been given except the one for the Sears |
f‘u,nction. S(l;) whiéh éan be obtained'frdﬁ (2._59), (2.62). an'd the asymptoti'c
expansions. for Bessel functions of the first and ;econd' kind of order zero

and one for small arguments. The results are

S(k) ~ _«__l_ Tk +ikdeg(Nkiz) 0 (2 dosgk)

2 .
(3.22)‘
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| . ol
S0~ Liw deg (47/2) - Ty) A
—J% A"'loj A + O(g"Z%A) (3.23).

In the remainder of this work, we will always use the above improved
version of the unsteady lifting-line'theory.

It can be shown that, in the steady.limit (w-=0), the results of thé
unsteady 1lifting-line theory reduce to the classical steady results (see,

e.g., Van Dyke (1963)).

, . :

It is desirable to compare the three—dimensionéi eorrections from tﬁe
présén§ theory with'those of other line and surface theories.  As mentioned
previbusly,.' there are | presently no reliable unsteady lifting=-line -
caleulations available. Furthgr,-there exists ﬁo exact analytieal’sdlufion-
for the general oscillatiaé lifting-éurface problem.. Fréﬁ among the many
approximate unsteady 1lifting-surface theories; forb comparison here we.
cho;ose Reissner's £heory (Reissner (1947))  for _which satisfactory
experimen£al confifmation exists. .The theory is best suited for straight
'wings of modératé to. high "aspect ratio. Like the present unsteady
lifting-liné_theory, Reissner'é theory contains the unsteady airfoil'theory
and steady lifting-iihe 'theory as special cages. One advantage of
Reissner's theory is that one can readily determine the induced downwash
from his simplified integral equaﬁion. |

In the present nqtation and for the wing in Fiéures 2.3a and 2.3b;
Reissner's simplifiéd integral.eduﬁtion of unsteady lifﬁing-surface theory

is given by




37 S
Wo (X,Y,0%) = =L Y30 g
: < X-%
~C/A ,
{
+2Jkoﬂ(\/)‘f v X— al§
C/A
b ~ —_— -
4T . A b d,v‘ Y""l
IXxtse/a  Wige (3.24)

where ¥ is the bound vorticity and Ji: is- the three-dimensional reduced

circulation which is related to the ciroulation T‘(y) through

o = = (&) ﬁ,(y) e’J_“mm (3.253)

. Here, we- have introduoed the modified kernel function ﬂ(, so as to
explicitly display the Cauchy singularity of the last integral..‘#i is

nonsingular and defined as

@) = 1-j2F3 e

where

i R Astnzs&)‘
_F(?)— EY § € -[\ }\ ' -) | ' .

°

The integral here is known’as the Cicala function ﬁhioh is an'odd function
of 1its argument. Using fhe tabulated values of this function in Reissner
(19&7), the values of H( have been computed. They are listed in Table 3 1

(p. 339) and plotted in - Figure 3.4, #((q) is an even function of its
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argument.

The unsteady induced downwash can be identified frém (3.24) by noting
that the first and the second terms on the right han& side are respectively
the downwash due to the béund vorticity and the shed vorticity, both of
which are treated as two dimensional with strength equal to that at station
y. These two terms correspond to the downwash due to the inner solution

g [ . -
(namely Wo" + 'ﬁs&r, in the present theory to 0(A %)). Therefore, ‘the last

term in (3.24) is the unsteady induced downwash. Hence

wa Jwt

Wlxx,\ft)—waun XIS /A WMish (3.28a)

where

633 ) =

W<%§_ 18 K(aiy- 'H)d,,I i b "(é.zeb)

Y=

It is noteworthy that Reissner's WI, like that from the‘: present .theory,
‘,consists.of a cohvectiég sinusoidéllgust whose complex amplitude ﬁs(y),is a
i constant acfoss'the_chord, but varies along the span in a manner determined .
‘by the wiﬁg displacements and planform. Since 334 is nbrmalized with
" respect to the root semi chord c;/A (see(3.25)), it is o0(a%). Therefore,
as in the present theory, Gé and WI for Reissner's theory are both'O(A—|).
In the next section, numerical examples for wI' for ~both theories ére
presented.

In Reissner's theory, the three-dimensional reduced circulation \EL is
obtained from an integro—differentiai equation of the lifting-line type.by

numerical methods. For wings of large aspect ratio, however, in the spirit

of perturbation theory, we may replace \fﬂa- with its _strip-theory
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counterpart, say.fl given below. Since "va oA~ ), any three-dimensional .
refinement ofl]. will give rise to higher-order corrections to WI_which may
be neglected for the present' purposes. The strip-theory value of the

reduced circulation, for the wing under consideration, is given'by

| ca+E1Y2 A |
- 4 jcm [cm g:\ Wo C5,y)ds |
Q'w-) = (2) (2),, (3-29)
T ke () (W00 +5 Ho (k)]

Stiretly speaking, we should replacexfilwith its quasi-steady strip-theory
value which can be obtained from (3. 29) by expanding for large aspect ratio
(hence, also . for small k). The use of the exact unsteady value herein is
.an improyenent:over the latter, analogous to the improved . version of the
unsteady‘liftinéaline:theory; In the remainder of this work, we always use
.Q.(y) in conjunction with Reissner's unsteady induced downwash._ ‘
It can be shown, that, in the limit ‘of steady flow, (3 2&) reduces to
| the integral equation of steady lifting-line theory, and (3.28a) and

(3. 28b) reduce to steady induced downwash.

_ . . , |

_ ': In this section, we focus attention on the:nunerical‘evaluation of the
unsteady induced downﬁash of the present unsteady liftingeline theory and
Reissner's theory."-sample calculations~ for both theories are also
presented and compared.v First, ue review. so'me ideas on the' applicability
of .lifting-line theory to various wing planform shapes (with straight
span). For a fuller discussion of the steady case see Van. Dyke (1963).
‘The latter contains errors which have been corrected in Van Dyke (1975).

The fundamental assumption that physical quantities vary slowly in the
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span direction is violated near blunt wing tips where the flow does not
become two~dimensional no matter how large the aspect ratio. This gives
rise to local regions of nonuniformity near the tips, the size of which are
larger for blunter tips. The nonuniformities show up as singularities, aﬁ
the tips, in the epanwise distribution_of.various phycical quantities, such
as section 1lift and moment. The nonuniformities can be cerrected by
constructing additi-onal asymptotic expansions valid 1in the immediate
vicinity of the tips and matching them to the inner solution.

For steady lifting-line theory, to o83y, van Dyke (1963) has found
that, for elliptic and more slehder planforms, the Spenwise distribution of
_1lift aed moment contein, at worst, integrable singulariiies at the»tips_
and, hence, convergeht ;otal resuits are obtained. Further, he has found
tha£ the extent of the region: of nonunifofmity_at.the tips for these
pleﬁforme is quiﬁevsmall.~ For the elliptic wing it isuO(A-Z) and for the
lenticular wing (parabolic ieaeing aee‘trailing edges) it is exponentially
small. 'Since the‘ioads vanish at the tips, the resulting errors in the
total integrated quaetities, for wings of large aspeef_ratio, is expected
to be quite small. For‘ planforms with -b;unter tips, -euch as the
rectanguler‘ one, the resulting tip singularifies are not integrable and,
hence, tetel quantities cannot be‘obtained. '

In the present theory, to O(4"?), all of the results ere obtained. in~
closed .forﬁ. However, the .presence of a complicated integral in the .
expression»fof the unsteady induced downwash (see (3.12b)) precludes
analytical determination‘ of the behavior of the solution near the tips in
the genebal unsteady case. Extensive numerical caleulations. for the
preeent theory (presented in the followihg sectione) indieate tﬁat,'for

elliptic and more slender planforms, for the uns;eady motions considered,
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there are no nonintegrable singularities in the spanwise distribution of

various linear and quadratic quantities.
In order to evaluate the unstéady induced downwash, we first

nondimensionalize all physical quantities using

*

X=X /(éo/A) : (3.30)
=-\//~b ‘ (3. 31)
5= Ut /(ca/A) - (3.32)
Wyg = Wg /U - o (3.33)
CoNx o~ . S
Wg = Wgq /U - B (3,34)
f’)_* '= I)./U | S (3-38)
~ < . . ‘ '
CezD ezo/[ PU (2% )] @38

_where ( )* denotes nondimensional quantities. The nphdimenéiohal form of

the 'unsteady induced downwash of the present theory, (3.12&).and (3.12b), .

is given.by
. Jk, H:* x*) *] <oy
PLIRVE * x : X YY) g,
W oS YE Y = Wy (v%) e o IxEst .
THES (3.3%7a)
where

i  .,\ (GrA) Cﬁzo(r\) — l'.-a- ' ¥
Wg (%) = 7§ i 5 i (y*_ 1M 2 T AT=171) dn
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-j ko J‘ C{’zo (%) - Con (y¥) c}"*

< \1*—q*\
+2jk° EQZD(Y*) %|—\{ —jlz‘-“ “‘aﬁj/uo
‘%%4 U-\/*’“)}} 1Y ¥ < (3.3Fb)

Similarly, in nondimensional form, the unsteady induced downwash of

Reissner's theory, (3.28a) and (3.28b) (with;ftareplaced byﬁl.), is given

by
| * % .3 | k (t*- x*
WI_‘(X*’ v % = Wj (Y*) eJ )
IxFlgewmre,  WAR o (3.28a)
' where
0% K (Aly=n*)
* ;ﬂ__ ) §E H( (/uol dn ¥
W"j (Y ) 4 i \1*_,‘* ']
¥ < | (3.38b)

Numerical schemes for the evaluation of the unsteady induced downwash
of the present theory and Reissner's theory are presented in Appendices B

and C respectively.

C Unst D U Lifting-Line

Rejissner's Theory

Since both theories predict an induced downwash‘of the form
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. ' i * *

Wy Oy e = Wy %) € o - (3-39)

~ % '
it suffices to compare wj from the two theories. Before presenting the
numerical examples, we point out a general result of unsteady finite wing
theory, namely that as the aspect ratio and/or the reducedl fredueney are
increased, . the induction effects diminish in intensity and the
'three-dimensional results approaéh the strip-theory values.' In ofher
"words, we expect 'l%ﬂ;l to tend to zero as the aspect ratio and/or the
_redgced frequency are incregsed. » | |
| Using the numerical Schem‘eé .disc_u_s.sed in. Aépendit_:es B and C, ;I'; froﬁ.',
‘the present unsteady.lifting-line thedry (ULLT) and~Rei$sner's théory aré
calulated for a rigid, flat plate elliptic wing_ in - harmomic oscillation.

The wing planform is given by

X= C/A = g \[.l—,.(V/p)_z‘ o \.V‘S‘?

In the numerical calculations,<with0ut loss of éenérality,;wé' always take
b=1. Two ﬁodes of oscillé;ioh are considered: pitch and ﬁeave.féinée,>
iﬁ tﬁe present work, the positive'directiqn of pitching and heéving’motiops
afe défined contrary to the usual nbtation (see‘Figuré' 2.3b), all _linear
'quanfities .bresehted herein..will have an extfa.overail ﬁinus sign. ‘Asia ‘
characteristic‘reduced frequency for the wing;’here.an& tﬁroughout, we use
the reducéd frequency - based on the root seﬁi chord, namel&
k, = (9/0)(co/A). - -

‘Tﬁe.first mode considered is pitching about the mid chord _where. the
wing motion is defined by (2.4) with f,: 0 and 3, = constant. We may also

choose %;: 0 as a reference phase. Hence,

h(><,\/ﬂc’)=§,x'ej‘°J-c IXISeW/A  IYhsh ' (3.40)
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Here, we define a nbrﬁalized ﬁ; as
~ ~ % : |
W'SP = WS / §| . ' (3.41)

The amplitude and phase oflﬁgP at the éenter section (y¥*= 0) of an
'elliptic wing of aspect ratio A = 10 in pitch-afe shown in Figﬁre 3.5 as a
function of k;. Shown are the results for the-original_aysmptotic version
of . the present unsteady liftihg-line . theory, its improved version and
Reissnert!s theory. ‘.ItA is interesting to‘ note that the results of
Reissner!'s theory agree more closely with those of the improved veréion of
" the present theory than the original asymptotic one, and that over a larger -
franée of k,. Tﬁis is as one might expéct.v In the neméinder,of this work,
we always uselfﬁe improved veréionsof thé preserit theory.

In the limit of steady flow, the pitching wing'feﬁds to a wihg at an
angle of attack . §' and all three résulté. appréach thét‘ of _steadyv-”
iifting-iine theory, ndmely . | |

W3, | = 2/A L
Pl : - (3.42)

phase of \’;lgp =0

It.is seen from the above figure that for Reissner's theory, -lﬁgp\
tends to zero as k, is increased, as expected. On the Other hand,.as
pointed out earlier, we expect the results of the present asymptotic?theory
ultimately to diverge, as k, is increased. .This is cléarly 'Séén in the
above 'figure where, as Kk, 1is increased, firgtvthé phase and then the
amplitude of w;;diverge.‘ The high-frequency behavior 6f the results of the

ﬁwo theories is directly related to the behavior of their kernel funections,
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B1Y and-ﬂz , for large values of their arguments, as seen in.Figures 3.3 Aﬁd
3.4, It is »noted ihat as their arguments increase, _HZ tends to zero, but
TV grows without bounds. ‘
The amplitude and phase of ﬁ; P at the center section of an elliptie

wing of A = 5 in pitch are shown in Figure 3.6. Compared with the results
.of A = 10 in the above, here the agreement‘ between the two theories is not
as precise but it oceurs .over a much larger range of k,. The closer
agreemeni;. bétween the ﬁwo theories' at higher A is due to the fact that both
‘theories are more accurate | at higher A. Oh the other hand, since
| k ~ O(A"'), the lifting-line theory is valid for a smaller range of k, for
» la.rger aspect ratlos and a larger range of k, for moderate’ aspect ratzos.

The .other mode of wing oseilla_tion{_considered -is heave where the wing

disp;acements are given by (2.4) with §'f= §2= 0 and §°= constant, i.e.,

hix,y, £) =_—;_-‘(Q/A)§o -¢J“’t |
- o | (3.43)
IX\ cw)/A lyi<hk
H.ere,"_' we define a. norugallized ﬁ; -as | |
Wy, = W /(Fik%) - (3.44)

where the quantity in the denominator is essentially the ahgle due to the

heaving motion, namely
Ky =-U -I 2h/? t =__-£-J' ko 3, ' (3.45)

s A¥ . ~ ’
The main advantage of using W;H over w; is that, whereas AY‘I; tends to zero

as kg0, ;I';H remains 0(1), so that the behavior of the uqsteady induced

. downwash. for small k, can be studied more- readily.
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The amplitude and phase of “3H at the center section of an elliptiec
wing in heave are shown in Figure 3;7,for A = 10 and in Figure 3.8 for
A =5. As far as fhe agreement between the two theories is cbncgrned, here
we see the same trend that we saw in the above for the pitching wing. In
the 1limit of steady flow, the result of both theories approach that of
quasi-steady lifting-line theory for a heaving wing, namely
N X
\W3H | — 2/A .
(3.4¢)
~ * : . ’
f(oV\aSe ve{: Wg 4 —>©°

which is the same as that for the pitching wing (see (3.42)). This is
because, as k0, both the pitching and heaving wings tend to a wing at an

angle of attack ( 3, for the former and ‘o(“ for the latter), so that
| Nx o_owx ' (3.4%)
- (o] . .

In the next section, spanw:.lse‘ distribution of section 1lift from the
present theory and Reissneris theqry are presented a_nq cbmpar_'eqwit':h the_ :
stri'p-theory r-es.ulﬁél. They cl_early indicate the sp;nwise distribu't_:l.on: of‘
ﬁg for both theobies. It is seen that at other 4»spaf1w".i'se' stations.; as at
y*z 0 in the above, the present theory .px‘e‘dic‘ts a Somewhat stronger induced
downwééh than Reissner's theory, especially near the wing tips.

~ It must be nbtgd, however, that, in the néighborhood of‘ the tips, the
thfee-diﬁensional unsteady flow field is. complex and has not yet been
~ studied in detail. Garrick (1957) has pointed out that the primary
weakness of  Reissner's theory is in treating the wing ;‘;ips. Also, the
results of the pz*esentiheory, near the tipé, are to be- viewed merely as a

rough approximation. Further remarks on the tip flow field are made in the
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next section.

Based on the above'numerical examples and 'correlations,. Figure 3.9
roughly depicts the region in a k, - A diagram where we expect the present'
theory to be valid. With increasing‘k,, the dashed and solid lines roughly
depiet the values of k, beyond which respectively the phase and amplitude

of the unsteady induced downwash gradually start to diverge. We

tentatively conclude:that‘the theory is valid to the 1left of the dashed
line for moderate to high aspect ratios. On the basis of may more
calculations and correlations, this picture will be further refined in
Section 4. 3.

In Figures 3.5 - 3.8, we note that,- as k, increases from. zero,
initially |W3| drops off rapidly Ak, P .2), followed by a much slower'
variation at. higher k, The reason for the rapid initial decline of IWS\
is the change in the nature of the wake._.While in steady flow the wake
consists of-trailing vortices, each‘having constant'strength, :in:~unsteady
flow, _the.trailingfvortices’haye periodically varying:strength along their
length. " Also, the strength of the shed vorticity varies periodically. The
self;cancelling effect of this periodic unsteady wake causes the reduction
in |W31 |

Therefore, even for small values of k,, the anplitude‘ of i&;.is
eonsiderably .smaller than the corresponding steady value. This means that
for snall ko, quasi-steady theories underestimate-the unsteady effects or,
alternately, lov'er'estimate _the i thr.ee-‘,dimensional _ cor‘rections, .This _
indicates the importance of fully-unsteady aerodynamic theories; such' as
the present one, as opposed to quasi-steady ones, even for_relatively small

reduced frequencies.
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3.4 Calculation of Airloads for Oscillating Wings

In this section, to assess the utility of the presént theoﬁy, Wwe use
it to calculate the spanwise distribution of the unsteady induced downwash
and section lift and moment coeffieients, as well as the total 1lift and
moment coefficients for an oscillating wing. The calculatidns are carried
out over a range of values of k, and A and for several planform shapes and
modes of osciilation, In each case, k, and A are chosen within the region
of yaiidity-of the theoky as shown 1A'Figure 3.9.

The planforms considered are defined by (’aftef Van Dyke (1963))
. o , M2 , o
X= /A = ky LI-rB)2 ] 77 /A YISk (3.48)

It follows from the definition of aspect ratio, (2.2), that

ko =b° i( Sb - (W2 V2 ay }" O (3.49)
o | o
:so thai'
| __n_ ' k. planform
0 o b , rectangular
1 o Cwm | eiliptic |
2 - (3/2)b ~ lenticular |

3 . (16/31)b ‘ " ecusp-tipped

These planforms ére shown. in Fiéure 3.10 for A = 6. Most of 'thg
calculations presented - herein ére for the eliiptic planform which -lis~ot‘ -
fundamentél interest t'o us. To study the influence of plénforn; shape, the
lenticular and cusp—ﬁipped planf‘oms are also considér.ed._' For reasons

aiready cited, we will not consider the rectangular planform. The planform
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area for wings belonging-to the above family is §u%/A.

In all numerical examples, the strip-theory results (ST) are also
shown to indicate the extent of the three-dimensional corrections and
because, as mentioned earlier, we expect the three-dimensional results to
approach their strip-theory counterparts as A and/or kg are increased.
Whenever possible the results are correlated with Reissner's theory and
numerical lifting-surface theories. |

In the uumerical calculations, without loss of generality; we always
take b = 1. Also, sinoe the.plauforms considered are spanwise symmetriec,
all spanwise calculatibns are earried out for half of the spAn_ at eleven
stations, with the station closest to the tip located at y*=. .999. ' In
terms of the spanwise angular variable 9.= cos y* f(see_ Appendix iB), ‘the

station closest to the tip is 3° .from theltip and the rest are equally

spaced>at,8.7° along the‘semi span. Numerical values for the steady limit -

are obtained for k,= 10 4'because, for’ k° = 0, some of the Bessel functions
involved are singular. Much smaller values of k, could be used for the
steady limit without any numerical difficulty but 10 4.was found to be
: adequate. The accuracy of the numerioal ‘results is three decimal.places or
better. | - | v .

Two modes of'osoillation are cohsidered:~*pitch<and~heave. For a wing..
~in pitch, whose displacements are given by (3.40), we define:sectional and‘

total 1ift and moment coefficients as
CoptyX) = Ly /[ PO (2 %) ;,] - Gso)

Copors = 500 /3 02 50001 o
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: b
C,, = [£PU*Sa 5] fb £ (y) dy (2.52)
A G - b
CMP = [JZ PU? Sa (Z-A—") §.] fb S\'(’y) dy (3.53)

Similarly, for a wing in heave, whose displacements are given by (3.43), we

def'ine

8o, 0% = Lo /[ pun <°) )] @S9
CrﬁH (Y¥) = _rﬁwi/ LEeu* (2 %—)Z §°') - (3.55)

~ | | ‘ | J =1 b ~ . - | - '
Cy = [EPU*5a g‘,]'jb.;m) &Y (3se)
. C [_L pUZ SCL % §] j m (Y) d(‘f (3.5%) |

Moments are measured about the imid-chord line (y-axis) ‘and taken as
positive in the nose-up direction. |

Before presgnting the numerical results, a few remarks are in order
concerning .the flow. field  near ﬁhe wing tips.. As pointed out earlier,
predictions of lifting-line theory near blunt tips-are to be taken only as
a rough approximation. |

Starting with the exact solution of Kiﬁner (1937) for a circular wing.

in steady flow, Jordan (1971a, 1971b) has carried out a detailed study of
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the flow field near a circular (or parabolic) wing tip. He finds 'that,

contrary  to .the classical assumption of (essentially) elliptic span
loading, the actual loading éontains a logar;thmic term near éhe tip. As a
consequence,'the induced downwash contains a logarithmic singularity which
givés rise fo an  infinite upwash ét the tip. Also, in relation to an
'osciilating rectangular wing tip, ‘Landahl (1968) has found a similar
logarithmic ﬁe:m: inf the span loading, It hight be possible to derive
similar resuits fér an ioscillating- eircular (or ﬁérabdl'ic) wing tip, using
the exact solhtion of Schade and Krienes (1947) foq'an osciilating.circular-
wihg. Presuhably;A éimilar. logarithmic _terms in ‘the span loading and

" downwash would be uncovered.

ConSider.an.glliptic wing. éf A_;}S in'4pitching motionf Spapwise
di;tfibuéién . of -phasé é@d ampiitﬁde of ﬁ;; aré showg inuFigurev3.11‘for
| Several.valueé of k,o 'In the steady limiﬁ, the classicélA‘result.Ais-
.repréduced, _ﬁaﬁely .qéifrom_induced dbwnwash acrpss‘the‘spén; of ampliﬁudé
.Z/A'and zero.phéﬁe. As-expeéted, with inéreasidg ko, ‘the amﬁlitude of
‘inddéed downwash diﬁinishes ‘everywhere 'éloﬁg the spah except in a_Small

néighborhodd of the'tip where it becomgs mdre.intense'(possibiy infinite at
the tip). The latter ié aue to the increase in the Sfrength of the local -
wake vorticity (at tﬁe blunt tip)‘which'gfows stronger with incréasing ko.'

Figurés 3.12 and 3.13 depict spanwise_distributién of lift.and’ moment
:coefficients for k, = 0, 0;1; d.é ahd 0.3. The real and‘iﬁagin#ry partsAof
each coefficient ahe denoted by ﬁ aﬁd I respeéﬁively, Wevnote that, in the
steady 1limit, the results of steady lifting-;ine thebry are recovered.

Also, it is seen that, with increasing k_, three-dimensional section 1ift
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and moment. coeffiéients approach thelr strip-theory countérparts, as
expected. |

Figures 3.14 = 3.16 depict‘ spanﬁise distribution 6: the unsteady
induced downwash and 1ift and moment coefficients for an elliptic wing of
A = 6 in heave for k, = 0.1, 0.2 and 0.3. For k, = 0 both 1ift and moﬁent
are zero. With increasing k,, the heave-induced angle of incidence
inéreases resulting in ﬁhe growth of the lift and moment amplitudes. Also,
the three—diménsional results approach their tﬁo-dimensional counterpafts
as in the above. In_pasging; we note that a better way qupfesenting the
heévé data is to normalize 1ift and moment coefficiehts with (1/2)Jk°§°, as
we did for the 1nducéd downwash in Section 3.3, rather than with §°. Here,
we have adopted theAlatter for ease of comparison with ReiSsnér's re;ulﬁs
belqw. Examples of the foémef .are -given :later‘ in this .sectibn_in

connection with tgtal'lift and moment coef ficients for the wing.

| Consider an elliptic wingjbscillating in”piﬁch at k, = .2. ..Spanwise
dis@ribution Af phasé apd aﬁplitude of ﬁ;P ar§ shown iq Figure 3,17 for
several values of aspeét ratio._ In each case, the steady vrgsnlﬁg (i.e.,
amplitude of 2/A énd phase of iero) are also shown for éompariéon; Iﬁ is
seen that, with increasing A and fixed k,, the amplitude of the unsteady
- induced downwash is reduced everywhere; rendering the problem increasingly
two-dimensional.locally._

Spanwise distriﬁution of 1ift and moment coefficients"for the same
wing are shéQn in Figures 3.58 and 3.19 for k, = .2 and A =4, 6 and 8. It
is seen that, with-increasing A and fixed k,, three-dimensional 1ift and

moment coefficients approach their strip-theory values, as suggested in.the
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' above.

Effect of Planform Shape on Wing Aerodvpamics

To study the influence of planform shape on the aerodynamics of the
wing, we consider three planforms: cusp-tipped, lenticular and elliptic,
defined in (3.48), (3.49) and the accompanying tabulation.

The cusp~-tipped planform is the ideal one for theories of lifting-line
type; because the chord distribution tends to zero infinitely slowly at the
ﬁips, thus, avoiding any nonuniformity. For the lenticular wing, the chord
variés linearly near the tips which giveé rise to a logarithmic singulafity
at the'tips (at léaSt. in steady flow). The chord for the elliptic
planform, on the other hand, varies infinitely rapidly near the tips.
Fortunately, however, as we have seen in ﬁhe above numerical examples, the
elliptic planfprm does not givé rise to any nonintegrable singularitiéé at
the tips (at least for the examplés considered), as in the steady case.

Spanwise distribution' of steédy indueed downwash for the abovei

;blanfbrﬁs'is shown in Figure 3.20, 'Thei'abe in.complete agreement with the
_eiassical steady results. Spanwisé distribhtion of the‘real and imaginary
. parts of—ggzﬂfor the same wings, oscillating in pitch (ko = .2), are shown
in Figure 3.21. .It is seen that, for the cusp-tipped wing, the amplitude
of the unsteady induced downwash is.finité everywhere along the span, ég in
the steady case. For the lenticular wing, it seems to have a wéékly '
 singular behavior at the tips. For the elliptic wing, the induced downwésh
is fairly constant across the span.except near the tips where it grows
‘somewhat more intense but appears to remain finité.(it might have a weak
singularit&- there). Determination-qf the exact nature of £he latter ﬁould

require analytic work on the integral expression for the unsteady induced
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downwash in the neighborhood of the .tips, which, as was pointed out
earlier, would be quite tedious.

Spanwisé distribution of 1ift coefficient for the three planforms is
shown in Figure 3.22 forlsteady flow and in Figure 3.23 for pitching motion
(kg = .2). Influence of the planform shape on spanwise load distribution
is clearly seen in steady and unsteady flows, especlally near the tips
where 1ift varies as the chord (see (B.5)). It is also seen that, in each
case, the unsteady effects'significantly reduce the amplitude of indueed
downwasﬁ except near the tips.

Spanwise distribution of moment coefficient for the three planforms is
shown in Figure 3.24 for the steady case and in Figure 3.25 fpr pitching
motion (kg = .2). The above commenﬁs about the 1ift distribution apply to
the moment distributibns as well. All of the steady results here and in

the above are in full agreement with those of steady lifting-line theory.

Reissner and Sfevens (1947) . have carried_ out extensive numerical
calculations for Reissner's fheory for rectangular and elliptic'wings in
various types of oscillatory motion. Here, we compare their  1lift
distribution for an elliptic wing in pitch and heave with those of the
present theory. Uhfortunately, their calculations are only for A = 3 which
is rather low for the present theory, but we find the agreement. to be
surprisingly.good for the given conditoins.

Spanwise distributidn of 1ift coefficient for an elliptic wing in
heave is shown in Figure 3.26 for A.=.3 and k, = .212, .424 and .847. It
is seen that the resuits of the two theories are in reasohably gobd

- agreement ‘over most of the span'exéeptvin'a relatively small region near
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the tips where the resnlts of ~the present theory change sign before
vanishing at the_ tipe. This is due to the stronger induced dwonwash
predicted by the lifting-line theory under the conditions of relatively
large k, and small A, as pointed out earlier.
Spanwise distribution of 1ift coefficient for an elliptic wing in

pitch 1is shown in Figure 3.27 for A =3 and ko= .212, .b24 and .84T. as
far as the comparison of the results of the two theories is concerned, the
above remarks for the heaving wing apply here as well. In the light of the
‘discussion at the end of Section 3.3 (comparieon of the unsteady induced
downwash from.the two theories), we expect the agreement between the two
theories to be considerably better at higher aapect:ratios._A

‘ Figure 3. 28'depicts spanwise distribution of lift coefficient for. an
elliptic wing in steady flow from . the two ‘theories. - The'reason for}the
poor- agreement lies in the fact that, in the steady limit, whereas the

,present theory approaches the form
CQ (\1*) = 2m (I-— Z \/l- Y¥% 40 (A‘Z-) " (3.58)

- of steady lifting-liné theory'(which_ is -the direct result of the MAE
analysis), Reissner's theroy_approachee.Prandtl’e recast from of the above,

-namely

ary i-Y*%
i+ 2/A

NURULE Fo(AT2) (3.5

Asymptotically, the two forms are completely equivalent, to O(A-Z), with
their difference - being a measure of the error band of steady lifting-line
theory. The latter quickly diminishes at higher aspect ratios as ‘seen in

Figure N.3 of Van Dyke (1975), where it is also seen that the results of
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numerical lifting-surface theory lie between the above predictions. - The
above comparisons also indicate that, for fixed A, the error band of the
unsteady lifting-line theory, which 1s.equal to that of steady 11fting;line
theory for w = 0, diminishes with increasing ko. Further compariéons of
the results of the two theories are presented below.

In summafy, Qe fipd the overali agreement between the two theories to
be reasonably good, éonsidgring the low A, and expect it to be much better
for moderate to large A. The present asymptotic theqry, ~thus, provides

formal justification for Reissner's ad hoc theory.

Iotal Lift and Moment Coefficients for Oscillating Wings
To study the influence of ks, aspect ratio and mode. of oscillation on
_total 1lift and moment coefficient;yfor oscillating wings,'#e'consider an
’elliptic wing in pitch'and.heaye. | - |
. Spaﬁwisg iniegfatidn ofy_seetion' lift énd .mo@ent cqefficieﬁts' are
carried ouﬁ using Legendre-Gauss quadrature ((B.11) and (B.12)), Aftér a
spanwisé'cosihe'substitution to handle numerical difficulties arising from
blunt wing tipé (see Appendix B). It was deterﬁinqd, through numerical
experiments,'thgt'the sixteen-point Legéhdre—Gguss .quadrature scheme is
adequate to obtain'.accuracy of three decimal places §r better, Taking»:
advantage of the spahwise symmetry of 1lift and moment distributions, th§
spanwise integrals were carrieﬁ out for half of the span and the resﬁlts
“doubled. | |
The total lift and moment coefficients for an elliptic wing in piteh
are shown as complex vector diagrahs in-Fisures 3.29'--3.31‘for A =3, 6
~ and j6. 'In each case the corresponding strip-théory results (ST) and the

values of steady 1lift coefficient from numerical lifting-surface theory
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(SLST) are shown for comparison. The latter are taken from Figure N.3 of
Van Dyke (1975). Here again, it is seen that in general, with increasing A
and/or k,, the results of the present theory approach. the corresponding
- strip-theory values, as expected. ' '

The calculations for A = 3, which is rather low for the present
theory, were oarried out for the sake of“-comparison uith those of
Reissner's'theory_which‘are also shown in Figure 3.29. The agreement
between the two theories is reasonably good (considering'the low aspect
ratio) except at very iow | S The latter is assoeiated with'the fact‘that,
in the steady limit (as already discussed in relation to spanwise lift

distribution), the present theory approaehes the form
a2 .

 of ‘steady. liftingflinea theory, whereas ‘Reissner's' theory approaches
Prandtl's recast form of thé above, namely |

¢ =—=2T___ 4oA"2) - (3.4
"P 1+ 2/A I S

In the figures, numerical resuits . from the latter forn' are -shown for

comparison and ,denoted by SLLT2 fsecond :form 'of'_steadyblifting-line
~ theory). Tnendi?ference'between'the two;forms is a measure _of the error
band of iSteadyi lifting-line theory, which 'diminishes rapidly -with
inereasing aspect ratio, as seen in'the‘aboye figures (for w = 0).a We note .
that the rapid turn in the lift curve of uns_tead? lifting-line theory for.

= 3 and low k, (figure 3.29)'is'redueed to a small kink-for i = 6 (Figure
3.30) and conpleteiy dissappears for large A, as seen-in Eigure 3.31 for

A

16. It is also seen that the value of ko -at which the rapid turn

~occurs decreases with increasing A (k,=~ .2 for A = 3, K, és_.06 for A = 6
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and k, % 0 for A = 16). This seems to be due to the change in the relative
size of various terms in Wi:at different A, since only the first term 1in
(3.37b) depends on A explicitly. Further, for A = 16 and k s .5, the lift
and moment curves graduélly start to diverge from the corresponding
strip=theory results, .as seen in Figure 3.31. This is due to the
divergence of ﬁhe present theory at higher k,.

Total 1lift and moment coefficients for an elliptic wing in héave are
Shown as complex vector diagrams in Figures 3.32 - 3.34 for A = 3,‘6 and
16. The A = 3 case is again considered §nly for‘bompafisqn with Reissner's
-results which are also shown iﬂ Figure 3'32‘, The agreeméht bétween the two
théories, for the given conditions, is fairly godd, ‘espéoially at higher
K. o | | |

 As hentiqned eérliek, it is more enlightenidglto normal ize the. lift 
'and"ﬁqment_'coeffiéients fof a heaving wing with (1/2)jk°€a. ﬁere, we
pfeSent the rest of the.heave data'in this form.j Since we havé,7already_
normalized these coefficients with'§; ; it' only remains to d;vide by

‘ (i/2)jk;; ‘Hence,

PO o S | ;blw'- A .

CLH [(£ike) = [—‘-Z PU? Da (“z,)_ko_&)\]' -LQW)%\/ (3.62)
~ - - | P . |
CMH /(‘;,L,J ko) = [‘%PUZS@(Z %)(%J k°§°)-l \me(\/)d‘/ (3.63)

The rest of the heave data is depicted in Figures 3.33 and 3.34.
The rapid turn of the lift-curvé for low k, and moderate A, observed
in the above for the pitching wing, is also seen here in the heave data

when normalized with respect to (1/2)jk°§°. For A =6, the 1lift curve
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displays an unexpected loop for low ko as seen in'Figure 3.33. fhis
behavior'disappears completely for large A, as seen in Figure '3.3u for
A=16. We also note that the related moment curves (pitch and heave)
display a rapid turn (under the same conditions) which decreases in size
and finally disappears with increasing A. This seems to be another

manifestation of the same effect. |
This behavior of the results of the present theory may be duet to the
presence of the term ko.log M, in the expression'for.the unsteady indueed
'downﬁash (see (3 37a) and (3. 37b)) " This term has an infinite slope at
= 0 and the behavior in question might be the recovery of . the results
from this strong initial change. This behavior, _however, is not fully'v
understood and oalls for'further investigationJ | | |
In relation to the heave data, we also note that, for A ->16 and '
k f .5, - the lift ‘and’ moment curves gradually diverge from the
corresponding strintheory'results (see Figure 3.34). This is due to the
divergence of the_ present theory at higher'k..- We also note that, with
increasing kKo and/or A, the results of ‘the present theory generally

approach the strip-theory values, as expected.
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CHAPTER IV

ENERGETICS OF THREE-DIMENSIONAL FLAPPING

FLIGHT USING UNSTEADY LIFTING-LINE THEORY

4,1 Intruduction

_’Until recently, most theoretical_studies of the propulsive performance
of three-dimensional wingsywere based onlunsteady strip-theory calculations
or quasi-steady lifting-line theory (see,’ e.8.,. Archer, 'Sapuppo and
- Betteridge (1979)), neither of which is completely adequate.

