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,troduction

Since approximately 1968 there has been an explosive development of

icon.,-order modeling of turbulence (also called invariant modeling or one-

,int closure). This is described in detail in Lumley (1978), and in sever-

9L other survey articles. Briefly, equations are carried for the various

second order quantities (the variances and the fluxes), and the unknown

terms appearing in these equations are modeled as functions of the second

order quantities, so as to obtain a closed system.

The approach has been remarkably successful. This is probably because

more of the physical mechanisms are carried exactly (unmodeled) in the

second order equations. Of course, constants are included which are adjust-

ed by calibration of the model against benchmark situations. If the second-

order models are applied in a situation in which a first-order (mixing

length) model is adequate, the second-order model usually is not an improve-

ment. Probably here the additional mechanisms carried exactly are of minor

importance (or the first-order model would not work), and the crudeness of

the various closures adopted probably negates the slight additional accura-

cy. The second-order models will, however, deal with many situations in

which the first-order models do not work at all (because of the presence of

the additional mechanisms).

There are still many ways in which these closures are not adequate, how-

ever. The constants are by no means universal. In some situations it is

clear that a physical mechanism has been omitted - for example, two-

dimensional and axisymmetric jet flows cannot be predicted with the same
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constants (Launder S Mor , 1979). The effect of swirl has not been includ-

e
ed (Lumley, 1981 ). The closures generally used do not guarantee realizabil-

ity; that is, they do not guarantee that quantities that should be non-nega-

tive will remain so, or that correlation coefficients will remain less than

unity in absolute value.

We feel that some of these problems can be alleviated by a more formal

approach to the development of these closures. Although certain of the con-

cepts of Rational Mechanics have been used from the beginning, they have not

been applied as extensively or consistently as they could have been. Real-

inability .has not been extensively used to develop closure forms. 	 Many

closures are essentially ad hoc, and are not tied to a physical model. If

closures were developed from specific physical models, it should be possible

to obtain the values of the constants from these models, rather than cali-

brating the models against benchmark flows.

Lumley (1978) attempted to implement these ideas. 	 In many ways the

closure presented there is not markedly different from those in common use.

Some of the forms were minor improvements; in other cases it was clear what

was wrong with the forms in common use, but it was not clear how to devise

an improvement. In one respect, however, the closure presented in Lumley

(1978) was markedly different: the third moments (the fluxes of the vari-

ances and fluxes) were obtained fr--m an orderly perturbation procedure about

a Gaussian equilibrium state. The third moment equations thus obtained were

minor variations on those suggested on an ad hoc basis by Hanjalic b Launder

(1972), with one important difference: no addir ional adjustable constants

were introduced.	 Thus, the transport of fluxes and variances cannot be

separately adjusted in a calculation.
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Briefly, a turbulence was envisioned whose energy containing scales

would be Gaussian in the absence of inhomogeneity, gravity, etc. An equation

was constructed for a function equivalent to the probability density, the

second moment of which corresponded to the accepted modeled form of the

Reynolds stress equation. The third moment equations obtained from this

(which were thus guaranteed to be consistent) were simplified by the assump-

tion of weak inhomogeneity.

The purpose of this paper is to present calculations with this model,

and interpretations of the results. In the following secti •-n we give an

outline of the model. The details of the development are given in Lumley (-

1978).
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2. The Model

r

The dynamic equation for Reynolds stress in an isothermal turbulent flow

can be written

ft	 4t

14 
Ad.

10	 106 j

which states that the substantial change of uiuj during convection is

equal to the production of Reynolds stress from the mean flow plus the

divergence of the flux of Reynolds Stress and pressure due to turbulent

fluctuations plus the return toward isotropy of the Reynolds stress tensor,

o.us the " rapid" ch+n r_ u,' uiuj, plus the (isotropic) dis4iaa:ion of

uiu'j into heat, respectively. The quantity ?' is the total dissipation.
At large Reynolds numbers turbulence at the scales at which dissipation

occurs becomes isotropic, hence, x V 41,•,k 4J^+^ 
	 a. lr ../I

in equation 1. The pressure-strain correlation has been divided into two

parts, associated respectively with the two Poisson equations

!•j
	 it U.	(2)
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where the first is related to the mean velocity gradient and is linear in

the fluctuating velocity, while the second is quadratic in the fluctuating

components. The second is responsible for the return of anisotropic

turbulence toward isotropy.

