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NOMENCLATURE

plant matrix

control matrix
localizer beam error, m
engine RPM, 7%

pitch rate increment, rad/s

distance from the sliding surface, s

time, s

surge velocity in body frame, m/s

inertial velocity increment, m/s

heave velocity in body frame, wm/s

state vector

angle of attack increment, rad

flight path angle increment, rad

elevator angle (longitudinal stick) increment, deg (in)

throttle increment, deg

damping ratio
nozzle angle increment, rad

pitch angle increment, rad
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1. Introduction

This report summarizes the current status of our research on the
application of Variable Structure System (VSS) theory tc design aircraft
flight control systems. Two aircraft types are currently being investi-
gated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and
AV-8A Harrier. The AWJSRA design considers automatic control of longi-
tudinal dynamics during the landing phase. The main task for the AWJSRA
is to design an automatic landing system that captures and tracks a
localizer beam. The control task for the AV-8A is to track velocity
commands in a hovering flight configuration. Much of the effort since
our last report [1l] has been devoted to developing computer programs
that are needed to carry out VSS design in a multivariable frame work,
and in becoming familiar with the dynamics and control problems associated
with the aircraft types under investigation. Numerous VSS design
schemes were explored, particularly for the AWIJSRA. The approaches pre-
sented here are the ones that appear to be the best sutited for these
aircraft types. Examples are given of the numerical results currently

being generated. A brief summary of VSS theory was presented in [1].




2. Glide Slope Control For The
Augmentor Wing Jet STOL Research Aircraft (AWJSRA)

2.1 The System

The AWJSRA is a research aircraft modified from the De Havilland
C-8-A turboprop by modifying the wing to include an augmentor flap system,
boundary layer control and other lift augmentation systems, and by
replacing the turboprop engine by a split flow jet engine. The system
has been described in (2, 3, 4]. The purpose of the present work was
to design a precise glide slope control system invariant to changes in

some of the aircraft parameters.
2.2 Control System Design

The control system was designed to use the existing controls:
elevator angle and the engine thrust - an independent system controlled
by the throttle. The jet nozzle was set to a nominal value of 90°.

The equilibrium trajectory was chosen to be a 7.5° glide at 30.9 m/sec
(60 knots) starting at an altitude of 396.5 m (1300 ft). Other system
parameters are given in [3,4]. The design was based on the linearized

model in [4] modified to a wind axis coordinate system:

x = Ax + Bu (2.1-1)
where
x = [d, 100 8, 100 a, v, 100 q, N, ] (2.1-2)
i
o' = [100 6v, 100 §_, &) (2.1-3)
0 -.309 .309 0 0 0
0 0 0 0 1
A=1|o0 042 -.52 “s0% 1.03 -3 (2.1-4)
0 -.097 .043 -.052 .0007 0
0 .0174 -.0816 .004 -1.36 0
o 0 0 0 0 )
" o 0 0
0 0 0
B=| 0 0 0 (2.1-5)
-.015 0
0 1.2 0
K 0 .72
-2..
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At the equilibrium trajectory, the nozzle is perpendicular to the aircraft's
longitudinal axis. Thus nozzle sngle variation is a rather poor velocity
control, as can be seen from the small value of the control derivative.

It was, therefore, decided to keep the nozzle angle constant.

The variable structure control requires controls capable of almost
instantaneous changes. The only fast control available in the AWJSRA
is the elevator aﬂﬁe. The engine thrust control has a time constant of
about 1 sec. The control system consirts of two loops: the first loop
is an interal loop with state variables [8, a, w, q] controlled by
the elevator angle 6e and designed as a variable structure control system
(5, 6]. This is mainly an attitude control sysiem. Speed control is
achieved through changes in angle of attack. The control system parameters

e

were determined by placement of the eigenvalues at the desired position
when the system is in sliding mode along the surface

s = C) (100 8) +C, (100 @) + Cy v + (100 q) = 0 (2.2)

The eigenvalues were placed so that the resulcing inner loop system will
have natural frequency ot 1.5 rad/sec, damping ratio g = 0.7 and a real
eigenvalue of 0.1 sec‘l. The resulting sliding surface is

s =+ 3,82(100 8) - 2.22 (100 a) - 0.934 v + (100 q) = 0 (2.3)
and the resulting closed loop system, in sliding mode is:

100 8 -3.82 2,22 934 100 © 0
100 a| = | -3.88 1.77 .67 100a|+! 0O auh (2.4)
_ v -. 33 . 148 -.05 | v -.36

with q determined from (2.3);

100q = -3.82 (100 8) + 2.22 (100 a) + 0.934 v (2.5)

The velocity control through attitude cam be seen by considering the
changes in 6, a, and q required to counter a change in v, so that s=0.
As can be seen from (2.3), a positive v can be obtained by a decrease

in a, and vice versa.

The use of a variable structure control system in sliding mode for

the attitude control makes the aircraft control invariant to changes in

the coefficients of the state matrix governing the pitch rate, q.




These coefficients depend on the position of the airplame c.g.. Thus,
the AWJSRA control will be invariant (o changes in the c.g positior.

