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SYNERGISTIC EROSION/CORROSION OF SUPERALLOYS IN
PFB COAL COMBUSTOR EFFLUENT
by S. M. Benford, G. R. Zellars, and C. E, Lowell
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
ABSTRACT

Two Ni-based superalloys were exposed to the high velocity effluent of
a pressurized fluidized bed coal combustor (PFBC). Targets were 15-cm diam-
eter rotors operating at 40,000 rpm and small flat plate specimens. Above
an erosion rate threshold (-10 uwm/hr), the targets were eroded to bare
metal. The presence of accelerated oxidation at lower erosion rates sug-
gests erosion/corrosion synergism. Various mechanisms which may contribute
to the observed oxide growth enhancement include erosive removal of protec-
tive oxide layers, oxide and subsurface cracking, and cheniical interaction
with sulfur in the gas and deposits through damaged surface layers,

I. INTRODUCTION

A proposed alternate method of generating electrical energy from coal
requires the operation of a gas turbine in the effluent of a pressurized
fluidized bed coal combustor (PFBC). The PFBC process prom;ses to he more
efficient and to produce fewer SOX and NOx poliutants than conventional
coal-fired plants, However, a turbine operated in PFBC effluent is exposed
to hot, corrosive gases and high velocity particles which can severely dam-
age the blades. In this complex environment, a spectrum of erosion/corro-
sion mechanisms may produce accelerated metal attack in a synergistic manner,

The NASA Lewis Reseach Center PFBC program was initiated to evaluate

this new concept of burning coal in an environmentally clean way, and to
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provide erosion/corrosion meterials data which would indicate both the ex-
tent of the problem and possible solutions. Small superalloy rotors (15 cm
or 6 in, diam) were operated directly in the PFBC effluent for up to 400
hours (refs. 1 and 2), and small flat plate speciimens were exposed for up to
90 hours. Additional flat plate specimens of the alloys were furnace oxi-
dized in air at temperature for ccmparison with the test samples. The tur-
bine blades exhibited accelerated oxidation, subsurface oxide penetration,
and hot corrosion (sulfidation) in addition to heavy erosion. F]ag plate
samples were attacked by hot corrosion on the normal incidence surface
(leading edge) at moderate erosion rates (0.5 um/hr or 2 mil/100 hr), and
were eroded to bare metal at higher erosion rates. This report focuses on
the erosion/corrosicn interaction mechanisms which might explain the accel-
erated corrosion observed on these superalloy airfoil and flat plate samples
in the presence of erosion.
IT. EROSION/CORROSION THEORY

Erosion affects the arowth rate, coherence, and composition of surface
oxides by (1) decreasing the thickness of the protective oxide layer;
(2) generating microcracks which may result in porosity and oxide penetra-
tion; and (3) depleting the alloy of protective oxide elements. A slight
reduction in the thickness of the protective oxide layer is probably the
least damaging result of erosive attack. This mechanism will be examined on
the basis of a simple theoretical model, and the predicted attack rates will
then be compared with experimental data. The probable results of more sev-
ere attack (crack formation and alloying element depletion) will also be

discussed and compared with observations.,



(1) Coherent Oxide Growth

A coherent or protective oxide scale will be defined as an oxide which
is uniform in thickness, dense, and adherent to the metal substrate. The
slow, uniform bombardment of a coherent oxide surface by particles which are
small in comparison with the oxide thickness will, in general, reduce the
protectiveness of the oxide layer and accelerate the growth of the depletion
zone. The erosion rate may be decreased by the presence of the hard oxide
layer, but the netal consumption is still likely to be greater in the eroded
material because of the accelerated depletion zone growth.

Figure 1(a) shows the rate of coherent oxide formation and Fig. 1(b)
shows the oxide thickness as a function of time in the absence and presence

of erosion, as described by the equations,

. % _
X0 = 27; No erosion (1)

y Kp . .