The quantity in the square brackets in equation (1) is a symmetric

tensor with zero trace, and vanishes if the turbulence is isotropic. Since

this term acts to interchange energy among the components when the turbu-

lence is anisotropic it is natural to express it in terms of the anisotropy

tensor of the Reynolds stress
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giving

2Yti,.4t^;^ f Eat /3 =_ c, c^;•	 (s)

where the inclusion of E makes the expression dimensionally correct. The

coefficient Cl can depend on the Reynolds number and the invariants of the
anisotropy tensor, since Cl must itself be an invariant. Hence.

C _ C, C^' ,.ITT	 j	 (6)

where	 ^' = ' ^:; ^'/t / 2 i Jff ' j ^'^% k x►

9
and /(7E r^1j19^'Y	 If any one of the velocity components

vanishes or if Schwarz's inequality between any two components is on the

verge of being violated, it can be shown that C1:►2. Hence, to ensure

realizability, that non-negative quantities, such as the component

intensities, remain positive and Schwarz's inequality is satisfied we must

have C 1 > 2. Furthermore it can be shown that

	

o/Q ,o 34y t r > D	 (7)

and is zero only when one eigenvalue of uu- iuj vanishes. Both the

vanishing of a component and the violation of Scharz ' s inequality are

equivalent to the vanishing o v. an eigenvalue. These considerations suggest

that Cl is of the form

The function F must reflect the trend that Cl*r2 as Re-0-0 and CI-0-2 as

Re Rb as indicated by the data of Comte-Bellot b Corrsin (1966). A function

that satifies these conditions and fits the data of Uberoi (see Lumley b

Newman 1977) in the mid range of anisotropy is
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The condition of realizability is then satisfied with the form of C l given

by equations (8) and (9).

The rapid term /0) 3̂•fd/^^^ 00 has zero trace and, therefore,

redistributes energy among the component intensities. Using the Fourier

transform solution of equation (2), assuming a homogeneous mean field, the

rapid term becomes

^G

where

^N •
tsC^x /^ ` 1 ^^ dx	 (ll)

1
and Sqj is the spectrum of the Reynolds stress. 	 From equation (10) it

is apparent that the rapid term arises from the interaction of the turbu-

lence with mean flow velocity gradients.	 The fourth order tensor must

satisfy

1
Ally	 1^`^,i	 p 3̂

for symmetry, Ipiij-0 for incompressibility,

J
and when the turbulence is isotropic

which can be determined directly from equation (11) since the form of the

spectrum for isotropic turbulence is known. In general this tensor would at

least depend on the anisotropy tensor and the Reynolds number. We take the

(9)



1
•

i	 tensor to be linear in the anisotropy tensor. A form which sa:isfiea all

#	 the above requirements is

r .. ^.^rPi 
rt+; - r4 ^jf)/3 t c j^r^^ '̂,. i w;^^j,3 	 (12)

There is no information on the variation with Reynolds number and we will

take C to be a fixed constant..

The constant C has somewhat different values when evaluated for differ-

ent flows. Reynolds (1976) found C	 -0.1 works better for the experiment

of Tucker b Reynolds ( 1968) and C	 -0.2 works better for the flow of

Champagne, Harris b Corrsin ( 1978). - Reynolds recommends C

Launder, Reece b Rodi ( 1975) use a value of -0.145, which they base on

homogeneous experiments. Lumlay ( 1978b) suggests C - -0.166 to Rive a

reasonable agreement with experimental data. In the present calculations we

use C - -0.15. We note that increasing or decreasing C by 10 percent

produced only alight variations in the results for the wake; if, by changing

C, better results for the component energies were obtained, then poorer
f

results in comparison with experimental data were obtained for the shear

stress.