' Bennett (1970) accounted for three dimensionality and unsteadiness in
an approximate way by extendingv the unsteady lifting-surface theory of
Reissner (1947) to calculate thrust - and hydrodynamic efficiency. l'His
:Atheory, like that of Reissner, is an irrational approximation. Later,
Chopra (197&), using superposition (Fourier series) of sinusoidal lifting7
ribbons of infinite span, calculated the performance of a rigid rectangular
wing‘in~ combined pitch vand heave; His approach is limited to 'thep.
rectangular’ planform. - | - o ”

Recently, a few investigators have. employed numerical unsteadj
lifting-surface_ theory to study this problem. Chopra and.Kambe (1977)
employed the'kernel function method for a family of rigid wings most of
which are swept back. " Lan (l979) has used the nquasi-vortex-latticen
»method for‘rigid wings of rectangular and arrow planform including,a tandem-
wing configuration. Agreement'between the two works is not as good as
eipected and warrants further work on the lifting-surface approach to this
problem. | |

Lighthill (1970) suggested the use of unsteady lifting-line theory for
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the stgdy- of performance of high-aspect-ratio lunate tails (or flapping
wings). In this chabter, we employ the present unsteady lifting-line
theory to study the enérgetigs of three-dimensional flapping flight. The
present approach has several advantages: i) All of the results afe
obtained in closed form and, hence, are suited for optimization studies.
ii) In comparison with unstea&y lifting-surface theory, considerably less
computation time is required. iii) - In the ppesent,accelerétion potential
formulation of the problem, vthe suction force is. obtained exactly
(1linearized). This is in coﬁtrést with oﬁhei methods (numerical) in steady
and unsteady flows where the suction foree is obtained approximatelyA (see,
e.g., Wagner (1969) and Lan (1979)). |

Horking within the frameﬁork;gf lineariZed.theory, we use the present
unsteady lifting-liné: ﬁhéory_ to calculate both spanwise distnibutidn‘and'
total integratedi?alué of the following quantities: power' réquired to}
maintain'.the wiﬁg oécillétions;v'lead;ng-édgé’suctiop fﬁrﬁe; ihruét;'éhd;
-energy iOSS rate 6de to vortex sheddipg.- It is not_meaningftl to speak of
sectional‘_energy loss rate since this duantity is defined:only_ror'the'
entire wing. The.analysis in this chapter is for.a rigid ﬁing‘but‘ can be
modified to accomodate a spanwise-flexible wing.. The total integrated
éuantities are needéd for the optimization‘sttdies in Chapter V. Numerical -
examples for the above quantities are presénted_ and correlated with
lifﬁing-surface results, where such data is aQailable.,. The Qvérallv
. agreement is found to be good.. | i
Onvthe basis of the numerical examples in Chapters III and ‘the present
chapter; the range oflvalidity of the present unsteady lifting-line theory
.is then discussed in more detaii. It is found that the theory is Qaiid

over a larger range of reduced frequency and aspect ratio that originally"
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anticipated. This is, in part, due to the improvement scheme discussed in

Section 3.2.

4,2 Enpergetics of Three-Dimensional Flapping Flight

" Focusing attention on the unsteady part of the wing motion, we
consider a rigid thin wing of relatively large aspect ratio in_combine&

pitch and. heave:

.h(x;\/jt_).: [ho/A -i-O(X] _e’J‘_n»

[Fems ++ig)x)d" @

IX)< ey)/A 1YIgh

as shoﬁn'in Figures 2.3a and 2.36; As we wili _see below, all’ of the
energetic quantities turn out to be quadratic forms in (5 §}, £,). We
_ start with the basic definition of the quantities in question and. derive
closed-form expressions for them. Since, for harmonic motion, the time
averege of theSe,quantities‘is of interest,’wevonly celcnlate _their time
averages. . | |

The time average, denoted by-(-), is defined as

| t+'r A ,
T - —,’t—f T o(t S (4-2)

where t, is an arbitrary constant. For ‘harmonic motion, T is wusually
ehosen as the period of oscillation. It can be shown that the'following

rules hold for the time averege of products of complex harmonic quantities.
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Ir |
_Q=@j[ﬁejwt] - BR= Gl_;[ﬁ'ej‘”"'] (4.3)
tﬁen,
IRB=‘%GZJ- [K-§‘®]=%@j[g A® (4.4)
%’t (AB) =o | - 4.5)

where @,J.and ( )® respectively denote the real part and the complex

" conjugate of a complex quantity with respect to j.

- , | ,

The average sectional power required to maintain the wing oscillations

'is given by :
o QYA | o , , _
,’ﬁuf)«_;.--j AP LY,E) ?%-tx,v,f;)____'o\x - (4.9)
A |

Substituting for h from (3.1) and usingfthe averaging rule in (H.M); we

obtain

= \ . N ® Ny
Puy=g ®5fiwh fuy—jua® Run} (4.7)
This represents the réte of work of unsteady lift (done at the- rate of
heaving velocity) and the rate of work of unsteady moment (done at the.rate:

of angular pitching velocity).

Introducing the nondimensional coefficients
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Cpy¥) = P/ [ 5 PUR () | (475)

Eé (Y*) = Zm/[-,& PU? (2 %’-)] | (4.?)
C, ) = wan/ [ Pu2 (2 $)*) (4.10)

in'(§.7), we obtain

a5 w*) [_—g CQ\Y*’)+4(§ —J EZ)C (y*)] (4 n)

where 94 denotes 'the imaginary part of a complex quantity with respect to
j and CL(Y') and C (y') are obtained f‘rom the unsteady lif‘ting-line theory
 (see (3. w) and (3.15)). |

- We now introduce the following notation f‘or the linear quantities. |

B = (8 u 8!) §q+ <& +iB)§ + (B 4] 87) T, (4.i2)

where B denotes w (y*), Cp_(y')-, C (y*), C _or CM'and- the .coefficie'nts B

- ‘and B" are real ‘with respeet to J. It f‘ollows from the second f‘orm of‘

(4.1) that the t‘ollowing symmetry relations hold.»
3 . . _ : o ; .
B, = Bz Ba = - B2. S - (4.i3)
Expressing E’z(y".) and Em(y') in'(4.11) in the notation of (4.12) and
using thé above symmetry; 'relations, we obtain Cé(y*) as a quadratic form in

(5., ,5;).

CPW*) ’;Ti CQ w*>§ +4C‘m (y*)(i +§L)
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‘ ] / i
1[40, 0h) - un]asgs,

L T4 (%) £ 0 )25, - (@.14)
2 . ° Q\

The general form of a quadratic form in three variables is

F = Q §oz +2Qz 3.5 +2Q3 5.5,
+ Q2 3.2- +2 Q3 §,5, (4.15)
+  Qay g;’
or, in matrix notation, | _
F=8'08 @-i6)

where (_) denotes a matrix, (____)T denotes the transpose of a matrix and
5, - - :
=45 \ e T

Q\\ v..Q\zi' Qu3 o o
2= 1Qz Qg Qg3 o ) (4.18)
Q3 Q23 . Qa3

Q is the métrix of the quadratic foz;m whi.ch is symmetric by eonstrudtion
(for a discussion of quadratic forms see, e.g., Hildebrand (1965)). A more
general form of quadratic forms involves a non-symmetric Q. A

We saw in the above. that for the matrix of the quadratic form for
Co(y%) N - | ~
‘ Glzz = <§533 " Qa3 =0 04.lcl)r
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which foliow directly from the symmetry relations (4.13). As we will see
beiow, in a Asimilar way, the matrix of the quadratic form for all of the
quantities in question (sectional and total) has the properties in (4.19).
It is noteworthy that, for the same reason, all of the quadratic forms for
the two-&imensional motion of a rigid éirfoil in pitch and heave alsd have
these. properties (see Wu (1971b)).

The average total power required to maintain the winé oscillations is

given by
| b - | ‘ |
@="] Fuwdy - (4.20)
b . -

or, in nondimensional form,

Co = 8 /[FPU*(£5a))

4.21)

| S
£§) ] Corm dy*

Leading-Edge Suction Force

Thrﬁst consists of the suction force at the leading edée and a
contribu@iop from ;he normal forée at the wing. First, we evaluate the
éuetion force. In two dimensions, the"steadﬁ suction force is -derived
figbrously (see, e.g., Robinson and'Laurmann (1956), p. 126). It is kncwd'
that the suction force arises from the singuiar bressure ~at the leading
edge and is proportional to the square of the strength of the leading;edge

square=-root singularity in velocity;. The suction force can be evaluated
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'using Blasius' theorem or the _mdmentum_ theorem. Wu (1961, 197 1a) has
calculated the unsteady suction forece in two dihgnsions using the
acceleration potential. He shows that, in.the neighborhood of the leading
edge of an oscillating airfoil, the velocity potential and its time
derivative remain bounded and, hence, do not contribute to the suction
force. The problem of determining the unsteady suction force thus reduces
to that in steady flow, with time appearing only as a parameter.

In three dimensions, we employ the present unsteady 1lifting-line
theory, according to which, at each wing section, thg three~dimensional
effects are manifested és -a convecting sinusoidal gust (the unsteady
induced downwash). The interaction of this gust with wing sections
modifies thg local two-dimensioﬁal pressure field hy an amount of the Sears
solution @; «arg determined by the complex amplitude of the unsteady
induced downwash. The Sears solution modifies the strength of the
leading-edge singularity and thus modifies the suction force, ‘Since the
latter is a quadratic quantity, we can not simply combine the contribution
from the two effects. We must return to the three-dimensional pressure
" field in the inner region Qhere the complex acceleration potential is given

by

T8 T " Lo (4.22)
FUsn = )+ 45 o (1Y)
~e m~ '
Here, fzs) and fg . care given by (2.46a) and (2.58a) respectively. Wu

(1961) -has.shown that, in.two dimensions, .near the leading edge .the complex

veloeity
| 3°(5,9) = 2 (X)) = WX) | 4.23)

~p A, 3 ~y ’
behaves like f°. Since both f;D and f;a"; are (locally) two dimensional,




118
. . N(' . N‘:‘ .
_ We may use t_:hie result. Expanding f,, and fs«,s near the leading edge, we

obtain

. \
~e A cy) Iz
3N v = [&w +2 500 w3m][ - ) o)
A
T>-co) (424)

" where S(k) is the Sears function defined in (2.59), ;o(y) is given ‘by
(2.384d) and W (y) is given by (3. 12b)
The suction force is then obtained by applying Blasius' theorem to -a

small cirele surrounding the leading edge. The result is

Tswt)-———p “"’ {@,j[aotv,t)+25(k)w3&*l)e ]} (4.25)

Tq is the suction force per unit length of tﬁe leading edge, direeted along
the‘outward normal to.the leaﬁing edge, as shown in Figure 4.1, and taken
“to be. positive. in that difection. Numerically, Tg is also equal to the
streamwise component of the suction force per unit span. '
Averaging Tg over time and keeping only the leading three—dimensional

correction, we obtain

Ty =Lps —GQ [1&wn)® +45®m Qs (Y) W3 (‘1)] . (4.26) |

where it is seen that the suction force is proportional to the local chord
length. The neglected hlgher-order term is proportional to lS(k) (Y)lz

The nondimensional form of (4.26) is given by
| TRt a3 o ar et Wy @2
Cym =(&) &, L1 m| +45®<‘§’ &l Wyt om ) @)

. where

,CTs w»*_)‘=_i. v /[ X put (.C—;‘)] - .zs)
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It follows from (2.38d) - (2.38f) and (4.1) that
afiyxy = b (yo) =B oy 45 yn) €W

where

b, (%) =-$°(Y)/U = JkeS, +2 (5 +j &)

N

by (y*) =5 (Y)/U = Jk (5,+] 55

(4.29)

(4.30)

(4.31)

(4.32)

The quadratic form of ch(y') is obtained from (4.27) after

substituting for Agg.from the above and introducing the notation of (4.12)

~
for W; together with the symmetry relations (4.13). The result is

Cryt) =(®) [ 000 + 4@ +by )] 82
+ [ 4413) DU - 2K F(k) =4k Gk)

+4(az¢, +bddz)] (5% +55)

+[-I<ok B(k) + 2 (Q,C, +Q5 € + byl -{-bzd,)]z'go-%,

+{2keDk) —kek Q(k) + 2(a €3 + az S,

+ bids 4 by Al)-‘\ Z§c§z\§

- (4.33)

where,s and G are the real and imaginafy parts of Theodorsen's function
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C (x) (see (2.42) and (2.44)) and

D(k) = FX(k) + G2Ck)

- (4.34)
B(k) = F(k) — D(k)

Further,

@ Ly¥) = ko GCk)

L Qz(y*) = k-Gk) - 2F (k)
Q3% = 26 W) -i—k[F(k) -]
by (y¥) = —ko F (k)
b -(‘Y'*-’ -7 S0 “k[‘:(” SR 4.35)
by (7*) = kG(k).—zF(k)_y e
Cl (Y*) = g (k) Wo (y*) = S (k) \«QJ"(\{*)
o (4%) = SK(U W (‘/*) - 51 (k) w) (yx)
g w*) Sk (k) wo (y*) - S1 (k) wZ (y*y
di (%) = S (k) W, (y*) 4 Sy () W)
d, *) = Sg(k) W/ (y*) + 5 () w,’ (Y*)
dz(y¥) =

Sa<k) wz (y¥) + Slm Wz (\/*)

where S, and S; are the real and imaginary parts of the Sears function S(k)
and W! and W" are the coeff‘icients of w;, namely

w3 (y%) = [ W (y*) +3 We (‘1*)3 5. N
+Y_W‘ (V*) +J \\j (\/*)3 s, '<4-3€)
+[\»J (y¥) +3 W; (V*”gz
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~

In the absence of three-dimensional corrections (Wg = 0), the above
expression for C1E}y*)‘reduces to the two-dimensional result of Wu (1971b).
The average total leading-edge suction force for the wing, in the

streamwise direction, is given by

_ tp |

T, =] Ty cosp & (4.3%)
tip

where ‘X is the distance along- the leading edge and 3 is the 1local

4 leading-edge sweep angle as showﬁ in Figure 4.1. Since cosfB dX= dy,

: (il.37) may be written as
_ b -
:75 = JL 'jfTs L) dy - o (4-3_8)_

where it is seen that the average 's'uctiori force per unit span in the
streamwise direction is  just "i"s(y) as pointed out earlier. The

nondimensional form of (4.38) is given by

Co, = T/ [T U (£ Da) ] _
| - (4.39)
=3 () ) Gr o 4
Ihmsmgm_tns_ﬂgrmal_m.e.

In addition to the leading-edge suction force,  the streamwise

component of the unsteady norma_l force at the wing also contributes to the




122

thrust. The time average of this contribution, denoteo by T;, is given by

. ¢/A . ‘ |
Tp 1Y) _—.f Ap (x.y,t) %‘. (x,y,t) dx "(4.40)

—C(Y)JA

Snbstituting for h from (4.1), we obtain
T ) =+ GQ [o( i(y)] - @an
or, in nondimensional form, |
Cr y%) = Tt /[T PUR(5)) .

: | . | o (4.42)
-: =%@;L«*;@'ew*n ‘

Introducing the notation of‘ (4. 12) for CQ(Y‘) together with the symmetry

. relations (14 13), we obtain the quadratic f‘orm t‘or Co (y')
Z
[ G an)zss,  (443)

The average total thrust fron the normal force for the wing is given

by

b I L
-J Toydy - (4.44)
-b . S ‘

or, in nondimensional form,
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- 5, /[ G50)]
| (4.45)
V(S ‘ d *y Ay ¥ '
=1 (%) 5‘ T, (1%) A

Ihrust

The average section thrust 1s the sum of the averages of the

- leading-edge suction force and the thrust from the normal force; i.e.,

F(y) = Tel¥) + Tp (V) (4.46)
or, in nondimensipnal form,
Couym =T/ [Tz ()Y
- (4.4%)

I\

Crs (¥%) + Cqp (y¥)

where CTs(y*) and CT?(y*) are given by (4.33) and (4.43) respectively.

The average total thfust for the wing is giveﬁ by
— b ,
T= ] Fupdy - (4as)
‘ -b

or, in nondimensional form,

C:7= 7/[14} "" q)]
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: (I :
= $(&)] < ur dy (4.49)

=i

It can be shown that, in the limit of steady flow, the .above results
for average sectional and total thrust reduce to one half of the sectional

" and total induced drag respectively. For example, for an elliptic wing, we

find . .
¢ (y¥) /s,“ = = Ji-y*Z2 - (4.50)

‘Which are one half of the known .steady results.. The .extra factor of one

‘half is due to the time averaging (éeé;(u.u))-which_is not meaningful in -

 steady:f1ow and, hence, must be discarded.

As pointéd out earlier, energy loss rate isinot defined for individuai

wing sections. The aVerage total energy loss rate for the‘wing,'denoted“by '

€ , is obtained from the prineciple .of conservation of mechanical 'energy '

-'(derived rigorously in Chapter VI in two and three dimehsibns):
" E=(FP-UT | (4.52)
or, in nondimensional form,

Ce = E/[Tpu3(35a))
| | (4.53)

C’@j - CC7‘.
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The.hydrodynamic éfficiency of the motion is defined as
— : - ] - . (4.54
1=Cr/Cp = 1= (g / Co 4.54)

This completes the derivation of the average =sectional and total
values of the énergetic quantities for a rigid wing in combinéd piteh and
heave. It is noteworthy, that, within the framework of the present
lindarized theory, the results are exact and contain three-dimensional
dorreetions of order V.. Only_invthévevaluation of the suction force we
ehéountered 'a correction termﬁpf 6rdéf Wi (in addition to one of ordef.WI)
which we discarded as higher ofder; The implication of the latter near the
wing tips, where the amplitude of WI_dan Secome large, is._diSQussed later
in this section.

Here, we have considered the_pubely unsteady motidn of the wing ﬁith
no steady.lift. 'Id_gome applidatidns, the laﬁter ig present and essential.
For example, id bibdflighi where steddy 1lift is required to overcome the
body weight. The presence of steady lift in  the problem gives rise to
additional steady 'componenﬁs for the linear quantities (inducedldoynwasn,A
pressure, lift, moment etc.) which dust be combined with their respective
unsteady components before calculéting the energetic quéntities, as in this
section. The _average‘ value of the quantitieé of intefest, however, turn
out to be'simply the sum of the steady and unsteady components, since the
.. Cross -product . terms,  being proportional. to ehnt, average to zero. For
..example, the average thrust is reduced by an amount éqdal to the induced
drag.

In th;s section we have considered the unsteady motion_ of a rigid

wing. In some appiications, such as in the unsteady undulations of lunate
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tails, whion'ere natheririgid structures, this model is quite adequate.
But in other applications, such as in birdflight a model is.needed which
permits arbitrary variation of the amplitude of pitch and heave and the
associated phase difference across the span, namely a spanwise-flexible.
sing mode1; The present unsteady lifting-line theory provides us with just
such a model (see (2.3) and (2.4)) through the choice of h (y) and xX(y) of,
alternately, £,(y), £,(y) and 5,(y).

For numerical caleulasions, it is best to'ehoose a number7of suitable
.-spanwise modes (1) ,for veach of §, S, and ‘s; , as .we have done for tne
chordwise motion of the wing. - The assoeiated numericel schemes can be
developed from those presented in Appendix B for the rigid wing,"after
straightforward .modi.fications, This also determines the size of the
mafricesvof the ouadfatic forms fon the energetic quantities. For example,
.if we choose three modes for each of §° ; $, and § the size of the _

"resulting matrices will be 9x9 (in eontrast to 3x3 for the rigid wing)

To study the influence of‘ 'the three-dimensional corrections on .the
spenwise distribution of the energetic .duantities,,.oe- -oonsi‘der a rigid
- ellip_tic wing in pitch and _he'ave.." Sin"oe. the wing is - spanwise stmetrie',
the cai_eulations_afe done ._for half of the span, at eiéht'sﬁa_tions'with the

station closest to the tip located at y* = .9999. The stations are the

abscissas of the sixteen-point Legendre-Gauss:  quadrature (for the-full

. . T
span) for the normalized spanwise angular variable (2/w cos y* - 1).

(1)
‘The actual number depends on the particular modes chosen and the desired
acecuracy. : : :



121

Calculations are carried out for k, =0, 0.1 and 0.3. To indicate the
extent‘ of the threo-dimensiooal corrections, in each case, the

corresponding strip-theory result (ST) is also shown. | |
The spanwise distribution of the average power required to maintain
the 'wing oscillations for an elliptic wing (A = 8) in heave and pitch are
shown respectively in Figures 4.2 and U4.3. ~ The numerical results are
obtained from (4.14). It is seen that the three-dimensional theory
predicts less power than the strip theory. This is due to the fact that
the threeQdimensional effects noimally .feduce the amplitude of unsteady
1lift and moment, as was seén'io Section 3;4. We also note that it takes

ﬁore power to oscillate a wing at higher k,, as expected. | |
| Bef'ore presenting tho numefical results for the. leading-edge_ suction
force, | it; is  instructive to consider 'ﬁhe éuction force for a
4tw_o-dimensionval> airfoil. This is obtained from (4.335 "with .the gn;teady _
induced Adownwaéh ~set equal. to zero (ﬁ;nz 0); F;gure.u.ﬁ depiét; the.
: averagé suction force for a tﬁo—diménsionﬁl:airfoil in heave .and pitch'as a
‘.function_of the reduced frequehcy k. It is seon that, with increasing k,
for fhe heaving airfoii, tho average suction force incbeases monotonically,
.wheréas foi the'pitching:airfoil; iﬁ.first decreases to about one half of
_ité steady value 4and‘ groﬁs nomotonicall& -thereafter. The uhexpected
behavior of the'latﬁer is due to the influence of unéteady effec;s on fhe

flow around the leading edge. In the limit of steady flow, the average

suction force- for the pitching airfo;l approaches one half of its steady - -

value of 8 (ﬁhe reason for the extra factor of 1/2 was given earlier).
The spanwise distribution of the suction force for an elliptic wing (A
z 8) in hea&e and pitch is calculated from (4.33) and shown respectively in

Figures 4.5 and 4.6. It is seen from the figures that the
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three—dimensional effects reduce the suction force. This is because the
induced downwash normally opposes the flow around the leading-edge, thereby
' reducing the strength of the leading- edge square-rcot singularity and,
hence, also the suction force. The variation of the suction force with kg
for both wings is consistent with the basic two-dimensional results in
Figure h u' » | , |

We also note that for both wings, for k, = 0.3 in.a small neighborhood
of the tip, the suction force becomes negative.' But we know, on physical
grounds, that the suetion force‘must_be positive.or zero'everywhere along
the span. The explanation for this lies in the higher-obder' correction
term of onder'lwl\ziin:the expression for CTé(y*)‘which.we'discahded. This
term is always positive. The correction. term of order Wp which was
retained, on the other hand, can become negative‘ As Qe saw in _Section
- 3. u, near the tips and at higher ’ the'amplitude of W;_can becomeilahge.
Under these condtions (and in the absence of the \WIJ term ), the WI term _'
can become large and negative and overtake the two-dimensional term which ]
is -always 'positive, ‘thereby producing an _overallii negative reSuit. o
Retaining the \ﬁlj; pterm ‘ﬁill_ always phetent this_Oocurrence, but_the
related steady_result wiil_be.inconsistent with that of steady lifting-line
theory which contains'only the Wi term. As pointed out in Section 3.1, the
lifting-line results neah biunt tips are to be considened only as a rough
approximation, since the actual flow fieididoes not'become twoedimensional
no matter how large the aspect ratio. Since the region of negative suction
force constitutes only a small neighborhood of the tips (of the order of 1%
of,the semi span, in- the above examples) and since the suction force is
tending to zero at the tips, we expect the effect of this on the total

thrust to be negligible.
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The spanwise distribution of thrust for an elliptic wing (A = 8) in
heave is also shown in Figure 4.5 and was discussed in the above in
relation to thé suction force. This is‘because, for a heaving wing, the
normal force at the wing is always in the z-direction and hence all of the
thrust is supplied by the suction force. The spanwise distribution of
“thrust for an elliptic wing (A = 8) in pitch is shown in Figure 4.7 for
ko=0, 0.1 and 0.3. For these values of k,, the pitching wing produces
drag (see ﬁhe corresponding two—dimensibnal results in Figuré 6.7). It is
seen that, in the steady'}imit, we-obtain one half of the éectional induced
drag for an eiliptig wing at incidence, as.pointed.out earlier..‘In Figure -
4,7, the reason the magnitude of the‘thre&dimensiqnal r.esﬁlts is larger
than the corresponding strip-theory values 1is the . additionai "drag
asséciated with the trailing vorticity which is.absept in thefstrip theofy. :

All of the spanwise distributions presented in this séction' disp;ay
the . property t@at,‘_with increésiﬁg ks, the 'three-dimensional results
‘approaéh:their strip-theory.values; as'expectéd, |

Néxt,:we consider the overall ‘propulsive performance of‘an oséillating '
rigid wing and ask ﬁhat level of thru$t< Cpy the wing 1is capable of
producing. and at what hydrodynamic efficiency 1 .‘ It should_be notéd that
the calculation of 1, (4.54), requires the calculation of two of the thréé
quantities .Cg, C@ and CE , with the third deﬁermined fi‘om conservat»ioni of
energy, (4.53). | |

In order to correlate the present numerical results with the. limited
numerical lifting-surface results available, 4 we ‘temporarily adopt
Lighthill's descripﬁidn for the wing displacements (see Lighthill (1970)),

namely
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wt

hoxy,t) = [hy —jog (x=by] e’ Ixigen/a 191

v (4.55)
where h, and ok are real quantities with respect to Jj, signifying the
~amplitude of 'he'ave and pitch respectively. The phase difference between
the two modes of oscillation is 96° and the position of the axis of pitch
is given by x=b, 2z= 0. This. descriptién of the wing motion is
completely equivalent to that emplo&ed in the present work (see (2.3) and
(2.4)). The 'explicit relétionships between the two are given in the next
chapter.

‘The total value of the energetic quantities for the wing are obéained
by .integratiﬁg the spanwise _distribution of thése quantities using
Legendre=Gauss quadréture ﬁogethef'with a spanwise cosine subStitutioq to
handle numerical difficulties arising at blunt wing tips (as ih Apﬁendix
B). Through numerical experiménté, - vsixtéenppoint Legendge-Gauss
quadrature scheme was fqund to be adequaie to obtain three decigai plﬁces
of accuracy. Taking aqvantage of the spanwise symmetry, ‘éil §f the
.' necessary integrals are ) carried éut for half of thé span and >the,r'§sults :
doubled. Further, all of the requirea spanwise integrals are evalhated
simultaneousiy 'so as -to save computation time. The integrands involve the
unsteady indﬁced downwaéh and variogs special fUneﬁions, with most of the
savings coming f}om fewer calculations of the former.

Figure 4.8 depicts the strip-theory results for C:7 and -71-‘fon~ an -
elliptic wing 1in combined pitgh and heave, with the axis of pitch-located‘
at 3/4 of the center-section choid, for several valﬁes of Lighthillfs

feathering parameter
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GL is a measure of the deviation of the wing sloﬁe-from the tangent to the
path traversed in space by the pitch axis. 6, = 1 represents perfect
geometric feathering and GF = 0 represents pure heaving motion. The
results closely resemble the corresponding two-dimensional ones of
Lighthill (1970) with M tending to 100% as k>0 for all values of 6, as
expected. It should be noted that,. as ko> 0, all configurations with
oL ¥ 0 tend to pure heaving motion as can be seen from the following form

~of (4.56).

oL = % /[ heftam) C @s?)

: Ih the absence of numerical.lifting-surfaée results fof oscillating
.elliptic wings,‘here we correlate the resulté of the present thedry for an
elliptic ﬁing with those of Chopra and Kambe (1977) for a re§tangular wing.
 _ See Figure 4.9. Both wings are of A = 8, oscillating_in combined piteh and
heaQe, with the axis of pitch located ét 3/4 chord (at the center section
for the elliptic wing). -

Based on experience from steady flow, one ﬁight expect the elliptiec
wing to have better propulsive performance than the rectangular wing.
Also, the calculations of Bennett (1970) for a linearly flapping wing
indicate that-  the elliptic wing has better performance (CC7.-and N.) than’
the other planforms considered including the rectangulaf one. While this
may not be true for all modes of oscillation, it indicates that one might
" expect, at leasﬁliﬁ some cases, better performance from the elliptic wing.

In Figure L4.9, we find the éiliptic wing to have comparable and in most
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cases higher C:7 and q than the rectangular wing, except for low k, where
ﬂ for the elliptic wing drops unexpectedly. As k,~>0, we expect 1 to
continue to increase because, as pointed out eariler, for all 6,, the wing
motion tends to pure heave (see the correspondiné two-dimensional results
in Figure 6.7). This behavior seems to be directly related to the
unexpected behavior of the EL. curve for lou k, and moderate e discussed in
"Section 3.4 (see, e.gt; Figures 3.30 and 3.33). Figure 4.10, which depicts4
Ccr'and ﬂ for an elliptic wing of A = 16, alsoﬂ-gives support to this
’ argument, in tthat,. for A = 16 the drop in N at low k, has all but
disappeared, in the same way that the corresponding behavior of the C,_
curve also disappears for A = 16 (see-Figures 3.31 and 3.34). We also note

that; with increasing k, .and/or A (within the range of validity‘of the

unsteady lif‘ting-line theory), . the present three-dimensional ' 'results‘ L

i approach their strip-theory counterparts, as expected.

We end this section with a’ comparison of the recently published .
: numerical lifting-surf‘ace results of Lan (1979) with those of Chopra and_
Kambe (1977) " Figure 4.11 depicts C:7 and 1 from the two theories for a’
' rectangular wing in combined pitch and heave, with axis of pitch located atv
3/4 -chord. - The values of'kﬂ from the two theories agree quite well.
' Honever, the values of C:7 predicted b&'Lan's theory are generallyp smaller
’ than' those of Chopra and Kambe._ ‘The same trend is observed_in_the-"
.comparisonbof'C:7 from Lan's theory and; that of Bennett’ (1970)'.for a
linearly flapping rectangular wing (see Lan (1976)), where the values of
Cg predicted by Lan's theory are considerably smaller than those of
.‘Bennett. In the absence of an exact analytic theory with which. to compare
(for the rectangular wing), we conclude that there is need for further workA

on numerical.lifting-surface theories for the purpose of calculating the
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propulsive performance of oscillating wings.

4,3 Region of Validity of Unsteady Lifting-Line Theory

A tentative discussion of thé region of validity of the preseﬂt
qnsteady'lifting—line theory (in a ko, - A diagram) was presented.in Section
3.3 and shown in Figure 3.9. On the basis of the calculations and
‘c.orz'elatiqns pregented in Chapter III and the present chaptér, we now
continue that discussion, seeking to refine that picture (1). Fifst, a few
Aremgrks aré in order concérning the order of magnitude of the errors.

Since the present theory is an asymptptié 6ne for large aspect_ ratio,
the accuracy of the results improves_wifh.ihereasihg A and vice versa. The
order of magnitude of the errors in fhe present theory is O(K-z).v This
z-represents an error of the order of 11% for A = é;'uz for A = 5 and 1% for
A =10, as shown in Figure 14.12. Also shown in this_fiéufe is a curvé-
'éorresponding to errors éf O(A") whi¢h4ﬁéy‘pé~thdugﬁt Of as ﬁhe efrors -
iniolﬁed"in uéing the strip theory a;éne (for a high-aspect-batio wing) or
the order of magnitude of the corrections to the latter by the present
lifting-line theory. ‘A third curve repfgséhbs errors of 0(5_3), namely
those assogiated with the next higher-order. lifting-line theory. It is
| seen that the first-order theory represehts Significant corrections to the
strip-theory results, with small residual errors of only a‘few per. cent for
A 5 5. Further, on the basis of the order of magnitude of the errors,
there seems to be little gained by developing a higher-order ;iftiné-line

theory (considering that we have neglected viscous and nonlinear effects).

(1) : N
Ideally, at least some of the present calculations should be carried out on
" a reliable unsteady numerical - lifting-surface program for comparison.
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However, such a'theory may be advantageous in refining some of the detaiis
of the present theory, thereby also improving the region of validity and
the accuracy of the theory.

Figure 4.13 depicts the region in a koe A diagram where the_ present
theory is most accurate and useful. In the light of the above discussion,
we have marked off the_area for A 2 5 as the region where aspect ratio 'is.v
too small-for the theory to give‘good accuracy.

Another implication of the assumption aof large A, in the present
theory, is that the reduced frequenoeibased on the wing semi chord c(y)/A
is small. As pointed out earlier, this means that the theory'iS‘restricted
to louer'yalues.of k,. "This is roughly indioated inl,Figure ;u.13»_by the a
broken and solid lines (taken from Figure 3.9) to the right of which,
vrespectively, the phase and_anplitude of inducededounwash gradually.'start_

to diverge, with the”latter'causing larger errors'in the results. In faet,
the results are found to be valid well to the right of - the broken line, as

shown in Figure 4, l3by the crosshatched area. ' -

As mentioned earlier, in the steady limit the present theory reduces

to  the classical. steady lifting-line theory. We also saw, in Sections 3.&
and 4.2, that, for small.k° and moderate A,_some'of the ftotal aerodynamic-
coefficients for'the wing display certain unexpected behavior (see Figures'
3.30 3.33Aand u.é). As pointed out in Section 3.4, this might be - due to'
.the term ‘containing k, log A invthevinduced downwash, (see (3.37a) and j
(3. 37b) This behavior, however, is not fully understood and ‘cails for
further investigation. Further numerical lifting-surface results will be
helpful here. This hehavior may turn out to be an inherent weakness of the
present theory, in which case, it might ‘be .necessary to carry out the

_analysis to one order higher in 1nverse aspect ratio to resolve it.
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For the present purposes, we identify the region in question (small ko
and moderate A).in the k, - A diagram, Figure 4.13, as one where the error
bﬁnd of the present theory is wider than that at higher k,, thouéh perhaps
smaller than that for steady lifting-line theory, as suggested earlier.

The unshaded area in Figure U4.13 roughly depicts the region where the
" present tll.leory is most accurate and useful, with the accuracy improving
with increas;ng A. This region encompasseé a larger range Qf values of k,
and A than 6riginally anticipated and contains values of k, apd A which are

of greatest interest in abplications;
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CHAPTER V
OPTIMIM MOTION OF THRUST-PRODUCING

LIFTING SURFACES

iil_.In&nndnstiQn

The optimum shape problems considered here involve the determination
of those transverse displacements of a lifting surface which produce a
_ prescribed level_of thrust ‘at minimum energy cost in maintaining the
oscillations. The primary motivation for these studies Ais'to gain a
clearer understanding-of theAhigh.efficiencies observed in certain modes of
‘animal propulsion in nature, such as bird flight and fish swimming The
_'general theory may also be useful in other applications, such as in
.aeroelasticity and optimum energy extraction from fluid streams | |

Undoubtedly, the highly refined aerodynamic shapes and motions of the.
animal as a whole and the thrust-producing lifting surfaces in particularf
play a key role in achieving high efficiencies. in the current study, we
'are concerned with wing motions of birds with high-aspect-ratio wings and
small to moderate flapping .amplitude,- such- as gulls .and albatross. in
cruising 'fliéht,_u In ;the' aquatic jrealm, we are-concerned with similar.
motionsAof highAaspect ratio'lunate .tails, ‘typical -of many fast-moving
fish, such as.sharks and the cetacean mammals. Such wing and tail motions
are typically associated with relatively high Reynolds numbers, of ° the
- order of 10~ and higher (based on a_characteristic chord length). Under
these conditions,-viscous.effects are confined to a thin boundary layer at
the surface and "a thin trailing vortex nake. Qutside the boundary layer

and the wake, the flow may be treated as potential. The inertial »forces;
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which' are much larger than the_viseous forces, are primarily responsible
for the propulsive foroes. The viscous forces are responsible for skin
friction and creation of ciroulation around the wing (Kutta condition) and
only in the latter role do they affect the propulsive forces. Thus, the
aerodynamic quantities of 1interest can be obtained from a potential flow
model based on linearized unsteady uing theory.

In two dimensions, the only rigorous analysis of the optimum shape
problem~is due to Wu (1971b) (1) who considered a rigid and a flexible
airfoil. His study is based on the aerodynamic theory of Wu (1971a) and -
includes a detailed analysis of the optimum motion of a rigid airfoil in
small-amplitude combined pitch and heave and a discussion of the general
case of a flenible'airfoil. ,He'findS'that (in two dimensions) the optimum
solution is not unique. A

In three dimensions, there has been no rigorous.study .of the optimum
Shape problem, Tnis is in part due ‘to a lack. of - an adequate
threeddimensional unsteady aerodynamic~ theory witn closed-form results.
Here, it is desirable to determine the optimum shapes and motions of rigid,'
semi-rigid and flexible lifting surfaces.