XOE = ?Y;E - E With erosion (2)

where X0 is the thickness of the oxide remaining on the metal {(um), Kp/Z
is the parabolic oxide thickness growth constant (um2/s), E is the ero-
sion rate (um/s), t s time (s), and ko = dXoldt. (A similar equa-
tion is used to describe the vaporization of volatile surface oxides

(ref. 3).) The surface oxide thickness removed by erosoion (XR) is de-

scribed by the linear rate equation,

R =E (3)

The total oxide formed (Fig. 1(b)) is equal to the amount eroded away plus

the amount remaining on the surface, or xtota] = XR + xo. X0 grows at a
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nearly parabolic rate (dashed line) until the oxide lost by erosion is
nearly equal to the amount of oxide remaining, and then approacires a limit-

ing thickness given by,

K
X max = 2@ (4)

after steady-state time, tSS

(5)

SS
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After this time, the oxide thickness is always smaller than it would have
been if parabolic growth had continued, and the oxide {s less protective,
If the parabolic growth constant is small compared with the erosion rate,
steady-state conditions are achieved quickly and the coherent oxide layer
will be extremely thin according to Eq. (4). If XOmax is several ang-
stroms and tSS is less than 1 second, it is likely that, under these
conditions, a coherent oxide layer may not form at all.

The depletion 2one thickness (XD) is proportional to the total amount
of oxide formed (Fig. 1(b)). When steady-state conditions have been
reached, all of the oxide formed is eroded away. The oxide which remains on
the surface serves as a thin diffusion barrier through which critical alloy-
ing elements are “"pumped" from the substrate to the surface at a nearly lin-
ear rate. Figure 2(a) shows the relative thickness of x0 and X, for
parabolic growth and for growth in the presence of erosion.

(2) Porous Cxides

At very high erosion rates, the initial oxide nucleation and arowth

processes may be disrupted (ref, 4). In the extreme case, nucleation does

not take place at all, and the material is eroded to bare metal. In a less
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extreme case, the growth process may proceed with the formation of atypical

or porous oxides. The growth of a porous surface oxide will be governed by

the equation,

XO =a-t as>t ()

where 'a' is the growth constant for the porous oxide in the absence of
erosion (um/s). The depletion zone growth is also linear with time and is
governed by the porous oxide growth constant, so that it is not sign;}i-
cantly changed witl. and without erosion. Figure 2(b) shows the relative
thickness of X0 and XD for porous oxide growth in the presence and
absence of erosion. Only if diffusion processes cannot keep pace with the
rapid consumption of surface oxide will the depletion zone thickness be di-
minished in the presence of erosion.
(3) Brittle Fracture

If the size of the bombarding particles is comparable with the oxide
depth, bittle fracture may form microcrack porosity or totally expose the
depletion zone in the region of impact. The effect of mechanicai stress is,
in this case, similar to the effect of thermal shock with resulting micro-
crack formation, spallation, and accelerated oxidation (refs, 5 and 6).
Figure 3 shows the erosive damage of an oxide surface by particles which
appear to be about 5 um in size.
(4) Composition Changes

As surface layers are eroded away and the depletion zone grows, equi-
librium conditions may change to favor the formation of alternative oxides.
Multilayer oxides and subsurface penetration might be expected as it becomes
increasingly more difficult for the primary oxide cations to diffuse to the

metal-oxide interface. Erosive exposure of depletion zones will also gener-
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ate atypical oxides. In Ni-Cr-Al-based alloys which form protective chrom-
jum oxides, aluminum oxides may form in the exposed depletion zone (refs. 7
and 8). In general, metal consumption will increase as alloying element,
which form the protective oxide layer are eroded away. Especially important
is the fact that the eroded surface may be more susceptible to hot corrosion
attack.
[!7. TEST CONDITIONS

The NASA Lewis Research Center pressurized fluidied bed test facility
has been described in previous reports. The combustor burns about 48 kg
(30 1b) of granular coal and 2 kg (4.2 1b) of granular limestone sorbent per
hour at about 6 atmospheres pressure. Air flows through the system at 300
kg/min (650 1b/min). The fluidized or suspended fuel and sorbent particles
are surrounded by the flowing air, and combustion is very complete at com-
bustion temperatures of about 1000° C (1880° F). Low temperature burning
reduces the level of NOx emissions, and the limestone sorbent reduces the
level of SOx emissions. The effluent is considered to be primarily oxidi-
zing at test temperatures. Sulfidation may be the result of interaction
with sulfur-bearing solids or with 502 gas trapped beneath the solids.
(1) Solids Particles