By formulating a dynamic equation for the cumulant Cij k tcocre-
apunding to the triple velocity correlation and performing an order of-mag-

nitude analysis for the case of weak inhomogeneity (homogeneous turbulence

is observed to be approximately Gaussian in the energy containing eddies and

departure from Gaussian behavior is associated with inhomogeneity, that is,

non-zero values of uiujuk are fluxes and are necessarily nun-Gaus-
sian) it can be shown (see Lumley 1978a)

1	 r	 •i
^.ti1..yj^j .. ^- g G^ .0 f .-!--_ ( ^' .Gk f G'^ ^,, . * 

^a 
ŝ ^ (13)3C
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(14)
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where

IV	

G - - s -^^ yp l-N"I/ *,a Vt/P (-tt t ^^P r ^^ tom3K 4

The quantity Cl is the same coefficient given by equation (8) for the

return to isotropy.

For the pressure transport, (pupi + pui,j ) /f, we begin from

equation (3) for the second (return to isotropy) part of the pressure for a

homogeneous flow and obtain by use of Fourier transforms

^^ttl tl y ^^e a 	 ^K^ /^ /k^) ^^ k s/tt,	 (1S)

where Sijk is the spectrum of uiujuk.

Def icing

	

/0( - j( Vx")	 (16)

we have IaJr4J,. 1-.	 and I -prl^'
	 I—	 from symmetry, I`,IP^^0^ 0 from

incompressibility, and i " 	 + NP U,^tt^. The most general linear form forto

r,contains five coefficients: however, applying the various conditions,

we can determine them all:

It	
L

then

where gZur is given by equation ( 14).	 If

Ar

 ur+0 ) the expression vanish-

!	 es, and realizabitity is satisfied.

To complete the set of equations the dissipation must be calculated.

For this we use a convection -transport equation with a production
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is a dimensionless invariant function. it is reasonable to assuse

that 
1P 

depends on the Reynolds stress, the mean velocity $radiant, the dLo-

19',
	 sipation and the viscosity. Hence,

(20)

This must now 
be a function of the invariants that can 

be 
constructed from

these quantities. We make the stipulation that the mean velocity gradient

does not appear'without the anisotropy. because 
we do not expect to change

the level of the dissipation by a change in the mean gradient if the turbu-

lonce is isotropic. There are a lacgo numbor of invariants that can 00

formed between the mean velocity gradient and the anisotcppy and 
we 

only

give a few-.

(21)
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Assuming the velocity gradient to be small we can expand this function ia a

power series

4 ve (22)

where the coefficients are functions of the invariants of the anisotropy

tensor and Reynolds numbers.

The coefficients in the above expression must be determined from expori-

mental data. Lumley and Newman (1977) found that *o - 14/5 for two

limiting cases with no production from mean velocity gradients: the final

period of decay for small Reynol4s numbers and for one-dimensional,

turbulence. With these considerations the following formula approximatev,

the data of ComteBellot & Corrsin (1966)
A
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o.9Yo exp	 W,l'I If - 0	 V	 (23)

For the production term we use the value h - 2,.0 as given by Reynolds as
was determined from the nearly homogeneous shear °lows of Tucker b Reynolds

(1968) and Champagne, Harris 6 Correia (1966). Assuming the anisotropy to

be not too large we ignore the )k-term in equation (22).

