iy

JOINT INSTITUTE FOR AERONAUTICS AND ACOUSTICS

N,\S,\ NASA-CR-166176

National Aeronautics and 19810014810

Space Administration ) B

Ames Research Center Stanford University
JIAA TR - 29

ON SOURCE RADIATION

Harold Levine

SEP 7 8 1141

APRIL 1980

The work here presented has been supported
by the National Aeronautics and Space Administration
under Contract NASA NCC 2-55

e

024



JIAA TR - 29

ON SOURCE RADIATION

HAROLD LEVINE

APRIL 1980

The work here presented has been supported by the
National Aeronautics and Space Administration under Contract
NASA NCC 2-55

,?L/
NI/~ 3343



The power output from given sources is usually ascertained via an
energy flux integral over the normal directions to a remote (far field)
surface; an alternative procedure, which utilizes an integral that specifies
the direct rate of working by the source on the resultant field, is described
and illustrated for both point and continuous source distributions. A com-
parison between the respective procedures is made in the analysis of sound
radiated from a periodic dipole source whose axis performs a periodic plane
angular movement about a fixed direction. Thus, adopting a conventional
approach, Sretenskii (1956) characterizes the rotating dipole in terms of an
infinite number of stationary ones along a pair of orthogonal directions in
the plane and, through the far field representation of the latter, arrives
at a series development for the instantaneous radiated power, whereas the
local manner of power calculation dispenses with the equivalent infinite

aggregate of sources and yields a compact analytical result.
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ON SOURCE RADIATION
by
Harold Levine
Joint Institute for Aeronautics and Acoustics

Stanford University

§1. Introduction

Determinations of the energy radiated by different source types
(electromagnetic, acoustic, or elastic) are generally based on the far
field or asymptotic form of the wave function, although there exists
an independent way, less well exploited, of calculating the radiation from
a system: this involves a direct consideration of the rate at which the
source (electrical current, acoustical force, ...) does work on the field
and thus supplies the energy loss by radiation.

Having regard, specifically, for the microscopic (Maxwell-Lorentz)

equations

oy

>_10e 12> T
Vb= c at + cd o Vie=p
1
> 1% >
VXe=—E-a—t, V- b=20

of an electromagnetic field described by the two vectors g(?,t) (the
electric field intensity) and g(;,t) (the magnetic field intensity), with
the given source functions 3(?,t) (the current density) and p(;,t) (the

charge density), it is readily shown that

oW PO
5t +V-+-8=-] - e (2)

where



W= —— (3)

S =ce xp (4)

characterizes the energy flux (Poynting) vector. An integrated version of

the local energy balance relation (2),

-> ->
e

_fJ.

r=98 45 (5)

d dt

associates the rate of working by the source current with the combined

temporal change of the total electromagnetic energy of the system,
>
e= /""" dr, (6)

and the net amount of energy radiation therefrom per unit time, or power

output

P=/1n-cexbdA , (7

reckoned on a distant surface with outward (unit) normal vector . Thus,
1f the (activity) integral be displayed in the component form (5), both the
stored and radiated energy measures are independently and simultaneously
obtainable.

Evidently, the electric field within the source region alone has a
relevance to the aforesaid integral and if the spatial extent of this region
is sufficiently limited so that the charge/current density distributions
undergo small change in the time required for light to traverse the region

at speed ¢ , the effect of retardation is slight; then the source functions



with a retarded time argument which enter into expressions for the field

intensities can be developed in powers of 1l/c , viz.,

> >, 2
- 2
ot - T 2 0@ - L | e + TR o -
2c ot
\ (8)
->
3—3 p(r,t) + ... .

6c ot

- P

The leading order estimate for the power radiation deduced from the
integral in (5) on the basis of such a development proves to be

2 2
p-2 L LD 9
3c dt

> > > ->
where p(t) = f r p(r,t) dr denotes the electric dipole moment of the source.
In the particular circumstance of a dipole moment which oscillates harmonically

at a single frequency, say

>

g(t) = P, cos wt , . (10)

the rate of emission of energy has the instantaneous magnitude

4
-2 w 2z 2
P = 3c3 4 P cos” wt (11)

and fluctuates about an average value

m4 2

P- . (12)
12me> 0

P =

The characterization (9) also obtains after integrating the energy flux over
a large spherical surface (in the far field), whose radius merely determines
the time of emission of the observed field; this implies, if the surface
radius r 1is centered on a harmonically varying electric dipole, that

b oo

Py

2

3c3

cos2 m(t—-z) .
c

Ze

with the same average value as in (12).



Having regard, in a similar context, for the linearized system
>
of equations which link the pressure and velocity disturbances p(r,t)

> >
and v(r,t) , 1n a homogeneous medium with density po and sound speed c ,

> >
to the action of a prescribed force ¥(r,t) , viz.,

1 9p L2
CZ Nt + pO Vv v=20
and (13)
v >
V—_
0c P tE,

it 1s readily verified that the local energy balance relation takes the form

oW > > -
—_ + . - . .
5t Vs F v (14)
here
1 2,1 p2
W= 5 pOV + 35 5 (15)
Ppc
designates the energy density and
S =pv (16)

1s the acoustic energy flux vector. The energy radiation rate from a region
wherein an external force is applied can thus be inferred from the volume
. + + . (3 . I3

integral of F - v , after lsolating a time derivative contribution thereto

>
If the motions are irrotational and initiated by a source term Q(r,t)

on the right-hand side of the first equation (13), then

v an

= -v¢ ,

and
: o



(where the latter representation follows from the second equation (13))