Entrained solids in the effluent contain 5102. Fe203, and alumi-
num-silicon compounds which reflect the nature of the coal ash, in addition
to CaSO4 from the sulfated sorbent., Particles which passed through the
test sections appeared to contain more sulfur-bearing species than solids
which were collected by an upstream separator. Such sulfur-bearing species
in deposits (e.qg., Na2504 or K3Fe(504)3) may be highly reactive (refs. 9
and 10). Solids loadings into the test section ranged from 200 to 30,000 ppm

(0.01 to 1.5 gr/SCR), and the average particle size in most tests was 10 to



7

15 um. SEM analysis of the largest particles indicates that they are highly
agglomerated and may, in fact, have existed as individual smaller particles
in the hot gas stream.
(2) Turbine Test

A turbine rotor is shown in Fig. 4 and test conditions are shown in
Table I. A single stator passage quided the hot gases onto about three
blades at 6 percent partial admission. The blades were therefore exposed to
the eroding particles for about 1.5 usec out of each revolution (25 usec).
(Actual erosive exposure time may be calculated by multiplying the test time
by 0.06.) Heavy particle separation occurred both in the stator and during
passage through the rotor, producing a nonuniform distribution of erosion on
the blade surface. The relative gas velocity at the rotor inlet was about
300 m/s (1000 ft/s), and the gas temperature ranged from 690° to 730° C
(1350° to 1450° F). Rotor materials were Alloy 713 LC (wt.% Cr-12,A1-
6.1,Ti-0.6) and IN792 + Hf (wt.% Cr-12.4,A1-3.1,Ti-4,5), both nickel-base
superalloys.
(3) Flat Plate Test

A flat plate specimen exposed to the PFBC effluent for 30 hours at a
solids loading of 15,000 ppm is shown (Fig. 5). The small coupons (5 x 2.5
x 1.25 cm) were mounted in a tapered tube, so that velocity varied with po-
sition along the tube. Gas pressures and temperatures were comparable to
the turbine test conditions, but exposure to the solids was continuous. Gas
velocities were somewhat lower (110 to 220 m/s or 360 to 720 ft/s). Lighter
particles followed the gas flow around the specimen, but heavy particles
penetrated the stagnation area and impact on the leading edge at 90° inci-
dence. Particles probably impacted the sides only at shallow angles. All

of the flat plate test specimens were IN792 + Hf,
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IV. RESULTS AND DISCUSSION

Most test samples were exposed to severely erosive conditions. In some
turbine tests, thick oxide cover (~20 u) on part of a blade contrasted
sharply with bare metal on other parts. It is not unexpected, then, that
the simple model for coherent oxide growth appeared to predict the observed
oxide and depletion zone thickness for only the least eroded sampales. Ox-
ide fracture, porosity formation, and depletion of critical alloying ele-
ments appear to dominate the damage mechanisms at these erosion rates.

(1) Erosion Rates

Table I shows the average biade thickness loss of the four rotors and
the leading edge erosion loss of the flat plate specimens. The average sur-
face erosion rate (Table 1) was determined by dividing the average blade
thickness loss (estimated at nine positions) by total test time, and this
average was divided by two (for two surfaces). The rotor erosion rate is,
therefore, an average over all particle impact angles, sizes, and veloci-
ties. In addition, impacted surfaces were both bare metal and oxide cov-
ered, and the average includes both ductile and brittle erosion modes. Sig-
nificant erosion of the blade surfaces (20 to 120 uym, 1 to 5 mil) reflects
heavy particle separation from the gas stream. The rotor erosion and cor-
rosion are treated as though they occur uniformly over an entire rotation,
and the average erosion rate ranged from 10"5 to 10'3 um/s.