In this chapter, Wu's solution for the .optimum motion of a rigid
R airfoil 1is recast in terms of the Vnormal modes of the matrix of the
quadratic form for energy loss rate. This sheds some 1light on the
structure of the optimum‘solution. Then, using the results of the present
unsteady lifting-line -theory in Chapter IV,v the optimum motion” of - a

three-dimensional rigid wing is determined. Numerical results for the

(1)
In a parallel study, Wu (1972) has determined the optimum mode of energy
extraction from gravity waves by means of an oscillating rigid airfoil.
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optimum are presented for an elliptic wing over a range of reduced

frequencies and for several aspect ratios.

5.2 Ootipum Motion of a Rigid Airfoil
The general problem of determining the optimum shapes and motions of

an oscillating ‘lifting surface may be state&'as follows: from within a
prescribed eléss of shape funetions h(x,y,t), find.the ‘optimum _one' which
miniﬁizes fhe_mean energy loss rate subject to the condition of fixed mean
thrust. | o

In this section, ﬁe focus attention on the optimum motion of a rigid

airfoil oscillating in combined pitch and heave:
«uiﬁ' o -
h(xt)-[—cs +(5; +J§z)x3e " Ixl<e (5:4)

This is the same as (a.u) with g(y)/A replaced by c. ' The_.energetic
quantities for this caée cgn‘be'obtainéd ffom the threefdiméntidnal results
" of Section 4.2, after replacing. c(y)/A by c¢ -and setting thevinducéd
downwash W = 0. In two.dimensidﬁs, we-dengte the aﬁeraée value of the -
energy loss rate, the power required, theithruét and the suction force,

respectively, by E, P, T and T, and define the non-dimensional

coefficients‘ _ ‘
E/ L% pue] S (s
‘C’P = 5/..[“;1-_,0 U3.c-} . (S.3)
cr =7 /[T pu2c) (5.4)
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cr, = /(% P k=

In matrix notation, the corresponding quadratic forms are given by

= €' (5.6)
C. = 5 EE
Co = §' P § (5.%)
Cr = £ T 5 (5-8)
Cr,= s kK 3 (5.9)
. where _g_T= {5,,5,,5} and from Section 4.2
| k% k? 2k _
T P o 4+1%
T kF k24 g - F-kg
P =k [k2+q k{i-F)-2q ¢ (s.11)
F-kg 0 k(I-F)-2q |
T=Pf -E (5.12)
WJD_ ~K*B 2kD-k%G§
K=|-KB  K+@+k?)p-2zk*F-q4kq - O (5-13)
| 2x0-k2q O KP4 (4+kP)D 2K F -4KG

where D(k) and B(k) are defined in (4.34) and F and G are the real  and

imaginary parts of Theodorsen's- function (see (2.42) and (2.44). k is the
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reduced fr_equency k =wc/U, The above results are in ful.l agreement with
those of Wu (19'{1b). |
The optimum problem under consideration is to minimize the »quadratic

- form Cg subject to the constraint

This variatio'x)al problem is equivalent to'., minimizingA a new function.
C%: CE-")‘ C"', ‘subject to the same constraint, A\ being a Lagrange
multiplier. Wu (1971b) has pointed out that application of variational:
methods to this problem t‘ails to yield the optimum because the quadratic

f‘orm Ce is singular (1) ’ since of the three eigenva.lues of E:
H =0 »x.z_-; B(k) (4+k?) )_43 = s_m (44 zkz)

'one is identically zero. He points out that the quadratic form CE must-:
f'irst be reduced to a nonsingular one of‘ a lower order which is then

tractable by the usual variational methods. | |
Here, we first indicate the general method of reducing the singular
quadrat_ic form CE. This also points out the advantage ot‘ Wu s approach to '
the pro_blem. Wu's solution is then presented a_nd recast in terms ot‘ ‘the
eigenuectors | _(norm_al m_odes)‘ of E to sh'ed' liéht on the structure of the
optimum solution.- ‘ |
. The r,eduction' of ‘the singular quadraticl f‘orm CE 'is formally

accomplished through the orthogonal transformation

§=s3x.- (58

(1)

CP is indefinite in two and three dimensions.
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o .
where 3 = {5,,5,,5,} and S is the orthonormal modal matrix of E. The
successive columns of S consist of the normal modes of g_(in normalized

form). Putting (5.15) in (5.6), we obtain

Ce = ‘:T gl .‘3" . (s.i6)
= B | (4442 57 + (442k3) T, )
where B | |
g=s"€es | (517)

is a diagomal matrix consisting of the respective eigenéélues of E. The
singular quaqratic form CE_is thus feduced to the canonical form involving
two vériables. After:wfiting~CP in terms of the new variableé, we proceed
with the usual vafiatiohal approach. This, however,-leads to an 8th degree
algebfa;c 'éqﬁaﬁipn' in A . For giveq k, the roots can be determined
numerically. The oﬁtimum solutioﬁ islthe~one cqrréspdpdiﬁg to:the highest
ﬂ.. In fﬁis way, vérious aspécts 6frthe optimum soiuﬁion'can be determined
numerically, but'.it _requires, a‘ congidgrable améuh£  of work; This
demonstfafeé tﬁe .advantage of Wu's (197ib) methad which. leads t§ a
_quadraﬁ;c equation in A which can be solved.apalytically; with the
subéequent study of the optimum probléﬁ requiring ﬁuch less work.

.Before cénsidering Wufs solution, we first diseuss the normal modes of

E, in terms of which, the solution will be recast. These are given by
| | (4+k2)(4 +2k?)

: ' -\ .
C_E = {\4+k1)(4+2kz').‘) /2‘; k% _ .FDY}.\'
.A o el (3.18)
A $, = (4+ kz)"/z. 2 o B, . (5.19)

-k
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(k o | |
b, = (arzi 2 )kt B R (s
2

The first and third modes eonsist of combined pitch and heave whereas the
second mode represents pure pitching motion. The first mode has some very

interesting properties and plays a central role in the - present optimum.

»solution. Hence, ‘we discuss its properties in some detail.

It can be shown, from (5. 6) - (5. 9), that for § = ‘#

m

=P ::ff::'q E qr : E (:E :s<:P'= CT.f=(D' ; (SoZJ)

is, in faot, the same as the speeial set of values {§ § ,§ b of Wu"".
l ‘

(1971b), who points out that these are a direct result of the condition

.Ai.,f. ~ . o o o . . .‘- .

A‘:o -"T"bl‘ "f—;Oﬂ o SR -"(S-Zz_)"ﬁ
where bnvare the coeffieient-.ofo the ehordwise .Fourier 'cosine' series
representation ‘of the 'downwash at the airfoil Wo (as in (2.38e) and
(2.38f)). Condition (5.22) also corresponds to zero circulation around the
airfoil. This can be seen from (2 389), (3.25) ‘and (3. 29) (after repalcing

c/A by c), namely that

[_' ~ (] ~ (be +by) - (s-23)
and, hence, no vorticity is shed from the airfoil. In’ passing,' we note
that (5.22) and (5.23) are also valid for a flexible airfoil.

. In the light of the above considenations, we will refer to <h as the

invisible mode. It must be noted that, due to. the unsteadiness of the
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airfoil motion, the leading-edge suction force is nonzero and, hence, the
thrust from the normal force is also nonzero (TP = -fs'i O)} Further, the
" unsteady lift and moment are nonzero due to the added mass effects.

Wu (1971, 1971b) has shown that Cg ~ |Bg + B 1% and Com (g + B)).
It follows that the hydrodynamic efficiency of the invisible mode is 100%.
This is analogous to the Froude efficiency of a propeller which tends to
" 1003 as the disc loading vanishes. Since the invisible mode violates the
condition of fixed positive thrust, (5.14), by itself. it does not
constitute the optimum. ‘

The invisible mode is perfect unsteady t‘eathering. It can be shown
'that, as k-0, the invisible mode tends.to perfect geometric feathering
i(or duasi-steady feathering)-where the airfoil pitching motion is such that
“.the airfoil stays tangent to the path traversed in space by the - heaving
.motion of the pitch axis.

" The amplitude ratio and the phase advance of pitch relative to -heave,

" defined respectively as

i

_vz-p [(51'/§,o).z '+(§z/§°)?-]/7‘ - - (s.24)

Xp

‘ta;‘ (£2 /8;)  (s.z5)

are shown for the threennormal modes - of E in Figures 5.1_'and 5.2. _ For
obvious reasons, Zf.is not defined for the second mode, The quasi-steady
feathering results are alsp,shown for reference. It is_ seen that,--as
suggested in the above, the invisible mode tends to quasi-steady feathering
as k— 0.

Wu's (1971b) solution for the optimum problem at hand.is presented in

versus k and C130

Figures. 5.3 - 5.7. Shown are q‘, ZP"xf and q1§/CT
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versus k . (defined below). The numerical results are obtained from a
computer program which employs Wu's method. - Wu's analysis shows that &, is
a free parameter in the problem and,'hence, the'solution is_not unique.
T, =
parameter. In Figures 5.3 - 5. 5, the lines designated k = k. and k = k"\

CT°/§:', "the proportional loading parameter, is also a free

denote respectively the value of k below.which.no optimum exists and ’the
value of k for whieh the fraotion of thrust coming'from thesleading-edge .

suction force is a minimum as determined from Figure 5.6, where it is seen v__
- that outside a small'range ofik-surrounding k ='km, the contribution of the
.suetion foroe. becomes' so‘large as to be difficult to realize in practice

without leading-edge stall._'We will_refer to the'optimum motion for k_a k“ :

- as the superoptimm. Wu has pointed out that, in practice, it is

.preferable to operate at values of k- slightly larger than k where Z_rand
-'_m1,vary relatively slowly and ﬂ is somewhat higher. The superoptimum-_
line in Figure 5 3 indicates the advantage of operating at low C. oi
corresponding to- large heave amplitude. Small values of CTO render the-
optimum valid to lower k and make q larger at the same k. Figure 5.4
_indicates that the optimum normally involves a small amount of pitch_ijl
: relative to heave, of the order of " 10%. Figure 5.7 depiets ko, as a
V funotion of CTb' For given 'ET;, the optimum - exists for k > k_. -'For-
further details of the present optimum problem see Wu (1971b)

‘In Figures 5.3 -~ 5.5, ’l 3. Zfand X p for ‘the invisible mode are also
'shown, superimposed on Wu's solution., It is seen that, with deereasing CTo
vand/or -inecreasing k,‘ the optimum ’solutions approach the invisible mode
which forms an upper envelope for the family. This .leads us to believe
that the invisible mode must play a oentral role in the optimum solution.li

In order to understand the structure ‘of the optimum and the role of -
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the invisible mode in it, we recast the solution in terms of the normal
modes of E (one of .which is the invisible mode). Thus, denoting the known

optimum solution by g *, we set

*

é C= \‘L (s.20)

(.

M

where the weighting functions ‘K indicate the amount of each of the modes
inv. g' and ct'bc are given by (5.18) - (5.20). To determine "&,_, we

premultiply both sides of (5.26) by cb and use the orthogonality property
<{> ¢ S,,toobtain_ '
- * L ' -
XJ—_: (‘). g | J.—_\,ZJ3 (5-2?')

. The three equations in (5.27). d_eterminé only 'two' of . tﬁe three’
'functior.xé' Y‘ v Yz. a’nd"{s be_'caus_e, as mentioned earliver', §° is arbitrary.'
Thus, we find | o

¥y i d (s¥ e
4’21 +,¢zz(§( /5.) +¢23v(§z /35)
Py + 43.2_ (g;x'/io).+ +.3 (52/%,)

il

REZAN (5-28)

h

P TR ST VA AR SO /LN (5. 29)
Sy + b, (58 t i3 (87750) |

and r'ewr.it:e (5 26) as
.[# +(Xz/x)4>2 +(%3/\s 3ct> 1 (s30

where we have chosen the amount of the invisible mode N, to be the free
parameter rathei than §° . Accordingly, we replace Wu's proportional

loading parameter ETowith a modified loading parameter 'E_\, . Cro/ ‘t;l' which
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is related 'f,o the former through
~ : — C N . 'z .
Cr,= Co Hﬁ' + (N2 /%)) 4>2‘ + (ftg/‘s,) 4>3‘ ] (S.31)

The numerical results for the recast optimum are -obtained from the
numerical values of 5,*/5, and §;/ $., which are obtained from the above
mentioned computer program for calculating Wu's solution. The amount of
the seéond and third lﬁodes, relative to the invisiblev mode, present in the
solution, are shown in bFigures 5.8 and 5.9. it is seen that in general,
with decreasing ET;O and/or increasing k, both ‘f,_/ ¥, and YB_/.Y, diminish, and
the invisible ni_ode in'cr'ea.singly dominatés the‘ soiutiqn. Figure 5.10
depicts E'-r,(; as‘ a f_unctj.op of k ’an-d '5.50. We note that, for small values of

k and -é‘r.o? E"r,o"s--ato' This is due to the fact that, under these

conditions, the solution lisAdox_n:Lnated by the invisible niode ‘which tends to
pure heave as k— 0 (see (5.18)). |
The results for the x'écést o’ptimum'are suinmarized_ -in Figure 5.11 =

5.13 for Cpg= 154

y 5 x '163 and 16‘. 'The figures depict Y\ as a function
of Yl/)", 'vand \fgl‘(l .with'k. and ?‘:.m as . par-.amet_:ers. It is seen that .in .
genefai the optimum cbnsists primarily of the 1nvi$i$lé mode with> a small
amount of the third mode (.of" the order of 10%) and eveh a smaller amount of
the seco.n'd mode (of the.order of 1%). The invisiblé mode 1is responsibie
for | the- high *} achieved by ‘th‘e optimﬁm, whereas the oth_er ‘modes are
-necessary to attain the prescribeq level of thrust. We also notev that fh_e
superoptimum achieves higher Y] at lower values of E‘.‘o, as was poi.nted out
earlier. From the recast form of the optin;um;-it becomes clear that the -
- reason for the nonuniqueness of the present‘ solﬁtion is the invisible mode,
an arbitrary amount of which (YX,) is present in the solution. |

Strictly speaking, the recast results should be presented with C_‘.0 as
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a parameter rather thah Eno,.as in the above. However, since there is a
~ one-to-one correspondence between $_and ¥, (as seen from (5.27) with
j = 1) and, hence, also ‘bet_weeln ET.O and 'ET’Q (as seen in Figure 5.10), the
above presentation is adeduate.

Wu (1971b) haé-also considered the general optimum shape problem for a
two-dimensiénal flexible airfoil (infinite degrees of freedom). He finds
that CE;is singular (1), as one would expect, and that the nonsingular form
of CE is again of order two. He finds that the optimum shape h(x,t) can be
dgtermined only to a certain degree but not to thé extent of finding a
unique h(x,t). This lack of complete determinafeness of;the optimum shape

problem, he points out, is an iptrinsic feature of the problem. ,

In_this section we employ the present unsteédy 1ifting-line théory
: (Chapters II - IV), to study the optimum motion (2) of a high-aspect-ratio

rigid_wing in combined pitch and heave:
o ' | 4 ' ' . ; jujt
hix,y,8) = (£ (/A) g, + (5,+i52) x) e
IX1< Cy)/A NIES-} - (5.32)

(see Figures 2.3a and 2.3b). 'The use of lifting-line theory restricts the

(1) : . :
For a flexible airfoil, the condition (5.22) corresponds to an infinite
family of invisible modes.

(2) ’
Here, we could alternately use the results of Chapter VI which are valid .
for all wing shapes and motions and all reduced frequencies. However, the
subsequent analysis and computation of ‘the optimum motion would be
considerably more tedious. ‘ ' :
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analysis to wings of large aspect ratio, with slender planform (see Section
-3..3) and relatively low reduced frequencies (based on semi chord).
The needed gneréetic quantities have been calculated in Sectiop 4,2,

In matrix notation, they are given by

Cg =5 EE - (5.33)
Cop = i_T @ £ | (S.34)
Cr = Ej-gz‘é (S. 38)
Cy = £ X5 | . (5.36)

where §_ ’ Q ’ :_7_' and _;}_é_ are the respective matrices of the quadratic
forms. They are symmetric by construction and have the properties in
(4.19). | | |

Here, as in two dimensions, tpe quadratic form CC? is indefinite and
it 4is crucial first to identify the type -of the quadratic f‘omn CE . To"
-this end we temporarily adopt the strip-theory viewpoint and binvestigéte
the boésibility of distributing two-diﬁensiohal invisible modes across the
span. It follows from (5.22), (5.32), (2.38¢) and (2.38f) that the

invisible mode at station y is given by

§"/§° —_- ~kok /(4 + KB o
| (5.3%)
$5./8, = -2k, /(44k")

Here, the right hand sides are functions of y because k = k(y), but the.
left hand sides are fixed since the wing is rigid. Theref‘or-e, (5.37) can

be enforced at one or nmore . spanwise stations
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(dependiné on the planform) but z.mt at all stations (for reasons alrgady
mentioned, we exclude the fectangular 'planform). Wherever (5.37) i;
violatgd, spanwise vorticity is shed'and the circulation is nonzero and
varies with y which gives rise to trailing vortiéity. Including the
three-dimensional effects modifies this picture slightly, but, since the
corrections are of higher order, the basic picture remains the same.
Physically, this means that there exists no nontrivial unsteady motion of a
rigid wing which does not produce a wake of vorticity. In other words,
" there exists no invisible mode for the rigid wing of finite span and CE is
positive definite.

The optimum problem at hand may be stated as: minimize the quadratiec

form CE subject to
Cy = Cf7,0 S0 - (s.38)"

As in two dimensions, this is equivalent to minimizing a new function
CIE = CE -A C@ subject to the same condition, ‘A being a Lagrange

multiplier. Denoting the elements of € and @ vy E;; and P

respectively, we_‘ have
CEr = Ey S + Exp (§3+5,) +2E; §°§,+ZE‘3,§°§i (5-39)
Co =Py &+ Pra (52457) + 2Py 5.5, +2P3 5.5, (S.-40)

Since C,é is positive definite, the optimum is obtained  using the usual

variational methods. Thus, we set

556 (C.E _?\c@) =0 L= é,\,z , (S.H)
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Cy = Cp-Cg = Cgo o (s-42)

A is the sblution of the cubic secular equation -

A

or _
(Ezz")\ Pzz ) [(En AR(E .= PZZX —(E‘Z A P,z)

-(E—B“)\Pls) ]-o o (5.4

" The root ‘A_- E, /P 22 corresponds to pure pitching motion which clearly is
not the optimum. The remaining roots, 1, and Az, are the ;olutions ot‘ "the

quadratic equation . .
o aX 4 pbA+c=0 . (5.44)
‘where |

: rA
Q= Pu P2z — P — Pis

b= 2E2. Pz +Z2E3P3~E, Pz ~E22P,  (5.45).
' . 2 2
C= Ej Ezz —E\4 - E3
Al ahd )a_would be real, as required for physically - meaningful solutions,

Substltuting 2; in (5.41), we obtain

é/é -~—(E.z—w.a/<ezz—k Prs) (5.46)
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§2 ./§o7f" ‘—.<El3-)Pi3)/'(.E'll_—>\ Pzz) (5-4?)

The hydrodynamic efficiency is given by

- E“ “+ E-ZL \-_(i./;',, )z+(§z/§°)z]+ZE,z (§| /§o) +2-E(3 (gz /gc)
ot Pez L5172 4 (52/5,)2 ) + 2P0 (5,/5.) + 2 Aia (52 /50)

Y]=| (5.43.)

The )\ corresponding to the largerv (0 < M < 1) is the optimm. &, is

then obtained from condition (5.42).

2' B

5. = Co0 { (Po=Ey) + (Paz = E22) [(S1r5)%+ (32/%0)*]
+2 (P2 —Ei2)(5,/5,) + Z(P|3“_Eis)(§z/§a)}—i (5.49)

- In analogy v)qith ;hé two-dimensioﬁal optimum, we may rewrite this as an

expression_ fﬁr the .proporti.onal. loading vpax_'amét;.e'r -5,20.:: Cg’olgf. It is seen

that, in eont,rast. with the two-_dimensiénal ‘case, the presént oﬁtimum

.solﬁtion.is unique. This is a 'diregt‘ result of C. being positive
definite. ' | | | -

| The amplitude raﬁio a,n'dv the phase advénqe of piteh rél'at.:i,ve to heave

~ are obtained from (5.24) and (5.25). The fraction of £hmst eomi_ng‘bfrom

the leading-edge suction force ‘is given by
—_ -1 ‘ i . . 4
C'Js /Cs =(C7)o) . % Ky + Keo [ (517807 + (Sz /5.)% ]
+ 2Ky (§,/5,) +2 K.;(gz/fo)’}  (Sso)

where K;j denotes elements of _zd_ (see (5.36)).

In understanding the present optimum, it is helpful to express the
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solution in terms of both'the'présOnt description of wing displacements,
(5.32), and Lighthill's alternate description, (4.55) (Lighthill (1970)).
As mentioned earlier, Lighthill's deScription is completely equivalent to

the present one. In fact, it can be shown that in the present notation

viu_/((‘o/A) A'—"‘?!Z 5, Sin g - (s.81)
oK = \/S.-Z + §: = §, th-» . (s.s2)
._“'bL'/.(Co/A)'= -%.Cos /2y - (5.53)

Further, Lighthill's prdpoftionﬁl featherihg parameter, (n.56);-becoﬁes
o ==z Z,, osc oAy fko - (554

Numericai.résulﬁg for the 6ptimum:ére dbﬁaiped from,‘a program that -
. employs ﬁthe " present 'unsteady liftiﬁg;line'theorf én& fhe ébdve anal?sié.'
Figures-5.1h - S,IE.deﬁiet the optimum_motibn for an elliptic wing.in terms
of the present notation aﬁd also that of .Lighthill. Caléulatioﬁs afe‘
carried out for‘o €k, <1and A= 8 and 16. fStrip-theory'éalculatisns are
 also shown  for compafison; " For each A;-the results(;re cut off at thé‘
" value cf ko corresponding ﬁo.the range of validity‘ of the 1ifting-line
theory at the given A (see Figure 4.13).. It is seen that, ﬁith'inéreasing
A, the three-diménsionai resqlts approach ‘the corre;bqnding strip=theory
values as expeéted.; The strip theory optimﬁm was, alfernately, obtained
using Wu's aerodynamic theory (Wu (1971a)). " Numerical results for an
v.elliptic wing show complete agreeﬁen;. This serves as a check for the
present analysis. Figure 5.14 shows that the highest q is achieyed b& the

strip-theory case. This is due to the abgence of the unsteady induced
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downwash which normally increases CE ,--decreases CG” and, héncé, reduces
n=1- CE /Cp (as explained in Section 4.2)‘.'

Also shown in F;gure 5.14 is the optimum motion in  terms of
Lighthill;s_ notation. We note that the optimum position of the pitch axis
is at about 73%-root chord and remains fairly constant with increasing k,.
-In relation to 8, first we }ecall that &_= 0 and 6_= 1 répresent pure
heave and perfect gecmetric feathering respectively. To understand the
behévior of éL for‘ the optimum, we consider the two-dimensional
' quasi-steady case wﬁefe for éositive (average) thrust 0 < 8 < 1§'for- zerd
thrust 8_ = 1; and for negative thruét = > 1. These ideas ean'be seen in
" Figure 5.19; recalling that, in quasi-steady flow, thrust is _just' the
horizontal component of 1lift. 1In thfee-dimensions, the inducedvdbwnwash
',normally redgce; the effectivefincidence of wihg‘sectiqns, thereby reducing
-the thrusﬁ;-_In drﬁéf t6 festofé»ﬁhe thrﬁét, ‘we increase. the effecfive
incidence.’ of. the ~wing by lowering 6, further below unity. Thi;,"oh the
one hand,»represents a greatef angular deviation of the wing_from geometric
featberi@g in the direction of.pdsitivé tﬁrusf (0 < N < 15, agd, on the
otﬁér, is  a reduefion in pitéh amplitude (meﬁsured'from the horizohtal).
.We See the same.trend in Figure 5.14 where 8 for cases of finite A are
farther bélow “unity than the strip theory values. Presumably, the éame
trend holds at higher ko‘(as seen in Figure.5f1u) where thé problem is more
éomplex due to the unsteady effeéts. |

Figures 5.15 - 5.17 depict the optimuﬁ motion in terms of the present
- notation. - With decreasing aspect ratio, Figure 5.15 indicates a slight
rgduction in the amplitude of pitch relgtive to heave; Figure 5.16 shows ‘a
slight increas in»phase advance of pitch relative to heave; and Figure 5.17

shows ‘an increase in the propaortional loading parameter. As mentioned
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earlier, since cO’,o is prescribed (see (5.38)), Figu;'e 5.17 is to be-
interpreted as giving §, (hondimensional heave amplitude) which decreases
with decreasing A and/or increasing k,. It 4is, thus, .seen that, with
decreasing A, both pitch and heave amplitudes are reduced. Further, the
behavior of 6, in Figure ‘5.1ll and Z, in Figure 5.15 indicate that the
amplitude of pitch is reduced more than that of heave (nondimensional).

ffrom'thé above considerat:’ioris,- the three-dimensional optimum can be
described as foliows. Compared with the strip-theory éase, the wing of
finite aspect ratio oscillates with smaller heave "amblitude. This is
becau-s:e,. ‘f"o.r' t‘ixéd k,, the larger t.h‘e heave amplitude, the stronger the
trai;iﬁg and shed.vorticity and; hence, .the"stronger.the ﬁhsteady induced
downwash which 'tends_ to reduée n as 'explaine'd in the above. With smaller
heave aﬁplitude, we ask ﬁdw‘the ﬁing maintains the _préscribed level of.
thrusﬁ. The answer ;lieg in the ﬁitch aﬁplitude which, measured from tﬁe
p.ositi.on of pérfect geometrie feat;.hei'ing’ (GL = 1), is incr.eas'ed in the
" direction of increasing thrust (8_ < 1). N

Figure:.s.iS depicts the frac£;on _of 'thrust.] coming from the
leading-edge‘ suctibn force. ..The Aratio' decreasés with décfeasing A;”as
expected,:since~thé unsteady indubed'ﬁownwash then érows strongér énd this
f'educeé the . suction force (as pointed out in Section 4,2). We note that,
in contrast with the two-dimensional optimum, here there is no superoptimum
(ko =0 is a trivial solution). Figure 5.18 indicates the range of k,
where 073 /07' is acceptably sma.ll.. - For rexample‘, for (C'gs;'.lcj )< 40%,
ko < 0.2 which is a_éomewhat small range. Chopra and Kambe (1977), using a
numerical unsteady lifting-surface theory, have found that, for fixed .
thrust, leading-edge sweepback reduées C:k_/cc7for sweep angles up to about

30° , beyond which'ef‘f‘iciency drops markedly. Leading-edge sweepback, thus,
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increases the range of k, where Co /Cg.is'acceptably small.

In summary, we notice the following differences between the two-~ and
three-dimensional optimum solutions (rigid airfoil and rigid wing ). The
three-dimensional optimum solution is unique while the two-dimensional one
is nonmunique. The numerical examples considered indicate no k. and k., for
the three-dimensional optimum. Hence, contrary to the two-dimensional
case, in three-dimensions there is no superoptimum and the solution seems
to exist for all reduced frequencies. The above differences also make
Wu's strip-theory application of the twofdimensional optimum to a
three-dimensional rigid wing questionable (Wu (1971b)).

We end this section with a few comments on the optimum shape problem

for flexible wings. In particular, we consider the semi-rigid wing defined

by

| N | -
hex,y,t) = {.;: (G/A) & + [ 500 +5 S2)xF e

IX1< ey) /A IYiSh - (5.55)

(see Figures 2.3a and 2.3b). As pointed out in Section 4.2, here it is
best to assume a number of suitably chosen  spanwise modes for each of
§.(¥), $,(y) and §,(y). The present unsteady lifting-line theory can then
be used to calculate the energetic quantities needed for optimization (as

in Section 4.2). Here, Cg{~is indefinite. To determine the type of the

quadratic *form Cg,,again, we temporgrily adopt the strip<theory viewpoint -

and investigate the possibility of distributing two-dimensional invisible
modes across the span. It follows from (5.22), (5.55), (2.38e) and (2.38f)
that the invisible mode at stétion y is given by

S (Y)/5.(7) = —ke k /(44 k?)
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'S, ('~/)/ g, (v) = —2ke /(44K?) | (_.5.5;)

Since for the semi-rigid wing, §;(Y), 3,(y) and $,(y) are arbitrary
functions of ¥, (5.56) can be meintained atbevery spanwise station y. This
'means that sectional thrust and power required as well as the circulation
are identically zero across the span. Hence, no spanwise or streamwise
vorticity is_ shed. from ' the wing. Physically, this means that, for the
semi-rigid wing, there exists a nontnivial unsteady ‘motion (defined by
(5.56)‘) f-or'.: which CE'= Cop = Cm = r_'(Y,t) = 0,i.e., thene exists _a.n'
inyisible' mode,A -and CE is posi._tive _se_mi.‘ det‘inite. The spanwise
distr'ibution of heave amplitude §, (‘y) 'remaines arbitrary. -
. Since CE is positive semi definite, ' the ' subsequent optimization
‘requires.. that the singular quadratic form CE first be reduced to a
nonsingular one of a._lower order which can be handled by _the usuall'
variationsl methods (see Wu (1971b)). | | |
It is also seen from the - above discussion that .there exists an»
invisible mode for a flexible wing (chordwise and spanwise) and, hence, CE
is positive semi definite. ‘Here, there is need for a lifting-line or
surface theory with closed—form results capable of handling a completely

t‘lexible wing.
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CHAPTER VI
ENERGETICS OF FLAPPING FLIGHT USING

INTEGRAL FORM OF CONSERVAfION LAWS

6.1 Introduction

An alterﬁate approach for calculating the energetic quantities for an
oscillating l;fting-surfaee in £wo or-three dimensions is to employ the
integral form of the.conservation laws. Here, we calculate the thrﬁét
using_'thé momeﬁtuh theorem. Then, we employ fhe principle of éonservation
of mechanical energy'to éaléuiate the eﬁerg& loss rate (waké enefgy) ‘and
_the thrust. | | | |

This approach requires ‘the. distribution Qf bound vorticity and
pressure on fhe lifting surface. In two Qimeﬁs;ons, wé employ the'unsteady
airfoil theoryv:of Sehwarﬁ (1940) ahd thus obtain the energetic quaﬂtities
.in ciosed form. The.results for an airfoil in eombingd:pitch and heave afe :
founq t6 be in complete agreemént yith the ‘known results. fdr morévcomplex'.
.shaﬁés and .motions of ’the airfoil; however, the'mefhod involves'fédious
integrals. In threé dimensions,.iﬁ the absence of an exaét analytic wihg
theory, the final results 'must bé obtéined by use of numerical ungteady
- 1lifting-surface theory or an approximate wing theory,' such as that of
Reissner (1947). | |

The proposed method has several advantagés; i) It is quite general,
being valid for arbitrary wing planform, aspect ratié,.reduCed féequency
and mode of oscillation . (small amplitudes). ii) It is physically
enlightening, in that it relates the thrﬁst anq the energy loss rate to the

properties of the far wake, 1iii) It avoids the'direct calculation of the
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leading-edge suction force.

A survey of the literature bn the energetics 6f threé-dimensional
Aflapping flight'is presented in Section 4.1. A survey of the literature on
the two-dimensional case is ﬁresénted below. | |

The first calculation of the energetic quantities for an oscillating
" airfoil is due to von Kirmin and Burgers (1935) who considered the simplest
case of an airfoillin heave. 'They calculated the thrust in two ways: 1)
using the balance of energy and ii) by direct"calculafion of the force. .
'Garri¢k_-(i936) carried out a similap anaiysis for an airfoil in coﬁbined
pitch and heave with an oscillat;ng aileron. ;Létér, Wu (1§61), using the
| vacceleration  poténfiai' and the unsﬁeady airfoil theory of Kiissner and
Schwarz (1940), calculated the energetic quantities'7fbr. an airfoil with
chordw;seAbendihg (tfaveling.wavesjw;th arbitrary amplitude envelope). His i
Fourier series ﬁethod is quite iabérious. Siékménn (1962;:1963)2used a
VOrtex‘model and the Sﬁhﬁgeh igveréion,fofﬁula to calculate the energetic
‘quagtiﬁies for an’ airfdil _with_ chordwise bending (travélihg waves with
quadfatiéally—varying amplitude enyé;ope),_ Another calculation for an
airfoil iqféombihed'piﬁch and heave is due to Lighﬁbiil (1970) who employed
tﬁe accelgratign pofeﬁtial.‘ | “ |

fThe-most géneral aﬁd extensive study of .tbiﬁ type 1is due £o Wu
(19f1a). His work includes a general unsteady airfoil theory for a
flexible airfoil in vériable forward-speed mofion; He calculates the
unsteady‘ 1ift, moment and the enefgetic quantities,.~~Results for the
special case of steady-state harmonic oscillation are a;sq given.

The above works are in full agreement with each other. They 'are all
based on linearized aerodynamiec theories and, hence, are restricted to

small-amplitude oscillations. Chopra (1976) has carried out an analysis of
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an airfoil in large-amplitude hesve combined with small-amplitude pitch
with respect to the locai_flight'path. The theory is based on a vortex
model and a rigid‘wéke and is applicable to regular or irregular heﬁving

motion. His numerical results clearly indicate the influence of heave

amplitude on thrust and hydrodynamic efficiency.

Consider a thin, two=dimensional flexible airfoil in smali—amblitude
transverse Qseillatibn in a uni form s;ream. of inviscid'ineombresSibie
fluid. Thrust can be Ealculated by applfihg‘the momentum éheory to the
fluid contained. within a fixed control"éblt:me'v which is bounded on the
inside by the airfoil surface O and the wake surface S,, and on the outside
by a far boundary S cénsisting of S';'sz, S, and S4_;; shown in Figure 6.1.
The coordinate system (x,é) is placed at tﬁe mean position of the airfoil,
e is,the'aihfoii4semi>§hohd and L is the abscigsa of thé aownstream end:Q§
the wake. Whenever the wake extends beyond S,, L is tél_cen as the abseissa
of S,. The .f;eé stream velocit&,U is in the diréétidn of the positive
x-axis. The con;rbi Volumé Vis stationary in the (x,2z) frame.

_ With body forces neglected, the momentum tﬁeorem.states-that

R 8 =.-j'Pn AS-S PQ»(Q.n)dS jzt (PQ) dV
B S+S,4T Y (e 1)

_ where'?£ is the force exerted by the fluid on the airfoil, -75 is the
‘veloeity vector and T is the unit normal vector at the boundaries pointing
away from V.

Since we assume that the airfoil thickness does not vary with time,
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the effects of thickness and steady camber and angle of attack can be
‘treated separately by steady airfoil theory. These effects do not
contribute to thrust in two dimeﬁaions. Hence, in the following, T rgt‘ers |
to the flexible mid-camber 1line of the airfoil. Since thrust is a
quadratic quagtity; all quadratic terms will be retained in the analysis.
Physically, this means that the actual airfoil and wake geometry must be
-considered, except where such consider_'ations contribute only_ higher-order
terms. |

It is cdnvénient to introduce into (6.1) the perturbation velocity
o -_— - . - . 'y :
4 =Q -Ul = Uil + wk (6.2)

. where u and w are the perturbation velocity components in the x and z
-directions respectively. 1 and- _k‘ are the corresponding unit vectors.

(6.1) can be simplified somewhat through the use of the continuity 'equation |

S’ (@.a) dS =o R . (6.3)
S+ Sy+T | -
Introducing (6.2) and (6.3) 11to (6.1) and considering that S is a 'clz')sed
surface, we obtain . | - | .
Fa (£) —5('1’ 'P,,)ndS—Pj‘%-(Q )ols-ijterc\V
S+Sw+T Vo
(6-4)

Thrust is the x-component of ? y 1.0y

T(t)——S(«P +m)ds+j (- 'Pm)c{S-g-pSu(Q r\)cl$+
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(2= | I
+ P &,btﬂ. dV | (&-5)
v . .
In the first two integrals we use the Bernoulli equation:’

p-ta=-p [+ Untf@cwn] (0

where ( )'t denotes the partial derivative with respect to time and ¢ is
the perturbation veloecity poﬁential (q =Yd ).  The volume integral in .
(6.5) can be converted to a surface integral by use of the gradient

theorem: _ :
j -V'LP ol\f = S 417; s R | ) -

where S' is the surface(é) bounding the volume V' and 4»' has céhpinuods =

--'_par_t':iaJ,‘d_e'rivatives in V! and on S'. Hence, -the volume 'integral'becomes :

dv =T | vidy 4V

_V | o
S¢ ds +S q> olS | | ._(5?8_)'_
(A<b) ~nuols +S <\> 7 ds
+SSN+§C L ey

. where 'A4> = 4’.,\ - _4:2 is t:he' jump _in't.he - velocity potential. ‘across the |
airfoil or the wake. The last integral on the right hand side Of.(6.8_) is |
around ﬁhe leading edge. As poihtea out ;n _Sectioh 4.2, neax_' the leading f |
.edgé of an. oscil'lating airfoil <‘> "and Cbt remain 'bound‘ed. Hence, the

;Lnt,egrai around the leading edge which is over a vanishingly small region
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is identically zero.. ‘A similar integral around the trailing edge §f the |
wake isralso zero.