To determine the transport flux #*, for dissipation we note that the
t

eddy viscosity	 does not vary greatly across much of the width of free

shear flows. Also4 )lt must remain finite as both F and q2 vanish (e.g.-V
at the edge of a wake or jet.) Presuming that (p Yj-n.constant we have

Drawing an analogy from this relation we can write for the transport

( 61110., - nm TI	 70,	 (25)

where we have included pressure transport in the total transport, This

relation stipulates that as the energy transport vanishes so must the dissi-

pation transport. Using equation (18) for the pressure transport we obtain

V ,^
	 (26)

Using equation (14) for I %, but replacing

we obtain for the dissipation transport flux

E't/,s	 -0.4 f 2 t, • s)1(^ZIE1^^*,^-gyp . s A-,-m- .e.^^3^(28)
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Although obtained on somewhat tenuous grounds this result gives about the

right magnitude for the dissipation transport flux and it has the advantage

that no new constants are introduced.

2. Calculation of the Bake

The isothermal far-wake downstream of an object in an initially uniform

flow provides a relatively simple yet comprehensive testing ground for a

turbulence model. The simplification arises from the fact that some dis-

tance downstream of the object the velocity defect is small and the convec-

tive teas can linearized. However, all possible ingredients for an isother-

mal turbulent flaw are present; convection, mean velocity gradients, anisot-

ropy. production, and redistribution due to rapid terms and transport.

In terms of the dimensioness velocity defect U ^^(^^ -Ul))V^ nd dimen-

sianleas coordinates x 9x118, y - x2/9 where 8 is the tnum±ntue thickness

of the wake. the component equations for the two-dimensional wake are given

in Appendix 1 and those for the axisymmetric wake in Appendix 2. The only

mean flow component of significance is U and except for the convection terms

all gradients in the flow direction can be neglected.

Since the equations are parabolic in th-t x-direction and boundary valued

in the y-direction we can solve them by marching in the x-direction from an

initial station. solving a boundary value problem in the y-direction at each

x-location. A simple implicit scheme was formulated, using a simple back-

ward difference in the x-direction with central differences in the y-:tirec-

tion. At each x-position the equations `or the Reynolds stresses are solved

sequentially. The diffusion tors in the variable in question, along with

part of the return-to-isotropy and convection teams, are treated implicitly.

The other diffusion terms, production, rapid terms, etc. are treated

explicitly and are evaluated at the upstream station. Finite differencing

the implicit terms gives a set of algebraic equations whose coefficient

matrix is tridiagonal and which is readily solved by an elimination

procedure. After the Reynolds stresses are computed the dissipation

equation is solved in a similar manner. Then the mean velocity defect U is

determined from the momentum equation.

The boundary conditions at the centerline are symmetry conditions on all

the variables except for Zv whose value is zero there. At the outer edge
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all variables approach zero. However, since some terms in the equations

contain q2 or F in the denominator. it is necessary to add a small number,

taken as a small fraction of the center values, to q 2 and 97 in order to

avoid dividing by zero in the calculations. The outer edge was taken at

y.t - 4t where k is the position where U/Ut= exp (-.5). For the first ata-

tion 50 intervals were taken across half the wake. As the wake grows more

intervals are added corresponding to y, - 4t until there are 100, at which

point y is doubled and every other point is retained so that there are again

50 intervals.

Since we are interested in obtaining the far field self-preserving wake,

the initial conditions specified at x - 1, were chosen somewhat arbitrarily.

The similarity solution with constant eddy viscosity given in Tennekes 6

Lumley 1972) was used for the velocity profile, U/U t - exp (-0.5 y2/A2),

where I'll; 1.4 ,1 xI/i	 and ( - 0 -177 x'/'	 for a circular cylin-

der and V4. = O.CT; X'/3	and ! - 0•`x(1. 74" 3	for a sphere.	 The key

input parameter is the value of the momentum integral which is 	 ,j Udy - 1

•	 for two dimensions and	 J Urdr - 1/8 for the axisymmetric wake. The
e

values of these integrals were continuously monitored in the calculations to

ensure their constancy. The initial shear stress profile uv was also deter-

mined from the eddy viscosity solution. The turbulent velocity is given by

i -71 uv and the dissipation is roughly the production for yj,

Tennekes 5 Lumley (1972) . For 0 < y <j?, q2. and F are taken equal to the

values at y = .I. The component energies were taken to be one third of the

total turbulent energy.

