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SUMMARY

Two versions of a Nasvytis Multiroller Traction Drive were tested in liquid oxygen
for possible application as cryogenic boost pump speéd reduction drives for advanced
hydrogen-oxygen rocket engines, The roller drive, with a 10. 8:1 reduction ratio, was
successfully run at up to 70 000 rpm input speed and up to 14. 9 kW (20 hp) input power
level, Three drive assemblies were tested for a total of about three hours of which
approximately one hour was at nominal full speed and full power conditions. Peak
efficiency of 60 percent was determined. There was no evidence of slippage between
rollers for any of the conditions tested, The ball drive, a version using balls instead
of one row of rollers, and having a 3.25:1 reduction ratio, failed to perform
satisfactorily.

INTRODUCTION

Advanced high chamber pressure hydrogen-oxygen rocket engines require efficient,
high-speed, high-pressure propellant turbopumps. These high-speed pumps require a
moderately high inlet pressure for operation. Low-speed boost pumps are generally
used to supply the required inlet pressure to the high-speed main turbopumps to keep the
propellant tank pressure and weight to 2 minimum, The boost pumps may be driven by
gas or hydraulic turbines, but these require complex valving and speed control systems.
Another option is to drive the boost pumps through a mechanical speed reduction drive
directly coupled to the main turbopumps, This speed reduction drive must operate
completely submerged in the cryogenic fluid which provides cooling, but no lubrication.
Gear reduction drives have been successfully operated in cryogenic fluids, but are
questionable for the expected 10-hour life requirement at the very high turbopump
speeds of future rocket engines (refs. 1 and 2), The Nasvytis Multiroller Traction
Drive (ref. 3) has the potential to attain the required life, The traction drive uses
smooth rollers to transmit power and thus the life problems associated with sliding con-
tact in gear teeth are eliminated. The planetary traction drive has proved to be reliable
and efficient in commercial applications (ref, 4), but there has been no attempt to adapt
the drive to cryogenic applications.

The objective of the work described was to evaluate the potential of the traction
drives for the above cryogenic application. Tests were run on a Nasvytis Multiroller
Drive having a 10, 8:1 ratio, and a variation of the Nasvytis drive, the ball drive, with
a 3.25:1 ratio. Tests were run in liquid oxygen, including steady state and transient
tests, at.shaft speeds up to 70 000 rpm and input powers up to 14,9 kW (20 hp).
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APPARATUS
Test Drives

Two types of traction drives were tested in this study, The drives were designed for
a speed and power range required for driving liquid oxygen and liquid hydrogen boost
pumps required for an 88 964 N (20 000 1bf) thrust rocket engine, The design data for
these drives are shown in table I,

The Nasvytis Multiroller Drive, designed for the LOX boost pump at a speed ratio
of 10, 8:1, is shown in figures 1, 2, and 3. The roller drive consists of two rows of
five planet rollers contained between the concentric sun and ring rollers, The second
row of rollers transmits the reaction torque to the housing through ball bearings mount-
ed on the roller shafts. The sun roller, figure 4, is split to provide a means of provid-
ing roller contact load proportional to the input torque. The first and second row
rollers are shown in figure 5.

The ball drive, which is a modification of the roller drive, is shown in figures 6
and 7. It was designed for the hydrogen boost pump at a speed ratio of 3.25:1. The
ball drive has two rows of eight planets contained between the concentric sun and ring
rollers, The first row of planets is made up of sixteen balls. As in the roller drive,
the sun roller is split to provide a loading mechanism for the drive. The second row
planets and the first row balls are shown in Figure 8.

The sun rollers and the planet rollers were fabricated from AISI 440C stainless
steel that was through hardened to a Rockwell-C hardness of 58 to 60. The ring roller
consisted of a hardened AISI 440C liner interference fitted in an Inconel 718 output ring,
All roller running surfaces were ground to surface finishes from 0.2 to 0.4 um
(8 to 16 pin.) rms. The remaining drive components were fabricated from Inconel 71 8.