The integral dver g+ S, in (6.8) is to be carried oqt only on the
upper side of these surfaces. Figufe 6.2 depicts a segment of the airfoil
or wake vortex sheet. " is the distance aloné the sheet and h(x,t) is the
lateral displacement of the sheet from the x-axis. It follows ffom the

definition of the velocity potentiél that

.
A4> f Y(x,,t) dx | |
LE o - e

j X(i ) ots + ocez>

-C
where Y is the vorticity per_ﬁnit length. 'The_épproximate form is to be -
carried out along the linearized vortex sheet which lies on the x-axis. .

The unit normal vector at the sheeﬁ.is given by

CMu = h T -k + 0?)
_ - (€-10)
Y]

It

|

)
=

where ( ), denotes the partial derivative with respect to x.
Substituting (6.9) and (6.10) into the third - integral on the right

hand.side of (6.8) and integrating by parts, we obtain
2 A T.n, ds = h‘(Lt)"_b_ P(l_ +)
E‘tc 4)) LNy - = W ’ ot . J
Syt L . .
S [X(x tﬂ hx t) d x | (&-11)
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where ( )w denotes the wake and
. .

DLt = | Yes, 6 G
2 |

The volume integral in (6.5) then becomes

SvICL 5,
. L : : :
j [X(x 87 hx t) otx e

-C

[ 24 dv - ~fdds+ [ dseh, L2 P

Next,'ﬁe consider the momenﬁum 'flux' integral’ over S + S+ T in
(6 5). In terms of the perturbation velocities, (6.2), the part of the

integral which is over S becomes
Su(a-‘?‘) dS =—g(Uu+ )olS S WW c(S

J,.X (Uu +u ) AS _+S ww olS (6.14)

It fo;iows fibﬁ (6.?), (6}10) and the downwash at ¢ and §,, namely
D 27 = WX, 2= hix,t
[?t +(U+u) zx] h(x,ﬁ) wixt) &) o
’ ' (&.15)
 that, on these surfaces,
- = ~_?-;e = — 9 4 oe?) (c.is)
(- A) =-(Q-n)y=— ¢ +¢ | |

Using this result, the momentum flux integral over d and Svaecomes
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Ju@tas =-§ amddsifu@ids 6w

SwtT Swtd o we

where A‘ulz Uy = ). The integral around the legdigg edge, being over a
vanishingly small region, is identically zero since, at the leading edge,
(1) is finite and u has a square-root singularity which is integrable. A
similar integral around the trailing edge of the wake is likewise zero. It

can be shown, using the intrinsic coordinate system (s,n) (see Figure 6.2),

that
Aw = X + O(e?3) - | (s.18)
Hence,

§ u@.myds =-Jyom Zhonrde  E9)

19

Pw+C

Substituting (6.6), (6.13); (6.14) and (6.19) into (6.5), we obtain

Ty = £

(wd=u?)ds = & X (w2 yu?) 45
P P3 -

P

—pf uwds +pJ awds (¢.20).
| 2 2 F
o (L) 2 Pt - p J 3 Drons hoo i d

Next, we move the fér boundary S to infinity. It is shown in Appendix D
 that, in this 1limit, the integrals _ovve_'r S,» S, and Sq’- in (6.20) vanish.

Hence,
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T =—2p [ (wrounyds - (s-2n
Ss o

+ Phy (L) F(Lt) Pj ,Bt_[\{(x-t)k(xt)]dx

This result is quite general, .being valid for any _small-amplitude
transverse motion of the-airfoil and vanishes for steadylflow in accordane
with d'Alembert's paradox.

In the remainder of this section, we consider the case of steady-state v
harmonic oscillation, where, in analogy with steady flow, we refer to S as
the Trefftz plane. L is then the abscissa of that plane (L ~»o0), Here, we
use the unsteady airfoil_theory of Schwarz (1940) (1). to calculate the
thrust from (6.21). | | | | |

The amplitude of . the airfoil circulation and wake vorticity are
:respectively given by i o . | >;v ' _

ﬁ;_ "Jk_()_ S . "-:'__' ~(6.22.)._
(6-23)

where k =wc/U. is :the reduced frequence and L is the reduced circulation.

From Schwarz

v I.C. C+§ _ "2- ~ .
k) = —=— — (c.24)
| mjek [ \-\fz_)(k) +) \—\f,z)(k)] | |

(1)
Schwarz s theory is presented in Bisplinghoff Ashley and Halfmann (1955)
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. ~ 7- "
where W, is the prescribed linearized downwash at the airfoil:

Wo 0,8 = ( +UZ) ha) 2t . 25
Ixt<c z2=0%
( )q denotes the airfoil.
It follows from (6.12), (6.22) and (6.23) that
.'\ﬁ".(L) = c_ﬁ. e?j’CGL ‘ | . (6.26)
and | | _ . | A
2Ty =-U \x\g (W, € (62w

~Substituting this result into (6.21), we obtain

'TL-{:) =—-P£ S (W_'z*.' uz) ds — PU L\w (L—;{)"Yw U-,t)

—pf 2 Dot hixt)] dx . (e29)
-C S .

The average thrust is obtained from (6.28) using the averaging rules

T=<PU hy(8) Yylot) - & [ (Wi-uw)ds o (e29)

5

It is shown in Appendix E that for the case of steady-state harmonic

oseillation

—

uz = w? - | _ (6.30)




167

in the far wake. Hence, the integral term in (6.29) is identically zero

and the expression for the average thrust reduces to

F =—PU hy(Lb) Y, (L) - (.31

_ -In the absence of the mechanism of diffusion,'the wake vorticity is
convected downstream without change. Hence, \&;L,t) is obtained from
(6.23). The determination of h (L,t), on the other hand, requires some
ncrk,' since the. ultimate displacement'of an eiement of the.deformable wake
is determined by its entire past history, in which it is subjected to a
varying field of downwash along: its path from the trailing edge to the
Trefftz plane. This asymptotic displacement of the wake is determined in
the next section. | _

It is enlightening to’ examine the phase difference  of the
: displacement and vorticity of the far wake. Let, | | o
h, (LY = Lhy) s (5.32)
Nowtr = gl 24T ey

where the amplitude and phase of h#}L,t) ‘and Y(L,t) are respectively
denoted by |h,| and |¥,|, and & and B . Substituting these in (6.31), we

obtain

T =-2 PU lhul I¥u| cos wﬁ B) (6-34)

For the sake of discussion, we assume that ]hw| and FYWI are fixed and

consider the following special cases.
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i) Ifrk-Bf=T/2, T=0 ().

1) 1f -4 =T, we have the case of maximum average thrust
(for fixed |hy| and D¥wl ). Thisvdoes not necessarily correspond to the
optimum motion which is the solution of a constrained variational problem
(Chapter V).

111)‘ If x-B = 0, we have the case of maximum average drag (for
fixed {h,| and [¥wi).

;v) Cases with 0 < ( ® - (3 ) < W /2 correspond to those shapes
and motions of the airfoil which in the average, produce drag, whereas
cases g;pp_ TW/2< (x = B)LT correspond to thrust-producing
: éogfigppgpipps, Figure 6.3 dépicts' a thrust- and a drag-type far wake

corresponding to cases (if) and (1i1) in the above.

TempOrarily, we adopt the viewpoint of an obserVer fixed iﬁ the'fluiq.
From - the principle of action and reaction we conclude thét‘ (6.31)
represents the - average f;gx of momentum assooiated with the wake vortices
crossing the Trefftz plane.  In the case . of tarust-producing
- configurations, ’t,!ié"w.ake vopticity is 30 oriented as to give rise to a net
flux of momentun in the downstream direction,  Similarly, the
¢P3$*P?9d99433 9@“?18“?3ti°9§ give rise to a net'fi?x of ‘momentum in the
upstream direction. | The commonly observed Karman vortex street is a

drag-type wake.

) - — - — e
It can be seen from the results of Appendix E (see (E.1), (E.2) and (E.9))
that the self-induced downwash of a linearized wake with sinusoidally
varying strength is out of phase with the vorticity distribution by T /2.-
Hence, the self-induced displacement of such a wake is also out of phase
with the vortieity by T /2 and . the corresponding contribution to the
average thrust is zero. ' A
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In the pfeceding section we found that the average thrust of' a

'harmonically-oséillating airfoil is proportional to the time average of the

far-wake displacement and vorticity. Since thrust is 0(€2) and the wake
vorticity is O(€ ), we need to determihe the wake displacement to O(€).
fhis can be accomplished usihgla linearized (planar) wake model as shown
~below. | | | | |

The wake consists of free vortices #hich'move with the fluid. - The

lineérized'downwash at the wake is given by

Wy ) = (Zr +UZ) he k) | @.35)
| X2 c Z=ox%
or . '_ - v
W, (X) = jw t\w(X) + U %— _T\w@x)  (6.38)
'-Xja < 2:=;25:t
L o JBA

o L
To invert this equation, we multiply thrqugh by e
trailing edge up to x (x > ¢). The solﬁtion which passes through ' the
trailing edge is given by |

L X
~ A~ -JW(X-<) _‘J ~ ‘ -v"'
;hwtm:; h(c) e ' +U w,(3)e
, L e _

xzc - (63F)

' The determination of the wake displacement from (6.37) requires the

downwash at the plane of the wake which is given by .

o Cc ~ ) .
C o~ Yo (X) -
Wy, (5) zn'._fc- ¢

dnd integrate from the



170

‘b ~N R
+ k0 § =2 dx  £yc  z=o% (6.38)
aTw < §-X '

The first term here is the contribution of the airfoil and the second is

that of the wake. ‘The vorticity distribution on the airfoil is given by

Schwarz (1940) as

N . : /Z "/Z. ~°() ,
Yo () %[+); { [ 22 e d)

i

e | )
. __J';U) . .

o4 dkQ j[“‘ " = _dk} xtgse  (€.39)

| J XN | _

'Z'

Substituting (6.39) into (6.38), _interchanging the order of
.integration in ' the first "two terms and making use. of the foilowing'

-integrals from Appendix 4

c _ -
e ot - (e
S Le=X (X-M(E-x)  XI-3 )H-c - §+c

S “Msyc (640
f; E Y{z __dx = [ "2 IMsc 3¥2c
C+x (X-M){ §=x) 7\ 5 L3t< e
G.41
we find
N 2 AN Wold) : -
==L c+ o é.
Wiw (3) = [§+c] 3 S [ A-% A (6.42)




1m

where the first term is the quasi-steady contribution and the second term
represents all direct and indirect contributions from the wake.

Substituting (6.42) into (6.37), we obtain

T\Jw m = EJ“’& { hc) e | (6.43)
2T cen 1% Wo (M) oS53
1 | 2
TTU d;JAA [§+c] [C-?\ -3

._'5_ X = et SEOD 4
~ kil ¢ ¢ —= - X3
- 2TU \i dgi: 4) §+<] [ %-C]f A-3 E ’VC_

Here; the first term is the displacement of a 'rigid wake which ie Vthe;'
'sinusoidal “trace of the trailing edge. ‘The second term is due to the'e
quasi-steady effects and the third term represents all direct and indirect
contributions from the wake. T | | _ \

~ The asymptotic displacement of the_wake is obtained from (6.43) b&}
éettingw x = © in the upper iimit of the integrals. In the notation of

Section 6.2, this is h(L) where L is the abscissa of the Trefftz plane

(L>w), L . o : R
' ~ -JwX ~ - . .
hy (L) = e {k(c) et o - (6.44)
o es
2 resd e Wold) e
11' dgjd)‘[i } ‘-_C'_) - N-3%
Je (3-M

Jkﬂ jdg\&d) [g+c]/z X-'-c bz, [ —

. The double integral in the last term ie a universal one. It is evaluated
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in Appendix A and found to be equal to

. O :
~ 2 kA -
"‘_‘;;C_ ?J:u.') +¥, ) -) )‘[3. (k) +Y, (k,) SRR ACH ‘““]]
ok

(£.45)

In passing, we note that, in the 1limit of steady flow, the asymptotic
displaéement' of the wake contains a logarithmic singularity which arises
from the second term of (6.44) and can be expréased as log L or log k.

For future work, it would be of interest ﬁo calculate the near-wake
displacement for a heaving airfoil from (6.43) and to compare (at least
qualitétiveiy) with the experimental results of Braﬁt (1953) and Ohashi and
Ishikawa.(1972), and the eomputgtibnai results of Giésing (1968). Some of
the integréls in (6.43) may need to be evaluated numerically. Further, it
would be of interest to calculate the far-wake displacemenf of a heaving
airfoil from (éAuu) and to correlate with the analytical‘results of Weihs
(1972) who studied the behavior of semi—infinite double rows of vortices.

Substituting (6. RS), (6.44) and (6.23) into the expression for the
average thrust, '(6.31), and introdueing the nondimensional quantities in

(5.4) and
x¥ = x/c
= h /c : '
- ' (€.46)
WO =WQ/U
% )
0= Q/u

we obtain the following expression for the thrust coefficient of a




173
harmonically oscillating airfoil. |

Cj1.’== =2 k (;2 i{,).f). ® B (1) <3Jk'

2
@ 2 L N jks*
LF ® Jas f " [52 ]I ['W* 20 OF) e
m | Y | | g*_l | - XX’] %*_ gX‘
_% [J (k) +Y (.k)]} - (6-4%)

This form has the advantagevtﬁat it relates the thrust to the airfoil
shapes and motions (see (6.24) ‘and (6.25)); We also note that, in the
steady limit, C, >0 as expected. '

As an. example and a check we consider an’ airfoil in heaving motion, :

" where

"‘a (Xft)_= kc < * _ -lX‘SC'- _ . (6.48).

s |
i *

W' = JkhE ixiqr 2¥=ox - e

Substituting (6.49) into (6.24) and- (6.47) and using the following

 integrals from Ashley and Landahl (1965)

I A ety b

. \J-ooi[éi:-\‘]'/z—"} €5k§*d§* - 3 eJk/(Jk) ;  . (6.51)

-T [ H(iz@(k) +) .H(f)@)-.(k)]}
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we obtain the following known result for the thrust coefficient of a

heaving airfoil (see, e.g., Wu (1971b)).

. 2
Cp, = 4%% D(K) hy (6.52)

where D(k) is defined in (4.34). ‘

Keliy, Rentz and Siekménn (i964) have carried 6ut experiments to
measure the thrgst of oscillating flexible plates. They' found good
' agreeﬁent with existing theories, after adding turbﬁlent skinAfriction drag
to the theoretical results. Figure 6.4 depicts‘their results for the case
of heaving motion. Also shown are the result of Smith and Sténe (1961) who
négiegted the influence .of the udéteady wake, resulting in gross
overestimation of the thrust. Thi§ indicates the importance of the

unsteady effects in calculating the thrust,

- in Two Dimensions |

Considér a thin, two—dimensidnal flexib;e airfoil moving at constant
' veloecity U along é-rectilinear path in unbounded, inviscid incompressible
fluid which is at rest atlinfinity. The éirfoil executes small-amblitude
transverse oscillations, thereby producing thrust and a wake of vorticity.
Since the fluid is nondissipative and inéompressible, it can store énergy
only ‘in kinetic¢ form. Hence, the work done by the airfoil on the fluid
ultimately shows up in the far wake in‘the form of .kinetic energy. In
6rder to determige this relétionship Quantitatively, we apply”the principle
of .conservation of mechanical energy to the fluid contained in a fixed

control volume V bounded on the inside by the airfoil and wake surfaces, 0
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and Sw’ and on the outside by a far boundary S (consisting of S, Sz, Sg‘
and 84) which is located infinitely far from the airfoil and the wake, as
shown in Figure 6.5. The fluid contained. in Vv is ;thus free from
discontinuities. The coordinate system (X 2) is at rest with resoect to
the undisturbed fluid while the coordinate system (x,2), which is parallel_
to (X,Z), is fixed to the mean position of the airfoil and, hence, moves in
" the. negative .X=direction with ‘'velocity U. Both coordinate systems_are,
thus, inertial and obserbers in both frames measure the same forces. - The
(x,z) observer measures a velocity field Q consisting of a free stream UL_
and a perturbation field q u T+wk The (x,2) observer, on. the other
hend, meaSures q. _Ine control volume V is stationary with respect to the.
(X,2) frame. | . | |

" Here, as’in-Section 6f2,:ke assume that the airfoil thickness does not'
vary with time and consider the purely unsteady motion of ‘the flexible
E nid-camber line of the.airfoil With body forces neglected, the balance of '

energy for the fluid in V is given by

J2 (i PIFi )JV -[ ¢ F s @s3)

Vv . S+S,+ T - B
where'we.have adopted the viewooint of tne_(x,Z) observer because the (k,z)
observer measures.en infinite amount.of eneréy for the fluid in V. .(6 53)
states that the rate of change of the total kinetic energy of the fluid in
V is equal to the rate of work ot‘ the external forces on the same fluid.

Since pressure is continuous across the wake,

'j.'Pﬁ‘o ?i:cls =0 (6.54)

w
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AlSq, it can be shown that, for S infinitely removed from the airfoil and

thgaag,;
_‘f«pﬁ‘.i‘ds =0 . (6.55)

The integral over the airfoil surface can be written as the sum of
integrals over the upper and lower surfaces and the leading and trailing

edges of the airfoil, namely

~f'Pﬁ§d5= - (s.ss)A

S [ff e ] J4RF s
7] (LE) (TE) 3 ‘
‘where (LE) and (TE) dgnote respectiveij integrafioﬁs around the leading and
trailingbedges'bf ghe airfoii,Aboth of which are’ of; vgnishingly smali
extent. The létfér integral is ident;icall'y zero dué to the Kﬁi:ta
éondition. The former is the.rate of".work' of the leading-edge stction’
- force Tg on the fluid, i.é., -UTg. |

Ip (6;56){'3 is the-velqcity of the airfoil mid-camber line
T =-UT +Z ha k o (6.57)

and 0 is the unit normal vector at the airfoil, with respect to the (x,2)

frame, which is given by

Ny = %( ""'a. T-k + 0(e®)
' (€.s8)
WQ= _Hu
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Using (6.57) and (6.58), the 1ntegrals over the upper and lower surfaces of

the airfoil may be combined to obtain

-- . A._ ds = | ' o
frflrmsas- e

‘ TE

=-UTp ‘J- Af ax dx
LE
where -

- TE S ' | -
To= J 8P sgha dX &G0

is the thrust contribution from the normal force at the airfoil.

(6.53)

Combining the above results and noting that T = Ts + T?
becomes :
j‘g—;c mdv-—vr J Amth dx R
\ | . 4 o

where it is seen that, in the limit of steady flow, thrust tends to zero,'

as expected. Averaging (6 61) over the time interval QT, ‘Wwe obtain

- : TE __ . N 4
ol . e :
= AKE) = ~UT :L 0P 2 ha ;Qc - .(G-_ez)

where

%’Atk&) =-,-£_—§ [\jf% P,I-?_‘IZJV.] | et [éf:‘zp\%lz ‘N] _E, \%
C . ) : ' (€.€3)..‘
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is the average rate of the total kinetic energy of the fluid in V during |
T. t, is an arbitrary constant.

(6.62) can be rearranged as

TE -
_5 bp 2 ha dX = UT + % B(KE) (6.64)
LE | "

which states that the average power required to maintéin the airfoil
'osciiiétipns is equal' to the average rate of work of thrust plus the
average rate of increase of the kingtic'energy of the fluid. The latter is
the aﬁerége energy loss rate since it represents energy imparted to the
fluid which cannot be recovered. As we will seevlater; this quantity can
be determined from the properties’ of the far wake. In terms of the

nOtatiqn of4Sectidn 5.2, (6«6&) may be written.as
P=UT+E o Cp=cC+Cg . (&e5)

-ghiCh is a statemént'of‘consefvation 6f_energy bfor the - present proble@.
‘Thus,v the input power is partly used to produce thrust; and'thereﬁy'uséful
work, and partlj wasted in generating a wake of vorticity. The
;hydrodynamic efficiency of the motion is defined as the ratio of the useful

power to the input power, i.e.,

which indicates that, for given input'pOWer, one must minimize the energy
loss rate in'order to maximize the hydrodynamic efficiency.

In the remainder of this section, we consider the case of steady-state

harmonic oscillation of radian frequency w . We choose T to be the period
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2T /w , during which one wavelength A = 2WU/w of the periodic wake is
generated. Here, A(KE) is the kinetic energy content of one wavelength of
the far wake. This can be seen by comparing the flow field at times t and
t +7T . The flow field near the airfoil is the same in both cases. But
the far wake for t + T is one wavelength longer than that‘for't. Hence,
A (KE) 1s the kinetic energy content of a slice of the far wake of length )
ﬂu as shown in Figure 6.6. From potential flow theroy, the kinetic energy

of the fluid in this volume, say V', is given by

| .— ' -‘2 s N ) 3 ‘ | : .V _
where S! ”is the“ suri‘ace boundihg V' It eohsists'of‘ ‘S" .‘S' _-S;, S4,' S.V;'u

and SWe , Due to the periodicity of f‘low properties in the far wake (see
'Appendix E), the integra.ls over S' and S' canoel each other out. - As the '
' lateral _boundaries ‘SE and.Sk are removed to:infinity, the integrals' over
. these eurfaces vanish since from Appendix E
&z - ’ R
LW, W v e _' : S ~.(§'-€8)
The integrals over the"upper and lower wake surfaces can be 'coz_nbined _using

(6.58) to obtain

X+/'l S - o
A(KE)— "pf A4>~az4>l .dx .(G_se)

: where X, is an arbitrary’constant and we hav_e.. neglected: terms of 0(€3).
The waviness of the - wake, thus, does not appear to this order, It is

noteworthy that, while a planar wake is adequate for caleulating the wake
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energy, the actual wake geometry has to be considered for calculé.ting the
thrust using the momentum theorm (Section 6.2). 'l'his" is because energy is
a scalar quantity, whereas momentum._ is a vector quantity which is
sensitive to changes in direction. |

- (6.69) is essentially the spatial average, with fespect to X, over the
interval A (defined in a manner analogous to the time average in (.14.2)) of

A_tb and 2$/dZ. Denoting this spatial average by (=), we have

A(KE) = =L PX A .’bd;/’a%]z - (6.70)
. . . =20 .

It is convenient to evaluate A#’ and '64’/? Z with respect to the moving
t‘rame and then transform the results to the stationary frame. Thus, with -

respect to the (x,z) frame, usi.ng (6.9), (6.22) and (6.23), we find
" | SEX jet | -
A¢ (X, t) = ¢ Q. w. Ja . XZc - (e71)

The seif-induéed downwash at the plane of the wake is given by (E.10) as

Juwt

“""’ o) = -4 kD &P ¢ (6.72)

The above results are tra_nsf'o_rmed‘ to the st_ationé.ry frame using the

transformation

x=X +UTt

(€.23)
z =4

The results are

'A'¢(X+Ut) %C : e . ' o (6.74)
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‘ 3<b (X +U+-') =-LLQ e (6.3#5)

n
'b'Z | 'Z_--o Z

It is noteworthy that the (X,Z) observer sees a steady flow field in the

far wake.

It follows from (6.74), (6.75), (6.70) and (6.64) that the average

energy loss rate is given by
- _ Rz '
E=Lake)y=Lp0ck 1] - (6.76)
=7 ) =3 - - CAETe)
Since Ap and ? b/t are 'physically_ the same in both frames, the average

power re‘quiredv may be e:.Epr"essed' in the moving frame as

P=- j Mp (x,%) g—‘t ha (X, 8)dx - (5'?7') .
— ) B . .o ) . - . ‘_ . )

Introducing the nondimgnsional Qﬁaniitiesf;n (5.2), (5.3); (6§u6).and |
z*'; z/< |

t/(C/U) _' SR (6.?85“_.

ACP A'f’/ z_PUZ)

in (6.76) and (6.77), we obtain -

oL BNt ey
Ce= o= k (_O. ~ | | (6-39)
Cp= & f AC, (x%, t*) l« (x* %) dx ¥

ol .

| | (6.80)
CT_is then found from (6.65).
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To calculate CP’ we need the unsteady pressure distribution on the
airf‘oil - Ashley and Landahl (1965) give an efficient method for
calculating AC+. Their equation (13 - 54) contains a misprint which has

been corrected below. In the present notation AC,,,, is given by

l—x* bz (+ 5%z Wo(i *) %
AC‘P(X*) z |+xr] §[l—3* x*_gkdg
* ' '
+\,‘|—x*z § Jk~F<§ ) g* (e.21)

o x*-g* )\/l_g*z
1
D gw] 16 [:f?ff]"" it as']

where f is the auxiliary function
_ . N
~ X

P x¥) =j Wo (5%) 455 (¢.82)
L S0 | |

We end this éection with two numerical examples: an airfoil in heave
and pitch. These will also serve as é. ehéqk cﬁ‘ the above analysis. First,

we consider an airfoil in heave where

~

LU : o '
Wo =Jjk h, x* g1 o 2¥=ox (6.83)
The pressure distribution on the airfoil is obtained from (6.81),

N

| - | -
,P(x*) —-4th gc(k)[:;ii]/zfik /"x*?—} (6.84)

where we have made use of the following integrals form Van Dyke (1956).
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g5
- l'-_§*z (x*—§"')

| Ty X
95_ shds =0 ' (6.36)

< \/l.—‘.g*z (x*~ %)

‘The input power is then 6btained from (6.80).

]
o)

(6.85)

L, | , :. . L
C., = 4k% Flk) h* (6. 87)
| where (.)Q deﬁotésAthevheaving motidn. Using thé identity. _‘
Z ’
T L@+ +04-30)7])

B(k) = F-(F?+G?) = (6.88) .
from Gafrick'(1936); the eﬁergyflossnrate is'obtgiped ffomﬂ(6:79).."’

CEH= By REE O een)

The argument of all Bessel “functions in :(6.88) is k.- The Eh;ust is
obtained from (6.65). . ‘ |
ry = AKEDII ST (G90)

Tﬁe hydrodynamic éfficiencyifor ﬁhe moinn ié‘given by~'
M, = D/ Flk) S (6.91)
_ For!an airfoil in pitching motion about the mid chord
' . Jjwt : S . o _
~hq (xA)=ax e’ Ixise - (692)

Wo (x¥) = jket x¥ 4o ix¥ <) 2¥=0z (6.93)
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and

A , 1-x* i/
AC, (x*) =—'4o<{ Lik+ 01+ ,_JHC(L) +)k X ][—,—#]Z
ik I+ E 0k X*),/I-X*Z} | (6.94)

' -where we have made use of the integrals in (6 85), (6 86) and the following
one also from Van Dyke (1956). |

¢ ‘5*2«15*]
Sy VI- g%z (X*—§*)

=-Tx* . (cas)
The'input power is then obtained.from (6.80), _
Cp, =k [kO-F) ~z@]a® . (6:99)

where. ( )p denotes pitching motion and we have made use of the following

ihtegrals.' ' | ‘ .
¥ | 1=x*¥1"2 * _ _ | ¥
_f‘_x [——w*] dx* = -T2 S ean
l . * U o '
| xZ [-‘L’i_] Z ix* =T . (6.98)
f X | dxT =Tz \ .

. The energy loss rate and the-thrust are obtained -from (6.79) and .(6;65)

respectively.

| £.9
— (I/2k) G (k) +;/4] X2 (6-99)




185 |
Ce, = (4+k%) Blk) «2 (6.100)

ihe corresponding hydrodynanic efficiency q is obtained from (6.99) and
(6.96).
The'above results for an airfoil in heave and pitch are in complete
agreement with the known results (see, €e8ey Wa (1971b)) The thrust and
the hydrodynamic efficiency of heave and pitch are plotted in Figure 6.7.
It 1s seen that the -heaving motion always produces thrust. Pitching
motion, on the other hand, usually produces drag, except for k > 1.781.
The efficiency of the heaving motion approaches 100% as k-’-o and dropps
off rapidly with_increasing_k, approaching 50% as‘k->a:. The efficiency of
~ the pitching motion is ~defined only for'ph ; 1.781, where it ‘increase
a monotonicallp and,"approaches. 50%' as‘kg»d:._ In the study of the optimum'
motion of ‘a ‘ri’gid ai_rfoil in Section 5.2, we saw. that a sultable -

combination of pitch and heave can achievefremarkably'higher efficiencies.

* 6.5 Extension to T m'_ew } . - |
. In this section, we extend the analysesiof Sections‘6.2 - 6. 4 'to three
dimensions and study the energetics of oscillating flexible finite wings..
.First, . We ' use the momentum theorem to calculate the thrust. Then, using
the_principle'of conservation‘of energy, we determine the energy.loss rate'

and the thrust.
c hru
Consider a thin, almost-planar flexible wing of finite span undergoing

small-amplitude transverse oscillations in a uniform stream as- shown in
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Figure 6.8. Total thrust can be determined from the momentum theorem,
(6.1). Here, the far boundary S consists of the right circular cylinder S,
which is parallel to the main flow and the circular disks S, and S5 of
radius R.

We introduce the perturbation velocity?

$=Q-Ul =uc +vj +wk (&.101)
and the continuity equation into (6.1), take the x-component of the result
and use the Bernoulli equation -and the gradient theorem, to obtain the
total thrust. o - |
Tty =4p [ (v2erw2-u?) ds
. S5, R
+Pf‘ (uv CGS6 + uw Sing) d S
‘Sz o . .

_sz J. (v2 4 w2 —u2)dS .(6'.lb,2)

v and ?.aﬁe the perturbation velocity component and the unit vec_tor in the
y-direction respectively and the angle 6_ is measur_ed from the y-axis in the
yé—plane in the positive direction of rotation about the x-axis. See'-

Figure 6.8. 1In arriving at (6.102), integrals of 4’_{:‘1'?1‘ and u(a--ﬁ)
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around the edges of the wing and wake vortex sheets vanish.

Using (6.16),

—

n, = hx? +l\\, T—k + 0Ce?)

(6.103)

and
ALY ) = [ N3 vt) 43 40D (&-104)
o Xp(¥) o ) |
(6.102) becomes, af_‘ter a'n.ivntegrati.on by parts in the next to the last
term, .‘ | |
T =2 [ wzewz_uz)ds -
—% J (V3+ w? -u"') o(S L
53 ) .
l+ P\J. («((_V Cos @ + W Sin 9,5 ds (gflOS)
o ; v .
+pi;hw(uw,ﬁt)§%|(LwLy;H ady
- —P'j dy j d x 2 \-_x.(x,y,t) h(x,y‘,-t.).]_
: .-b Xe\‘/’ : .

Here,
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S ooy
MLw), vt = f Y(5,v,t) d3

Xe(‘/) : , .

= P(V,t)‘l‘f Yw (§,‘/,‘E)_OL§
Xt(‘” .
where'xa, Xy and L are respectively the abscissas of the wing leading and

trailing edges and the abscissa of the wake trailing edge.['(y,tis the bound
circulation. Whenever the wake extends béyond Sy, L(y) is to be taken as
the abscissa of Ss. It is sho;wn in Appe_ndix F that, as the far boundary S '
is removed to infinity, the integrals over S, and S, vanish. The integral
over 83 in gehexfal must be reﬁained since, in the ‘long-_tj..me. limit, the wake
'u_suall? crosses S, and the integral is expected Ito be nonvanishing.

(6.105) then r_educes to

Tt) = -+ p f (W24w2—u2) dS
: 53
+pfb. ho (LD, ¥8) 2 Tl y8)dY  (6.0%)
oy Lyy) | |
-e | d‘ij Cdx 2 [Yoy ) hxovt)
b Xy - -
This result is quite ggneral, being valid for any 'small-aniplitude motion of
abliftingsurf_ace including transient' -motion. Also, it is valid for |
arbitrary' planform (siraight or éwe'pt back), aspect ratio»an.d reduced
frequency. -It can be shown - that, as the wing sém.{ span b tends to

infinity, (6.107) reduces to its two-dimensional counterpart, (6.21)..

Also, in the limit of steady flow, the classical result for vortex drag is
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recovered.
Next, we consider the case of 'st':eady-state harmonic oscillations..

Here; the wake extends far beyond S, (L+x). From Reissner (1947)

FY) = o &L ty) 3% Xely) | (s.108)

. . where ¢, is the root semi chord. Reissner has shown that the spanwise

component of wake vorticity is given by _

C S ~JT X ‘ .
'Yw'(x,\/) = -j K, a (y) e X2 Xgy)  (6-109)

where k, is the reduced frequency at the wing‘center section k, = wcge/U.
-Substituting (6-108) and (6. 109) into (6.106), we obtain
>‘de jmfj ‘ o
F‘(L 37 ~I:) =G .ﬂ,(w e o (s.i10)
and, hence, -

2 P(L,\/,"‘i‘:)i =-U le.,('-;‘/._,'t)"-‘ R CH T

Substituting this into (6 107), we obtain the thrust of a harmonically

-oseillating wing.

'7(t)=—--§-f (vitw?—i?) dS
. ' , 153 .  _ : s

_Puj w Y, £) Yw(Lvt) oly . (enz)
3 ey |
—P J d\f J O(X ﬁ [X(X/Y;t) h(.x,\/,t)]
b X -

This is the three-dimensional counterpart of (6.28).
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The time average of thrust is obtained using the averaging rules in

(4.4) and (4.5).

[ (VEiwi-E) ds
O3 (e.113)

5 = -

o NS

—PU [ hy v e Yo (L) dy
b .

where‘ both integrals are over the Trefftz plane. . This is the
tﬁrée—dimensionai couhterpart of (6.29)._ Evaluation of th; first integral
in (6.113) requires knowledge of ;?, ;;-and.;z ig the'far wake. These are
calculated in Abpendix G in terms of integrals invoiving jﬁ; and djia/dy
:which, in general, must be evaluated numerically. Evaluation of the second
. ihtegrai iﬁ (6.113) reﬁuires the spanwise VOréicity and the lateral
displacement of the far vake. . The wake vorticlty is given by (6.109).
fo,deﬁermine tpe aSymptoﬁie displacehent‘ of the wake; for reasons
"ﬁiready ciied, ‘it suffices to consider a linéanized wake ﬁodel.' The

linearized downwash at the wake is given by

) = 03 e D) (e
X% %ely) - \Wisb  m=ot

As in two dimensions, thisvcan be inverted to obtain the wake displacement.

~ ~ —) W (X=X LY))
he (0Y) = hiXpy) e o | |
| €. 115)
X . |
+U™ w,t3,y)e A3 - xPxLW)
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The asymptotic displacement of the wake is obtained from this by setting

X = @ in the upper limit of the integral.

Evaluation of (6.115) fequires the downwash at the plane of the wake
which is induced by the wing and wake vorticity. For (x,y) on the .
projection of the wake on the xy-plane, '

¥ e YalE M +y-m Salin) .

" ' i B d d '
Wy (X,y) = an J ']);m 5 = [(x- §)7-_+ (y-mz } 32
, L ?

e e 3 (§ +w )S (5, S
4 \'_(x~§)’-+(‘f Y))Z] O -

Xf(y) _ .
where ( ) denotés the wing and S is thé streamwi-se cbmponent of vorticity
V'which is taken to be positive :Ln the negative direction of rotation about
" the x-axts. | |

'» Reissner (19&7) has shown that

§ X,Y) = S d\ﬂa/ Ay ' '(s,i\q.)-
it vfollo:ws'f‘rom' (6.1,08). that
R X w> | o |
&by = -é— JBxw J . Xa (5.Y) ol§ (6.118)
-t Xew) - o
‘ Sd}ivs obta;l.ned from the contihuity of vort.ici’ty on the wing.
3o lXy) = b\/ \S- ‘Ka_ (3, ‘/) 0l§ (6.19)

| Xe(y) ’
Hence, once the bound vorticity ‘A’Q is determined, e(rerything_ else can be

determined (at least numerically). In the absence of an exact theory to
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- caleulate Ya., we can use numerical unsteady 1lifting-surface theory or
bneissner's approximate theory (Reissner (1947)). The 1latter gives a

closed-form expression for Y4 which contains the results of unsteady

airfoil theory and steady lifting-line theory as special cases.

