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COMPARISON OF THEORETICAL PREDICTIONS OF

ORBITER AIRLOAD8 WITH WIND TUNNEL AND

FLIGHT TEST RESULTS FOR A MACH NUMBER OF 0.52

Alan L. Carter and Robert L. Sims

Dryden Flight Research Center

INTRODUCTION

The better we are able to predict airloads, the more efficient the
airframes we are able to design. Our ability to predict airloads is im-

proved through the analysis of flight measurements and wind tunnel tests,

and through the development of theoretical analysis.

The air vehicle development process has several phases: (I) the ana-

lytical investigation of a large number of candidate configurations in

the preliminary design phase; (2) wind tunnel tests to fine-tune the
configuration and to establish its rigid aerodynamic characteristics; (3)

analytical predictions of the effects of flexibility; (4) design, fab-

rication, and ground test of the prototype vehicle; and (5) flight test,

which is the final proof of the concept.

Currently, large computer-aided design systems are being developed

with the objective of automating as much of the development cycle as

possible. These systems are completely dependent on the accuracy of the
analytical methods used. Realistic evaluation of the accuracy of these

methods is obtained from comparison with experimental results, especially

flight test.

Since the instrumentation, calibration, and flight testing of full

scale air vehicles are expensive, most aeronautical research is conducted

through wind tunnel testing and computer analysis. It is, however,

necessary to obtain flight measurements from time to time to evaluate

_ these prediction techniques.

Presented herein are flight test results for the space shuttle
orbiter (OV-IOI) wing loads measured during the approach and landing test

(ALT) program conducted at the NASA Dryden Flight Research Center (DFRC)
at Edwards, Calif. during 1977. The flight test results are compared

with both wind tunnel predictions and the predictions from a FLEXSTAB

analysis computer model. From these comparisons, an assessment is made



regarding the current capability for airload measurement and prediction
on a low aspect ratio double delta aerodynamic configuration.

Recognition is due to Rodney Rocha, of the NASA Johnson Space Center

(JSC), for supplying flight and wind tunnel data; Donald Black, DFRC, for
programming support; Kenneth lliff, DFRC, for supplying basic aircraft

parameters; and to the Air Force Flight Test Center (AFFTC) for the ground
tracking data.

SYMBOLSAND ABBREVIATIONS

ab , at. , a load equation coefficients, V°
I 1 l

BA wing airload bending, N-m (in-lb)

BN wing net bending, N-m (in-lb)

b vehicle reference span, m (in.)

b wing reference span, m (in.)w

BA
CB wing bending load parameter,

CL lift coefficient, L___

CM pitching moment coefficient, M
qSc

TA
CT wing torque load parameter,

VA
CV wing shear load parameter, i--

q

c vehicle reference chord, m (in.)

cw wing reference chord, m (in.)

FoS. fuselage station

g acceleration due to gravity, m/sec 2 (ft/sec 2)
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}{Mib hinge moment of inboard elevon, N-m (in-lb)

HMob hinge moment of outboard elevon, N-m (in-lb)

h altitude, m (ft)

IXX, IXZ, Iyy, IZZ components of moment of inertia about body axes,

kg.m2 (slug-ft 2)

L total lift, N (ib)

LB vehicle body length

M total pitching moment, N-m (in-lb)

N lateral load factor, gY

N normal load factor, gz

dynamic pressure, N/m 2 (psf)

qc computed pitch acceleration, deg/sec 2

S vehicle reference area, m2 (ft2)

Sw wing reference area, m2 (ft2)

TA wing airload torque, N-m (in-lb)

TN wing net torque, N-m (in-lb)

VA wing airload shear, N (ib)

VN wing net shear, N (Ib)

v true velocity, m/sec (ft/sec)

W vehicle weight, kg (Ib)

W wing weight kg (Ib)W

W.S. wing station

X, Y longitudinal and lateral axes, respectively
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x longitudinal or chordwise coordinate, m (in.)

x/_ wing chordwise center of pressure location, percent

y lateral or spanwise coordinate, m (in.)

y/b wing spanwise center of pressure location, percent

z vertical coordinate, m (in.)