The roller loading mechanism for the drives are similar, The loading mechanism
adjusts the normal contact load between the rollers in proportion to the transmitted
torque, effectively maintaining a constant traction coefficient, This torque-responsive
loading mechanism insured that sufficient normal load was applied under all conditions
to prevent slip, without needlessly overloading the contacts at light loads. The mech-
anism was designed to operate above some preselected, mechanically adjusted minimum
preload. The roller drive high-speed or input shaft with the split sun roller and loading
mechanism is shown in figure 4. The surfaces of the sun roller halves which contact
the first row planet rollers are tapered (3° in this case) so that as the space between
them decreases, the first row planets are forced radially outward loading the drive,
The axially inward force of the sun halves is provided by tapered lands milled into the
back faces of the sun halves and oppositely milled lands in the faces of the drive cams,
figure 9. The drive cams are keyed to the high-speed shaft and lightly spring loaded
axially so that there is contact between the drive rollers under zero torque condition,
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As input torque is applied, equal and opposite axial loading is applied to the sun halves
from the drive cams through the cam loading balls by the action of the milled tapered
lands. The roller contact is proportional to the input torque with the proportionality
constant determined by the selection of the angle of the tapered lands and the taper angle
of the sun rollers.

Test Rig

The multiroller drives were tested in a fixture as shown in figure 10, A test facility
schematic is shown in figure 11, The test fixture consisted of three major elements;
the housing, the turbine and the brake,

The drives were mounted in a sealed housing that contained the coolant and directed
it to the desired areas of the drive, The coolant flow divided after entering the housing,
with approximately 20 percent flowing through the high speed shaft bearings and the
remainder cooling the drive rollers, Separate coolant drains were provided and inlet
and outlet coolant temperatures and pressures were measured, The coolant pressure
was maintained at 4. 5><105 N/m2 (65 psi) to suppress cryogenic coolant boiling within
the drive.

A radial flow turbine driven by nitrogen gas provided input power to the drives.
Speed control was accomplished with a control valve in the turbine gas supply line, An
eddy current proximity probe monitored the passage of the turbine blades and provided
a shaft speed signal. A closed loop controller maintained shaft speed constant,

The output power was absorbed with a radial flow turbine driven by nitrogen gas and
operating in reverse. The power absorbed by the brake and thus the power transmitted
through the drive was varied by means of a control valve in the brake turbine gas supply
line. The passage of the brake turbine blades was monitored by a proximity probe to
indicate brake speed. '

Simple shaft seals were provided to isolate the liquid oxygen coolant from the nitro-
gen drive gas for the turbine and the prake, The seals consisted of a nitrogen purged
cavity between the oxygen and the turbine drive gas. Pressure in this cavity was
maintained slightly higher than the coolant pressure.

Turbine and Brake Calibration Rig

The performance of the turbine and the brake was characterized using a separate
calibration fixture. In this fixture the turbine and brake were mounted on separate
shafts, each supported by ball bearings. These two shafts were then connected by a
splined guill shaft containing a calibrated torque transducer, The torque signal was
brought out through high-speed slip rings to the signal conditioning equipment, Data




were gathered by operating the calibration rig at a constant speed and varying the
applied torque. Turbine inlet pressure, outlet pressure, brake inlet pressure and
outlet pressure, shaft speed and torque were measured at shaft speeds up to 40 000 rpm,
Inadequate bearing lubrication and cooling prevented operation at higher shaft speeds,
Operation of the rig without the brake wheel attached allowed the measurement of the
test fixture bearing losses. The data gathered related the turbine torque as a function
of turbine inlet pressure and also the brake torque as a function of brake inlet pressure,
This data allowed the calculation of input power and output power during the testing of
the multiroller drives, Although data were gathered at up to 40 000 rpm the results
were extrapolated to 70 000 rpm. The error in this extrapolation is estimated to be