For the two-dimensional case the results are presented for x - 1000,

after 500 steps, where the profiles are self preserving when scaled by U 

and I . Scaled results at x - 2000 were less than a few percent different
than those at x - 1000. Changes in the initial conditions produced little

difference in the self-preserving behavior of the solutions. Results for

the axisymmetric case are presented for x - 500, after 500 steps. A numer-

ical instability occurred around x = 700 in attempts to compute to larger

distances. Even so, the profiles were nearly self-preserving at x - 500.
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'	 Results and Discussion

The calculated predictions for the mean velocities and Reynolds stresses

are compared with experimental results of Chevray S Kovasznay 1969 ( for the

wake behind a flat plate) and Townsend 1956 ( for the wake behind a circular

cylinder) in Figures 1-5. Overall the agreement between predictions and the

ti

flat-plate experimental results are quite good. The data for 1( =/ V
w

'	
to

 the cylinder are quite different from the predictions. We will pre-

sent below our explanation for the discrepancy between the cylinder data and

the calculated results. We include the cylinder both to contrast the behav-

ior of wakes behind different objects and to indicate the trends of certain

turbulent quantities that have only been measured for a cylinder. 	 it is

seen that the calculated mean velocity profiles are somewhat flatter than

those measured for the flat plate wake, and the calculated shear profile is

slightly lower than the measured. For self preservation these quantities

are directly related by

z;r/ U = - ly/I^
	

(29)

Probably there is a little too much diffusion in the dynamic equation for

the Reynolds stress, thus giving too small a peak in the shear profile and a

flatter velocity profile. We note that Townsend's shear data does not obey

the self preserving relation (29).

Figure 6 shows the calculated transport flux profiles ci 3/U	 ^^^v¢
—r- 3

and ^, ^¢ as compared to the measurements of Townsend. Although, as we

shall argue below, the predictions should not compare well with the cylinder

wake, the trends compare reasonably and the magnitudes are about right.



on the centerline) persist to great distances, the wake

r

•	 14
2	 .

•	 'Table l gives the overall characteristics of the plane wake. It is seen

that there is good agreement between the predicted wake growth and center-

line velocity decay and the flat plate wake data. We suggest that this is

so because the flat plate wake is created rather smoothly from the trailing

edge boundary layers on the top and bottom of the thin plate, without vortex

shedding. These conditions seem to us to be a better match to the theory,

which does not specifically include transport by large eddy structures.

The cylinder, on the other hand, has alternate vortex shedding. As the

flow ages these vortices lose their identity to a certain extent, but a dis-

tinct large-scale structure remains. 	 It is generally accepted that far

downstream, where the flow is in dynamic equilibrium, the wake becomes inde-

pendent of everything except the initial momentum thickness. However, this

universal equilibrium wake has nut been observed experimentally, perhaps

because measurements have not been carried out to large enough distances.

What have been observed experimentally (Bevilaqua & Lykoudis 1978) are

apparently self-preserving wakes, which obey the similarity laws within

experimental error over the range of observation, but which are different

for different objects, e.g., cylinder versus flat plate. This apparently

self-preserving mode persists with seemingly little change for considerable

distances, as is evidenced by Townsend's cylinder measurements which exhibit

the same behavior to x/d ), 1000. It seems possible that the effects of the

near-field large scale structure (characterized by meandering of the entire

wake, with strong intermittency, and the occasional appearance of non-

4r
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continuing to evolve, but so slowly as to be undetectable over the range of

observation.	 It is also possible that the flat plate wake will slowly

t	 evolve its own large scale structure far downstream. This could explain the

differences between the plate and cylinder wakes: the plate having little or

no near-field large-scale structure quickly attains an apparent equilibrium

similarity mode (from which it may be slowly evolving toward a Arl%U tS31

state) whereas the cylinder quickly attains a different apparently self-

preserving mode, which may also be slowly evolving toward a universal state;

the two will not reach their common universal state until far beyond the ex-

perimental range.