Erosion of the flat plate specimens occurred primarily on the leading
edge surface normal to the gas flow direction. Erosion on the sides was
telow measurable limits (2.5 um, 0.1 mil), and metalloyraphic examination of
the trailing edge indicated that sharp, machined corners had been retained.
Therefore, the leading edne erosion rate was determined by dividing the

LE-to-TE erosion loss by test time. The erosion loss of the high velocity
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sample (1450 um, 0.6 mil) was much greater in comparison with the low veloc-

ity sample (15 ym, 0.6 mil) than might be expected from velocity dependence
alone, Since the high velocity sample was eroded to a bare-metal knife
edge, ductile erosion at optimum erosion impact angles (~30°) may partially
account for the exceptionally heavy material loss. The average leading edge

erosion rate of the flat plate specimens ranged from 10'4 -2

to 10~ um/s
(Table I1), overlapping the turbine blade erosion rate range.
(2) Corrosion

The maximum corrosion attack depth (corrosion products plus depletion
zone) was about 10 to 20 um for all rotors (Table 1), despite a wide varia-
tion in erosion rate. However, exposure time varied and differences in av-
erage particle size, velocity, and impact angle over the blade surface
strongly affected the erosion and oxide evolution in local areas. Figure 6
shows the suction side corrosion of three heavily eroded rotors (R3, R4, and
R5) compared with furnace oxidized coupons. Chromium-rich oxides covered
most of the suction surface on the Alloy 713LC blades (R3) after 164 hours.
After 12 hours, one IN792 + Hf blade was eroded mostly to bare metal (R4)
with localized nodules of alumina, and another (R5) exposed to a smaller
average particle size was partly covered with mixed Al-Ti oxides. [IN792 +
Hf coupons formed mixed oxides of Ni, Cr, Al, and Ti in furnace tests at
tenperature, and the predominance of Al and Ti oxides after ernsion suggests
the disruption of typical oxide nucleation and growth processes at these
erosion rates.

Blades removed from a less severely eroded rotor (R7) after 200 hours
were almost completely covered with Al-Ti oxides (Fig, 7(a)). Oxide pene-

tration extends into the depletion zone. Comparison wity the furnace oxi-

dized coupon (Fig. 7(c)) indicates that the attack is both accelerated and
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atypical. After 400 hours, the presence of chromium sulfides in a thinner
depletion zone (Fig. 7(b)) is evidence of sulfidation attack in contrast to
the 480-hour, furnace-oxidized coupon (Fig. 7(d)).

Corrosion attack on the three flat plate samples primarily occurred on
the leading edge of the two lower velocity samples (S1 and S2). Figure 8
shows the leading edge and one side of Sl. At the leading edge the surface
oxide is mixed, and the depletion zone contains sulfide particles. The ox-
ide layer on the side of the sample is comparable in thickness and morphol-
ogy to furnace oxidized coupons. Sulfur penetration appeared to occur on
these samples only at the heavily eroded leading edge. The leading edge of
all three flat plate samples is shown in Fig. 9. At higher gas (and parti-
cle) velocities, the corrosion attack depth decreased (S2) until erosion to
bare metal dominated (S3).
(3) Ervsion/Corrosion Interaction

The presence of oxide nodules, atypical oxides, subsurface oxide pene-
tration, and enhanced sulfidation attack on heavily eroded surfaces reflects
the disruption of protective oxide growth. In the coherent oxide growth
model, the rate of metal consumption is a function of both erosion rate and
parabolic oxide growth rate, Disruption occurs if the time to reach steady
state is short and the maximum oxide thickness is small. In order to define
the conditions under which the coherent oxide growth model fails for these
alloys, it is useful to calculate the steady-state parameters tSS and
xomax for the test erosion rates.

Table 11 shows the erosion rate for each rotor and flat plate sample,
ordered from low (10'5 um/s) to high (10'2 um/s) erosion rates. The
cairulated values of Xomax and t .. are also shown, In general, the

calcuiated values of Xomax are much smaller than those observed, and the
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corresponding steady-state times are short, Only when the steady-state
growth time is long (about 30 hr for R7) does the predicted oxide depth be-