Here, we adopt the viewpoint of the observer fixed in the fluid and .
consider the same wing moving with velocity U along a rectilinear peth in
the negative X-eirection while executing small-amplitude . trsnsverse
oscillations, ss shown in»Fiéurev6.9. The-balance oflenergy for the fluidr
.in v 1s given by (6.53) whepe the cyiindrical.far -beundsry S is located
infinitely far from the wing and the wake.

As in two dimensions, it ean be shown that the right hand side of

: (6 53). is the rate of work of thrust and unsteady lift i.e.,-

fl(i—m%l )4V - ug- fbf Te dS ez

' Taking the time average of -(6.120) oves Athe_ time intervai' T fand

rearranging, we obtain

_f A? ha dS =UT + L AKE)  (6.2))

where-—,—é—-A(KE)-»---isv.det‘ined in. (6.63).-: (6.121) 1is 'a -statement . of.
conservation of energy‘for the pfesent three-dimensional problem. In the

notation of Section 4.2, it becomes

P = UT +E or CG,A = C7.+ (‘E (6.!2_2)-
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The corresponding hydrodynamic efficiency is defined in (1& 54).,
| ‘ Next, we consider the case of steady-state harmonic oscillations and
choose T »to be the period 2TW/w. As is two dimensions, A (KE) can be

determined t‘fom:the prqperties of the far wake, namely
= ' o
MKE) = - £ J-b M 24 \z—-o dv (6.123)

ﬁiﬁh respect to the moving'. frame (x,y,2), A$P is determined using (6.104),
(6.108) and (6.109). | |

w A —J DX . S
Abxy) = o dl ) &7 xpxe) (6.124)

. Downwash at the plane of the wake is obtained from (G.11) as z—=ox.

%(X,‘ho} —.‘--kr.i_’ .e‘Jqu éﬁ_ "Q'(q) .53“ (y-n) K, (m|y7q|)dq :

. L
—k g j fL(q) K., (wl‘/ ')I) 0‘1 - (6.125)
ilTCo - : :
"In the 1limit of ste'ady flow, (6.124) and (6.125) reduce to the classical
steady results. _ S |
The above results for B(# and ?Cb /dz éan be transformed to the

(X,Y,Z) frame using the transformation (6.73) with y = Y. The results are

%S (X+Ut Y) = ¢, ﬂ(y) 'wa (e.1z6)
bd) (X+Ut Y)‘ _-;zl_tﬁ__ €J5X§ﬁ:(ﬂ) siﬁn('-/-r])‘-K‘(ﬁl\/-r“) alv] .
R Lo . _

_ko X f B.p) Ko (@ 19-11) dy (G-127)
~b | _ _

2mrC.
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Using (6.126) and (6.127), the average energy loss rate is obtained.

- b b . ~
K, @19-11) dqdn, +\LOS S ..ﬁ_,@)('].) LL ) K, @1g,-91) o\qalq‘}

-p -b
(6.128)

The average totai power required to maintain the wing oscillations is given
Fe-f dn[ 45 bpGqt) & hatsn)ds  (e429)
: T Xely) - o |

The total thrust is then _obtained rroﬁ (6.122). The present method:
requires A'p and ﬁ_. which can be obﬁéined from numerical unsteady
lifting-surface -theory or ﬁeissne'r's theory. .

In the limit_of steady flow, the above results yield one half of the

known value of the induced drag, as expected.
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CHAPTER VII -

SUMMARY AND RECOMMENDATIONS

In summary, a low-freqnency unsteady lifting-line theor& has been
developed, ueing_ the MAE method, for a hanmonicallyaoscillating straight
wing of large aspect ratio., The wing is assumed to oe chordwise rigid but
completely flexible in the span direction. The wing displacements are
prescribed and the unsteady nressure field, airloads and induced downwash
are obtained in closed form. To leading order, the latter consists of a
convecting sinusoidal gust whose amplitude ‘is constant across the chord but
varies in.the span direction. "The unsteady induced downwash is O(A ), as
in the steady case; ~ The theory is sufficiently general to permit
quantitative treatment of a range of interesting problems involving
unsteady motions ‘of spanwise-flexible wings in incompressible flow..

Numerical examples_clearly show the influence of k,, A,‘planform shape
and node'of oscillation on“the.wing~aerodynamioe. They also-indioate.that, S
for elliptic and moreislender pianforms,'the'theory.yielde_eonvergent total
results (at least for the examples considered). Comparison with Reissner's
theory (Reissner (1947)) and limited numerical lifting-surface results show
‘good overall agreement.' The present theory,' thus, provides formal
Justification for Reissner's ad hoc tneory. Compared nith lifting-surface
theory, computation time is reduced significantly. |

| The present theory also identifies and resolves the errors in. the .
unsteady lifting-line theory.of James (1975) who used a semi-intuitive MAE
appfoach. His unsteady induced downwash,iS'fonnd to be in error which

renders his results ineorrect.' He also suggests that his theory ie valid
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for all reducgd frequencies, but his formu;ation clearly assumes loﬁ
reducéd frequencies. Further, he does not treat and resolve the inherenf :
nonuniqueness of ﬁhe solution in the acceleration potential formulation of
the problen. The present work also raises questions about the complete
validity of the unsteady lifting-line theory of Van Holten (1975) who
suggests that his theory is valid for all reduced frequencies but finds the
unsteadi induced downwash to be constant across the chord, a condition
which holds only_in the steady flow limit. The theory of Cheng (1975) who
determined the velocity potential to O(E';) does not include calculation of'
the aerodynamic 1loading, the unsteady induced downwasﬁ and some of the
~ important details. |

Using the present theory, the effects of three-dimensionality on the
energetic quantities have beeh determined for a finite wing oscillating.inl
cohbined pitch ;nd heave. This 1is the first closed-form anal&sis of
three-dimensional - flapping flight. In the present . approach, the
leading-edge suction force is obtained exactly. Numericél examples for the
spanwise distribution of the energetic quantities :ana the overall
>propulsife» performance of an elliptic wing in combined‘piﬁch and heave are
presented. | . |

Based on the numerical examples and correlations presented in this
work, the region of-validity of the present theony has been identified in
terms of k, and A, It is seen that the theory is valid over a considerably
larger range of ko than originally anticipated.‘ The region of validity
contains the values of k, and A which are of greatest interest in most
applications. For small k, andzmoderate A, the total 1ift ané» moment
coefficients fér an elliptic wihg in pitch and heave diéplay an\unexpected '

behavior which is not well,understdod_and calls for further investigation.
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Numerical lifting-surface results 'would be helpful in understanding this
behavior.v If it is found that this is an inherent weakness of the present
- theory, carrying out the asymptotic analysis to one order higher in I
might resolve it. In order to better assess the utility and range of
validity of the present theory, there is need for furtherbcorrelations with
lifting-surface theoryland also experiments. ‘

The optimum'soluticn-of Wu (1971b) for a‘rigid airfoil has been recast
in terms of the normal modes of the quadratic form for the energy loss rate
to shed light on the structure of the optimum solution. It is found that
one of the normal modes; termed.the-invisible mode, plavs a central role in
the solution. The invisiblevmode is interesting in its cwn‘right, since itA
,consists.of a.combined pitch andvheave motion of the airfoil:which sheds no
vorticity and for which the energetic quantities are identically zero and -
the hydrodynamic efficiency is 100%. ‘ The existence of the invisible mode
- is a direct result of the fact that the quadratic form for the energy loss..
' rate is positive semi definite. Since an. arbitrary amount of the invisible
_mode is present in the solution, the latter is nonunique.

‘The optimum motion of a finite wing in combined pitch .and heave has
been analyzed rigorously for the first_time. Itvis-found_that, in contrast
with the two-dimensional 03393 here the quadratic form for the energy ldss
‘rate is positive definite.h As a result, there does not exist an invisible
mode for: the ,finite rigid ning and the'correSponding'optimum solution is
‘unique. Numerical results:ror;the optimumlmotion of'an'elliptic ning “dre
presentede | |

Finally, an alternate approach‘has,been presentedAfor the calculation
of the energetic quantities'in two.and three dimensions; namely the use of

the integral form of'the conservation laws. This 1approach' has several
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" advantages. i) It is quite general, being valid for arbitrary wing
planform, aspect ratio, reduced frequeney»and'mode .of oseillation (small
amplitudes). ii) It 4is physically enlightening; in that it relates the
thrust and the energy loss rate to the momentum flux and the kinetic energy
content of the far wake., i1ii) It avoids the direct calculation of the
leading-edge suction force. However, the method reqnires the distribution
of bound circulation and pressure on the wing and is found not to be well -
suited for optimization studies. In two dimensions, using unsteadp airfoil
'theory, the ’results are obtained in closed form; although more complex
shapes and motions of the airfoil give rise to tedious integrals. In three
dimensions, in the absence of an exact wing theory with closed-form
'results, one--has to resort to numerical lifting-surfaoe' theory or
'Reissner's theory (Reissner (1947)).
The following extensions are suggested by the present investigation."

In order to take full advantage of the capabilities of the present unsteady
lifting-line " theory, it,'would. be of interest to modify the present
numerical sehemes,' which are for oseillating,'rigid‘ wings, to handle
spanwise-flexible wings as well, This. can bevaccomplisned bp choosing a
_nnnber of suitable modes for‘tne span distribution of heave and pitch.
Similarly, the present analysis of the energetics of an-oscillating rigid
wing can be extended to include spanwise lflexibility. In‘ turn, .these'
'caleulations can be .used to analyze the optimum motion of a semi—rigid
- wing. This would be of 1nterest in studying wing motions of birds with
small to mocderate flapping amplitude and relatively large aspect ratio.

_ Another extension of the present ‘theory 'is to oetermine ' the
-(aerooynamic) response of an oscillating semi-rigid finite wing to an

oblique convecting sinusoidal gust, from which the response to any
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arbitrary localized gust or ,continnous atmospheric turbulence can be
obtained by Fourier superposition. .This can be obtained from the present.
analysis by including in the lowest order inner solution the pressure field
due to the interaction of a two-dimensional airfoil with the oblique gust.
- The latter can be obtained from the solution of Filotas (1969) by use -of
Green's functions (pressure doublets). This extension of the present
.theory might be useful in aeroacoustics as well. |

Another extension is to inolude the effects‘of compressibility (using
~one of -the existing‘ compressible unsteady airfoil theories and Green's.
.functions) and curvature and/or sweep'of the planform. Development of' a
'unified- theory valid for all'reduoed,frequencies would also be of interest'
(Section 2‘1) | | ' | '

The- present theory will also - be 'useful in other areas, such as_

aeroelastieity and the analysis of energy extraction from fluid streams
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~ APPENDIX A

EVALUATION OF CERTAIN INTEGRALS

1. From Section 2.4 .

c | R | .
YIQ«n (9)\,.) - j[::z ]‘/z, .;—“? LE (A.1)
' -c |

n=090,\,2, ...

The integration is along the real axis from X = -c(y) to % = c(y) with the
-complex parameter ¥ = x + 1 z. -

Using the transformation

S ME= (et £>/'cc‘-'%> o a2y
q, become.;z.A | - | |
. 'Q'.nj(i.‘)\/)' _ 4CCU:.-H')“ f (:z__‘)“ ,1;.. __ oL'] ' | '”(A.B') '. :
R _+_a\,(*\zv—rrl) ' Y )
" where | | | | -
o<=:(§\+c.)/(§ -—-C,). - ,.‘6‘4)'

For given n, Q, can now be evaluated using the method of partial fractions

which reduces (A.3) to a sum of the following integrals.

= ' : | o _-m_=| o _
,! -_(']—z-'-_l)-; = 1:3.5 ... (2m=3) ™ ' > 2 R
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f<') ra) alr] (Tr2) &~ "2 | | (A-6)
The first five Q,'s, evaluated in thié manner, are listed below.
Q, (5, ¥) = w[1-A]

Q(5,y) = Tr[s+c—%/\]
S22

Q, (5,y) = W [§*+ct +—¢Z—S A)

Q, (3,y) = T‘ES +CI +-;‘z-C2§_'-+

N-

Az L3
Q,,(xy)-rr[s cc’ +—;,;c23- cles 4z

/\] (A-?)»

- where

A= \/(,S+<_)/('X—C) | _ (A8)
2. in Section 2.6, ﬁe make use of the follbwing'integrals..

[amegte 9 d - -2 20 e
{ . ' . ~ 4

(2)

[yt eI P we
i : )

- .f (1= Vat=1 ) f’?j“’i Aq = ['./ug) -] e

, (2) o
G (A.1)

1
k




f Joj (1 .,.\'/12_, ] ,;Jk",ol'] A"‘% —L— H:z)(k) (A.lz.).

j; q ,]?. -1 e_J'UI 0{1 == —;E-z HI(Z)(L)
(A-13)
Tl y@
-7 % Ho </ (k)

The: first two integra.;l.si' are found in Watson (1966). The integral in
(A. 11), after an integration by parts, can be . expressed in terms of (A 9). |
The integral in (A. 12) can be obtained from (A 10) by an integration by .
- parts. The last integra.l, after integrating by parts twice, can be .
expressed in terms of' (4.9) and (A.12). | A |

- Some of the _above ) integrale, when_ consi’_de'red‘. individhal_iy, _ai-e
divergent for. '.real '_val,ﬁes of k. In aueh cases weia.séi‘gn. a smali negative
imaginary part. to k.- Later, ) i"or dee in Section “2.'6-", .Vv'ie '_ 'analyti‘cally"‘
 continue the resuité, to lreail-talu'es of k.. | R |

3.' From Section 6.3,

Iz, o x | ' A
- | . A.i4
j [c+x . <x—)\)(’§'-x).,' 4§.,)\'>,c; (__ )

This integral- can be evaluated fronm the following contour integral.

L dj" . |
§[5+Q z(;__)‘)(y_g) ‘-=2!T(, [Res‘( ) + Res (hg)v‘_]_ .

EA%C . (A1)
3

where ¥ = x + 1 z and the integration contour C consits of s C, Cg and

C

q+ s shown in Figure A1, For the integrand we choose the branch cut
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‘from J = =c to Y = ¢ defined by
O0¢ arg (J+c) <2

. (A.16)
0§ arg (3-c)Y <K z2r

The integral along CR vanishes as R—c and the integrals along C_, and C3

cancel each other out. .As C, shrioks down to the branch cut, it can be

shown, using some ot‘ the analytic properties of \]( h c)/( ¥y + e) in

- Table 2 1 (p. 57), that (A. 15) leads to the t‘ollowing result.

_ LK A—=C° ‘(2. /2'} .
I,= 55 i-_HC_.] - =] NEze ()
4, ,_Fr.om Section 6.3,

. - o
o c=x 2 dx . . ,

- : , , Nge £xc o (Aag)

T2 j’c _[cs«'x;} ST Nee o Ere

This integra]. is similar to the one in the above. It can be evaluated from

the f‘ollowing contour integral.

§ sfc].’z‘ A g Res(®) (a9
e S3tcd (3-M(5-%) | o
(Al ge g3
--~Here, we-choose the' branch cut- def‘ined in.(A316). - The integration contour -

C consists of C,, C ’ C3,

cirolés of radius R and P réspectively. Again, the integral along Cg

Co and Cz as shown in Figure A.2.l Cp and C,; are

vanishes as R-»co and the integrals along C, and C, cancel each other out.

The integrals along the 'upper and lower halves of CP cancel each other out
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due to the sign change of \/.( ¥ = ¢)/( 5 +c) across the branch cut (see

Table 2.1). (A.19) then leads to the following result.

' ,
- I §-c 172 - .
I,= - [g-(-c ] Al £¢ | §.>/C (A.20)

5. From Section 6.3,
g > I o J&(S=))
-l gl -

C -

ADif‘f‘erentiating this equation with respect to k =wec uncouplesi‘ the

~,

integrals. ' N
I j ~ /2. J-wgd - A+C ’/z -J‘BAO()\ (A ZZ)
_E':E! ] 3![?\4]'-"—- | '

These integrals can be ' expressed in terms ot“ certain . known - integrals

(f‘ound{»e.g._, in Ashley and Landahl (1965)).
_

f ['M]‘&e‘m,}w‘T—rz‘-[H.‘.“m+ P @) (Rza)
J - k) -

]/z_ @ §CL§ ='ES. [ Ha)®(k) +j H?)@(HJ (A.23)

Substituting these results in (A.22) and expressi.ng the Hankel functions in

terms of Bessel functions (see (2.43)), we find

2

' ' - 2 ., 2.
AL (@) [2 (BT ) 4 (3 3]
' (A.25)
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where the argument of all Bessel functions is k.
I3 is’obtained from this result by integration.

1,= (Lz': [J’ +v, - 3. (0)-\2

RN I E AR LS PURES )

where D is the complex constant of integratiori and we have med¢ L.; of the
. i
following identities. . ¥

-, . |

30 (2) = - j| (:E)

o | (A.27%)
/
Y, (@) = = Y (B)

The constant of integration is determined by evalﬁating I; in ‘(4.21) for
some value of o (or kj directly. Using ﬁhe method of s:t;atioqary phase
(see, e.g., Carrier, Krook and Pearson (1966)), it can be show.n. that I,
tends to zero as G (or k)—> . Using this condition in (A.26), the

ocnstant of integration is found to be

D =3 0 + Yo (o)
.o ’ : {A.z8)
- J-'J (3% + VA, do —Ye ) dk,
°
Substituting this into (4.26), we obta:.n

1, = (%) c{[s (k>+v. “ua) -] j R Mk}

(A.29)
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It is seen in Section 6.3 that the imaginary part of I3 drops out of the
expression for the average thrust and, hence, there is no need to evaluate

it.
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APPENDIX B
NUMERICAL EVALUATION OF INDUCED DOWNWASH

OF UNSTEADY LIFTING-LINE THEORY

In this appendix, we describe numer;cal schemes for the evaluation of
 the unsteady induced downwash of the pbesent unsteady lifting-line theory
given by-(3.37a) and (3.37b).

v Froﬁ aﬁphg the planforms considered "in this ;work, we are mo st
interested in the elliptic 6ne; _The elliptié'blanfbrm, ﬁéwévgr, éives“rise
to infinite slopes ét' tﬁe tips in the spénwise'variation of some of the
physicai quantities. vThis; in turn, gives rise. to difficulties in' the
numerical. evaluétioh_ §f ‘integrals '.contaiéing such  ternms. . These
Qdiffieulties can \b; resoiﬁéd by intfodﬁéingrirthg‘ spanwiée : aﬁgﬁigr

:substitutlon

y¥'= o3 8 WXl <l osE@ LT
S | - (8.1)
- *_ ¢ 'Y SN N . . a7
M= Cs 8 Ml LI 0O <N

which transforms a planform.with blunt tips uinto va ’planform .with more
Sienden tips by siretching 6u£ ﬁhé'tiﬁ regions. For example, the elliptie
planform which has infinite slopes at the tips is transformed into one with
finite slopes at the tip, as shown in Figure B.1.

In terms of the angular varlables, the first integral in (3.37b5 may
be written as

i | o
¢
Al = 3C~-T;i_°—q—)?— Tl'(}‘o lv*—q*n M, (0% o} ) de, - (8.2) -



208

where ) -
(67— 8712 sm g/

M / ’
\A(Ql eg ) kCOSSI—COS e',)z

(8.3)

We have introduced the factor (8'- 9:)2/(9'- e;)1 in the integrand. As we
will iség later, this greatly facilitates the numerical evaluation of the
integral in the neighborhood of the singularity;

Before describing the numerical integration of A(e'); we first discuss
evaluation of various pauts of the infegrénd. It fullows'from (3 11) and

(3.36) that the strip-theory section lift coefficient is given by

y{d ' h
o (v = ~T(&) ke = ko k K'c%)
| . o 7 (8.4)
s et ik ()] €} -
Numerical values of Theodorsen's function € (k) are obtained . from (2.42)
and (2.44) using library subroutines for the Bessel functions involved (1).
.q:(k) is plotted as a complex vector in Figure 2.4. LiSting_ of the
primary programs used in this work‘are éiven iu Appendix H.
For later use, we point out that it can be shown, using (2;62),_ that,

near the wing tips, (B.4) has the behavior (for fixed aspeut fatid)
3 < 7 . < C\: =
Coy ) =1 () [+ 22 (8) + a3 (8) ()

rolg)] (e (e

(1) .

Numerical values of Jo, J,, Yo and Y,  are obtained. respectively from
"~ subroutines DBJO, DBJ1, DBYO and DBY1 which are part of the IBM mathematics
subroutine library SL-MATH.
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where a,, a, and a, are 0(1) and well behaved near the tips.. It 1is seen

1 2

that in the vicinj.ty of the tips, to leading order, EQ 2p is proportipnél’ to
the 1local chofd. This is "expected since, as we approach the tips, ﬁhe
local reduced frequency tends to zero and the unsteady lift takes on its
quasi-steady value. ‘ _ A _ A .
It can be shown that the f‘unAetion. M, '(9',9"), (B.3), has the fqllowing

~ properties (see Figure B 2): |

'i) M,)Of‘or0<9$1\':; |
C41) M, =0 for 8= 0,7 and or 0,5

111) the maximm of M, ocours at @] = ' and its

B locus is given by | | | |

Sm e’ \}\-\/*z

iv) for @' = 0, W y near the tips, to leading order,

Rosrod |
where Y is the angular distance t‘orm the tips :
(that is, 81 or w- 9'), _
v) 'symmetry property: ' M for -y' is the mirror image .
_ of that for y* in the line 6} = W/2,
Hence, M, has a square—root singular behavior at -the’ t.ips. (' =0, ).
For ellipt'.ic and more slender planf‘orms, however, the loading at the tips
"drops off fast enough to cancel .out this-singularityu(;eev(B.S)). o -
The kernel function Tf (M) in (B;z) is defined in (é.155b). Numerical

values of K, are obtained from a library subroutine (1). The rest of. the.

(1) - ‘
The subroutine used is DBK1 of SL-MATH.
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kernel is evaluated using the closed-formtapproximation derived by Watkins,

Woolston and Cunningham (1959), namely

.008S M
2 49

L —L () = l. 3410 4-1.0050 M2

. -s - M
+[14__8675ﬂ 4648 + L } (8. 8)

\.34\o+ﬁ2

We now describe the numerical integration of A(e'), (B.2). First, we

write the integral in the general form

T .

/N F(S’; 9/ 4 ' o
_ o (e_.-e.) B ' .

Due to the presence of the singularity at 9' 2,9', we break @p the integral

into three parts as follows.

e +3

nen <] [ + j Flelel) .
['[, ] (8-e)* e, o
o%y | (8.10)

A-‘peq +Ax <e’)_ LA e

)

' "where Y > 0 represents a small neighborhood of the singularity. The
integrals A‘(ei), and Az(eﬁ) aré'nonsingﬁlar and span a finite interval,
After a change of variables to transform the intervals of integration to

A;(-i,1h, they can be evaluated efficiently using Legendre-Gauss-quadrature:

L ‘
j fory dy = (b—CL)/Z-f —F(‘y)-o(x
o

(B.11)
% (b-a)/z Z We 7C<\/ )

c=i
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where

Vo= 222 X, + 22 . (8.12)

The weights W; and the absoissas X; are listed, e.g., in' Abramowitz and
Stegun (1970). 1In the computer phograh,'the'numher of integration stations
n is determined through ah iterative procedure aimed at achieving a
prescribed levei of accuracy.

He evalhate the  integral A:(e) which contains the second order
singularity using the method of Watkins, Woolston and Cunningham (1959).
For compietehess, the highlightsvof the method.are discussed below. First,
we approximate the function F(e' 9') with a sixth degree. polynomial which
can be obtained from Lagrange's interpolation formula (see, for example,

Abramowitz and Stegun (1970)). With this approximation Ay(e') becomes

R 8+

As (e’)'z E_ 9: 8) §¢ J (67-09) 4"V de”
L=o o k (B.13)
6-#3 6 S )

+s 35(9) SE' (8% 9)'&6,+3€(9)§( (e 9) J
=% | 8=y

'where ® = 3/3 and gi(e') are lihear combinations’of'F(e',e{) at the seven
interpolation stations and can be found from Lagrange's interbolation
formula. It now Dbecomes clear that, had-we not introduced the factor.

(0! - 9:)2/(9' - 9'.)z in (B.2), here we would have encountered the
integrals | |

+J

. (9, e,)ﬂ o .
f . . ,.| de’ n:O,);Z.,“-G
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which are much more difficult to evaluate than those in (B.13).

It can be shown that the Cauchy principle value integral in (B.13) is

643 1o 8-e 87+3 Jo’ .
/8Lef €0 823 . 8- 0,
6-3 ' ' 8+€ L

The ‘integral with thé second-order singularity in (B.13) is evaluated
_aceqrding to the ‘principle value defined in (2.146). Its value can be

shown to be

8%s
a 411 ’ m d i/ |
(3[_3 (0<00)* ,geo 3 [ J- ' é&-e ] (9’-69.’)2‘ - %}

=-2/37 - . (B.15)

Substituting (B.14), (B.15) and the expressions for g;(@') into

(B.13), we obtain the following approximation for A (8').

\
i00%

Asten » = J 1 [F1ene238) + Frol o4 38) )
+72 L F(8707-28) + F(0%, 6428
+495 [F(8,0-8) + F (8% 874+8))

— 1360 F(8&7, e’)} (B.1¢)

In the numerical calculations presented in this work, ¥ is chosen through

numerical experiments (1) to be J = 0.08 to obtain three decimal places

(1)

Ly is chosen by applying the numerlcal scheme for A(®') to certain known
integrals for various values of 6'. '
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of accuracy or better for the results.

Next, we discuss the nﬁmerical evaluation of the second integral in

(3.37b) which contains a removable singularity at 'q = Y. In terms of the

angular variables, this integral may be written as

. T ~ ~ .
B(e”) = j 20 1 fan Mo (8% 8) de] (B.12)
© \€9<-'€h,| ' . ‘
where
7/ / Ve
Mz (‘e/J e‘/) - ‘e"e\ \ Sin el (B- \8')

|cos 87~ cos o)

We have introduced the factor |8'= !1/16'-@!| in the integrand to

facilitate 1later evaluation of the integral in the nieghborhood of the

singularity.

It can be shown that Mz(e',e;) has the following properties

(see Figure B.3):.

1)
ii)
iii)

- iv)

v)

M, ~ 0(1) for 0 & (8, 8]) & T ;
Mj » 0 for' 0 & (8", 81) T ,;

M, = 0 for 8! =0,T , 8'% 0,W ;

M, = 1 is the locus of the points
.8} = 8 for 0 £ (0, e;) £ ;

symmetry property: Mz for -y* is the mirror image

of that for y* in the line 8! = T /2,

The integral B(8!') is of the general form

T‘- ) ’ | ' | -
G((e/)el) 7/ v 8
o [ 3.5 . A9
B8") - g’ \_e-'-e.'\‘_de‘ (B.19)

To evaluate B(6'), we first write it as the sum of three 1ntegra;é.



8<e D+ € i
. . / y
B(8") =[ § +'S +J ] 5080 ger
- o=e  oye 4 '€-8rl
= B, (8) + B¢ (&) + Bz (87 (8.20)

where € > 0 represents a small neighborhood of the singularity. In the
integrals B\ (8') and B,(8'), the parts contalning C, (y*) can be

integrated in closed form, with respect to n#*, to obtain

: gls
%@"’HS; (&%) = Y_S .A + } c““ 1) - M2(89,8) de
"0 6%¢ \e 6\
, .

- é@go (y ¥) 103 {;Y;z] (8 21)
where

§ = Y% = cos (8%e) | <,$.z;)'

5y = o5 (ghe) —y* a2y

The latter relations are depicted graphically in Figure B.4. The remaining
integrals in (B,21) are nonsingular and can be evaluated using
Legendre-Gauss quadrature, (B.11) and (B.12), | A

The integral ée(e') contains the removable singularity ét 8! = 8'. To
evaluate B,, we first expand [CQ ( nE) - CQ (y*)j pear 8! = 6! to .remove

the- singularity.

- .

~ " ,, ~ ’ . \ P /o “. ~ » /.
CQZD(Qase,)-—Can (.COSIQ) :Z ‘;‘—“\e| -6) : ':a-.)ie—l-n QQ-?D (.COS o)
' . . n=} :

(B.24)
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Using this expanaion, B (e') becomes

Bee) = z En (8" %?n QQ (cos @) (.25)
where
8+e o) |
| | te E | -,
E.8") =-,‘;\ S Mo (8%8) (8/-87)  son (/-8 dg’
" 8¢
n= V2,3, e . (B.26)

The genefélizgd function sgn(6!- ') is defined as
. e p.

':SBF;‘(S{‘+¢9‘) = R T - - 5: B 63-75;)
o -1 _6((_9/ o o

In,-pelgtion‘ to (B.‘ais_) e, reuia_rk-ﬁhé.t, _whiieA the derivgtj.vés of '&’Q.zo(y.)
.with respect 'fo y? may become infinite at‘bluntlwing'tipé (e.g,,.for_the
elliptic Blénfopm), the derivatives of.EEZD(eOS‘ei) withMresﬁeet to o ére_
finite - everywhere including at blunt tips (see (B.5) and the ai;eds;ion at
the beginning of this éppendix) ) |
‘The integrals E (9'), (B.26), are nonsingular, although each

integrand has a flnite discontinulty at 8= o', They can be evaluated
using Legendre;Gauss quadrature after breakihg up each integral into twp
parts ' ét the discontinuity.  In the following, however, after
e#amining the order of maghitude 6f E“(ei),‘we w111 see that for a suitably
small value of € we may neglect BGKG') altogether.

Since M,(8',8}) is well behaved near 6!= @', for 8' not very ' close to
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the tips (see Figure B.3), we may éxpand M, near 8'= ' as

M, (8% 6,) = 1+ (8/=0") fo’y+ - (8.28)

where

fo) = 2=, Mo (6% 6)) )e’ Ny (8.29)
‘ o = . _

'Substituting this expansion into (B.26) and integrating, we obtain .
oL S e e )
CEnte’) = {_n_{_ e+ (=€)

| At |
4 \—_E ’ﬂ + (—e);n ‘ 3¥(e’.)+~~~}

Y\+\

| ,(B.B.OS

For' 9' ‘not very close to ‘the tips f‘(e') ~ 0(1) (see Figure B, 3) and " it
follows that - N
E\LB’) Ez(e ) o~ »oce‘z>
KD 54 (©°) ~ O(e4) (8.31)

.

Hence, -
Be (87) ~ OC&2) | - (8-32)
_As we approach the tips, for distances of O(€ ), it can be shown that .
.En (6’) ~ OLE,'\) n= \','Z,3l <aa (833)

and, hence,

RBe (87) ~ 0(€) | 8. 34)
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For ualues of ¢! closer to.the tips than € , € 1is redefined as the
distance from the tip. Hence, B.(6') vanishes at the tips. Variation of
Be(e')'with o' is depicted qualitatively in Figure B.5 for ‘half of the
span.

Therefore, if € is chosen as a suitably small quantity, we can
neglect 'Bece'). i BE(GY) then represents an error in -the vnumerical
-'evaluation of B(e'). ‘In terms of the phisical vvariable y%, the maximum
error, i.e., B.(8") ~.0(¢€), occurs at a distance of 0( €%*) from the tip_s,

as can be seen fram

y¥ = cos € =1— OC€%) . | ~ (8.35)

Ator'the tip at y* = 1; o

In the numerical calculations presented in this work G is chosen
through- numerical experiments to be eE= 0. 006 _ For an elliptic wing in_—.
_-steady f‘low, using this value of‘ e y the maximum relative error was found ,
_ to be approximately 0 03% occuring at a distance of about 0. 01% of the semi |
span» from -the ~tip. This is. typical of the calculations presented herein
and corresponds to better than three deoimal places of accuracy for the -
.results. With the " loads dropping of f to zero at the tips,_the effect of
ithe above error on the ouerall calculationsvis”expected to be negligible.

It should be noted that, for all practical purposes, the above schemes-
for the -evaluation of A(©') and B(e')‘are valid for all points along the
span‘ including those very‘close to the tips, but exclude the.tips. These
schemes can_be nodified to accomodate the tips as well, ‘but this is not
necessary. _The' spanwise integrals for the calculation of the total

' aerodynamic quantities employ Legendre-Gauss quadrature which excludes the
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end points.
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APPENDIX C
NUMERICAL EVALUATION OF INDUCED DOWNWASH

OF REISSNER'S THEORY

' In this appendix, we describe a procedure for the numerical evaluation
of the unsteady induced dqwnwash of Reissner's theory given by (3.38a) and
(3.38b); In order to accomodate blunt wing tips again we introduce the

spanwise angular transformation (B.1), in terms of which (3.38b) may be

~ written as -
} 1T'E'('a‘eﬁ*) S - T
’ __ . - E \ ) . ’ y ,/_. N 7 B
where;u -
o ; fV ;A 5'*»:__v. - »  “ - S e
Elyhq%) = S=—= K (M ly*=q¥*)) -~ (¢2)
o e T

Cos §7- Co'_s o7

- o S Ny -
For given wing displacements, dSJ-’Aﬂ'can be evaluated from. (3.29) using

the following derivative'formulae"from Abramowitz and Stegun (1970). -

Ay (B) = — Ayy, (2) + L Ay 2y ~ Cs)

where A, denotes Bessel functions of the first and sedond kind, Jy and Y;,

. ’ - ({})
or Hankel functions of the first and second kind, Hv and H:?
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Numerical values of the modified kernel function K (q) are obtained
from polynomial épproximations which are obtained from the tabular data in
Table 3.1 (p. 539) using a least square criterion (1)‘. Different
polynomials are used for different ranges of values of the argumeﬁt q. The
accuracy of the  numerical values is three decimal blaces. The real and
imaginary parts of EZ are shown in Figure 3.4.

' The functidn.Ms(e',e') is the.negative' of M (9',9'). >Henee; apaft
from a minus sign, H has all the properties of M, mentioned in Appendix B
,(see the discussion following (B.18) and Figure B.3).

" The integral C (e')-is of the geqeral form

=

Ce”) = &-—M de, - (e

>

(g e.)

Ih order to evéluate c(e*) numerically, we first_write'itf.as' the sum of

':three integrals.
: 7 .
y. 8+ T

r K py J .
0(9 ) = [ 3 S - g | H(/e,_e.) de’
o’ -T o4y (e’-e/)
=08 + Ce(e) +C, (8 R

where § > 0 represents a small neighborhood of the singularity. The
integrals C,(8') and CZ(G') are nonsingulér ahd'span a finite interval.

They can be evaluated using’Legendre—Gausg quadrature, (B.11) and (B.12).

»The integral ce(e'), which contains the Cauchy singularity, can be A

(1)
The subroutine employed is LSFIT which is currently part of the library
MATHOBS at the MIT-IPS.
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evaluated in a manner similar to that for Ae(e') in Appendix B. The method
is summarizeo below. We approximate the function H(e';e:) with a sixth
. degree polynomial, using Lagrange's interpolation formnla, in terms .of

which qé(e') becomes

8’+3
Ce (é" Z 9. (67) & j (e H )(s L)cle.’,
| 0%y =
¢ (6" § CE e) de.  (¢.®)
X : -

where 3 = 3 /3 and g~(é').are linéar-combinations of H(ef;ei) at the seven
interpolation stations and can be -found  from - Lagrange's interpolation
formula. Acoording to (3.1u), the last integral in (c. 8) is identically
zero, Carrying out the remaining integrals and substituting for g (6'), we

obtain the following approximation for C (9')

Ce(e) ioj{zs{H(e o’- 33)—H(e,e+38)]

—41[\-\(9 9—28)-1-\(8 e+2$)]
+(\S[H(Se ~-8) —H(e’, e+ST} (C9)

'Tna above procedure for evaluating C(e'), like ' those »for A(6') and
B(e')x'in Appéndix B, are valid for any point along the span except for tne
wing tips. However,Afor roasons already mentioned»in ralation to A(e'l and
B(81'), thé above scheme is adequate for the present”purposeé. |

The numerical.‘examples of Reissner's unsteady'_induceo downwash
.prosented' in this work are.canriod out using an earlier numerical scheme

which, although different in some of the details, is similar in overall.
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features to the one described in the above which is a more efficient one.