It was stated in the description of the numerical procedures that the

initial conditions on centerline velocity and characteristic wake dimension

were chosen consistent with the measurements for the cylinder given in Table

1. Yet shortly into the the calculations, the wake characteristics tended

toward the asymputic calculated values which are close to those given for

the flat plate wake. In order that the calculated constants given in Table

3
1 be determined independent of xo we used a = l^ (dl f c^x)' and Q = ( Vt ^

ta jut/is )Y/1	 which corresponds to the relations t= R (x-xe)'^ z and

i
U{=A("V.1 respectively. These constants closely assumed their asympototic

values around x a 100. Furthermore, changes in initial conditions, energy,

dissipation levels, etc., (except for the initial momentum thickness) had

little effect on the ultimate self-preserving state, affecting only the rate

at which it was attained. Despite such changes, the results tended to seek

a unique self-preserving state, which we may speculate is the universal sim-

ilarity equilibrium state without large scale structure.

Calculations carried out with the model of Launder, Reece, b Rodi 0975)

also produced good results for the self-preserving profiles when compared to
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the experimental results of Chevray 6 Kovasznay. In their model C,:3.LC,

CO • 0.055 for the diffusion coet.,icient in the dynamic equations for the

Reynolds stresses, C - -0.0145, Cr = 0.075 for the diffusion function in the

dissipation equation, 10 - 3.8 and' 1 - 2.88. The closure formulations

are those given by those authors. We found good results for the centerline

velocity variation and the growth rate of the characteristic lateral dimen-

Sion. However, in Hanjalic & Launder 1980) it is stated that there is no

explanation why the theory predicts a growth rate which is 35% less than

I
t	 measured. These authors have-contrasted their predictions with measurements

for the circular cylinder.

Rod  (1975)organized data from ten wake studies: six circular cylinders,

one normal plate, two airfoils and one aligned plate. Although there are

some differences. most of these studies show consistent results for the

j growth constant. Rodi points out that the Chevray b Kovasznay flat plate

experiment was not fully-developed in the distance in which they took meas-

urements. It is true that the scaled turbulent intensity and shear were

still changing, although the mean velocity appears to have reached self-

preservation (the mean velocity field usually reaches self- preservation well

before the mean turbulence field does). However, we feel that the wake of

Chevray b Kosvasznay is closer to some sort of (at least temporary) equilib-

rium than it is to the cylinder wake, to which it does not appear to be

tending.

The form of the equations for the axisymmetric wake are much the same as

those for the plane wake except that the diffusion-transport terms are much

more complicated. These terms have been worked out and are presented in

Appendix 11. Results for the round wake, calculated by procedures explained

for the plane wake, are presented in Figures (7-11). Figure 7 shows excel-

lent agreement for the mean velocity between the calculated results and



porous disk 2.54 cm in diameter (normal to the stream) and of Chevray1969)

for the wake downstream of a 6 x 1 prolate spheroid with a length Reynolds

number of 2.75 x 106 (so that the boundary layer on the surface of the

spheroid was turbulent). Both of these wakes were relatively smooth in the

near field with no evidence of vortex shedding or large scale eddy structure

from flow-visualization experiments. 	 Hence, we hypothesize these wakes

would quickly attain an apparent equilibrium similarity. 	 The agreement

between the measured and calculated normal Reynolds stress is also fair.
%P	 %.	 y

However, comparisons for ;114. Ve Vj and u^ ^ UZ for Chevray's spheroid

shown in Figures 9-11 are not so good. The reason for this is probably that

the measurements were taken at x/d - 18, a position not far enough down-

stream for the turbulence quantities to become self-preserving.