angle of attack, deg

6a equivalent aileron position, 6EL_left - 6EL_ri_ht deg2

6BF body flap position, deg

6EL elevon position, deg

6 equivalent elevator position, 6EL_left + 6EL'right dege 2

6 rudder position, degr

6SB speed brake position, deg

s. net output from strain gage i _m/m (_in/in.)1

Subscripts:

i gage number

per degree angle of attack

6e per degree of elevator position

0 zero angle of attack

Subscripts applied to vehicle coordinates:

cg center of gravity

cp center of pressure

le leading edge of wing reference chord
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ref wing reference point

w wing center of gravity

VEHICLEDESCRIPTION

The orbiter configuration (fig. i) is a deep boxy fuselage sup-
ported on a double delta wing. Elevons are used for pitch and roll

control. Split rudders are used for yaw control and also act as speed

brakes. A body flap is used for additional pitch trim. Control surface

maximum displacements are listed in table I. The reference geometry used
for aerodynamic derivatives are listed in table 2. The mass properties
for the ALT configurations are listed in table 3.

The structure is aluminum and is protected against aerodynamic

heating by a layer of insulating ceramic tiles. The wing structure (fig. 2)

consists of a main box and a glove separated by a wheel well. The main
box is composed of 6 spanwise spars with corrugated webs and 12 chordwise

ribs with truss webs. The main covers are aluminum skin-stringer aft of

the wheel well (F.S. 1191 to 1365) and honeycomb sandwich adjacent to the
wheel well (F.S. 1040 to 1191). The glove is composed of truss stub-spars
covered with aluminum skin.

PREDICTIONTECHNIQUES

Airload predictions were generated by using both theoretical and

wind tunnel results. The procedure in the development of the predicted

results involved four steps, as follows:

(I) Aerodynamic coefficients and stability derivatives were determined
from theoretical calculations or wind tunnel force data.

(2) Surface pressure distribution and resulting shear, bending, and

torque loads were determined for given values of angle of attack,

Mach number, and surface control position from theoretical

calculations or wind tunnel pressure surveys.

(3) Angle of attack and control surface position were determined from
a simulator for a given flight condition using results from step (I).

(4) Final airloads were computed for the flight condition using

results from steps (2) and (3).



FLEXSTAB Analysis

The FLEXSTAB computer program (refo I) provides a potential

flow, finite element aeroelastic solution for arbitrary shapes
at subsonic and supersonic Mach numbers. The solution produces surface

pressures, airframe deflections, and stability derivatives. The stability

results have been found to be quite satisfactory for conventional high

aspect ratio configurations (ref. 2) but somewhat less satisfactory for
low aspect ratio configurations like the YF-12 (ref. 3) and the orbiter

(refo 4) because of the nonpotential flow for these configurations.

The FLEXSTAB orbiter model (fig. 3), which is similar to the model

developed in reference 4, consists of 20 control points along the body,
80 panels on the wing, 42 panels on the vertical tail, and 9 panels for

the body flap. The model shown was used for subsonic Mach numbers only.

Above Hach I, the body flap was deleted, and for Hach 1.5 and above, the

nose was made more conical (surface slope was decreased) to avoid mathematical

difficulties. The model was initially run without camber or thickness for
the lifting surfaces (that is, as a flat plate). Later camber or thickness

was introduced by using the airfoil geometry from references 4 and 5. This

produced marked improvement in trim, hinge moment, and wing chordwise center
of pressure predictions. Since reference 4 found little aeroelastic effect,

only the rigid case was examined. To predict loads, the surface pressures

were integrated by using a follow-on computer program to obtain shear, bend-
ing, and torque load components at the flight measurement stations. Solu-

tions for several a, 6 combinations were integrated to obtain wing loads.
e

Then coefficients were generated to express the loads as functions of

and 8e. For example,

VA = (Cv0 + CVaa + Cv6 6e)q
e

BA = (CB0 + CBaa + CB8 8e)q
e

TA (CT0 CTa 6e)q= + a + CT8
e

Elevon hinge moments were also expressed in this fashion. These equa-

tions permit the prediction of the loads for any flight condition where °
q, _, and 6 are defined. Body flap, rudder, and speed brake positions

e

were assumed to be zero for the analysis of the selected pitch maneuvers.