Such a feature may be important for future applications of the variable
structure control to airplanes with large c.g,variation such as transport
and military flying vehicles.

The ouvter loop control system consists of the '"beam error" control
effected through thrust variation. As the thrust direction in steady
state is practically perpendicular to the flight path, changes in thrust
cause changes in the vertical acceleration and, thus induce changes in
angle of attack. As a result, a change in flight path angle occurs.
Since beam error is proportional to y , this error is eliminated after
a transient motion. Changes in a also cause changes in aircraft attitude
and velocity. These are controlled by the inner loop, which is in
sliding mode along the surface s. The engine rpm, which controls the
thrust is in turn controlled by the throttle and is unaffected by other
state variables.

The outer loop was designed under the assumptiom that the inner loop
is already in the sliding mode. Thus, the variable q was eliminated

using (2.5). The new state vector is thus
x{ - [d, 100 8, 100 a, v, 6N, ] (2.6)
and the equations of motion for 100 8, 100 a, v are those of (2.4).

The outer contyol loop was designed by minimizing the quadratic

performance index

J=1/2 7T [xT Q X, + 52] dt (2.7-1)
e
T 1
L
with
F10 0 0 0 o-1
0 1 0 0 0
Q= 0 r. 1 0 0 (2.7-2)
0 0 0 1 0
0 0 0 0 10
- -

and Ts is the time at which the sliding mode begins.




The resulting throttle control is:

Gth - - Cl 21 2.8)
with

Cl - [5.53. -6009’ 5027, -5'91’ -608] (2-9)

2.3 Sliding Motion Results

The system dynamics described in (2.2) were simulated in the sliding
mode, using a second order Runge-Kutta method. The system was required
to decrease a l0m. initial beam error. The results are shown in Figures 2.1
to 2.5. The beam error decreased to 5% of its initial value in about 11
seconds (see Fig. 2.1). There was practically no overshoot. The motiomn
towvards the equilibrium glide path was accompanizd by a slight nose down
pitching (Fig. 2.2) and a very small increase in velocity ( Fig.2.4). The
main effect was a considerable increase in thrust as cam be seen from the
increase in r.p.m. (Fig. 2.5). This is the main path control and according
to {2,3] is preferred by human pilots. The nose down tilt required to hold
the speed approximately constant is also described in [3,4]. Such a control
techniqua, which couples speed, attitude, and path control may be a
heavy burden on the human pilot and, therefore, degrade his rating
(opinion) of the system. However, the automatic control system is
fully capable of both path, attitude, and speed control regardless of
their coupling.
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2.4 Design of Controls Required for Reaching the Sliding Surface

The design procedure for reaching the sliding surface is described
in [1, 5]. The requirement is that the norm of s should always decrease,

i.e.,
ss <0 (2.10)

The procedure described in (1] was generally used, however, since the
rpm factor Nh influences the motion of the inner loop variables; am
additional component had to be added to the control, as shown in Chapter VIII

of [5]. From (2.1) and (2.3), we obtain
6

ss = s{ T a, x, - 1.2 GE] (2.11)
im=]
where
al = ( 34 - 2.14
a, = 0147 ag = 173 (2.12)
a3 = 1.03 a = .8

To satisfy (2.10), the following control structure is appropriate:

6 Gi » sxi >0
GE - -iil wi X wi - {B ) (2.13)
{ sxi o
where
-3y > ai/l.z . -Bi < ai/l.Z (2.14)
The following selection was made:
al = 0 31 = ()
02 = 02 82 = 0
a3 = 1.6 83 = 0
T, " 3.6 6,‘ = 0
a. = 0.3 = (
5 Bs (2.15)
ﬂ6 = 1.3 66 =0
-12-
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The aircraft and control system dynamics both off and on the sliding
surface were simulated and the results are shown in Figures 2.7 ~ 2.13.
The response is initially slower due to a throttle command limit that
was imposed such that GT < 10.7°, which corresponds to Nh = 98.5 (normal
take-off power setting). The general motion 1is similar to that of ideal
sliding, with the exception that Be is no longer continuous (Fig. 2.13).
The beam error (Fig. 2.7) settles in 14 seconds and is accompanied by
small changes in a (Fig. 2.8), nose down pitching (Fig. 2.9) and minor
velocity variations (Fig. 2.10). The engines RPM response is given in
Fig. 2.11, and exhibits the effect of limiting GT. The value of s during
the run is shown in Fig. 2.12. Note that sliding occurs almost immediately

and is maintained throughout the maneuver.

o e
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3. VSS Design For The AV-8A

This portion of our research considers the VSS design of a velocity
cormand control system for the AV-8A in hovering flight. Both longitudinal
anu lateral dynamics will be considernd, however, this report will only
address control of the longitudinal velocity components (surge and heave).