gin to approach the observed oxide depth. The two horizontal dashed lines

in Table 11 define erosion rate thre holds at which the oxide growth pattern

2

appears to change. At high erosion rates (10‘3 to 107° um/s), erosion

to bare metal takes place. At the lowest erosion -ate (10'5

um/s), the
surface oxide was more unifcrm over the surface. At still lower erosion
rates, oxide growth is likely to progress with nearly parabolic oxide growth
kinetics (e.qg., the sidey of the flat plate samples). In this analysis,
Xomax and tss apped: to serve as critical parameters which indicate

the likelihood of oxide growth disruption in the presence of erosion, Fig-
ure 10 shows theoretical oxide thickness vs time calculated for IN792+Hf at
several erosion rates (T ~ 780° C). The theoretical curves cross the para-
bolic growth curve at ~0.8 tss. Over this range of A, Mmax (<0.1 ym)

and T . (<10,003), oxide growth was observed to he atypical.

The formaticn of microcracks by particle impact can be an important
factor in the corrosion processes at moderate to heavy arosion rates. Mi-
crocrack porosity on a scale much smaller than the oxide thickness was not
directly observed on these samples. However, particle impact craters and
larger scale crack formation were evident on several of the rotor blades.
Figure 11 shows the erosion of a turbine blade near the trailing edge tip.
This is an area on the blade where heavy particle impact was especially in-
tense. The erosion to bare metal threshold is passcd within a 3-mn distance
from the tip, beyond which point the oxide layer is continuous, thick, and
possibly porous.

Porous oxide growth can be rapid (1linear kinetics), and continuous bom-

bardment by particles and subsequent crack formation maintains the poros-
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ity. Figure 12 is a schematic of crack formation by particles impacting
both an oxide and a metallic surface. Cracks propagate radially from the
center of impact on the brittle oxide surface (Fig. 12(a)) (ref. 11), but
propagate parallel to the surface in the case of ductile metailic surfaces
(Fig. 12(b)) (ref. 12). 1In Fig. 13, a particle appears to have impacted an
A1-T1 ctide layer, and streamers of A1203 penetrate radially from the
center of impact. In Fig. 14, oxides have formed in parallel cracks beneath
the surface of the heavily eroded R4 blade., A significant amount of metal
loss can occur if breaks run parallel bencath the surfaces, since entire
layers of metal and oxide can then be successively peeled away.

Porous oxide formation may promote oxide penetration as well as enhance
the likelihood of sulfidation, Figure 15 is a schematic of porous otide
formation showing evolution to these two metal attack schemes. In Fiq,
15(a), SO, diffuses through cracks in the surface oxide (ref. 13) and
forms sulfides in the depletion zone. Sulfidation may occur beneath depos-
its of sulfur-bearing solids f there is an adequate buildup of 502 pres-
sur> beneath the layer. In Fig. 15(b), oxygen diffuses readily through the
cracks and forms a compact subsurface oxide layer with some penetration. In
the iast view (t3), the porous oxide layer has been completely eroded
away, and oxide penetration continues at an accelerated pace., Sulfidation
at the leading edge of a flat plate sample (FP-S1), and A1203 penetra-
tion of a turbine blade (R7) are shown with the schematics as examples of
each type of attack. While sulfidation and associated accelerated oxidation
can surely occur in the absence of erosion, the presence of sulfidation oniy
cn the highly eroded leading edqe of the flat plate samples strongly sug-

gests enhancement in the presence of erosion. Metal loss by fluxing of the
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surface and oxide breakaway can be severe once sulfidation attack has been
initiated.
V. CONCLUDING REMARKS

Erosion/corrosion interactions are generally synergistic in a destruc-
tive manner, that is, damage is amplified. At high erosion rates, it is
likely that porous oxides, thin nonprotective oxides, or faster growing ox-
ides with a larger Kp will form. Even at low erosion rates, depletion
zone growth is likely to be enhanced and net metal attack increased. The
onset of accelerated oxidation is likely to be a problem at longer times, as
well as sulfidation when sulfur-bearing deposits and gases are present
(Fig. 16j.