Wind Tunnel Data

Models from 0.004 to 0.0405 scale were tested in tunnels at

NASA Langley, Ames, and Johnson, at the Arnold Engineering Development
Center (AEDC), and at Rockwell (Los Angeles Division) to obtain force

and surface pressure data (refs. 6 and 7). The surface pressures were

edited, adjusted to agree with force data, and integrated to obtain
wing loads for various _, 6 combinations. Load coefficients were derived

e

from these resultsin the same form as used for the FLEXSTABresults.

Trim Predictions

To obtainpredictionsof a and 6e for the dynamicflighttest cases,
stability derivatives were entered into a standard six-degree-of-freedom

simulation computer program which yielded time histories of _, 6 and Ne' z

for a given pilot input time history. The ALT controlstick steeringcon-
trol mode (CSS)was representedin the simulation.

FLIGHT TEST TECHNIQUE

Instrumentation

The parameters available from the onboard recording system tape for
defining flight condition were Mach number, angle of attack, control

surface positions, cockpit acceleration, and rate gyro output. Ground
tracking provided altitude, velocity, and dynamic pressure.

Calibrated strain gages were used to measure wing loads. As shown

in figure 4, a line of gages was installed along W.S. 134, with axial

gages on the upper and lower spar caps, and rosettes on the spar webs and
upper and lower skin covers. Elevon actuators were instrumented with

pressure transducers to determine hinge moment.

Calibration

In accordance with the procedure presented in reference 8, which was

used successfully on the YF-12 airplane (ref. 3), a series of concentrated

loads was applied to the instrumented wing at the locations indicated in
figure 5. The resulting gage outputs were recorded on a sensitive data

acquisition system and used to derive a set of linear equations expressing
the wing shear, bending, and torque loads (referenced to W.S. 134 and

F.S. i135) due to air and inertia loads acting outboard of W.S. 134. The

derivation followed the least-square multiple linear regression technique
described in reference 8.



The load equations take the form:

VN = _ av._i
i l

BN = _. ab._i
l l

TN = X.at.s i
1 1

Flight Data Processing

The data from the onboard recorder were reduced to engineering units

at JSC and sent to DFRC on tape. After correction for zero shift, the
strains were substituted into the load equations from the calibration to

obtain loads. Pitch rate was differentiated to obtain pitching acceleration.
Pitching acceleration and cockpit linear acceleration were combined to

obtain load factor (Nz) at the center of gravity. Finally, the net loads

were corrected for inertia loads to obtain airloads using the following
relations:

VA : VN + (Nz - 1)Ww

BA = BN + (Nz - l)Ww(Yw - Yref)

TA = TN + (Nz - l)Ww(Xw - Xre f)

where the wing weight and center of gravity are as given in table 4.
Elevon hinge moments were computed from measured pressures and elevon

geometry. These data, along with condition parameters, were output to
printer and plotter.

Flight Maneuvers

The ALT program consisted of a series of flights where the orbiter,

mounted on top of a modified B-747 airplane, was carried to an altitude of

6096 to 7620 meters (20,000 to 25,000 feet) and released for unpowered

glide flights terminating in landings on Rogers Dry Lake at Edwards,
Calif. ALT flights were designated inert captive (IC), captive active (CA),

or free flight (FF), depending on the orbiter's status (inert or active)

and whether the orbiter was actually released (captive or free). Flights
FFI to FF3 were flown with a tail cone attached to reduce the buffeting of

the B-747 empennage and were thus not completely representative of the or-
biter flight configuration. However, flights FF4 and FF5 were flown with

tail cone off, corresponding to the configuration to be used for actual



orbital flights. FF5 was chosen for this study. Figure 6 shows the time

history of altitude, speed, and dynamic pressure for flight FF5 from launch
to landing, taken from ground tracking data. The launch was made at an al-

titude of 5944 meters (19,500 feet) and Mach 0.55 and lasted for 1.8 minutes.