The accuracy of the results are three decimal places or better.
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APPENDIX D

DETERMINATiON OF FAR-FIELD INTEGRALS IN TWO DIMENSIONS

In this appendix we show that the following far-field integrals which
arise in the momentum-theorem approach to calculating the thrust in two .
dimensions (Section 6.2) tend to zero as the far boundary S is removed. to

infinity (see Figure 6.1).

f '(w"’-—ﬁ..zi) o{S

Sy
J wwas @0
54

In orderipo deterﬁiﬁe én uppef'$ound'for theSe integraié,'itbgﬁffigies_: .
.tb stud& ﬁhgl follbwihg simplified_ mddel. _Cbnsidép g' cyliﬁdfiéal. far ‘
‘bbunﬁary 'S' of  radius R, centerg& at theiorigin, represehtihg S, Sz and
§4, as'shdwﬁ_in FigurerD.1; | As 'R .tends.:tp finfinity, "using 'multipo;e'
expahsibns, we éan'represent'fhe ai£foil and wake vorticity'as a.series of
vortex mulfipoies.located at the originAaﬁd along'thé-wéke. If thg problem
contains a gteady lifting component, the: 1eaﬁing term of the multipole
eXDansionvfo:.the airfoil w;11-be.a vortex, 6therwise a vortek dipoie which
produces éven smaller distrubénce in'thé far.field;' This is what we expect
on - physical grounds, since a .steady lifting airfoil prodgces larger

distrubances in the far field than its purely unsteady (small amplitude)
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counterpart.
Hence, to find an upper bot_md for the integrals in the above, it

suffices to consider a concentrated vortex at the origin for which the

velocity potential is given by
¢~ 8 : . (D.2)

and the perturbation velocity component in the 8 direction, say Wgs ©On S?

-is given by

Y
Wg (R,8) = - —
o e

A ~ O(R™) (0.3)

F=R
The polar coordinate system (r,e)'is shown in Figure D.1. The pérturbaﬁion B
velocity components u and w (also E'z.u'f + w’E) on S*, are of the same

order as ﬁe. Hencé,'the integrals in question are_of,the_order

J

. Sl‘

31% ds ~'.j_172'-,;,-ﬁclg ~O(R™Y) (0.4)
_ s’ : e

and, hencg, vanish as R bend; to infinity.
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APPENDIX E
CALCULATION OF PERTURBATION VELOCITIES IN THE FAR WAKE IN

TWO DIMENSIONS

In this appendix, we calculate the perturbation velocities u and w in
the far wake of a harmonically oscillating.airfeil. These are needed for
calcelating the average thrust, see (6.29).' Since u and.w appear only 1n'
quadratic form, it suffices to calculate them from a linearized (planar)
wake model. The effects of the - lateral displacement of the wake have
already been taken into account in deriving (6 29). |

-Here, the contribution of the airfoil to u and w is negligible, since
" the airfoil is located 1nfini£ely fae uptstpeem. We censidee a wake
" extending infiniﬁely far upstream and doﬁns;ream ef the Treffte plene. For
convenience, we employ.‘e cartésian coordinate system (x|;2) ;whieh‘ is
_ ettached_to-the Trefftz piane at the plane of the wake and ie stationary in
the (x z) 'frame. The trefftz plane is given by x :vo. .The etrength of

.the wake vortieity is given by (see (6.23)),

Y, (x) = 3 < i X (E.1)
where _ - |

The perturbation velocity potential in the far wake is given by

| <T>(x.l,z) 3J -J_wg (.:_g) d%_‘ | (€.3)
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Making the change of variables
n= X-% (E.4)
and integrating by parts once, we find
—izx, eJ'a’_'l J
3 slgg = | (£-5)
| $x,2) =3Iz i@ 224" L
to symmetry.

The imaginary part of the integral is identically zero due

The real pax;t is the know.n integral
ZJ‘- Cos (wrn. Ar\»; e %—Glil  ate e.6)

2%+ n? \Z-I ' |

uhic;t_;, 15 roﬁpd in Dwigh,t. (1961). The pertur’bation_poﬁéngiai then becomes
(B.7)

-J WX, -c‘elzl
R e N T

b

where the sgn f‘unction is defined in (B 27)
The per'tur'bation veloeity components in the far wake are obtained f‘r'om

(E.7) by differentiation,

R,z = 2 $(x,2) 2 $0
=-L 35k er ' e““ S9N () (E.8)
and . .
N 2 Xy ' o a
W (X,2) = 3= 4}()(;,2-) ‘ - Z%o
LiEx, -zl T ‘(E_g)
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As a check we note that, as z = 0%,

~
W

i
+

A ~ ~jw X
%jkﬂ Fadaia ,
E.1l
L3 SUE ©

N L
W =-=3
which are consistent with the symmetry properties of vortex sheets in
tunsteady motion.

The everage of the SQuare of the perturbation velocities in the far
wake 1is determined by applying the averaging rule (4.4) to the above

--results.

—. 2 -zcuIZﬂ

w cx.,z) LX,,%) = _—-lsl (B

It is noteworthy that, in the far wake, u and wz, with reprect to the bodyif

.tframe, are independent of x.
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APPENDIX F

DETERMINATION OF FAR-FIELD INTEGRALS IN THREE DIMENSIONS

In Section 6.5, in calculating the thrust from the momentum theorem in
three dimensions, we enoountered the following far-field'integrals
I-‘j W1+wz—u‘)d5 A' | (F.h)
S, o ‘ -

w(vcos 8 + W S 9) 4as | (F_Qz_)

(see'Figure 6.8); "In this appendif,' we' show that~ the above integrals-
"»ivanish as the far boundary S is removed to infinity. | |
| Since the far-field disturbances caused by a wing in steady flow are |
stronger than those caused by a wing in small-amplitude unsteady motion, in
the present case we can f'ind an upper bound for the far=field disturbances
by considering the following simplified steady case. We oonsider a wing
with uniform loading across.the span;u For the far-field oaléulations, the
wing may be represented by a horseshoe vortex of uniform strength I of-
width 2b as’ shown in Figure F.1. The perturbation velocity components at a

field point (x,y,z), have been calculated by Glauert (1947). They are

given by »
L y+b o " _ |
W= | —t (F-3)
4T X*+ 2 qu+w+mz+gz VXZ+ (Y=-b)2+ 2%
v=zt _Z

: b3
S N B ‘X
4T zZ+(v-532Y- VRZ+(Y —-b)24at
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L 2 L (

-
W = o hand —
am x24+22 LYXZ 4 (y¢0)Z+ 2% VXZ 4 (Y-b)Z+ 22

P y-b [ X -
+a |+ ]
4T 224 (y-b)* ViZ4(y-b)2 + 2%

X Y+b y=b ')

s T ]
AT 224 (Y+0)2 SVXZ Y +b) =+ 22 |

_It can be shown, by suitable expansions of (F.3) - (F.5), that as S is
removed to infinity; u, v and w are at most of O(R-z) on S, and S,.
Accordingly, using the polar coordinate SYStem (r,8) in the 'yz-plane (see

Figure 6.8), we find

2 R |
I = f do f Fdr (vie w?-u®)
o 0 -
~ 0(R™*) | | (F.6)
and
an 2-"‘5 K | |
I,_:-.f aléf U(vese +w sSme) Rdedx
o - =R
~ O(R™#) | (F-%)

.both of which vanish as R tends to infinity.
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APPENDIX G
CALCULATION OF PERTURBATION VELOCITIES IN THE FAR

WAKE IN THREE DIMENSIONS

In this appendix, we calculate the pertﬁrbation velocities u, v and w
in - the far 'wakej of a harmonically-oscillating finite wing. These are
needed for ealcﬁlating the average thrust; see (6.113). .Since u, v, and w
appear ‘only in quadratio form, it-:uffioes to eonsider a planar wake, The
‘effects of.the lateral disolacement_of thelwa#eA have already been taken.
ioto'account-invderiving (67113). | | | |

As in two dimensions prpendix E), we ioonSider a wake‘ extending
infinitely far upstream and downwstream of the Trefftz plane and choose- a»
| cartesian coordinate system (x.,y,z) which is stationary ~in the (x,y,z) '
‘frame - and parallel to it.: The~Treffthglaqe coincidesAwith the yzeplanet:

"and the eake is the strip
1Yl <b 2=0 I B (< b

The components of wake vortioity are given by (6 109) and (6 117) for the

wing in Figure 6.8.

Caloulats ey
u is entirely dte'to'ﬁw. ‘It follows from 'the Biot-Savart law and

(6.109) that u.is given by

LL(X.,Y,%) = j‘h‘.]ko% J. O‘V‘J. Clg ('I) € ( . '
. el L -
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where

=V -2 4 (4-mF 22 @

. With the chage of variables 5 =x, - §, the integral over § can be
expressed in bterms of modified Bessel function of the second kind K| (see

Abramowitz and Stegun (1970)):

<

L | —JBXy - — |
S s a2k TN @R 6
- : |
whéré :
=V (y-n)2 + 22 = (a-5)

Substituting (G.4) inte (G.2), we obtain
—j@ X, — .
Loy, v, = 2 jkZ2 € J (L) Ry Ki(@Rz)dq
S 2me, b .
- (G.6)

Calowlation of v

v is entirely due to 8- Using the Biot-Savart law and (6.117), we
find | | |

3

b o ~ o ' .
~ . - / -_)UJ§ -
VY2 = g5 &2 S Aqf ds Lepe” R - (&3F)
' - =b - S ’

where( )' denotes differentiation with respect to the indicated - argument.

Using (G.4), (G.T) reduces to




232
..."' b ~, -
Vi, vz = L kez 0 fb Q' RY K (@R 6.9)

Using the asymptotic expansion for K, in (2.142), it can be shown that, as
z-»0+, the integrals in (G.6) and G.8) each containva second-order
singularity (y -4 Y and must be interpreted according to the principle

value in (2.146).

- Bbth coﬁponents of waké.vorticity conéribute to'w.‘ It follows from a
the Biot-Savart law, and (6. 109) and (6. 117) that w is given by
. .. ) . . ) '~ Y — -‘ . .

Py v , ; . 7 _ng'-3
A C‘*S d')S ol_g (Y,-q)ﬁ.(vp e TR
| ' | | | <G-_,9) -
‘ & §
Jk, ""\S d§ - S)ﬁm])e R,
- The integral.dvér:§ 'inAthe first term is givenvby (G.4). In. the second
‘term, after the change of.variables AY = x| - &, the integral over $. can
be expressed in terms of modified Bessel function of the second kind K, . .
(see Abramowitz and Stegun'(19705): | |

- g)e'J ok ‘30(; aks  FER K (@Ry)  (6.10)

-

Substituting (G.4) and (G.10) into (G.9), wé obtain

® Y, =Zn ke J (v- q)ﬂ ('\) RS K, (@ Rz )dn
~Ld g’“’"'j fLop Ko (@R N &
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| Using the asymptotié expansion for K' in (2.1!42) , it can be shown that, as
zZ -0t ,. the integral in (G.11) which gontains K, has a first-order
singularity (y - )-’ and must be interpreted in accordance with the
Cauchy principle value (see (B.14)).

It follows from (G.6), (G.8) and (G.11), and the averaging rule in

(4.4) that
L\z = % \ “(XU V/&)]L . ’ S (G 12 )
vV z-z\V(x\,v,z-)\ = . (6.13)
—\;I—i-“--\z—' \W(XU\/,%)) - (G|4)

"It is seen from f:he results of‘ ‘thuis ‘lappendix ﬁhat in the f‘a_r-'wake u, v
and w have a sinuso:.dal dependence on x but u ‘, vZ and w> are iriciependerit'
of x. For actual numerical calculatlons, for high-aspect-ratio wings we
may' replace - the three-d_imensionall reduced circulation & with ‘itsv
strip-the‘br'y counterpartﬂ} (3.29) (see the discussion preceding (3.29)).
Also, in the limit of stead.y_ flow (w-—0), the above results for u, v and.

" w reduce to the known steady results.
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APPENDIX H

LISTING OF FORTRAN PROGRAMS

This appendix consists of the primary computer programs used in this
work for the applications of the present unsteady lifting-line theory. The
pnograms vare for a rigid finite wingvoscillating in combined pitch'and
heave. For additional details regarding ﬁhe programs see'Chapters III -V
and Appendix B. A list of the primary synbols for.the programs are given:
| below; Allleoding is in»FORTRAN'lV. ' The programs were execused on the IBM
370i- 1GSHOf‘the lnformation'Pnoeessing Services at M.I.T.

The following programs are listed (1)

i). Program 1 calculates the optimum ‘motion of a finite wing -in
combined pitech and heave. The listing for this program ineludes the-
_subprograms DNWASH, FN2 LGZ FN1, FN3, LG3 . L2, FN5, STHEOD; KER;'~CLi,
CM1 and RROOTS. Subroutine DNWASH calculates the unsteady induced
downwash.:-Program 1 aalso: generates the sparmwise distribution__of ‘the
energetic quansities-_at 8 stations along the semi span and the_pronulsive-
oerformance of a wing in seVeral‘non-optimun modes of oscillation; |

ii) Program 2 calculates spanwise distribution of unsteady induced.

downwash and section lift and ‘moment coefficients for the wing at 11

'.lstations along the semi span.

iii) Program 3 calculates total lift and moment coefficients for the

wing.

(1) v
Duplicate subprograms are not listed.



235

LIST OF PRIMARY SYMBOLS
ALPHP «
?

AR o A

B B

cco o(y)/e,

CE S ce

¢, = CL3DR + J CL3DI

(CLOOP +.j cx.oonp) 5.+ (CL11P + ] CL11DP) g,
+ (cx.azp + 3 CL22DP) Sz

'CLZDR +'j CL2DI (strip-theory value)

Ca - =
225 '
’ = (CLOP + 3 CLODP) S + (cmp + J CL1DP) §
.~ + (CL2P + J CLZDP) §2 '
Cy_ = (CLSOP +°§ cr.sonp) 3, + (CLS1P + J CLS1DP). §
Sears
S + (cx.szp + § CLS2DP) 5,
?:'L - = TCL3DR + j TCL3DT
L = TCL2DR + J§ TCL2DI  (strip-theory value)

(similar notation is used for sectional and total moment coefficients)

. cb- L Co
cr Cy
CTOB 627, 0
P | Sy,
cTS Coy
CTSCT . Cgy/Co
D D

DELTA  ° $ in function FN2
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DELTA1, DELTA2 &, and §, in function FN5

EN

END

ETA

Jd

1,"2,0006

NN = 1,2,3

PAXIS
" PFP

PIP, PIDP

PSI10, PSI20

s, 81
SIGMA, SIGMAO
SR, si

T, T1

THETA

VAMP, VPHASE
s

WI(I,N)
WT(I,N)

2P

K, with b = 1 (see (3.48))
=0or 1, dummy index to indicate end of dataset

Hydrodynamic efficiency\] ; argument of the kernel function
WM y* = m#) |

F, G

dummy index denoting consecutively the real and iﬁaginary
parts of coefficients of §,, §, and §, in the linear
quantities

denotes elliptic, lenticular and cusp-tipped planforms
respectively

bL/(Cayﬂ)
8L

real and imaginary parts of the kernel function
.n-(ﬂoly* - Y]‘l")

§. /%o and §z_/ S

¥ M

X, ko

‘real and imaginary parts of the Sears function

e, e

ot
amplitude and phase of w;
= (VOP + j VODP) &, + (V1P + J V1DP)§+(V2P + J VaDP) 5,

Ith abscissa of N-point. Legendre-Gauss quadrature

Ith weight of N-point Legendre-Gauss quadrature

2y
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EECGERAY 1

CETLOSINATION CF CPTINUM NCTZION OF A S1GID FINITE WING IN COMBINED
PITCH AND HEAVE OSING OUNSTEADY LIPTING-LINE THEORY

INFLIGIT REAL®8 (A-I)
CCXPLZX*16 RZ (3)
DINENSION XI(24,264) MT(23,24) ,A(4),P{3,3),R(3,3).K(3,3),7(3,3),
& £(3,3),DENCM{3),PSI10(3),2SI20(3), xx1(3).xe(J).ZXJ(J),LAa(J),
& CTOB(3),ETA(3),22(3),AL0HR () ,CTSCT (I)
INTEGER AR END,Zo8,NN,3,8EF,d1,J2,Jd
ccaucv;xn;al/xx.ax/AaLAJ/cauan.zu/AasAu/sxunAo ?1,88,42
PI=3.1615926535897900 .
CABMA=,577215664901534L0
911xv=1 pa/P1
IINV22PIINVPIINY
szxnu01 ((XT(Z,¥) ,I21,5),820,20,4)
SEADUQT, [ (4T (T.N) ,I=1,5), Na4,26, u)
301 FCRMAT(20X,F20. 15,321
88 EEADGJ2,SIGMAO,AR,END,NN
802 FCREAT(F9.6,12,3X,51, 4X,I1)

IDENTIFY PLANECEH

© G0 T0 (200,201,202),N¥
200 :¥=3.D0,/PI

. FEINT300,31GNA0,AK,HN
300 FCEMAT(* 1%, *SIGHAGS®, 28.5,2X, *aa=*,I3, 2x,'sss-,;3 2!.'!LLIPTIC

ERIEG?)

GO 10 303

201 BN=1,5D0
* PEINT301,SIGNAC,3E,H8

/301 ECEEAT(*1%,¢SICEAO=?,P8.5,2X, AR=’,13,21, 'NN=*,13, 2X, 'LEXTICOLAR

. GRING®).
G6a 19 303

202 £5416. D0/ {3.£0*RT).
 PEINTI02,SIGHAQ, AN, NN : S o
302 FOEMAT('1%,'SIGHAO=',P8.5,2X, AR=",I3,21, '¥N=s,T]3, 2X, 'COSP-TIPRPED
5VING?) T _ o -
303 CONTINOE

CALCOLATION C? "H! QUADRATIC PC”!S PE?S!SZ“I!G THE BH!EGZIIC
QUASTITIES,

'=qun*xngous INTEGRATION GF 18 IUTEGEALS (COEP?‘S OF TRE QUAD&ATIC

-BCEMS) USING 16-2CINT LEGEWDRZ-uLSSS QUADAAIUEB

. ¥=16
T FEINTII, N .
33 FORMNAT (*0°,°¥=*,13)

SU%1=0.00 :
.$08220,L9
S0x3=0.00 -
£CE8=0,.D0 -
504530.D0"
£U%620.T0
€0u7=0,59
sUx8=0.00
5Un6=0,L9

" suUn13=0.D)
£CX11=0,D9
50%1220.L09
SU%13=0,.00
suxIe=0,LC2
syn15=0,.00
son1620,00
3U%17=0,D00
SUx19s0.02
P=5/2

IC 190 I=1,
TH2TA=, 5DO*PI2 (1. LO+XI(I,¥))

2GN10001
PGH10002
pGA10003
PGA10004
PGa10005
PGA10006
PGH10007
PG 10008
PGH10009
PGH10010

| PGN10011

PGH10012
PG210013
PGN10014
PGN10015
P5A10016
PGN10017
PGH10018
PGN10019

. PGN10020

PGN10021
26110022
PGN10023
PGM100286-
PG¥10025
eGNn10026
PGA10027

-PGHN10028

PG810029-
PGN10030
PGX10031
PG310032
P5510033
PGR10034
PGu1003S.

PGN10036°

PGN10037
PGH10018

. PG310039

PGH10040
PGR1I0041 -
PGR10042
PGH10043
PGa10084

pen10048s - -

PGH10046
pcat0087
pGu10048
PGNH13049

" .PGM10050

PGH1C0SY

‘PGN10052
.PGH100S] -

PGH10058
PGN10055
PGN10056
26410057
PG210058
PGK10059
?GA10060
PGN10061
PGH10062
PGR10063
PGN10064
PGN10065
PGA10066
PGN10067

PGNR10068

PGN10069
PGN10970
PGNI0071
PGN10072
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$=DCOS(THETA)
CCO=(1.D0=585) % (N§/2.D0)

SIGAA3SIGIAV*CCO

e1G2sSIGNA*SIGNA

CALL STHECD(SIGMA,Z,G,C,B, SR, SI)

§2=S39SEeSIs 3

CALL DHWASH(S,V0?,vVJD?,¥12,71DP,V22,V2D2)

CALL cL1(s, V0P, YODP, V1P, V1DP, V2P, V22P,
cLop,crope,cLi?,cL1p?,CL2P,CL20P,
cLs0?,CLSIDP,CL512,CL5102,CL5 29, CLS2D2,
€L002,CLJ0DP,SL11P,CL110P,JL222,CL220P)

CALL CM1(S,V0P,V2IDP, V1P, V1DB, V20, V2DP, .
c10® ,CcN0DP,CN1P,CN1D2,C029,582DP, .
C1s02,CNSIDP,CNS12, CIS1DP,CYS22,CNS520P,

_ CNQ02,CN00DP,CA 112, CATIDP,CH227, CH22D2)

QQ*DSIN (THETA) -

o O0s

BUMBERS ON CP, CIP, CTS AND CT COSKESPCND 'O MATEIX POSITIONS
(1,1, (2,2), (343)s (1,2), (1,3)e (2,3) 2ESFECTIVELY.

SECTICNAL POWER EEQUIBRED

ACT1>=SIGHMAO®PIINV

C21=CLO0DP*AC1

CP2==4,CJ*CR11D2%ACH

CP3=0,D0sCN22P4ACT .

CPU= (CL11DP~4. CC‘C!ODDP)'.SDO'\C1
CPS=(CL22D2+ 4. DO¥CYO0P) *. SDO*ACT

CP6=2. DO*(C!11P-CZ22DP)'AC1

ERINTVT7

PORNAT(*J*, 'SEC*ICHAL POWER REBQOIRED IS:')
¢REINT20,5,CF1,CP2,C93,C24,025,C26

20 IOBHII('O' 152%,76.3, 1X.'CP1-',D10 3,1, 'CPZ=',D10.Q,1!.‘CPJS'

5. D10}0,1X 'CPG",D10.J,1!,'C?S",D10,d 1X,'CP6=*,D10.4)

SECTIONAL THZOST ¥RCX NCRMAL PORCE AT TAE VING

AC2=2,D0*2IINY

CIP120.00

CTIP2=CL11P*AC2
CTP3aCL22DP* AC2
CIP4=CLOOP*,.500*AC2
CTP5=CLO0DP* ,SC0*AC2
CTP6=(CL11DP+CL22F) *. 5D0* AC2

SECTIOHIIleAEING-!DG! SUCTION FORCZ

A1=GeSIGNAO
12=G#SIGHA~2,D0*F
2322,L3*G+SIGUA* (F-1,C0)
B1=«P# SIGHAQ
‘E2==(2,D0*G+PESIGAA-5IGNA)
B3=-2,D0*P+SIGEA* G .
C1aSE* ¥JP=-SI* VODP

C2=S2*V 1P=SI*V1DP .

C3=SE* V2P-SI~V20P
C1sSE*VODP+SI*VIP
L2=2532Y1DP+SI* y1p
C3=52¢72DP+SI*V2P

CTIS13CCO* (SIGNAI*SIGHAQSD 44,008 (A1eC
3 +817C1) ) . -
ctsz-c~o-(sxcz*(n L0+SIG2) *D~ 2.00‘5’62"-4.SO'SIG!A'G
& +4,00% (A\29C2+324D2))
. cts:-c~0c(szczo(u DO¢SIG2) *0-2.D0851G2¢*?-4. LOSSIGHAG
& +4,D0= (A3sCI+33%D])) .
CTS4aCCO (~SIGEA?SIGNA0sB ©- +2.D0%
3 (AT1*C2+4A22C1+B1802+ 820 1)) .
CIS5=CC0® (2. DO*SIGHAO®D-53IGN A*3IGHA0%G
3 42,D0% (AT1$C3+A25C1e 21%D 3+839D 1))
CIS62CCOs (. 2. na-(nz'caoAJ-czoaz-oJ
[ +33%L2))
PRINT 13 :

PGN10073
PGA10074
PGH10075
PGH10076
PGu10077
PGR10078
PGN1007Y
PGN10080
PGH10081
£GN10082
PGn10083
PGN10084
PGN10085
PGA10086
°GN10087
PG 810088
PGN1008Y
PGu10090

_PCH10091

PG 210092
PGNH10093

. PGN10099
- PGN10095

PGA10096
PGN10097
PGN810098

' PGU10099

PGH10100
PGN10101
PGN10102
PGN10103
PGH10104
PGN10105
26810106
PGH10107
PGA10109

PGH10109 .
PGN10110
PGA10111
PG¥10112
PGH10113
pcN10118
PGR10115
PG¥10116
PGN10317
PGE10118
PGa10119
PGA10120
PGA10121 .
PGH10122
PGA10123
PGH10124
PGN10125
PGR10126
PGE10127
PGN10128
PGN10129
PGN10130
PGH10 131
PG410132 -
PGE10133
PGN 10133
PGE10135

.pcuidi3s

PGA10137
PGK10138
PGX10119
PGA10 140
PGR10141
PGR10142
PGA10143
PGH10 144
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FORMAT (*0%,'SECTICHAL LE SUCTICY IS:')
PEINT21,5,0751,C152,C753,C754,8755,C256

!05:!1('0'.'5",FS.J,1x,'C151-‘,D1Q.ﬂ,1!,(C152".010.4,1!,'CTS3",

& £10.8,1%,'C2S4a* ,010.4,1X,°C55=,010, 4, 1X, *CTS63*,D10,4)
SZCTIONAL THRUST

CT12CTP1+CIST

CT2alTP2+CTS2

CTI=CTPI+CIS)

CI4=CTPU+CT3T

CTS*CIP5+C1SS

CI6=CTP6+CTS6

PRINT19 .

FOEHAT (0 ,*SECTIONAL THEUST IS:°)
PRINT22,5,6T1,CTZ,CT3, LT3, C’S,CTS
FCRNAT(® 0' 1389,76.3,1%,1CT1=¢,D 10,3, 1X,'CT2=*,D10, 3, 1X, 'CT3=",
§ D10.4, 1X,'CT“=',D13.“,IX.'CIS" D10 3,1X,°CT6=¢ ,D10.4)
SU!i’SUS1OQQ'HT(I,N)‘C?1 .
S0M2aSUN2+QQ*WT (I, N)*CP2
SUM3sSON3+QQ* 4T (I, N)*CPI
SUMQsSUNL+QQANT (I, N) sCEQ
SUNS=SONS+QQ* ¥ T (I, N)*CPS
SON62STN6+QQ AT (I, N)=C26
. SO8T7=SONT+CQeNT(T,Y) =CTP1
SU3B=S0UK3+QQ=WT (I,N)=CT22
SUN9=SUMNI+QG*UT(I,N)eCTPI

S04 1325041T0+4QQ*¥T {I,M)*CIPU

SUX 11250 N11+QQ=%T (1,N) *CTES

SUN 12=SUM12+¢QQvNT (I,4) *CIP6
SUN13=S0P13+4QQ*9T (I,X)*CTS1
SU413=30818+Q* ¥ T (2,4) *CTS2
SU315%30415+QQ™ 8T (I, N)+CTS3
SUN16aSUA164QC*WT (I,N) *CTS8
SON17=50417+QQ* 4T (I,N)*CISS

SUN 182308 18+QQ*¥T (I,4) *CTS6E

BATEIX OF QUADEATIC FC2a POR TOTAL POWER §ZQUIRED

", AB1=,S5D0+PI*EN

E(1,1)=2B1=SO%1 o -
F(2,2)=3B175082 o :

P (3,3) *AB19s083

_E(1,2) s181*5048

" P(1,3) *AE1°STNS

23
13

_E(2,3) saB1¥S026

P{2,1)22(1,2)

E(3,1)=2(1,3)

E(3,2) 2P (2,3)

FRIET23 - ' o
FORSAT('0*, *IATRIX OF QUADEATIC ?O0RA POR TOTAL POVER REQUIRED: ‘)
o 13 I=1,3 . R -
EBINT3, P(1,M,2(1,2), ?(153)

FOBHAT (*0',3 (218.8,3X))

MATEIX GF QUADEATIC PORX POR TCTAL THEUST FRCH NORMAL PORCE AT
1HE YING .

R(1,1) =A3 1*s0n7 ' .
£(2,2) =AB1*SUN8

E(3,3) *AE1*5049

£(1,2) =AB1*SOR 10

E(1,3)=AE1%50N11

E(2,3)2A31750812

B(2.,1)=R(1,2)

R3,1)=2 (1,2

£(3,2) =5(2,3)

BATZIX OPF QUADEATIC PCRE FCR TOTAL LEADI!G;EDGf SOCTICH POSCE

K(1,1) sAB1® SyM 13
K{2,2)sABivsuUn14

PGRi0 188
PGN10186
PGR10147
PCH10148
PGH10 169
PGN10150
PGR10151
PGU10152
PGR101S3
PGN10 158
PGA1015%
PGN10156
PGN10157
PGH10158
PGH10159
PGN10160
PGH10161
PGH10162 .
PGa10163
PGH10164
PGR1016S
PGX10166
PGH10167
PGN10168
PGH10169

. PGH10170

PGA10171
PGA10172
P6310173
PGN10170
PGH10175
PGE10176
PEN10177
PGn10178
PGa10179
PGH10180 .

2610181

. 'pca10182

PGH10133
PGA10184
PGH10185
PGu10186
PGH10187
PGH10188
pPGn10189
PGR10190
PGR10191
PGN10192
PGR10193
PG210198

. PGH10195
PGH10196

PGA10197
PGN10198
PGN10199
PG10200
PGE10201
PGN10202
PGH10203
PGH102083

PG210205

6810206
PGN10207
PGN10208

- PGA10209

PGN10210
PGN10211
PGN10212
PGN10213
PGN10214
PGn10215
PGN10216
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15
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16
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K(3,3)sAEIsSUNIS

K(1,2) sA518SUM 16
K(1,3)=a3195Un17
K{2,3) =A& 1*5Ux 18
K(2,1)=K(1,2)

R(3,1)*K(1,3)

R(3,2)*K(2,3)

PRINT24

FCREAT(0', *MATEIX OF QUADBATIC 702N fOR TITAL LE SUCTION:*)
IC 14 Is1,3

EEINT3, x(..i).x(x..).x(z.z)

BATRIX CP? QUALFATIC FCRM POR T0TAL THEUST

T{1,1)3R(1,1)+K{1,1)
T(2,2)2F(2,2) *K(2,2)

CT{3,3)=R(3,3) «K(3,3)

T{1,2)=*R(1,3)+K(1,2)
T{1,3)=5(1,3)+K(1,3)
T(2,3) 3R (2,3) +K(2,3)
2(2,1)=7(1,2)
T{3,1)3T(1,3)
1(3,2)=T(2,3)
ERINT2S

FOREAT('0,'SATRIX OF QUADEATIC PORM POR TOTAL THRUST:')

Lo 15 I=1, J
ERINTI, T(I,1),T(I 2),T(I,3)

MATRIX OF QUADFAIIC PCEM FOR TOTAL ENERGY LOSS BATE

E(1,1)=P(1,1)=2(1,1)
£(2,2)=9(2,2)-T(2,2)
!(3,3)’?(3(3)": (3'3)
E(1,2)=2(1:3)-T (1.2}
‘1(2y3)'9 (2,3)-212,3) )

E{2,1)=2{1, 2)
E(3,1)=2({1,3)
1(3,2) =B (2,3}
ERINT26

FCENRT(*O?, '11111! Q! QUADRATIC Foay FOR TOTlL B‘BPG! LOSS RATE: )

o 16 I=1,3
PRINTJ'B‘I 1) 'Z(I 2) 'E(I’ 3)

CBAEAC‘E&ISTICS CF A RIGID BLLI’TIC ¥I5G IH PURZ PITCB AND PORE
BEAVE.

CEHsE(1,1)

CPH=P (1, 1)

CEP=E (2,2)

CE=?(2,2)
PEINT188,CEH,CPH,CE2,CPP
FORBAT('0", 'CEH=1, £10. 3,21, -cvus',o1o.3 21.'czp=',n1o 3,21,

1CPP=?,D010.3)

CTA=T (1, 1)

€TP=2(2,2)

CTSH=K (1,1)

€158=K(2,2)
CTSCTH=K (1,1) /T (1,1)

- CISCTP=K(2,2) /%(2,2)

199
&

177

aonNnnon

PRINT199,CTH,CT?,CISH,CTSP,CTSCTH,CTSCTD
rcauaT('0’, 'c‘uz',n1o.3,2:,'c:9-',nno 3,2X,°CTSH=",D10.3,21,

. *CTS2av,D13.3,2X, *CI5CTHa',P10,3,2K, 'CTSCTRP2!, P12, 3)
ETAH=1.D0-2(1,1) /2 (1, 1)
ITAP=1.00-2(2,2) /2 (2,2).
PRINT177,E7A4,ETAE
FGRAAT('0?, "ETAH=", !10.3,21,'!‘AP=',!10.3)

CETEIXZINATIOR or THEZ OPTINUE HQLIO’

CCEF'S 0F SECULAF EQ
A(1)'Z"30A(2)'”"20A(3)‘10\(0)30

PGR10217
PGA 10218

PGH10219
PGR10220
PGN19221
PG1110222
PGH10223
26110224
26810225
2610226
PGN10227
PGN10228
PGA10229
PGN10230
PG N10231
PGN10232
26810233
PG210238
PGN10235
PGH10236
PGA10237
PGR10238
PGH10239
PGH10240
PGA10241

© PGN10262.

PGA10293
PGN10204
PG510285
PGH10236
26410247
26210248
PGH10289 .
?G410250
262810251
PGH10252

PGH10253
PGH10259
PGA10255
PG410256
26310257
PGE10258
PGR10259
26110260
PGX10261

.PGU10262

PGN10263
FGN10264.
PGH1026S
26110266
PGN10267 -

" PGE10268

PGX10269
PGR10270
PGa10271
PG 10272
26110273
PGH10274
PGN10275

. PGN10276

PGA10277
PGR10278
PGN10279

. PGu10280

PGX10281
PGH10282
PGH10283
PGA10284
PGH 10285
PG1810286
PGN10287
PGN10288
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A(1)==2 (1,1) 2P (2,2) 2P (3,3) =2.C3°2 (1,2)%R (V,3)*n(2,3) ¢P(1,1)®
6 P(2,3)%P(2,3) 40 (1,3)°P (1,3)%P (2,2)+0(1,2)%F (1,2) P (3, 3)

A{2) 201, 1) *0{2,2) SE(3,3) *(1,1)32(2,3)%2 (3,2} +2 (1,1) *3(2,2) ¢
&  P(3,3)#2.00%2(1,2)2P(1,3) *E(2,3)+2.00%P(1,2)3E(1,3)eP(2, 3)+
s z.no-z(1,2)-9(1,3)-?(2,3)-3(1,1)-r(z.s)-P(2,3)-2.oo-v(1.1)-
§  E(2,3)*2(2,3)=P (1,3)%F (1,3)*2(2,2)~2.0088(1,3)*2(1,3)ep(2,2)
& =P(1,2)%9(1,2)E(3, I =2.00%E(1,2)*P (1,2)=P (3,3}

A{I)==E{1,1)*E(2,2)%2(3,3)=2(1,1)*P (S, *E(3,2)-2(1, 1) *2(2,2)*
&  B(3,3)=2.C0%p(1,2)%2(1, 3) *E(2,3) =220 5(1, 2)*2(1,3)*E{2,3)~
&  2.DO%E(1,2)%2(1,3)22(2,3)+2 (1, 1) vE (2, 3)*E(2, 3) ¢2.D0"E (1, N ®
& 2(2.3)-9(2,3)oa(1,3)-z(1,3)ep(2.2)oz.no-z(t,3)-9(1,3;':(2,2)
&  $E(1,2)%E(1,2)*P{3,3)+2.00%2(1,2)*P(1,2) *E(3, )

A(a)=E(1,1)%2(2,2) *B(3,3) +2.00%E(1,2) *E(1,3)%E(2,3) =B (%, 1)-2(2.3)0
& - E(2,3)-E(2.2)%E(1,3)E(1, 3)- 3(1 2)*E(1,2)E(3,3)

BI'!RPIHA‘ICN CF THE RCCTS OP ‘JB SECULAR SQ. AND THE SOLUTION FOBR
EACH 2007 -

1=
CALL BECOTS(A,5Z,NPB)
. £O aua Is=1,NRR .
TAE(I) =8Z (1)
DENON (1) = (E (1,2) ~LAN (I) 2P (1,2)) (E(2,3)~LAS (I) *P(2,3) ) -
A (B(1,3)~LAX(I)*P (1, 3))* (B(2,2)-LaN (I)*P (2,2))
PSI10(I)= ((E(1,2)-L38 (4P (1,2)) & (E(1,3) -LA&(T) s (1, 3))
& ~(E{2,3)-LAN(I)*P (2, 3)) " (E(1, ) -LAB (T} =P (1, 1)))/nauon(1)
PSIZO(;)'((E(Z.Z)-LAH(I)‘P(2 2))* (2(1,N-LAR(I})*2(1, 1))
~(2(1,2) =LAN(T) *2(1, 2))#(5(1 2)-:;5(1):9(1 2))) /bEuoA(T)
xx1(1)=psr10(1)*psz10(1)
1X2 (1) *2SI2C (1) *PSI20(I) ,
223 (X) «2SI10(I)*PSI20 (1)
CTOB(I) =T (1,1) +T (2,2) *XX1(I) ¢T(3,3) *XX2(I) +2.00%T (1, 2)*pPST10 (T)+
s 2.50*T(1,3) *PSI20 (I)+2, DO*T (2,3) *XX3(I)
$BINT1,I,PSI10(I),25120(I),5T08(X)
T tcannr('o' ':-',11 1x,'psz10(1)-'.n1o.c 2x,-pszzo(1‘r',n1o. 02X,

& $CT0B(I)=',D10.4)
I (C20B (I)) 112,113,113
113 ETA (1) =1.00- ((Z (1, 1) *E (2, 2)4 X1 (1) vE (3, 3):xx2(1)o2 DO*E (1,2)*

& - PSIV10(I)+2.00%=2(1,3)*25120 (Z)+2.00=8(2,3)*XX3(I))/(P(1, 1)+
"6 . P(2.2)*XX1(T)+P(3,3) £xx2(I) *2. DO'P(1,2)‘PSIIO(I)02 00»-
& P {1,3)*PSI20 () +2.D0=2 (2, 3)'1!3(1))) ’

22 (I) =DSQART (XX 1(I) +XX2(I))
ILPHP(I)SDIIANZ(PSIZO(I).PSI1O(I))
IF(ALPHP(I)) 217,218,218

217 ALPHP(I)=2.D04PT+AL2HP (I)

218 ALPH? (I)=180.L0=AL2d42(I)/PI :
CISCT(I)=(R{1,1) +K(2,2) s XX1(I)+K (3, 3)‘1!2(1)02 BO‘K(1 2) *PSIIQ(1)+
& 2 2.L0*K {1, 3)'°SIZO(I)02 Do*x (2, 3)'XX3(I))/CTOB(I)
GC 10 (110,220, 330) J1 .