Althougn it was not observed in these tests, there appears to be an
optimal value of Kp/E at which a thin but protective oxide layer may
remain coherent in the presence of erosion for some time., If the average
particle size is also sufficiently small, such an oxide might be useful in
keeping th2 erosion rate low because of the harder surface. However, it is
unlikely that such an oxide surface wouid be as effective as a properly de-
5 ,ied coating in combating both the erosion and corrosion problems of a
PFBC environment. Controlled studies of the evolution of oxides in the
presence of moderate erosion would be useful in the design of these coatings.
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TABLE Il. - DEPENDENCE OF OXIUE GROWTH PATTERN UN EROSION
AND CORROSION RATES
XR E 1/2 Kp Xomax tSS
= 1/¢ KpfE | ~112 Kp/E2
Test? | Average | Average | Parabolic| Predicted Predgicted Observed
eroded erosion growth steady- time to oxide
depth, rate, | constant,C state steady growth
pm um/ s uie /s oxide state, pattern
thickness, S
um
R7 20b | 1x10-% 10-5 1 105 Uniform,
acceler-
ated
R3 50 8x10-2 2x10-7/ 0.003 30 Nonuniform,
FP-S1 5 1x10-4 10-> .1 100V acceler-
RS % | 1x10-3 10-° .01 10 ated,
FP-SZ 83 2x10-3 10-2 .005 3 porous,
atypical
R4 120 3x10-3 10-2 0.003 L Bare
FP-S3 | 1450 1x10-¢ 10-° .001 1 | metal

aIn order of increasing erosion rate.
bAverage blade thickness loss -+ ¢.

CFrom furnace tests in 1 atmosphere air.
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IMPACT AREA

Cr-RICH OXIDE \/,

Figure 3, - Oxide removal by direct particle impact; alloy 713LC rotor 3 after
164 hours at 69° (. (Average ercsion depth = 50 um, )

Fiqure 4, - Integrally bladed turbine rotor,



LEADING EDGE TRAILING EDGE
- GAS FLOW
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Figure 5. - Flat plate test sample (FP-S2),

ALLOY /)08 N s IN 79 « Wt RE 'R0V C, N9« MRS IR ALLOY T3 LC COuPON IN 790 « Mt COUPON
168 HOLIRS 13 MY RS 1. MOURS 040 14 HOLIRS K16 0 10 HOURS

EXPOSED T0 PER EFFLUENY y AIR ONIDITED

Fiqure 5. - Accelerated suction side oxidation oi heavily eroded turbine blades; comparison with furnece oxidized
coupons, (Average ernsion rate, 0.3 to [0 umhr. )



IN 792 + Hf, TURBINE BLADES, IN 792 + Hf, COUPONS, 780" C
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Figure 7. - Oxide penetration and sulfidation of moderately eroded turbine blades; comparison with furnace oxidized
coupons. (Average erosion rate, 0.05 um/hr, )
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Figure 8. - Compai 'son of flat plate leading edge and side corrosion in PFB effluent;
IN 792 + HIf f1at plate sample (FP-S1) exposed at 78C° C for 30 hours, (Average
erosior rate, 0.5um/hr,)
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IN-792 + Hi FLAT PLATE SAMPLES, EXPOSED AT 1440° F FOR 30 hr, SOLIDS LOADING *

FLOW
DIRECTION

GAS VELOCITY, ftis
EROSION RATE, mils/hr 0.
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Figure 9, - Effect of gas velocity on leading edge erosion/corrosion,
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Figure 10. - Predicted coherent oxide growth rate for IN 792 ¢+ Hi

at several high erosion rates.
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Figure 11. - ErdSive exposure of depletion zone at blade trailing edge tip;
alloy 713 LC rotor 3 after 164 hours at 690° C. (Average erosion depth,

50 um, )
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Figure 12, - Schematic models of erosive crack formation; oxide penetration

occurs along the cracks



IMPACT SITE

Figure 13, - Particle impact crater and radial oxide penetration; IN 792
+ M rotor 5 after 12 hours at 780° C (average erosion depth = 50 um",

~ DEPOSITION MATERIALS
© AL Si, S, K, Ca, Fe

~ PURE ALLOY

~ OXIDES AND CARBIDES
Al Ti, Cr

Figure 14, - Crack propagation at a subsurface oxide - alloy interface; IN 792 + Hf
rotor 4 after 12 hours at 78(° C (average erosion depth « 120 um),
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