Figures 7(a) and 7(b) show selected parameter time histories for the

flight. In figure 7(a), the upper graph plots angle of attack and Mach
number, the middle graph plots body flap and speed brake position, and

the lower graph plots elevator and aileron position. From the middle

plot it is apparent that the body flap moves from -11.7 ° to 0.6 ° at

launch and that the speed brake was opened about halfway through the

flight and closed just prior to touchdown. The effect of the speed brake
activity can be seen in the elevator position time history and in the

dynamic pressure plots of figure 6. In figure 7(b), the upper and middle

graphs show rudder position and side load factor, while the lower plot
shows normal load factor and pitching acceleration. The times for longi-

tudinal and lateral inputs were selected from these plots.

Load Maneuvers

For FF5, a pitch maneuver was performed, as noted in figure 7(b),

at Mach 0.52 and a dynamic pressure of 11,060 N/m 2 (231 psf). It reached

a maximum load factor of 2.47g. Expanded time history plots for the FF5

pitch maneuver are shown in figures 8(a) and 8(b). An interval was chosen

for plotting _, 6e, and wing loads versus Nz from these pitch time his-

tories for comparison with the wind tunnel and theoretical predictions
(fig. 8(b)).

RESULTS AND DISCUSSION

Comparisonsof predictedand measured resultswere made for aerody-
namic derivatives, angle of attack, elevon position, elevon hinge moment,
and wing airload and center of pressure. Predictions were obtained from

FLEXSTABtheory (correspondingto the preliminarydesignmode) and from
wind tunnel data.

Derivatives

Comparisons of theoretical and wind tunnel derivatives are shown

in figure 9. The angle of attack derivatives (CL_, CM ) show the best

overallagreement,peakingat Mach 1.2. Derivativeswith respectto

elevator position (CL6 , CM6 ) were overpredicted near Mach I but were
e e
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relatively close elsewhere. Aerodynamic coefficients (CL0 , CM0 ) showed

the poorest correlation, with predicted CL0 values biased positively and CH0

predictions exhibiting a discontinuity near Mach I. The lack of correla-

tion in the transonic range is not surprising, considering the linear
potential flow aerodynamics in FLEXSTAB.

Trim

Angle of attack and elevatorpositionwere obtainedfrom simulator
computerruns by using wind tunnel derivatives,theoreticallypredicted
derivatives,and the recordedpilot pitch controlinput. Time histories
for the FF5 pitch maneuversare shown in figure I0. Flight measuredvalues
are comparedwith wind tunneland theoreticalpredictions. The wind tunnel
values closelyfollow the flightmeasurements,while the theoreticalvalues
underpredictload factorand elevatorposition.

Angle of attack and elevatorpositionare plottedagainstload factor
in figure II. The figureshows that the slopesof _/g and 6 /g are predictede

quite well by both wind tunnel and the theoreticalmethods.

Elevon Hinge Moment

Wind tunnel and theoretically derived values are plotted with flight

measurements in figure 12. The wind tunnel predictions compare closely
with the flight measurements for the inboard surface and are somewhat low

for the outboard surface. The theoretical predictions are in close
agreement with the flight measurements for both surfaces.

Wing Load and Center of Pressure

Shear (VA) , bending (BA) , and torque (TA) loads were computed as

described above. These values were used to compute the spanwise

(y/b) and chordwise (x/Z) locations of the airload center of pressure as
shown in figure 13. The variation of these wing load parameters with

load factor are shown in figure 14. The three sets of data are for
flight, wind tunnel, and theoretical results.

The load varies linearly with load factor. The spanwise center of

pressure location is relatively constant, while the chordwise center of

pressure is a strong function of elevator position, moving ahead of the
leading edge (x/c < 0) for negative (trailing edge up) elevator positions.

Wind tunnel predictions give a load/g slope close to the flight
measured value but overpredict the value by a nearly constant increment.

10
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Wind tunnel predictions of spanwise center of pressure are somewhat out-
board but agree closely on chordwise locat&on.

FLEXSTAB predictions are in good agreement for load/g slope° Theoreti-

cal predictions of center of pressure Location are somewhat inboard spanwise
but close chordwise.