110 Last1=LAd (1)

CT0B1sCTO0B (I)
$1312ETA(I)
2P1222 (I)

- ALPH21=AL2HP (1)
CTSCT12CTSCT (1)
J1=J1+1
GO T3 u3u

220 IA8ZaAN(Z)

-~ €70D2=CT0B ()
ETA22ETA (1)
2E2.22(1)
ALPHP 2=ALRH? (1)
€15CT2=CTSCT(I)
J1m31+1 .
GC 10 u4a

330 Lam3srad(I)

- €THB3=CTIB (I)
ETAI=ETA(D)
2p3s2? (1)
ALPHO3=ALYUD(I) -
CTSCT3=CISCT (1)

PGa0289
PG810290
PGAT10291
pPGN10292
PGH10293
BGH10294
PGA10295
2G810296
PGA10297
PGN10298
PGCN10299
PGX10300
2G810301
PGN10302

 PGA10303

PGN10304
PGN1030S5
PGN10306
PGR1I0307-
PGA10308

. PGA10309

PGN10310
PGH10311.
PGN10312
PGH10313
PGN10314
PGA10315

_PGA10316
. PGM10317

PGH10318

PGA10319

PG210320
PGN10321
PGN10322
PGN10323
PGH10323

PGH10325

PGR10326 -

-PGR10327

PGX10328
PG#10329

. PGA10330

PGR10331

'PGH10332

PG810333

. PGa1033s

PGH10135
PCX10336

. PGN10337 -
. PGE10338 -

pPGR10339
PGH10340
PG110331

. PGRI03N2

26210333

.PG3103484

PGa10335
PGN1034a6
PGH10347
PGAI03u8
PGB10349°
PGH10350

. PGH10351

PGAT03S52
PGN10353
PGE1035Y-
PGA10355
PGEI0356
PGN10157
PGH10358
PGA103S9

'PGH10360.
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BCRLRARA
GG IC d4u
112 2EINDTI4,MEL, T

114 FORNAT('0', *NC OPT. FOE THI5 LAMECA, CTUBAK IS N&G.',2X,*NKB=!,I1,

& 2X,'I=',11)
4488 CCYTINUE

PICX CUT THE CPT. SCLUTION

J2sJ1=1

17 (J2.2Q.0) GO TO E€6

GO ¢ (109,219,329),J2
109 Blansta

BCT0B8=CTIB1

EETA=ETAT

EZo=2P1

EALPUR=ALRHP1

BCTSCT=CTISCI?

GJ 20 555

219 1P(ETA1-ETAZ) 208,203,109

208 ELAY=L2N2
* BCT0a=CTIE2
BETASETA2
EZP=ZP2
* BALFHP=ALPHP2
ECTSCT=CISCI2
., 60 10 555
329 IFP(ETA1-ETA2) 408,408,409
408 1P (ETA2-ETA3) 407,407,208
307 BLANSLAA3
ECT 03=CT 083
. BEZ4=ET13
EZP=3223
BALFAP=ALPHPI
ECTSCT=CTSCT3
GC 10 555

‘409 IF(ETL1-ETA3) &07,407,109

§55 ERINTS11

© S11 rogmaT('0°, iTHE CTTINUM SOLUTIOH IS:”

ann

na0n

.. PEINT213, 8LA%,2CTOB,BETA

210 FCEMAT ('0°,*LAN=",D10.3,2X,'CI08=",D10.3, 28,9 ETi=Y ,210.3)
. FB1¥7211,B2P,EALPHP,BCTSCT

211 rceuT (107, 12pat,C10:3,2%, ALPHP=", #10.3,2X, ' CTSCT=*,P10.3)

cttxunalxl IIGHTHILL'S NOTATIOYN .

EALPHP=PI*3ALPHP/180.T0

PAXIS= (-.5L0¥DCOS (EALPHP) ) /B2P
PF2=-2.00%BZ P/ (SIGIA0~DSIK(BALEHP))
FRLNT2, 2F?, RPAXIS

2 PCoMAT (#07,°CRT IN LIGHTHILL MNOTATICH: PFOPGETIOﬂAL°?BﬂTﬂiRI!G 2.3

SSLHE R",D13.-.1X,'?ITCH ALIS PE? STMI ROOT CHOR2=',D10.3)

FROPULSIVE EZRFORNANCE OF A PINITE ¥18G I¥ COMBINED PIICH lND
HEAVE IN LIGHTHILL'S NOTATION, PITCH AZIS LOCATED AT 374 CRORD.

FRINTY
4 JOEAT(10°,*A FABILY C? SOLOTICNS I¥ LIGHTRILL'S norarzow')
FAX1S=,5D0
?PPs, 200
S LDD=1.00/(SIGMAO®SIGNAQYD 2P PFR). .~ | ;
© BAXIS2sPAXIS3PAXIS
£D=PAXIS24DDD
CPS51102-,5C0*PAXIS/0D
CPSI20=-.5D0, (DD*SIGIAQ*PFP)
CXX1=CP5110sCPSI10- - -
CXX 22C2SI20%C?SI20
CXX32C2SI10%CP35120

CETR'1.DO-((E(I,1)02(2,2)'CX!15E(3 3)*CIX2+2.00%E(1,2)*CP5110+42.00

& *f (1,3)%C25120+2,.D0042(2,3)*C XXJ)/(P(‘ 1)+P(2,2)*CXX1+P(3,3)*

-8 CXXZ’Z.DO'F(1 2) ~CPSI10+2.00¢9 (1,3)*CF512042.00%P (2,3) *CXX3) )}’

€CT03=T (1,1) +T(2,2)=CXX1+7 (3, 3)'CXX‘02.u0‘T(1 2)'C9511002 DOe

PGN101361
PGN10362
PGA10363
PGHT0364
PGM10365
PGA10366
PGR10367
PG N 10368
PGu10369
PGR10370
eGu10371
PGN10372

- PGN10373

PGN10374
PGR1037S
PGN1013T6
PGA10377
PGN10378
PGH10379
PG 210380

© PGH1038

PG210382
PCH10383
PGUI038Y
PGN10385
PGX10386
PGA10387
pca10388
PG 110389
PGU103%0
PGN10391
PGR10392
PGN10393
PGH 10394
PG810395
PGA10396

PGX10397

PG310338
PGu10399
PGH10400
PGNM1040 1
PGH10402
PGH10403
PGH10404
PGH10405
?PGH10806.
26110407
PGa10a08
PGH10409

PGH10810
PGN10411
PGN10312

. PGN10813

PGH104 14
PGH10415
264104816
PGN 10417
P6X10818
PGH10419
PGN 10420
PGX10421
PG110422
PG410423
PGN10624
PGH1042S
PGN10426

26810627 °
PGH10428
PGN10429
PGA10430
PG H10831
PGH10432
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& T(1,3)*CPSI20+2.00+T(2 .Jl'CXIJ

CCTSCT= (K (1,1) K (2,2 =CXX 1ok (3,2)*CXX2+2,D0°K (1,2) *C2SI10+2.D0*
& K({1,3)*CP5120+2.L0%*K(2,3) *CXXx3)/CC208

CT224.DJ»PL*CCTUB

PEIX79,2aXx15, PFP, C2TA, CT2,CCTSCT,C2STIN0,CP5120

9 FOFNAT (*J°*,*PaL1S5s*,010.3,1K,'2FP=*,D10,.3,1X,"ETA2%,D10.3,1X, -

& CT2=0,5010.3,1X,'CTSCT=,D1).3,1X,°9S110=¢,D10, 3, 1X, *PSI20=°,
& C13.3)

IF(PFP.GT,.995D) GO 70 666

IE(PPP.GT..9530) GO T0 7

18(PFP.67..709Q) GO 20 6

ProsprP+, 200

GC 10 S

6§ PFF=PFP+,J5L7

GC T3 5

7 EFP=prPe,01LC0

GO T0 S

666 IP(END.SE.1) GC TO 88

SI0P
EXD

SUBROUTINE Dl?lSH(S.YOP.VODP;V1§,'1DP,729,V2DP)

CALCULATION OF GNSTEADY INDUCED DOVYWASH CF UNSTEADY LIPTING-LINE
THECAY

EEAL*8 S,V0P,V0DP, V1P, ¥1D2,¥2P,V2DP,SIGYAQ,EPSLIYN,GANNA,PISQR,TERN]
& +TERA2,TERM3,CONST ,2¥2,L1,VEL,FN3,PL,PN5,CC0,SIGIA,EX,T

IBTEGER AR

CONNCN/AREA2/SIGHA,CCO,JJ/ARBA3/GANNA, Ei/l!!ll/SIGHAO,PI NH§,AR
€CO={1.D0-5"S) »= (NN/2.LD)

.SIGHA=SIGHAO*CCO

T=BASCOS (S)

DC 9 JJ=1,6

¥QS PUBRE HEAVE, 10 SAVE CCNPUTATION TINME, EEPLACE DO 9 JJ=1 6 BY

71?‘0 0o
.V1DEF=0,D0
¥2r=0.D0
¥20F=0.D0
L0 9 JJ=1,2

fOB PURE PIICH, TO SAVE CG&UT)EION TINZ, BEPLACE DO 9 JJ=1i,6 BY

v0P=0.00
v0DP=0.D0
¥2p=0.D0
¥20P=0.D0
Lo 9 JJ=3,4

1I2412-EN"PY¥2 (T)/ (3.D0%AR)
TEFB3=~SIGHAD® FN 31(T,2PSLH) /3.50
TERN2=,5L97SIGMA IS FYS (T,EPSLN) .
VEL=TERMI1¢TESH2¢ TERY]
G0 10 (1,2,3,3,5,6),Jd

1 VOP=YEL -

?G810433
PGAT083Y
PGN1043S
PGN10416
PCN 10437
PGH10438
PGN10439
PGH10a40
PGNI0LaT
PGN104842
PGH1Qu4]
PGAa 10444
gGa104as
PGN10446
PGN1044LT
PGH1I0848
PGH10849
PGR104S0
PGN 10451
PGN104S2

gLLT0001

. OLLT0002

gLLT0003
OLLTO000S&
gLLT0005
0LLT0006
ULLT0007
gLL70008
gLLTO0009
gLLT0010
ULL70011
BLLTO0012
OLLT0013
gLLTO014
ULLTO001S
ULLT0016
gLLTN017
ULLTO018
ULLT0019
ULLT0020
ULLTO021
ULLTO022
ULL<0023
ULLT0028
ULLTQ02S
GLLT0026
OLLT0027
OLLTO0028
OLLT0029
ULLT0030
ULLT0031
OLLT0032
UL1T0033
OLLTQO3a
ULLT0035
OLLT0036
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GC 10 9
VODE=VEL
GG TO 9
ViReVEL
GC TO 9
Y1DP=VEL
6 ¢ 9
¥2PaVEL
G0 10 9
V20PaVEL
CCNIINUE
RETUR N
EN¥D

[OUBLE PRECISTION FUNCTION FHE2(T)

BUMERICAL INTEGRATICN 07 THE INIEGEAL ¥ITH SECCND-ORDER SPAX

SISGULARITY W.5.T. SPANWISE ANGULAR VAEIABLE T.

2ETA DENOT2S THE SIZE QP TRZ REGICN NEAE THE SINGULIRITY

BREAL*8 S,EPSLH,ZET3,DELTA,LG2,INTEGT,INT2G2,INTEG],?N1,X1,01,A02,

& DELA,SUR,T,PI,DELX

13
16

500
501

502

PIs3. 141592652353$79L¢C
EPSLN=PI/20G.20°
2ETA=(21/20,C0)%.5C0

1S T NEAR THE WING TIPS OR AVAY FROM éﬂ! TIPS

IP(T-2ZETA)11,11,13
IF(T-2ETA.LELEFSLN)GO TO 11
IP(PI-7-2ZETA)10,10,16
IP(PI-T-22TA.LE.EFSLY) GO T 10

PCE T ¥OT NEAR O GR 2I (lil! PROM WING TIPS)

CELZA=ZETA/3.30

X1=7-2E3TA ,
IF(CABS (X1) JLE.21/3.D0) GO TO 530
INTZG1LG2(0.50, .500%X1, T, N11) #LG2({. 50041, X1,T, K12}
GO 10 501

INTEG1s1G2(0.£0,X1,T,N11)

512=0

CONTINGE

I1=T+ZETA

LELY= (21-X1)=,500 .

_IF(DABS (?I-X1).LE.PI/3.D0) 50 T2 502
INTEG22LG2 (X1, X1+DZLX,T,HN22) +LG2 (X 1+DELX,PI,T, H21)
G0 10 593 .

INTEG2=LG2(X1,21,7,¥21)

52220

GLLT0037
0LLT0038
OLLTO00139
OLLTOQ80
ULLTOOG1
ULLTO042
OLLTO043
GLLTOOUG
gLLT0045
CLLTOO0GG
OLLTO0047
OLLTOO48
ULLTOQO0u9

gLLT0001
OLLT0002
OLLTO0003
gLLTO0004
ULLT000S
OLLT0Q06
gLLT0007
gLLTO008
OLLT0009
gLLTO0010
gLLT0011
OLLTO012
OLLTO0013
gLLTO00 18
ULLT0015
ULLTO0 16
gLLTO001?

. OLLT0018

ULLT0019
U1L7T0020
OLLT0021
OLLT0022
ULLTQ023
gLLTO002Y
ULLT002S
ULLT0026
ULLT0027
OLLT0028
gLLT002?

. GLLT003)

ULLTO0031
OLLT0032
ULLTO0033
OLLTOOQ34
OLLT0035"

TLLTO0036
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503 CosTINOE
IIT!G33(1 DO/(}OO DOSDZLTA)) * (13, D0*P N1 (T,T- J.EO'DEL'A)072.DO'PS1
5 (C,7=2,C0°D3LTA) *495,LO*FR1(T, 1=DELTA} =1360.D3%FN1 (T, T)¢4495.00
& *PNT(J,T¢eLELTA) #T2 .DO’FUl(:, +2,DO*DELTA) ¢ 13, DOSPN 1(T, T+ 3, D0+

& DELTA))
EN2INTEGI+INTEG2+INTEG3
BETU2N
C . .
< FCR T NEAR Pl (NEAR CME WING TIP)
c .
13 INTEG229.00
2ETA=PI-T
LELIA =ZETA ,3.D0
INTEG3=(1.LC/ (3J0.CO=DELTA)) #(13.DOSFR1 (T, T~3. DO'DZL?R)072.DO"H1
& {TeT=2.D0°DELTA) +895,D0YF N1 (T, T=-DELTA) 1360, DU FNT(T,T) +495,00
& PNV (T,T+DELTA) +72,L0%T¥1(T,T+2.00%DELTA) ¢13,D0*PNT1(T,T+3.00%
% CELTA)) ) .
11sT-ZETA
I¥TEG1=LG2(0.290,X1-21/20,00,7,41)"
& +LG2 (X1-21,/29.D0,X1-PL /2. DO, T, H11) +
i) - LG2(X1-p1/200.00,X1,T,N12)
FHZ'IBTZG1OINT:GZOINTEGJ
EETU3N
ICR T NSEAR O (NEABR THE OTHEE WING TIP)

. 00On

11 1NTEG1s0.TO
ZETA=T
CELIA =2ETA /3.00

INTEGI=(1. DC/(JOO.tO*DELTl))‘(13.00‘?31(?,I-J.DU‘DBLIL)072.D0'FN1'

&  (T,T=2.CO®DELTA)+495,D0%P 1 (T,T~DELTA) -1360,DO%EN1(T, T) 4495.D0
& "ﬂl(T,I*Dtltl)’?Z.EO‘?H1(T.T*Z.SO'D.LTX)013 00t231(t,‘03 o=
& D2LIM)) ,

I11=T+ZETA

I¥TEG22LG2(X1,X1+4P1/200. L0, ,822)+
5 . ch(x1ovx/zoo L0,X1+71/20. 00, T,827) +

6 - ‘LG2(X14P1/20,D0,PI,T,32)
- FN2=INTEG1+INTEG2+INT2G] :
“BETURN ‘

2§D

ULLT0037
ULLT0038
ULLT0039
OLLTO040
ULLTO08 1
ULLTO042
OLLTOOU3
GLLT0044
OLLT008S
ULL70036
gLLT0047
ULLTO058
OLLT0O049
ULLT0050
ULL700S1
ULLT00S2
ULL70053
ULLT0054
OLLT0055

- GLLTO0Sé

ULLT0057
OLLT00S8
OLLT0059
GLLT0060
GLLT0061
gLLT0062
OLLT0063
OLLTO068
OLLT0065

. DLLT0066

JLLTO067
ULLT0068
OLLTO0069
ULLT00790
SLLTO071
ULLTI0072

- gLLT0073
OLLT0078 . .
- ULL10075

OLLTO0076
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aoonnan

non

e ¥a¥ 1)

ona a0

'touazz pazcxszcu zuscrxux PH1(T,TY) - JLLT0001
ULLTO002

IVALUATIOH OF INTEIGEAND CPF I NTEZSEAL WITH szcoun-oanzp SPAN : ULLT00Q3
SINGOLARITT ¥ITA COS SUBSTITUTICN. IT CONSISTS OF STEIP=-THBORY TL .GLLT0004
"AND KEENEL FUNCTION OF NNSTZADY INDUCED DOWNWASH, 40D IS FACTOR ULLTO00QS
INTBODUCED BY COS SUBSTITUTION,¥AMELY 81(7,71) : GLLTO006
gLLT0007

. BEA1*8 S,51,C1,SIGYAT, SIG2A0,ET), ?1,G1,01,81,p1P,R10P, +SR1,511,P1, ULLT0008
& cco, sxuan.c1co cxnaa.su.L,r1 SER, 40D . ULLT0009
. ISTEGEE AR "gLLT0010
ccnaou/naeaz,axuna cco JJ/Aaaxa/saasA,zu/xazxn/s*cqu PI, N AR ULLT0011}
£=DCOS (T) . ULLTO0012
£1=2DCAS (T 1) GLLTO013
C1Cc0s (1.DJ=512S1)»* (X8/2,D0) .OLLTO0014
SIGHA1=SIG¥A0=C1CO gLLTO015
L STHEOD (SI31A1,21,G1,D1,81,521,SI0) OLLTO016
gLLT0017

ARGUNEST CF KEZFNEL PUNCIION QP UNSTEADY INDOCED DOVNWASH OLLTO0018
BLLT0019

ETASAE*SIGAA0%DARS (S=51) /5N OLLT0020
caLL KEK (ETA,?12,7ICP) TL170031
OLLT0022

caxcuxa:xcu CF 8CL, SV IS AT GNE WING TIP ULLT0023
' . GLLT0024
1P (DABS (71) .LT.1.D=5) GO TO 18 gLLT002S
JI? (DABS(PI-T1).LT.1.2~9) GO T0 13 OLLT0026
' ] ULLT0027?

CALCULATICY CF %GC, S1 IS AT THE SINGULASITY AT S OLLT0028
R ‘ ULL70029

IP (DABS (T-T1) .LT.1.D=5) GO TO 19 -GLLTQ030
¢ (=i o731 ) GLLT0031
CALCULATION OF 4CD POR ALL OTHIE VALUEZS C? 51 GLLT0032
' . ) gLLT0013
LEN=((T=T1)/ (CCOS (T)=DCES (T1))) & {{T=T1)/(DCOS(T) -DCOS (T1))) OLLT0034
PCD=DEY*DSIN (T 1) GLLT003S
GO 10 20 - OLLT0036

COUSLE PRECISICH FUNCTION I52(A ,B ,T ,¥) : CLLT0001
: GLLT0002
LEGLNCRE-CAUSS QUADRATURE, U3ED LN CALCOLATING FN2(T) OMLY : " ULLT0003
TRANSFURSS INTERVAL OPF INTRIRATICHN TL06A (A,3) IC (~-1,1) JLLT0094
OLLTO00S
BEAL*S AP,DP,A,3,AA,38,5U%, THETA, S, PNU, LG2P, XT (24,24) 4T (24,20) gLLTO006
& ,S1,781,S1G%A0,P1,CC0,5IcAR,2,T1 ULLTO0007
COMMCH/AREA1/XI,4T/ABRBA2/SI3 8A,CC0,JI/AREAL/SIGNAD, 2L NN, AR ULLTUO008
INTEIER AR : OLLT0009
NG (T, T1)=ENT (T, T1)/((T=T1)*(T-T})) ' SLLT0010
SeDCIS(T) ' ULLTO011
3= (B-A) s2.00 ULLTO0012
88= (B+1h) /2.00 . ULLT0013
1629=100.L0 . : _ OLLTOO0t4
’ : 9LLT0015
ITZ5ATE ON ¥ UNTIL DESIEED CCNVERGENCE IS ACHIEVED ULLT0016
. . ) ] - gLLT0017
DC 11 ¥=4,24,4 . _ ) OLLT0018
SU4=J,L0 ' TLLT0019
DC 10 I=1,N ' : ) JLLTO0020
11 =AAwXI(I,N)+E8 : GLLTO0021
10 SUZB=SOUX+ENU4(T, TV *UT(I, 4} - . S JLLT0022
© 162=AA* ST S gL1T0023
IP(DABS(LG2-1G22).LZ 1. D-S) BETURN _ o ULLTO028
IF (N EQ.24) GO 20 13 . . OLLT0025S
11 162pP=182 ' . _ : . JLLT0026
13 ERINTUQO . : : - . . OLLT0027
800 PORAAT ('0',"ACCORACY OP 1.D~5 NOT ACHIEVED IF LG2*) ] . ULLT0O028
' PRINT100,A ,B ,¥,LG2P,LG2,S,dd . R OLLT0029
100 POENAT ("0, 'A =, F8.4,2X, '3 29,78.4, zx,°u=-,16,2x,cnazp-o.r1a a. ULLT0030
& 2x,'102-'.:1s.a 2x,'s =! r1a.8.2x,'qas'.1u) GLLT0031
RETUIN . gLLT0032
2D gL1T0033 -
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18 noD=3,.LCJ
GO TO 29
19 NCD=1,.D0/DSIN(TY)
20 COMTINUE
GC 19 (1,2,3.8,5,6) ,dd
1 Ph1l°(aIGHlO'(bl*.JDO‘SIb!Al)'PI?‘SIGHAJ'Pl‘PID?)'C1C0‘!OD
EETURN
2 Ph1'(5:61&3‘:1‘91?'51u330’(a1*.Ju3';IG!A1)'?I.~)‘L1L°'1GD
RETUAN ’
3 IN12((2.D0%F1-SIGAAT*GT)*PIP= (2. 004G1+SISA ¥ (1, D0+PF 1))+ PIDP)=C1CO
& *4CD
BETIURN
4 IN1s((2. 59'310516311‘(1 DQ”‘))‘PIP*(Z DO"1-SIGHI1'G1)‘PID?)'Clco
& 40D
RETURN
S IM1a=((2,D0%G1+SIGUAT* (1.D0+P 1)) sPIP+ (2,D0%F1=-SIGAAI*G1)*PIDP)
5 €1Cd*ncd
FETORY

6 FN1=((2.00°F1~SIGNA1%G1)=2IP~ (2, DOSGT +SIGIA 1% (1.D0+P1)) ¢ PIDP) $C1CO _

& *300
SETURN
1 3:1 I

DOUELZ PRECISICH PUNCTICS. PH3(T, EPSLY)

' NOMERICAL ISTZGEATICN OF YORSINGULAE PARTS OF THE INTEGRAL WITH -
{EENOVABLE) ABS(S-51) SINGULARITY #.R.T. SPANSISE ANGULAR
VARIABLE T. EPSLY DENOTES THE 3IZZ OF THZ REGION YEAR THE SING.

PEAL#8 5.1!1!61.IHTZGZ,‘GB,SPSLI,I1,12.1,?1.
PI=3.14159265358973D0
EPSLN=(PI,400,D0) =, 7500

IS !-NE§R THE WING TIPS OR ANAY '20! THE TIPS
IF{T-EPSLYN) .10 310 313

313 IP(T~ZPSLY.LE.21/2000.D0) & 7TC° 310
IF{PI-T-EPSLN) 311,311,316

316 IF(PI-T-EPSLN.LZ.? 1/2000.90) GO I0 311

1 8CT NEAR 0 OF PI (A¥AT PBOH THE YING TIPS)

I1aT-EPSLY

12sT+EPSLY

IP(X1-12.090%21/200.00.67.0.D0) G2 10 301t

INTEG1=LG3({0.D0, X1, r,u1u

N12=D

GO 10 402
401 INTEG12LG3(0.D0,X1- PI/’O.DO T, h11)9L03(x1 Pz/zo.no,x1 T,%12)
802 IF(X2¢12.D0*01,/200.C00.LT.PI) GO T0 803

INTEG2=LG3 {X2,PI,T,N21)

§22+)

GO 10 778
403 INTEGZsLG3(X2,X2+4P1/20.D0 t,uZZ)OLuJ(RZOPI/20 £o,21,7 321)
778 PMISIHTEGIINTES .

EETURY

T NEAR J (BEAG ONE WING TI?)

OLLTO0Q37
JLLT00138
ULLTO0039
QLLTO00RO
ULLTOOM)
GLLT0082
ULLTO043

-OLLTOO08S

ULLTO0AS
OLLTO046
SLLT0047
ULLZ0048
OLLTOO4S
OLLTQ0S0
OLLT00S51
OLLT00S52
OLLT00S3
ULLTO0S4
JLLT00SS
ULLT0056
ULLTO0057
OLLTO0058

"OLLT0001 .
"ULLZ0002
-gLLT0003

OLLTG00S
JLLT0005
ULLT0006

JULLTO0007
© OLLT0008

OLLT0009
gLLT0010

- GLLTOO0 11

ULLT0012
OLLT0013
gLLT0014 -
gLLT001S

.ULLTO0016
© OLLT0017

OLLT0018
OLLTO0019
OLLT0020
OLLT0021
OLLT0022
OLLTO0Q23
OLLTO0024
OLLT002S
UGLLT0026
ULL?0027
oLLT0028
OLLT0029
OLLTO0030
OLLT003%
OLLT0032
OLLTQO033
ULLTO034
ULLTO003S
OLLTO0036 .
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310 INTEG1=0.D0
EPSIN=T
X23TeEPSLN
INTEG2=LG3 (X2, 12+81/200.00,T, N’J)OLGJ(XZ’P~/200.DO x2+p1/20.00,
3 t.H”Z)OLuJ(XZOPI/ZO.DO PL,T,321)
EN3=INTEGTINTEGZ
RETURN

T ¥EPAR 2I (NEAK THE CTHEER WING TIP)

311 187F52=0.D0
EPSIN=PI-T
I1=T-EPSLN
INTEG1=LG3(0.50,X1-B1/20.L0,T,N11) +LG3 (X1-P1/20.00, 11-91/200 Do,
§ T,h12)0LGJ(X1-P!/200.DU,X1,.,&13)
PE3=INTEGI¢INTEG2
EETORN
IS0

tOU!Ll PRECISICN FONCTICN L33(4 ,B ,T ¥)

. LEGZBDES‘GAUSS QUACRATUEE, USED IN CALCULATICKG ?M3(T,EPSLX) ONLY
IillS!OBUS INTEIVAL OP INTEGRATICH FRCE (A,B) TO (<1,1)

CCHBUOS/AREA 1/XI,WI/AREA2/SI3 XA,CCO0,JI/AEEAG/SIGHAQ,2I,3N,AR
REAL=8 A2,BP,A,3,4,88,504,0HEPA,S,L29 ,LG3P,XT (24, 20),=b(2a 24)
¢ ..2,51,SIGHAO, PI,CCO0,SIGIA,T,T? o
INTEGER A3

128 (T,T 1) =LZ(T,T1) /DABS(T~TY)

S=NCOS(T)

AA= (3-A) &, 5C0

BB= {BeA) *, 500

1G39=123.C0

TTERATE ON ¥ OUNTIL DESIRED CCNVERGENCE IS ACHIEVZD.

IO 11 N=4,24,8
sgu=3,0d
e 19 I=1,¥
71 =AASII(I,N)+38
10 SUB=SUN*L2P(T,11) *97 (I, 3)
1G3=aA* S0
I¥ (0ABS (LG2-1G3P).LE. 1.D-5) RETOEN
I?(N.2Q.24) GO TO 13
11 1G63P=LG] :
13 BEINTY00
300 PCRMAT ('0',*ACCTRACY OF 1.D-S NOT ACHIEVZID IN LG3')
FEINT100,A,8,N,LG3P,LG3,5,JJ .
100 FOEMAT (*J*,'A =',FB8.3,2X,'B =',F8.4,2X,'N=2',16,2X, ' L53pa? , P18, 8,
& 2%,7L33%1 ,F18.8,2X,15 =1, E18.8,2X,'3d=", 74)
BEETORN
END

OLLT0037
gLLT0038
gLr10039
OLLT0040
GLLTOOM 1
gLLT0082
ULLTO0043
ULLTOO04G
BLLTO08S
OLLTO046
QLLTOO047
JLLTOOuUS

-OLLTO0US

ULLT00S0
gLLTOO0S51
aLLT0052
OLL?00S3
GLLT0054

OLLTO00Q1
OLLT0002

ULLTO00Q3

ULLTO00G
ULLT000S
ULLT0006
gLLT0007
gL170008
OLLT0009
OLLTO010
OLLT0Q11
gLLT0012
OLLT0013

gLLT0014 -

gLLTO001S5 °
QLLTO0Q16
gLLTIQ0 17
gLLTOO018

" OLLTO019

0LLT0020
GLLTO021
OLLT0022
ULLT0023
gLLTO0024
ULLT0025

"OLLTO0026

OLLT0027
ULLT0028
ULLT0029
ULLTQ030
ULLT0031
gLLT0032
OLLT0033




aonnn

0NN

SO0

249

- [OUELEZ PRECISION rUNCTION 12(1,T1)

19
20

19
12
13

15

STFI2=TULCRY SECTICN CL

Tz J (SQET €F -1),
FN3(T,EPSLY) CMLY. %0C2 1S

e
<
£

USED IN CALCULATING

3 .
ACCs INTRECDUCLD BY COS sus., 22(T,TV)

BEAL®8 S1,LT,S5ISMAO,SIGIA,SIGHA1,CCO,C1C0,PT,F1,G1,01,81,551,511
&  ,T.T1,M0D2 - .
COXMCN/AREAZ/31IGMA,CCO,JI /AR SAU/SILNAD, PT, KK, AP

INTEGER AR

S1=LCCS (T1)
€1C0=(1,D0=-S1931) =* (¥4/2, DO)
SIG¥A1=SICIAI*CICO

CALL STHZOD(SIGMA1,21,G1,D1,31,581,511)

.CALCJLATION CF MCIL2, T1 IS AT CSE WING IIF

IF(DABS (T1) .LT. 1. D-‘)tGO 10 19
IF(ORB:(PI‘L1).L-.1 p-5). GO TC 19

CLLCUIXTICN orF 10C2, T1 18 A!! OIH!R 2CINT

!CD2'DIBS((T°T1)/(DCOS(”)‘DCDS(T1)))‘DSIH(T1):

GO <0 20

ECD2=0.D0

CONTINUE

GO 72 (1%, 1‘.14,10 15.16).JJ
12’516310'?1*C1C0*!002

RETU:EN

L23SLGSLO‘(G10 500'5161!1)‘C1C)’H002
BETUSN

12= (2 DO'G10$IG!A1‘(1.DO+!1))'C1C0'50D2
RETIRE
12'(:IGHA1'G1-2.DO‘?1)'C1CD’HODZ
BETOFN
14'lZ.DO‘l1—516111'61)‘C1C0‘SOD2
FETURN .

‘16 12= (2. DO*G105161A1‘(1 DO+?1))'C1C0*5002

‘BETURS
D

gLLT0001

OLLT0002

OLLTV003
ULLTOGO4
ULLTO000S
gLLTO006
ULLTO0007

“‘urrTooos

OLLTO0J09
gLLT0010
‘ULLTOO1
ULLT0012
OLLTO013
gLLTOO014
0LLT0015
ULLT0016
gLLT0017
OLLT0018
OLLT0019
ULL%0020
gLLT0021
OLLT0022
ULLT0023
OLLTOC24
ULLT0025
ULLT0026

_UL1T0027 . -
 gLLT0028.

gLLT0029
ULLT0030
ULLT2031

GLLT0032

OLLTO0033
ULLTOO34

' GLLT003S -
_ ULLT0036

ULLT0037

ULLT0038
61170039
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LOUELE PRECISICK BUNCTION FNS(T,E2SLN)

EVALUATIOR CP TERR2, TiiE KCNINTEGHEAL PART OF UNSTEADY INDUCED
CCabaAsd, INCLUDLS STEIF-TIlLORY SzCTIUN CL TIMES J (SQRT QOf =1)

REAL*3 SIGMA,SISMAC,C,S,EPSLN,3ANMA,PI,A1,A2,7,G6,0,8,58,51,CC0,EN
& ,TL,OELTAT,TELZA2

INTESER AG

CONACN/AREA2/SI3MA,CCI,JI/ B EAI/GANNA,EN/ARPEAG/SIGNAD, PT, NX, AR

CALL STHECC(SIGMA,F,3,0,8,SF,SI)

s=0CSS (1)

CELT) 175~-DCOS (T+EESLY)

CELTA23DCOS (T-EPSLN) =5

A1=1,DJ)-GansA- :LCG(..-O'DSQu.(D-L2A1'DZL'AZ)'AH‘SIG!!O/LV)

A2==,5D0%?1

60 1O (1,2,3,4,5,6),3d .

ENS= (-AZtszcaAo-(co sno-s'cua)oa1ts‘caxo-s)-cco

BETURN

ENS2  (A29SIGMAO*F+A1¢SIGHAJ® (G+.SDO*SIGHA) )*CCO

FETURN : o

F¥S=  (A2%(2.CJ%F~SIGHAG) #A12(2.D0~G+SIGMA® (1.D0+7)) ) =CCO

BEZTURN : : )

FES=  (A2%(2,L0*G+SIGEA*(1.00+M) ) =41* (2,D0%F-SIGIA®G) )=CCO

SETOURN

PYS=  (=A2* (2.L0*G+SIGHA® (1,00+P)) +A 1% (2,D0*F~SIGYA®G) ) *CCO

FBTURN o :

PNS5®  (A2% (2.C0#P-SIGEASG) +A1*(2,D0*G+SIGIA=(1.D0+7)})*CCO

EETORN .