5 percent or less,

PROCEDURE

Prior to each test, the drives were completely disassembled and the parts were
cleaned in an ultrasonic cleaner to assure compatibility with liquid oxygen, After
reassembly, the drives were installed in the test fixture and the fixture was mounted
in the facility,

Liquid oxygen was slowly flowed through the drive for approximately one-half hour
to pre-cool all parts to liquid oxygen temperature, Once the desired temperature was
reached, the turbine was driven up to the desired speed following a linear speed ramp.
The final speed and the ramp rate were adjustable, Ramp rates of 30 minutes to
5 seconds to full speed were run. Once at speed, the brake turbine flow was applied to
load up the drive. Data was recorded at several power levels before the brake was shut
off and the drive decelerated slowly to zero speed.

For any turbine inlet pressure and turbine speed the turbine torque, and thus the
drive input torque, could be found from the turbine calibration data, The product of
turbine torque and turbine speed yielded the drive input power. Similar calculations,
based upon the brake inlet pressure and brake speed, yielded the output power of the
drives, The ratio of the drive output power to the input power is the drive efficiency.

RESULTS AND DISCUSSION
Check-Out Tests

The roller and ball drives were tested in oil mist, liquid nitrogen and liquid oxygen,
The oil mist and liquid nitrogen tests were run to check out the drives for proper
assembly and mechanical operation in a less hazardous and more convenient fluid than
liquid oxygen. No significant data were obtained during the checkout tests, Test
speeds of 70 000 rpm were attained, but all the testing was done at essentially no load.




Roller Drive Tests

The roller drive tests in liquid oxygen accumulated a total test time of about three
hours, of which about one hour was at the design speed of 70 000 rpm, Data were
obtained at speeds between 20 000 and 70 000 rpm, while input power was varied from

1.5 to 14,9 kW (2 to 20 hp), The drive efficiency ranged from 10 percent to 60 percent,
Three sets of roller drive hardware were used and each assembly was tested to failure,
In each of the test series, data were obtained by slowly ramping the drive speed up to
design speed and varying the drive load from minimum to design torque at selected
values of drive speed, In the last test series, the last two tests were cyclic tests in
which the drive speed was accelerated to design speed in 10 seconds and in 5 seconds.

A summary of the data is presented in table II,

The first set of roller drive hardware survived four tests for 72 minutes total dur-
ation, The failure was attributed to the failure of the AISI 440C liner to remain seated in
the low-speed shaft housing, figure 12, The liner was a shrink fit for this test, The
liner was pinned in place in subsequent assemblies, The sun and planet rollers are
shown in figures 13 and 5. The first and second row planets shown in figure 5 were in
good condition after the test. The sun rollers in figure 13 show the effects of possible
inadequate local cooling although no sign of excessive heating was detected in the cool-
ant temperature rise data.

The second set of hardware shown in figures 14, 15, 16, and 17 failed after 42 min-
utes in three tests, Post test inspection revealed evidence of a fire on the high-speed
shaft and failed high-speed shaft bearing (fig. 14). No conclusion was reached whether
the fire or bearing failure occurred first. The first and second row rollers (figs. 15
and 16) were in fair condition while the sun rollers (fig. 1'7) showed considerable
distress.

The third set of hardware accumulated 43 minutes in six tests before failing, The
last two tests of this series were cyclic tests in which the drive was rapidly accelerated
to design speed. Seventeen cycles were run at a ramp speed of 7000 rpm per second and
15 cycles at 14 000 rpm per second. At the end of each speed ramp, the input torque was
varied from minimum to design value, At the end of the fifteenth cycle and at an input
torque of 2,26 N-m (20 in-1bf), the drive failed. The output torque at failure was
12.43 N-M (110 in-1bf) for a drive efficiency of 50. 9 percent. The sun, first row
planets, second row planets and ring roller are shown in figures 18, 19, 20, and 21,
The sun roller (fig, 18) indicates high loading or insufficient cooling as in the previous
tests. The planets (figs, 19 and 20) are shown to be in fair condition, The actual cause
of failure appears to be due to failure of the planet bearings. The inner races of the
failed bearings are shown still mounted on the planet shafts, The outer races are shown
in the housing in figure 22,