CONCLUDINGREMARKS

The results of this study led to the following observations regarding

the current capability for airload measurement and prediction on a low aspect

ratio double delta aerodynamic configuration. First, strain gage load
measurement was successful for a low aspect ratio wing. Second, simulation

using both wind tunnel and theoretical derivatives produced useful predic-

tions of load factor, angle of attack, and elevator position. And third,
FLEXSTAB surface pressure predictions yielded useful predictions for
both wing loads and elevon hinge moments.

Dryden Flight Research Center

National Aeronautics and Space Administration
Edwards, California, April 1981
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TABLE I. - CONTROLSURFACELIMITS

Elevon deflection,positivetrailingedge down, deg ........ -35 to 20

Rudder deflection,positivetrailingedge left, deg .......... ±22.8

Speed brake deflection,positivetrailingedge open, deg ..... 0 to 87.2

Body flap deflection,positivetrailingedge down, deg .... -11.7 to 22.55

TABLE 2. - REFERENCEGEOMETRY

S, m2 (ft2) ..... 249.91 (2690)

b, m (in.) ..... 23.79 (936.68)

c, m (in.) ..... 12.06 (474.81)
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TABLE 3. - ORBITER 101 FF5 MASS PROPERTIES

W, kg (ib) ........... 68,422.6(150,846)

x , m (in.) ............ 27°76 (1092.8)
cg

z , m (in.) ............. 9.45 (372.0)cg

IXX, kg-m2 (slug-ft2) 1.007 x 106 (0.743x 106)

Iyy, kg-m2 (slug-ft2) 7.510 x 106 (5.539x 106)

IZZ, kg-m2 (slug-ft2) 7.827 x 106 (5.773x 106)

IXZ, kg-m2 (slug-ft2) 0.175 x 106 (0.129x 106)

TABLE 4. - ORBITERWING REFERENCEPROPERTIES

W kg (Ib) 5825.94 (12,844)
W_ .......

Yw' m (in.) ......... 6.0 (236.2)

Xw, m (in.) ....... 31.74 (1249.8)

c , m (in.) ......... 9.21 (365)w

b , m (in.) ......... 8.48 (334)
w

Xle , m (in.) ....... 28.32 (1115)

Xref, m (in.) ....... 28.83 (1135) _o

Yref' m (in.) ........ 2.67 (105)
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Figure 1. Orbiter configuration.
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Figure 3. FLEXSTAB aerodynamic model. (Computer plot does not show actual body camber. )
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_ Figure 4. Strain gage locations.
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Figure 5. Calibration condition load locations.
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Figure 6. Altitude/speed/dynamic pressure time history for FF5.



Mach a,
number deg
2.0 -- 20 --

1.6 n 16 --

1.2 -- _12 --
Mach
number

.8 -- 8 --

.4 -- 4 --

o- o I I

160 -- Touchdown

120 --

6BF, 80 --

8SB,
deg 40 --

0

_0 i i I i i I _ t I i

15 m

• I
ii --

8e, 7 -- '_
_, 8a ,

deg 3 --
J

c -i --

-5 I I I I
15:52:00 15"53:00 15:54:00 15:55:00

Time of day

Figure 7 FF5 flight time history.
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Figure 7. Concluded.
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Figure 8. FF5 pitch maneuver time history.
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Figure 9. Orbiter aerodynamic derivatives versus Mach number.
Center of gravity = 0.65 LB (F.S. 1076.7).

25



20-- _ Flight

_ Wind tunnelA
FLEXSTAB

Pilot
input, 10--
deg A

&
A

3.0--

o 1 I 1 I 1

"A

deg 5

0 I I I I

-_0 I I i I I
0 .5 1.0 1.5 2.0 2.5

Time, sec

Figure i0. Maneuver time history. Flight versus simulation.
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Figure ii. Angle of attack and elevon position versus load factor.
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Figure 12. Hinge moment versus elevon deflection.
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Xcp = Xref - (TA/VA)

Ycp = Yref + (BA/VA)

x/_ = (Xcp - Xle)/_w

y/b = (Ycp- 134)/bw Xle '

X ! ,

--W.S. 134

Yref

-_" X Xref

Figure 13. Wing center of pressure geometry.
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Figure 14. Wing load and cen_er of pressure versus load factor.
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