IND

‘05500115!'513200(‘16!1 f;G‘D B8,5R,SI)

ClLCﬂtATIOH CF THE B2AL AND IHAGILAR! PARTS O THECDOBSEX'S PN,
AN IH! SEABS PN,

INPLICIT REAL*S (4-2)
INTEGER 1ZR,JJ AR, N8

DATA P1/3.1n159265358919/

1ER=9

1F{SIGMALLT. 1:0-11) GO .T9 55
CiLL DBJYO (3IGYA,J0,Y0,IER)

IP (1ER.KES0) VRITE(6,100) IZE .
FORHAT(* ERECE IX L[2JYD; ISa= 1,2IS5)
CALL D3JY1 (SIGXA,J1,Y1,IER)
IP{1SR.KR.0) WEITE (5,200) I&F
FORMAT (' ERROE 1K CBJY1, I[EZR= *,IS)
A= (J1+X0)% (J1+10) ¢ (JO-T1)*(J0-YT)
ER=JII 1o 10 142,00/ (PL*SIG2A)
CCm=(J0sJ1410%11)

F=BE/AA

GaCC/4A

SE3J)PTeJ12G

SI=J1+J0%G-J1%F

L=P*24G*G

B=f-D

FETURY

$=1.C0

G=0.00

SE= 1.0

£I20, 00

I=1.00

B20.D3

BETUAN

E8D

ULLTO0001
ULLT0002
ULLTOQ03
ULLTO0O4
GLLTOUOS
OLLTOQ0G -
gLLT0007
ULLTO008
gL170009
OLLT0O0 10
ULLTOOM
OLLT0012
OLLTO013
ULLTOO 14
gLLTO01S
OLLT0016
gLLTI0017
JLLTQO18
gLLT0019
ULLT0020
JLLTOO021
SLLT0022

. GLLTO0023
- GLLTOQ24

ULLT002S
OLLT0026
ULLT0027
gL170028
OLLTQQ29 -

ULLT0001
ULLT0002
OLLT0003
OLLTO008
gLLT0G0S
OLLT0006
gL1T0007
OLLT0008
TLLT0009"

© ULLTO0010

JLLTOO11Y
OLLT0012
gLLTO0013
gL170014
OLLT001S

ULLTOO16

OLLT0O017
ULLT0018
gLLTO0019
OLLTO0020
OLLTO0021
ULLT0022
0LLT0023
JLLT0024 -
ULLT0025
ULL20026
ULLT0027
OLLTO0028
ULLT0029
CLLTO0030
OLLT003
gLLTO0032
OLLT0033
OLLT0O03Y
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SUDEOUTINE KSE(ETA,PI2,21DP)

CALCULATICN CF THE KERMNEL ™ . OF UNSTEADY INOUCED DOWNWASH OF
CHSTEADY LIFTING=LIGE THEORY

INPLICIT REAL®*8 (2-2)
CCBHMCN/AREA2/SISNEA,CCO,JI/AREAL/SIGHAD,PI, NN, AR
INTEGER I%K, JJ AZ L NN

IEE =)

1?7(=7A.LT.1.0=-11) GO 10 65

CALL CBKY (ETA,K1,IER)

IF(I:keBELO) ®5I7TZ (0, 100) IER

FOE2AT (' EFSCE IN D3K1, I1ZR= ¢,IS)

FIP=ETA®*K1

E’(PI/J DO~.867STATETAS ((48643D3¢.9159DI®ETA) /(s 3@1000*2?1‘
& ZTh))) *DEXP (-EZ3)
C'BO(Y.OJBSEO'ETA)/(1.33100304.305000‘BIA‘571)
I1L1=((2.L0/P1) *ETA) *C

FIDP=(PI/2.50)*ETA®IILY

BTTURN

F22=1.00

EIDP=0,L0

FETURN

END

SUBROOTINE CI1(S,v0?,v0DE,¥V12,V1DP,¥22,7V2DP,
<op,CLODP, CL12,CL 'D?,CL22,CL2DP,
CLs0?,CLSODF,CLSTP,CLS1D2,CLS2P,CLS2DD,

- CLOCP,CLOODP,CL11?,CL11DP,CL22?.CL220?)

OO

OKIVSRSAL CCEF'S CY STRIP-THECRY 3§D 3D SECTIOK CL AND THE 3D
(SEARS) CCRRECIICY

EEAL*8 S,VOP,VODP,V1P,Y1DP{VZP,VZDP,

. -CLQ2,cL0DP,CL12,CL1DP,CL2?,CL2DP, -
cLs¢p,CLS0CLP,CLS12,CLS1DP,CLS2P,CLS202,
SIGHMAO,SIGMA.C,?,5,0,.B,57,S1,°T,CCO,
cLooP,CLOODP,CL112,CE11DP,CL22P,CL22DP

IXTEGER AR
CONNON/AREAG/SIGEAD, PX, NN, AS
CCO=(1,D0~S¥5) *¢ (NK/2, DO)
SIGNA=SIGNAQ*CCO

CALL STHECD (S1Gm#a,?,G,D,B,SR,SI)

STPIP-THEQRY SECIION CL

CLODP=PI®SIGHAQ® (G+.SLOSSIGHA) 3CCO’
CLOD2=-PI*SIGHA0*F*CCO
CL1P3-PI*(2.L0?F~SIGNA%G) *CCO
CL1DP2~pI¢ (2.D0%G+SISMA* (1,D0+7) ) *CCO
CL2P=P1% (2.L08G+SIGMAY (1.0I¢+P)) *CCO
CL2DP=-PI* (2. 00" FP-SIGNA®G) *CCD

3D SECTIONAL (SEAES) COREECTION

. CLSO0P=2.DO0%EI* (VCE*SE~-VODPSSTI) *CCO
CLSODP=2.00%2I% (VODP#SE+VOPeSTI)*CCO
C1S1P=2.00°P1* (VIF*SA-VIDP*SI)*CCO
CLSIDP=2.D0®P14(VID2*SP+V1Ps SI)eCCO
C152P=2,C0%PI% (V2ESSF-V2DPeSI) *CCO
CLSIOP=2.D0*EI» (VICP*SReV2Pe ST) #CCO

OLLT0001
ULLT0002
ULLTOO003
ULLTQOO4
ULLT0005
gLLTO006
ULLT0007

© OLLT0008

ULLTO0009
gLLTO001Q
ULLTOO 11
GLLTOO012
OLLTO0013
OLLTOO 14
GLLTQO1S
OLLTO0O0 16
OLLT0017
OLLTOO 18
GLLTO0019
ULLTQO20
ULLT002%
OLLT0022 -
OLLT0023
gLLT0024

3DCL0001
30CL0002
3DCL0003
3DCL0008 -
3DCLO0OS

-3DCL0006

3DCL0Q07
3DCL0O00S
30CL0009
3pCLO010
3pCLO0 11
3DCLOO012
3DCL0013
3DCLO014
3DCL0015
3pCL0016
30CL0017
3ocro018
30C1L0019
3DCLO0 20
3pCL0021
30CL0022
3DCL0023
3pCLO028

- 3DCL 0025

3DCL0026
ipcLoo2?
3pcroo2s
3DCL0029
3DCLQO3D
3DCL0031
30CL0032 -
3DpCLoo33
JDCLO03Y
3DCLO03S
3IDCLOO 36
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3D SECTICN CL

CLIGCP=CLOP+CLSTP
CL00DP=CLODE+CLSOCP
CL112=CL1PeCLS 1P
CL110P=CLIDE*CLSILP
CL22p=CL22+CLS2P
CLI2DD=CLICr+CLIS2LP
EETURN

D

SUBROUTINE CN1(S,¥0P,v0DP,V1P,Y1D2,V2P,V20P,

: ceOP, CHODP, C412,CH1DP,CN29,C42DP,
CHSOP,CHSODE,C NS1P,CHS1DP,CHS2P,CNS209,
cM00?P,C200DP,CH11P,C211DP,C3227,C22200)

a0

USIVERSAL COEZFP'S CF STRIP-?HEO{! AND 3D SECTION Cx A¥D THZ2 3D
(SEARS) COBRECTION ) .

EEAL*8 s, VOE, YODP, V1P, V1DF, V29, V2DP,
ca0p,Cy0DP,CH19,C4102,C422,04202,
cnsce,cIs0DP,CNS1E,CHS1DP,CHS 2P, CHS2D2,
srcaa,sIGyA0,c,?,6,D0,2,3F,5I,F1,CC0,CCO02,
cnoop,cu00DP,CH11P,CHY1DP, CH22P,CH220P

L S ]

INTEGEE 2R
CCMMCN/AREAU/SIGNAO,2X, NN, AR
CCO=(1.D0-S?S) ** (EN/2.D0)
SI3MA=SIGAAQYCCO

€Cc02aCCO*CCO

CALL STREOD (SIG®A,?,G,D,B,SR,SI)

€TRIP-THEORY SETCTION C1

CHOP=.25D0*PI*SIGHAQ?G*CCI2
CHODP.==~,25C3%PI*SIG2AQ=FeCCO2 -
CN1E=.25D0*E 1= (31CHA®G=2, DO* 7=, 25D0*SIGNAPSIGNA) ¥CCI2
CM1DP=,2500%PI* (SIGHA-SIGrA®F=2,D08G) *CCO2
CH2P=.25D0°0I* (SIGYATF#2.D0*G-31GN1)*CCO2
(lZD?’.ZSDO'PI‘(SIG:A’G-Z.DO'!°.ZSDO‘SIG!A‘SIGHA)‘CC02

3D SZCTIONAL (SEAES) CCREECT ICYH

CHSOP=.SDO®PT* (VOP=SR~-VODP*S2) *CCO2
CHSODD=,500*PI» (VODE=SR+VIP* ST)PCCIA2
CMS1232,5D0°0I~ (VIES3=71L29ST)*CCO2
CHS1DP=.5D3% 214 (VI5295R4V12752)9CCO2
CHS2P=, SDO*PI® (V2L *SR-V2DE*S51)*CCO2

3DCL0037
3pCLo03is
3DCL0039
30CL0040
30CL0041
30CL0082
30CL0043
JocLoQuu
3InCLo0ss
3DCLO04G
30CL0047

3DCx0001
3pCcn0002
3pC#0003
3pcuooo0a
30cn0005
30Cn0006
3pCa0007
3DCu0008
3pCcx0009
3pcn0010
3DCn0011
3pcx0012

. 3DCac013

3DCn0014
3DCx0015
3pCcn0016
3pcn0017
3pcu0o18

. 30Cr001S

3DCcu0029
pcn0021
pcruo22
ipcn0023
30Cn0024
30C1002s
3pCu0026
3DCn0027
jpcn0028
ipcn0029
3pcnQ030
3pcn0031
3pcmo032
30C%0033
3DCn003u
30cn003S
Jocu003e
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CBSZOP=. SD0®PIS (VZDPeSAeV2P* SI)+CCO2
3L s2cTICYH CN

Cx00p=Cr0P+CHSTP
Ca000P2CNIDF+CNSOL2
CX11p=aCN1ReCusST2
CR1I0F=CHIDEPCiiSIC?
CH22p=CN2PoCHsS2
CH25DP=CA2DECHS2LP
FETUEN

END

'SOBEQUTIBE RBROCTS (A,BZ,NER)

CALCOLATION CF THE REAL RCOTS OF THE CUBIC SECULAR 2Q.
THE 2COTS ARE [ZTERMINED USING SUBROUIINE ZRFPOLY OF IMSL

FEAL*8 A (8),AA,EB,CC

. CCHPLEX®16 Z(3),EZ(J)

THE GIVEN CUBIC SECOLAR EQUATION

ERIST147

FCEMAT('0*, *SECULAR BQ IS:*)
FEINT148,A (1) ,A(2) LA (3),A (8}

FCEEAT('0°,010.4,'2¢%3¢7,010.4, 122249 ,D10. 4 'ZO'.D10 3-"0')

AA-B-B;(A(1))

I¥ (Ar.LT. .D-14)u0 10 151
SDEG=3

CALL ZZ*CLY(A,NDEG,Z,IER)
IF(IZE.8E.Q) GC 1C 103

ERINT EOCTS CF COBIC, SELZCT REAL ROCTS

Lo 161°121,3
ERINT162,Z (I}

TOR AT ("3',YECCT CF SECULAR EQ., z--.z(n1o.a 21))
J=1

IO 163 I=1,3
BB'DIPAG(Z(I))

€C=LAES (28)

IP(CC.GT. 1.D=-12)GO T0 163
FZ(3) 22 (1)

NER 2J

EFINT164,RZ (J)

PCENAT ('0°*,*EEAL BCCT CP SECULAZR EQ, RZ".Z(D10.Q,ZX)).

J=3+1
CONTINTE

30Cn0037
30CN00138
3pCcn0039
JuCn0040
pcuoos
3pCn0042
3pCn0043
3pCx00uy
30Cn0048S
3DCnoo4e
3pcn00a7?
30Cn004a8

ROOTD001
BOOT0002 .
ROOT0003
200T0004
80070005
800T0006
RO0TO007
ROQT0008
RQQT0009
ROOT0010
ROOTO011
ROOT0012
ROOT0013 ~
ROOTO018

ROOTOO1S

RQOTO0 16

" ROQTO0017

ROQTQ018
BO0T0019
R0O0T0020
ROOT0021

- RO0T0022

80070023
R00T0024
ROQT002S
ROOTQ026

" ROOT0027

ROOTO0028
20070029
ROOTO030

. RO0TO031

ROOT0032
ROOT0033

", ROOTO0J34

80070035

E00T0036



nno

non

e xe X2l

167

151

165

254

PRINT 167, NFF
FCENAT(®0*, *NUNBER OF REAL 8COTS OF CUPIC SECULAR EQ, NRR=',It)
BETURM A ‘ o N

1 LEADING TERH CF CUBIC IS ZESO, CONSIDEE IT AS A QUADBATIC

M1)=A(2)

(2)=a (D)

AN =a(w

A».wsu(n)
IF(3A.LT.1.D-12) GO 10 152
¥CIGs2 '
CALL ZEPCLY(A,KDEG,Z,IER)
1P (IEF.NE.0) GG TC 103

SEINT §0QTS 07 QUADRATIC, SZLZCT BEAL EOCTS

£c 165 I=1,2
PPIHTlGZ.Z(I)

J=1

L0 166 I=1,2
s:o;unc(z(x))
CCaDABS (BE)
IP(CC.GTL T, D-12)Gc 10 166
EZ(J)=Z(I)

L1 BN
EiIhT1EQ,RZ(J)
J=g41

CONTINGE
PEINT167,NBE
sEToRn

IF LEADING TERY OF QUADIATIC IS 2350, COMSIDER IT 3 A LINEAR EQ,

AHN=2r(2)

T A(2)=x(3)

£2(1)"§(2)/l(n

$5IUTIEY, Z(1)
FRINZ167,85E '
jeToRE
ERINTIA1,122

‘xcsuxrg'n!,'zizoa I¥ zppoly, IER=!,If)

FzoRy

-380

RO0T0037
K00T0038
§00T0039
ROOT0040
£00T0041
£0070042
200TU04]
£O0T004Y
80070045
ROOT 00U
ROOT0047
£00T0048
ROOTOV49
800T0QS50
E0QT0051
R00T0052
800T0053
£00T0054
FOOT0055
RO0T0056
80070057
ROCT0058
BOOTO0QSY
BOOTG060Q

. R0O0TO061

30010062
ROOTO06 3
ROOTQ064
ROOTO0065
R0020066
B0010067
ROQTQ068
ROOTON69 -
0070070
80070071
BQQT0972

RQOT0073
£00T0074
ROOTA07S
206T0076
39010017
ROOT0078
BQdT0079
R00T008Q
RQGT0081 .
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PEOG2AY 2

CALCULATION CF SEANVISE CISTEIJUTION CP UNSTEADY INLUCED DOWUNWASH,
SECTION LIPFT AND SECTION MOMENT USING UNSTBADY LIFTING-LINE THEORY

FEAL®S XTI (2%,2%),8T(24,26),51GYA0,2I,  THLTA,PSI0,2SI1,PS12,¥0P,
yLe,vie,vipo,v22,v20p, V?,VD?,VASP,Y?HASE.S;DEL‘.DELZ.
cLoP,CLODZ,CL 1F,CL 102, CL2P,CL2DP,
CLS9p,CLSICF,CL31?,CLE 109 ,LLS 2P,CLS2D7,
cHd#,Cn0D2,CH1F,C2 1D, CN2P,Ct20P,

C1509,C¥c 98P, C2S 12,045 102 ,CNS 2P, CHS5202,
CL20R,CL221I,CLI0?,CL3DI,CA202,CY2DI,CH3DE,C3DT,5A0A,CC0,
SI1Gaa,EN,CLJOP,CL00D?,CL1 12, SL11DE,CL22P,CL22DP,CH00P, C2 00DP,
Ca11E,CN1107,C032P, CN220

CCHMUCN/aREAT/XZ,WT/AREAZ/STIGNA,CCO, JJ/\EEAJ/GA!:X EH/ABEIQ/SIG!AO.

EPI,NU,AE
INTZGES AR, END
PI=3, 13159265353979L0
GAdRmA=, 57721566490 153400
EZADUOT, ((XI (I,N),I=1,H), Na4,28,8)
. FEADROT, ((¥T(I.¥),X=1,¥),N=4,24,4)
301 TORMAT (20X,#20.15,32X)
. DEL1aPI/60.00 -
. CEL2%8,7T0*PI/180.L0
.88 FEAD4O2,SIGMAC,AE,EXD,KN
aoz FCEAAT (P9 6,12,8X,11,41,11)

GOt

IDENTIFY PLABFC22

GC 10 (200,201,202) ,NN.
200 ENsu4.£0/PI
EEINTI00,SIG=AD, 25, NN
300 FOSMAZ(*1%,7SIGIAQS?,F8.5,2L,  AR=*,13,2X, 'KN=?,13, 2X, "ELLIPTIC
- §UIBG')
Go 10 303

207 EBs1,5D0
PRINT301,SIGYA0, AE, NN
301 !G!HA"('l' *SIGHA0=',P8.5,2X,'A5=*,13, 2!.'!3#',13,21,'L2!TICUtAB
- GﬂIHG )
7c 303

'202 zl-16 D0/ (3.LC=01)

"FELNT302,5IG840, AR, BN

- 302 FORMAT(*1','SIGIA0=',F8.5,2X, 'AR=*,13, 2!,'!!",13 21.'CUSP-TIPP£D

anon

ono

&WINGY)
303 CCNTINUZ
1HEZA=DEL1
DO 191 1I=1,11
S=DCOS (THETA)
CALL DNAASH(S,VOE,VO0DP,v12,7v1DP,V2P,V2DP)

POR PORE HEAVE SET (NON=D. ¥,R.T, HEGA:I‘Z_O! BEAVE ANGLE)

92=2.CO* VODP/SIGRAO
VLP=-2,D04V0P/SIGNAQ

FOR PURE PITCH SET

VE= V1P
Yopsv 1DP

YASP=DSQRT (VE>VP+VCECVCP)
VPHASE=DATAN2(VD?,VE)
IP(VPAASE) 81,42,42
41 VPHASE=2,D00#PI+YPHASE
82 VPHASE=180.CO0*VPHASE/PI1-
PEINTU0D,S,V0?,V1F,722,V0DP, VIC2,V20DP
800 FCRMAT(®0','3=',F8,3,2L,'V0P=',210,7,2%,'V1P=",F10,7,2X, 'V2Ps=?,
& . F10.7,2X,°'vODP=',F10.7,X,°'ViDP=*,F10.7,2X,'V2DR=",P10.7)
FEINTSDO,S,V?,VS? VAN2,VPAASE i
500 FCEMAT('0°',°S=',$8.3,2X,°'VP=",710.7,2X,*V0P=*,F10.7,2X,'VANP=!,
[ !10.7,2!,'7?HASE ' ,F13.8) .

PGN20001

. PGNn20002

PG%20003
?G1200049
PGA2000S
PGH20006
PG N20007
PGN20008
26120009
PGN20010
26820011
PGN20012

. PGB20013

PGR20014
PGN20015
PGN20016
PG 820017
PGH20018
PG220019 -
26120020
PGu20021
PGA20022
PGH20023

. PGa20024¢

PGN20025
PGR20026
PG820027
PGH20028
PGu20029
?GN20030

.PGu20031

PGu20032 .
PGH20033
PGH20034
PGN20035
PGH20036 -

26820017
PGu20038
PGH20039
PG 220040

-PGH20041

PG820042

- PGA20043

PGH20044
PGK2004S
PG220086

" pGA20047

PGN20048
PGH20089
PG420050
PGA2005T
PGH20052
PGH20053
PGH20054
PG12005S
PGN20056
PGN20057
PGH20058
PGN20059

‘PGU20060

?Gu20061
PGa20062
PGn20063
PGN2J064
PGu20065
PGn20066
PGA20067
PGA20068
PGn20069
PG120070
PGA20071
PGN20072
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CALL CL1(5,%3P,V0DE,VIP,VIDDP,ViP,V20P, R PGN20073
4 cLop,CLICP, CL17,CL109,CL22,CL2D2, PGN20073
19 CLSJI?,CLIODP,SLS Y2 ,CLSIDR,CLSS,CLS3DP, PGX20075
& CLOCS,CLCIUF,,CLIT1R,CL11D8,CL2.F,CL22D2) PLG 20076

Call cat (s,v32,v002,vI12,v10P,¥Y2P,V2D2, PGR20077
3 cn0F,Cx0L5, C11P,C 102,029, CN2DE, PGN20078
§ Cc¥s0p,Cn30DP,CS12,CNS128,C 152P,CN0202, PGN20079
& cu002,Cni002,C8112,CN110P,CN242,C022D0) ' 26420080

) PGN200AY

FOR PURE HEAVE SET PGR20082

PGN20983

CL2DE=CLIP PG 823084

CLIDI=CLIDP PGN 20085

CL3ICLaCLOIP PGN20086

CL3LI=CLOIDP PG420087

C82Di=CH02 PGN20088

CN2DI=CH0D2 . : PG 29089

CrlDascuooe PGR20090

Cu3CTI=CuQIDE PG820091

: PGN20092

FOR 20RE PITCH SEZ PGA20093

] 2GA20098

CL2DP=CL1P . PGN20095

CL2CI=CL1D? PG¥20096

CL3DR=CL11? PGA20097

CL3DI=CL11DE . PGN200938

CM2DR=2CH 12 PGN20099

cN2CI=Cn1pP ) PGN20100

C83CLR=CH11P PGN20101

CH3DI=CN11DP ) ‘ ?G320102

. PGN20103

®RINT 600,S5,CLZDE,CL2DI,CLIDR,CLIDT . PGN20104

600 rCRAAT('0*,'Sa’,FE,3,2X,'CL2DR=’,F1),5,2X,*CLZDI=",710.5,2X, . PGM2010S
& *CL3DR=*,PF10,5,2X,'CLIDT=¢,F10.5) . PGN20106
PEIRT 700,5,CM2DE,C2201,CN3DR,CH3DL . PGH20107

700 PFOHMAT(*O*,*S=*,78,3,2X,'C42D8="',P10.5,2X,'CH2DI="',710.5,2X PGE20108
& *Cu3DRat,2?10,5,2X,'CH3DI=",710.5) : PGa20109
191 THETA=THETA+DEL2 o : PGu20110
IP (END.NE.1) GC %0 88 = PGN20111
STOP . ’ - PG320112

230 o PGH20113
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" PRCG3An ]

CALCILATICS CF TCTAL CL ABD CN FCH AN OSCILLATING PINITE WING
USISG ONSTEADY LIFTING-LINE THECEY

REAL=SE !1(44.:“),21(25,2“).:101{0,.., THETA,PSI0,PS11,PSTI2,V0P,
vyoe,vip, VIGP, V2P, V2DF, VO, V02, VAND,V2UASE,S,048L1, 0L 2,
CLOP,CLODP,CL1E,CL1D?,C12‘,CL o2,

CL502,CLSJCP,CL51P,CLS 102,LL522,C1S20P,
CxJ?,CnC0:,Cl 1F,CM 10D, CniP,CN 212,
CASOP.CHSQSP.CSS1?,CHSJDP,CJJZF,CHSZDP,
CL2DR,CL20I,CL3IDR,CLIDI,CN2D5,CN2D1,CN3DR,CN3DT,5ANNA,CC0,
SIG2A,EN,CC,50UN1,5082,5043,5U%4,3045,5Uu6,5U07,S844,
fCLl2DE,TCLIDI, TCL3DA, TCLI DI, TCM2DE, TC#2DI, TCHJDF.LCSJDI.FACT.‘
"CLOYP,CLOJLP,CLTTP,CLT 1DP,CL229,0L22D8,0000P,C000DP,C112,

. Cu4110F,CH8228,CM22DP

COBMCN/AREAT/XI,0T/AREAS/GANBA ,SN/AEEAL/SIGHAQ,PI, N, AR

INTESER AR,Z5D

FI=3.14159265358979LC0

GANZA®,STT72156€49C153420

FEAD301, ((XI(I,4),3i=1,N),%=6,24,4)

REALU0T, {(9T (I,¥),Is1,8),N=4,20,4)

801 ECaEAT (20X, 220.15,:2X)

88 EBAL302,SIGYAQ,AE ,END,NH

802 ICR=1(79.6,12,8X,I1,4X,11)

amnmmmommn

IDENTIFY PIANECRE

G0 TO0 (200,201,202) ,UN
200 EN=0,D0/FI
F2INT300,S1IGNAJ,AR, 4N
300 pCEXAT('1*, 'SIGBAO-' PB.5,2X,'A2=¢,13, ZX,'UN-‘,I3 2X,*ELLIPTIC
GNINGY)
G0 TO 303
201 E¥=1,.5D0

FRIBTIOT,SIGNAD, AT, NN : _
301 FCENAT('1', *SIGMAC=', 78,5,2X, *AR=',13,2X, 'SK=',13,2X,' LENTICULAR
£5IHG') S
GG TO 303
202 EN=16.00/ (3.D0%2T)
’ PRINTI02,SIGHAQ,AR,BR
302 FORIT(MIY, 1SIGNA0n",28.5, 28, 'ABs?,13,2%,"'8N=",13,2K, ‘CUSP~TIPPED
EVING*)
303 CCHRIINUE

IBTEGEATION OF SECTION LIFZ - AND MCMENT COEF!'S, USING 16-POINT
LEGENDR2~-GAUSS QUALRATURE, TC FIND TOTAL ’OEIP'S

B=16

£02120.L0

£032%9.13

502320,L9

£023+0.00

SUA5=0.C0

£U620.00

£04720.13

5U88%0.C0

P82

fc 10 1=1.n

THE Td =, SDOPIs (1.LO+XI (L,N))

€2DCOS (THETA)

CALL DNWASH(5,V0P,VdD2,712,V1DF, V22,V252)

CALL cLi(s,v0p,v0D?, 719,V 1D2,V20,V202,
cLop,cLoD?,CL1 P, CL1DP, CL2P, CL2DP,
CLs0P,CLS0DP,CLS 12,CLS 10P,CLS 2P,CLS 20D,
C10C2,CLO0CR,CL112, CL11DP,CLZ2P, CL220D?)

CaLL cH1(s,v¥0P,¥30D2,91p,¥10¢,V32,720DP,
cx0g,C4002,CN1P,CH1DP,CH22,CN2DP,
C1502,C3500P,CHS12,CaS 102 ,C45 28 ,CHS 202,
CH00P,C300DP,22112,0011D2,C322P,C%22D2)

‘MO0 OO0 ®

PGu30001
PGN30002
PGA30003
PGN30004a
2G830005
PGX30006
PGN30007
?G830008
PG 830009
PGN30010
PGH300 11
PG130012
PGu30013
PGH3001a
PG830015
PGa30016
PG830017
PGN30018
PGH30019
PGn30020
PGN30021
PGH30022
PGA30023
PGa30028
PGu3002S
PGN30026
PGE30027
PGu30028
2Ga30029
PGU3J030
PGH30031
PGN30032
PGy30033

‘PGH3003y

PGA30035
PGN30036

pGu30037
PGN30038
PGN30039
PGA30040
PGH30041
PGR30042
PGu30043
PGu300Qua

‘PGN30045

PGR300U6
PGY30047
pGR300u8
PGN30049
PGNH3V050
PGN3005)
PGU30052
PGN30053
PGU30058

~ 'PGA#300S5
_ PGE30056

PGN100S7
PG 830058
PGNI 0089
PGH30060
PG130061.
PGN30062
PGu30063
pGcul006a
PGR30065
PGHI0066
PG BI0067
PGN30068
PGN30069
PG 30070

“pGn3007M

PGu30072



onn

anoanO

aonn

258

ICR PURE HEAVE SET B . ’ : PGH300713
. ’ PGRI0074
CL2LR =CL(2 . PGN30075
CLa2DIsCL002 PGNRICO0T76
CL3Da=CLIOP PG N30077
CLJIDT=CLOODP . PGR30078
CB20=C2oP PGX30079
Cy2DI=CX00P T PGN30080
€33Di=C300P PGN30081
CB3DI=CNO0DE PGN30082
£G830083
FOE PUREZ P1TCH SIT ’ PG 830085
) PGN3008S
CL2Da=CL12 ' PG 830086
C12DI=CL1IDP ' PGN30087
CLIDE=CL11? . : pGu30088
C13DI=CL11DE - . PG 330089
CH2D5=CN1? ) ) 2G230090
CI2DI=CN1D? ’ . PG A30091
CH43IDR=CHIP . . PGM3I0092
¢83DI=CN11DP : . PGA30093
. PGNH30098
CC=L3IN (THETIA) . . PGH30095
SUB 1=SUMT+CL2DE*CC*NT (I,N) ) PGA830096
S082sSUSI+CL2DI®CC?aT (I,5) . ?GH30097
SUN3I=STUNISCLILZ*CCWT (I, N) . PGNI0098
SOMB=SUMUSCLIDI®CCHuT (I, 8) s PGN30099
SUNS=SUMS+CH2DR*CC*WTI (T, N) . PGH30100
SON6=SON6+CH2DI*CC2UT (I, N) . PGE30101
SUNT=SUNT+CU3IDR*CC*dT (I,H) ' PGA30102
10 SU¥8=SON8+CN3DI*CCHY VT (I,N) . . . PGH30103
: . PGN30104
TOTAL.CL ANLC CX X ) : . PGH30105
’ ] . PGM30106
POB HBAVE SET (MCEMALIZED ¥.B.T. YEGATIVE OF HEAVE ANGLE) PGH30107
. : . s PGN30108
FACT=4,.D0/SIGNA0 . ' ' PGK30109
TCL2DR=SUN2*PACT ’ : PGHIO 110
TCL2DIs-SUN14PRCT . PGN30111
TCLICR=SUNG*PACT . i } . PGH30112
TCL3DI ==~SUN3I*FACT : PGH30113
1CH202=STX6%PACT . . . PGN30118
TCH2DI==-STHS5*FACT ) ) o o . PGN3011S
ICHIDAR=SUN8* TACT . ' - . PCH30116
TCH3DI==SUNT*PACT . PGH30117
: C PGR30118
FOR PITCH SET . : . © PGM30119
PGN30120
TCL2DR=S0M1*2,L0 . PGE30121
TCL2D12S042%2,L0 . ’ PGA30122
ICL3IDE=SUN3*2,D0 . PGN30123
TCL3IDI3SUM422,1 : PGN¥30128
ICH2DEaS0UNS* 2,00 - . ' PCN3012S
1CH2D0I=SU46°2,L0 . R : PGH30126
TCH3DE=SUNT 2.9 ’ PGX30127
1CH3012S043%2,00 . PGAN30128
’ FBINTHI0 ,TCL2D8,TCL2DI, TCLICE,TCL3DI . : PG X330 129
800 FCRMNAT(*0',10X ,'TCL2DR=Y,?19,5,2X,'7CL2D1=*,P10,5, 2X, PGN30130
& ' TCL3C2=',210.5,2X,'2CLIDI=* ,F10.5) PGN30 131
PRINT900 ,TCM2DR,TC820I,TCH3DE,TCNIDI PGN30132
900 !FS!AT('O',?OX »'TCM2DE=',F10,.5,2X,°TCH2DI=*,210.5,2X, PGH30133
)

'*TCA3DR=' ,F10,.5,2X,°'TC2IDLI=*,F10,95) PGR30134
1?(END.HE.1) GO 10 88 . , PGA30135
st00 : _ 26130136
1T : PGH30137
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Figure 2.1. -The three characteristlc length scales for a harmoni-
: cally-oscillating w1ng. ) .

| AN \‘\\V

wc(0)
U

Figure 2.2. The five domains of unsteady three-dimensional effects.
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Figure 2.3b. Positive directions of pitch and heave for a wing
section. '
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Figure 2.4.  Theodorsen's function plotﬁed as a complex vector,

Ck) = Fk) + 3 Glk)..

k=0
SRA 1.0
.ol
.02
.04
2 .4 °6 .

-05 e

Figure 2.5. The Sears function plotted as a complex vector,

S(k) = S, (k) + 3 S (k).
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outer - inner
expansion " expansion
(n) : @)

number
of
terms

Figufe 2.6. Schematic of matching order for inner and outer“
' expan51ons

.N>
>

—>- 7 o

integration paths

—_———— e ——— - g *
- -c(y) c(y)
U

Figure 2.7. Linearized paths of 1ntegrat10n for calculating downwash
at the wing. .
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T (-z +j o) A
(=
) o ' >
a) X, >0 L”&‘\\\
,siﬁple
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c) X <0

Figure 2.8. integrétion'contours for the first integral in (2.166).
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o m(z+jx.°)_
.

a) x, > 0

'.E)Axo - 0

simple ~—
pole 4
N .

\Q

T (2 + jXo)
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Figure 2.9. Integration contours for the second integral in (2.166). '
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wlo,y,00

| Figure 3.1, Physical interpretation of unsteady induced downwash (after Van Holten (1976)).

692
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W'0,y,0+) = 0

Figure 3.2. Physical inte:préfation'of steady-inducéd dqwnwash (after Van Holten (1976)).
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- Fi .re 3.'3. The real and. imaginary parts of the kemel funct:ion of
T : unsteady lifting—line theory Tl'(u) =1 (u) + j TF (u)

1.0 "'...

‘00 15

Figure 3.4. The real and imaginary parts of the modified kernel func-
tion of Reissner *E(q) = K (q) + j ¥ (q)
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=== ULLT (original asymptotic)
——— ULLT (improved) :
—we=- Reissner

Sl

30o : /

" 300°

270°

. , . -k R
Figure 3.5. Amplitude and phase of W_ for an elliptic wing in pitch
(A = 10, y* = 0). &p ‘
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—— ULLT
~—-~~— Reissner

’ l3 "
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W ‘ .2
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o : | R _ A
Figure 3.6. Amplitude and phase of W_ for an elliptic wing in pitch
A =5, y%=0). o gP ' .
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—=—— ULLT
~—=- Reissner
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. ik
Figure 3.7. Amplitude and phase of W for an elliptic wing in heave
(A = 10, y* = 0). &n -
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-— ULLT
_ === Reisgsner
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Figure 3.8. Amplitude and phase of W for an elliptic wing in heave
(A=5,y%=0). By - o
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Figure 4.1. Leading-edge suction force.
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Figure 4.5. Spanwise distribution of leading-edge suction force or
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: elliptic wing in pitch (A = 8).
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a) thrust-type wake (¢ = B = 1)

b) drag-type wake (a - B = 0)

Figiire 6}3;' Two examples of thrust- and drag-type wakes (the strength

Figure 6.4,

and sense of local vorticity is indicated by curved

_arrows).
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experiment: o (after Kelly, et al. (1964))




329

\..
, ‘z S3
| xme—c X=cC S
‘—7“' E:.'\</\
T ‘
x
Z
o .
el , v

S .
1 X S2 \\\\

Figure 6.5. Control volume for conservation of energy in two -
: dimensions. :

N

— v B AN

X=X, | XX o+

Figure 6.6. Control volume for calculation of wake energy.



330

Figuie.G;Ja Thrust coefficient and _hydrodynamic efficiency for an
airfoil in pitch and heave: :
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- Figure 6.8; Control volume for the momentum theorem in three -
' ' +  dimensions. : -

Figure 6.9. Control volume for conservation of energy in three
o dimensions.
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Figure A.l; fntegration contour for (A:15).
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Figure A.2. Integration contour for (A.20).
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Figure D:l. Simplified far-field geometry.

Figure F.1. The lifting line for a wing with uniform loading across
the span in steady flow.
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.90 .309 - .384 5.2 ©.002 104
.0 _ 027u‘ 0376 . Sou _ 0001 ’ 0097
1 T 282 .366 5.6 . =.002 .095
.2 215 .356 - 5.8 .002 .093
03 ' -189 03“5 AA 6.0 ) A. -.002 ’ 0090 ’
Rl 70 0333 6.5 .000  .083
5 150 . .321 7.0 - L0771
0 w136 . .310 7.5 "~ .070
T W12t 299 8.0 .066
.8 107 T .288 8.5 . .062
9 098  .277 9.0 .058
.0 - .08’4 i '268 9-5 . 0055 :
.2 .065  .249 -10.0 .052'
4 .052 T .233 10.5 .09
6 LOu1 . 216 11.0 046
.8 .034 .202 11.5 LOul
.0 .028 .189 - 12.0 042

_ : oo ! 1/(2q)

Table_3.1; Numeridal values of the real and imaginary parts of the modified
kernel function of Reissner [ (q) = yﬁk(q) + ] I(q). , :
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