Table 2 gives the overall characteristics for the various wakes. It is

seen that the calculated wake is close to the porous disk in centerline

velocity decay and growth rate where measurements were carried out to a dis-

tance of x/d - 100. The calculated growth and centerline velocity decay is

also not too different from those for the spheroid wake. Note that the

behavior of the wake behind a sphere is quite different from the others: the

vortex shedding, meandering of the wake and large scale structure appears to

leave a significant influence on the downstream wake behavior. The differ-

ence in wakes and the possible existence of different states of self preser-

vation is the subject of the paper by Bevilaqua b Lykoudis. We only argueii

	

-^	 here that for proper comparisons between experiment and this theory (without

large scale structure) the experiments gust also lack large-scale struc-
^i

	

Fi	 ture.

As a closing point we cmist mentic:t the discrepancy that has existed over

the years in predicting rvuad and plane jets with turbulence models.	 A
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theory with a set of constants that worked well for the plane case did a

poor job of predicting the round jet. We did not find a large discrepancy

for the wake when the calculations were referred to the experiments lacking

in large-scale structure. Possibly our more general formulation of the

return-to-isotropy coefficient, the transport terms, the pressure transport,

etc., has lead to a more nearly universal theory capable of handling plane

and three-dimensional flows in the absence of large-scale structure.

For the treatment of flows containing large-scale structures (presumably

the majority of flows important in technology and nature) it will probably

be necessary to introduce the structure explicitly by some form of stability

analysis. One of us (JLL) has recently made suggestion& along these lines

'	 b
(Lumley, 1981 ) .
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Appendix I

The equations for calculating the plane wake are presented here.

They are written in terms of the mean flow velocity defect U . ( Ulm -

Ul )/Ul.,; the non-dimensional coordinates x : xl/$ and y - yl /*, where xl

is in the mean flow direction and yl is measured across the shear layer;

and the non-dimensional turbulent velocity components u m ul /UlOD, v

u2/Ul,o, and w - ug/Ul,o. The usual boundary layer assumptions and wake

simplifications are employed.

Momentum equation:

7x	 a^

Reynolds stress equations:

bus r 2-KV'^̂ f ^^fc, gt /^Cts1/ = a^^r3C&V	
Ckv,,^cu^

a	 ^	 s	 a^

f 2. (rli/) N1P ^uU^
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Appendix lI

The equations in non-dimensional form for the axisymmetric wake are

presented in terms of the mean velocity defect (defined as for the plane

wake) and the velocity components u - ul/U l.e, v - u2 /Uloo and w - u3/Ups

for the axial (x - xi/#.), radial (r - x2/S-) and angular directions

respectively.

Momentum equation:

r r
/` iP`r

Nll^

Reynolds stress equations:
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PLANE WAKE CHARACTERISTICS

RT
[ (x-x0)/,1--1/2

[(x-x0) /al1/2

r Townsend
(Cylinder) 0.277 1.44 10.4

Chevray S
Kovasznay 0.216 2.06 19.1
(flat plate)

Calculated 0.201 2.10 20.9

w



ROUND WAKE CHARACTERISTICS

I (t6,-U (x, 0) )

Ii6.l ' RT
I (x-x0) /41 L/3

I (x-x0)/tq2/3

Chevray
(Spheroid) 0.272 2.09 23.05

Bevilaqua &
Lykoudis
(Sphere) 0.452 0.575 3.82

Bevilaqua &
Lykoudis

(Porous Disk) 0.246 2.31 28.17

Calculated 0.220 2.48 33.8

s



Figure Captions

Figure 1. Normalized mean velocity, plane wake.

Figure 2. Normalized streamwise energy, plane wake.

Figure 3. Normalized energy out of plane of wake.

Figure 4. Normalized cross-stream energy in plane of wake.

Figure S. Normalized shear stress, plane wake.

Figure 6. Normalized triple correlations, plane wake.

Figure 7. Normalized mean velocity, round wake.

Figure S. Normalized axial energy, round wake.

Figure 9. Normalized radial energy, round wake.

Figure 10 Normalized azimuthal energy, round wake.

Figure 11. Normalized shear stress, round wake.
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