In all of the roller drive tests the ratio between the input and output speeds was
constant, Within the limits of the speed measurement accuracy no slippage could be
detected, The results of the roller drive tests are shown in figure 23, The output
power against the input power is shown with input shaft speed and percent design input
torque as parameters, The roller drive power loss is significantly more dependent
upon speed than upon torque, This result is in agreement with the results of the tests
reported in refence 5. The constant speed lines of 50 000 rpm and above have the same
slope as the 100 percent efficiency or zero loss line; therefore, increasing input torque
at constant speeds results in a constant power loss and an increase in drive efficiency,
At lower speeds, the power loss is dependent upon both torque input and speed,

Ball Drive Tests

The ball drive tests in liquid oxygen were not successful. In most tests, the drive
locked up and failed to rotate, Post test inspections gave no indication of the cause of
its failure to operate, After several reassemblies and repeated failures, the testing of
the ball drive was discontinued. It is possible that the drive is inherently unstable
‘because of failure to maintain parallelism between four of the second row planet axes
and the ring roller axis, Four of the eight second row planets were supported and kept
in alignment with ball bearings while four of the planet rollers were permitted to
""float'' between the first row balls and the ring roller (fig. 8).

CONCLUDING REMARKS

The roller drive tests in liquid oxygen indicate that the Nasvytis drive can be
developed into a useful transmission for cryogenic applications. None of the three
failures which occurred could be attributed to failure of the rollers. The sun roller did
show distress in all three tests, but this may be due to excessive roller loading. Be-
cause no slippage was observed, it may be possible to reduce the roller loading from
that used in these tests. In addition, it may be possible to improve the cooling of the
sun rollers and, consequently, improve their life.

The efficiencies obtained were lower than those obtained in tests deseribed in
reference 5 probably because of windage losses due to operation submerged in liquid
oxygen, The tests in reference 5 were run using oil as a lubricant with the housing
kept relatively dry with the use of a scavenger pump. In addition, the rollers sustained
mechanical damage during the testing resulting in additional losses.

A basic problem with the drives is that without perfect parallelism between the
centerlines of the second row rollers and the ring roller, an axial force is generated
between the second row rollers and the ring, This misalignment is what caused the




ring roller insert to be forced from its proper location in the ring casing in the first
test series. This form of instability may be relieved by application of the stability
criteria as described in reference 6. The failure of the ball drive was probably caused
by the skewing of the floating second row planet rollers which were not maintained
parallel to the ring roller, A design change in which all of second row rollers were
bearing supported would relieve most of this problem, '

SUMMARY OF RESULTS

A Nasvytis Multiroller Traction Drive with a 10, 8:1 ratio and a modification of the
Nasvytis Drive, the Ball Drive, with a 3, 25:1 ratio were tested in liquid oxygen, In-
put speeds to 70 000 rpm and input power levels to 14, 9 kW (20 hp) were run with the
following results: '

1. Peak efficiency of 60 percent was determined,

2. Three drives were tested for a total of 3 hours, of which 1 hour was at full speed

and full power. v
3. The drive power losses at speeds above 40 000 rpm were significantly affected

by speed and insensitive to variations in input torque.

4, There was no evidence of slippage between rollers detected within the limits of
the speed measuring accuracy.