Reference [6] gives the linearized model for the Harrier dynamics
for airspeeds between 0 and 120 knots. We have elected to use the values
for 30 knots, which result in the following model for the system dynamics

in the body frame:

X = Ax + Bu (3.1)
where
x' = [u, w, 9, q, RN] (3.2)
W' = (8§ ,n,RN] (3.3)
e Cc
(2,035  _2 -9.8 0 .002 |
-.011  -.105 ~-1.66 0 -.309
A=l o 0 0 1 0 (3.4)
.0056 0 0 -.13  .0016
| o 0 0 0 -4.86
T 0 -9.8 o |
16 28 0
S 0 0 (3.5)
.2 0 0
LO 0 Q.SO-L

In the design nozzle angle is held fixed (n=0), so that the only means
of achieving a u. is by pitching the aircraft. Vertical velocity is
controlled bv RNC. In the design of systems with a command input, it is
customary to redefine the state and contrcl perturbations about a commanded
equilibrium state and control obtained by setting u = Uy o, and
solving for the remainiag states and controls by equating (3.1) to zero.

This detail is omitted here but the definitions are implied.

d




3.1 VSS Design of the Attitude Loop

The VSS design for attitude control is based on the controller
structure shown in Figure 3.1. The sliding surface is defined by:

s=C 80+q , 68=8-9 (3.6)

where

ec - kl Su , Sum= N (3.7)

ana u is regarded as a constant or slowly varying input. In sliding

mode (s=0) we have from (3.4) and (3.6)

§m -8+ T, = .
12 B+e. , T 1/c1 (3.8)
which is stable for any Cl > 0. The transient response is dictated by
C1 and is invariant with respect to remaining state variables. The

design of k1 and C1 is based on Fig. 3.2. The closed loop poles were
chosen from Fig. 3.3 taken from [7]. Selecting o, = 2 rad/s and a damping
parameter of 3 sec =1 (which corresponds to £ = .75), the resulting values

for C1 and kl are:

c, = 3.0 sl . ky = .13 s/n (3.9)

The heaving motion is controlled using a conventional proportional control

law

RNC = ,1378 w - .8 RN (3.10)

To guarantee reaching and existance of the sliding mode, it is

sufficient that

s8 < 0 (3.11)

Differentiating (3.6) and assuming ;c = 0, we obtain

5
ss = s[ f a, x, +.248] (3.12)
jm]

where
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a = .0056 + Clk1 (0.35) a, = Cl-.13
a, = .014 + Clk1 (.02) ag = .0016 - Clkl (.002)
ay = Clk1 (9.8) ¢ (3.13)

To satisfy (3.11), the following control structure is used

5 a; s xi >0
5e = - 151 by Xy - ks s wi = { (3.14)
Si y S xi <o
where
a, > ai/.2 . Bi < ai/.2 (3.15)

Allowing for possible variations in the parameters in (3.4) with the

exception of A(1,3), the following selections were made

.200 0
222 0
a = 20.4 83 = 19.6 (3.16)
15.0 13.7
.008 0

The last term in (3.14) basically controls the time required to reach

the sliding surface, and ks was chosen as 4.0 in-s.

3.2 Comparison to a Conventional Design

A conventional design of the attitude loop for the control structure
of Figure 3.2 follows the same lines except that the transfer function

for ec + B8 is second order

2 k
8(s) _ : 2 (3.17)
ec(s) s + (.13 + .2k3) + .2 kz
where
S, = =k, (e-ec) k5 q (3.18)
=26~




Placing the closed loop poles to match the response time of the variable
structure system we obtain

kl = ,0816 s/m

kz = 50 in

k3 = 24.35 m-sz (3.19)

Note that the gains in (3,19) are considerably higher than the gains in
(3.14) for the variable structure control in the vicinity of the sliding
surface (s=0). This should aid in avoiding control saturation and

instability due to large command inputs.
3.3 Numerical Results

The numerical results of this section compare the VSS control to a
conventional control design for response stability under the presence of
saturating control. The magnitude of Ge was limited to 4 inches. Two
levels of responses are given, corresponding to initial velocity errors
of -3 m/s and -10 m/s. Figures 3.4 to 3.7 give the VSS response for an
initial velocity error of -3 m/s. Note from Fig. 3.6 that sliding ini-
tiates at 2.5 seconds, when the response is essentially complete. Figure
3.7 shows that there is little coupling with the heave dynamics. Figures
3.8 to 3.10 give the velocity pitch attitude, and longitudinal stick
responses for an initial velocity error of -10 m/s. Note the similarity
of response in velocity with that of Fig. 3.4.

Figures 3.11 - 3.14 show the velocity and longitudinal stick responses
with proportional control for the same conditions. Note that for an
initial velocity error of -10 m/s, the proportional control is on the
verge of instability, exhibiting 25% overshoot and prolonged periods of
control saturation. Figures 3.13 and 3.14 should be compared with Fig.
3.8 and Fig. 3.10.
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4. Future Research

The research for the next reporting period will examine the behavior
of the SWISRA and the AV-8A subject to system parameter variations and
external disturbances. In addition, transient responses will be generated
using nonlinear models for these aircraft. In the case of the AV-8A,
we propose to examine using nozzle angle as a control to achieve reaching
of the sliding surface. Currently, reaching takes up most of the
transient response, and increasing ks in the controller design leads to

unstable behavior in the presence of large command inputs.

For next year, we propose to examine other aircraft types currently
of interest to NASA Ames. In particular, a tail-sitter vehicle has

been discussed with the technical project monitor.
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