5. The Ball Drive failed to rotate or '"locked up'' after a few revolutions in every
test.
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TABLE I, - DESIGN DATA
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14,

15.
16,

Input speed, rpm

Output speed, rpm

Reduction ratio

Power, kW (hp)

Torque, Nm (in-1bf)

0.D. low speed shaft, cm (in)
Overall length, cm (in)

Drive weight, kg (1b)

Ring roller dia., cm (in)

Sun roller dia,, cm (in)

First row roller dia., cm (in)

Second row roller dia,, cm (in)

Assumed coefficient of friction

Roller contact stress, N/m2 (lbf/inz)

Planet bearing DN, RPM X Bore (mm)

Roller material

Roller drive

70 000
6475

10. 8:1

11.2 (15)
1.52 (13.5)
8.89 (3.5)
22, 85 (9.0)
4.1 (9.0)

6. 85 (2.697)
1.23 (0.500)

1.69 (0.666)
0. 84 (0.332)

2.09 (0. 824)

0.06

1,25 x 10°
(181 600)

134 000
440C

Ball drive

95 000
29 238
3.25:1

22.4 (30)
2.25 (19.9)
8.89 (3.5)
22,85 (9.0)
4.3 (9.5)

7.64 (3.007)

2,14 (0. 841)

1.19 (0. 469)

2,01 (0.790)
1.77 (0.700)

0.06

5.45 x 108
(79 000)

723 000
440C




TABLE II,- - SUMMARY OF RESULTS, ROLLER DRIVE LOX TESTS

Drive Input Input power | Output power Efficiency | Duration, Rate, Reason for test
assembly | speed, kW | hp KW hp sec rpm/sec termination
rpm
1 10 011 0.77 (1 1.03 | 0.47 | 0.63 0.61 (a) 33.3
21 118 3.21 1 4,30 1.92 | 2,57 .60
32 623 4,55 | 6.10 | 2.45 { 3.28 .54
42 086 7.38 1 9.90 | 4.16 | 5.58 .56
52 196 9.92 [13.3 6.03 | 8.09 .61
60 414 |[11.26 |15.1 6.23 | 8.35 .55
70 873 [12,83 (17.2 5.18 | 6.94 .40 17%8 7';'; 7 Sun rollers worn
2 41 720 6.49 { 8.70 | 4.03 | 5.40 .62 1354 38.9
70 000 (b) 1600 7.7
40 000 (b) 161 248.4 Drive siezed
3 70 000 (b) 924 116.7
69 678 |11.63 [15.6 4,40 | 5.90 .38 735 233.3
49 296 4,37]5.8 | 1.33 | 1.79 .30 392 166,17
69 533 6.50 | 8.72 .30 .40 .05 182 7000
17 cycles
69 383 |[15.59 [20.9 8.43 [11.3 .54 392 14 000 Drive siezed
15 cycles

4 Continuous ramp to 60 000 rpm for 1927 sec total duration.

b Data lost.




Figure 1. - Roller drive, C-76-4809
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Figure 2. - Roller drive, cutaway view,
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Figure 3. - Roller drive, partially disassembled,
C-76-4801
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Figure 4. - High speed shaft assembly,
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Figure 5. - Roller drive, first& second row rollers,
C-79-1329
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Figure 6. - Ball drive, cutaway view.
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Figure 7, - Ball drive, partially disassembled,
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Figure 8, - Ball drive, second row rollers and balls,
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Figure 9. - Roller drive, loading mechanism,
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Figure 10, - Test fixture,
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Figure 11, - Facility schematic.
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Figure 12, - Roller drive No, 1, after testing.
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Figure 13. - Roller drive No. 1, sun rollers after testing.
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Figure 14. - Roller drive No. 2, shaft after testing.
C-80-2573
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Figure 16. - Roller drive No, 2, second row rollers after testing.
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Figure 17. - Roller drive No, 2, sun rollers after testing.
C-80-2997

Figure 18. - Roller drive No. 3, sun rollers after testing.
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Figure 19. - Roller drive No, 3, first row rollers after testing.
C-80-0791

Figure 20. - Roller drive No. 3, second row rollers after testing.
C-80-0788




Figure 21. - Roller drive No, 3, ring roller after testing.
C-80-0792
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Figure 22, - Roller drive No. 3, shaft and cap, showing second row roller bearing failure.
C-80-0789
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Figure 23, - Rollerdrive performance in liquid oxygen.
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