>
and the velocity potential @(r,t) satisfies an inhomogeneous wave equation

2 1 379 1 ->
VP - = —5=~--—0Q(r,t) . (19)
c2 3t2 p0

Multiplication in (19) by 9@/3t and subsequent rearrangement yields the

balance equation

W 3o o 22
at+v S = Q(r,t) ot (20)
with energy density and flux measures,
_1 2, 1 38,2
W= 35 0V + —— (5 (21)
Zpoc
and
T 90
S = Py Nt vo (22)

that are the appropriate versions of (15), (16) when (17), (18) hold. Thus,
the product Q(?,t) %%- serves as a measure of the source activity and 1ts

volume integral can be utilized to determine the net energy radiation.

The actual manner of calculating energy radiation by analysis of
integrals over a source region, which this paper aims to describe, commences
in the next section. Point source models are adopted at first, thereby
allowing comparison with results otherwise found and, in particular, those
obtained by Sretenskii (1956) for rotating dipoles. A velocity potential
and the scalar wave equation underlie the initial presentation, whereas the
local velocity and a vector wave equation take over the corresponding roles
in the later account of technique. Finally, some consideration is given to

extended source distributions.



§2. Sound Radiation by Simple and Dipole Sources

On employing the retarded potential solution of the inhomogeneous

equation (19),

1 >
S dr' , (23)
4'1Tpo > —r>| I

B(%,t) =

and assuming that the source function Q(?,t) has a localized nature, i.e.,
> >
Q(r,t) = §(r)f(t) , (24)

there emerges the spherical wave function

r
p fe-)

Ty T (25)

P(r,t) =

descriptive of a simple source, with variable strength f(t) , at the origin.
When the latter and 1ts time derivative are expanded in powers of 1l/c , 1t

follows that

‘ : . 2
B(r,0) = {2 - 2 £(0) + L5 E(o) + 05y (26)
0 2c c
and
W(r,0) __1  f(r) _1°% Ty,
3t 4ﬂp0 r c £(e) + O(CZ) 27

with dots symbolizing differentiation. Substitution of (27) into the source

activity integral [cf. (20)] yields

=~
1l

fedE e 2 at- e L7

_ > 1 %(t) 1 T >
= [ S(DE(L) T w " Tee Fe) + O(Cz)- o
2 + *w
-4 £ 1 81 g £(EYE(L) (28)

dt 2 4ﬂp0 T - 4ﬂpoc



and, 1nasmuch as
.e d * - 2
() E(t) = g7 (F()£()) - (£(e))"

1t can be deduced that.

1

= %o E@n? >0 (29)

P

c
0
expresses the positive definite rate of energy radiation. If the source

strength varies harmonically, say

f(t) = m cos Wt ,

then
22
_(x)m ,2
P = fmp c sin wt (30)
0
with an average value
22
_._ wm
P_STTDC (31)

The fact that the time derivative term in (28) contains a divergent integral,

; 8(z) -~
r

dr , 1s attributable to the idealization of a point source.

Let the point source function (24) be replaced by another,
> ] ->
Q(r5t) = _5; 6(r)f(t) ’ (32)

which befits a dipole oriented in the x-direction; then

r
R B W b
(r,e) = 4“00 ox r
1 9 f(t) . r *° r2"' r3
= — - = £(t) + —5 f(t) ~ —= f(t) + 0(=) (33)
4T1'p0 ax T c 2C2 6c3 C4

1 a 1 x X * XT
= f(e) —= (2 + f(t) - £(t) + 0(—)}
4ﬂp0 { o r 2rc2 3c3 c4



and
W) _ 1 { s - - }
= £(t) =2 (—) + —— f(t) - < £(t) + 0(=D
at lmpo 2rc2 3C3 c4
so that
I=fQ(?,t)g—g SR RICH 3‘5
£°(1) 52
T ac {STTDO 8 =5 g 7 (- _) dr } +; £(e)E(e) [ 5(r) v (—) dr
+ —1—3 £(E)E(E) - (34)
lZﬂpOc

After invoking the determination

2 + 2
[ 8(r) == (—) dr = [ §(x)6(y)8(2) Y——3—z— dx dy dz

lim
v, 2>0;x>0 r

and the rearrangement

EWE(D) = = [FOE() - FOT®] + )’

the power output of the dipole 1s identified as

P = —1——3 Een? . (35)
12ﬂp0c

Thus, if the dipole moment varies harmonically, and f = m cos wt , the ex-

pressions
4 2 9
P=-20 _ s ut (36)
g lanOc
_ 4 2
P—me (37)
24ﬂp0c

obtain.



Consider next a dipole with harmonically varying moment, whose axis
rotates at a uniform angular velocity in the x,y plane; the affiliated wave

function is

£ (t-3) £,(t-2)
(b(;,t) " o[ 1" < +i 2 < (38)
lmpo 09X r dy r
with
fl(t) = m cos it cos wt = %'m{cos(w+Q)t + cos(w-Q) t}
and (39)

f2(t) m sin {0t cos wt = %—m{sin(w+9)t - sin(w-Q)t}

where w, 2 designate the natural and precession frequencies, respectively.

f in (38) which feature rising powers

On utilizing the expansions for fl » £,

of r/c and the concomitant source function
0 = {E (1) ==+ £ () 216(D) (40)
Q(r,t) = 1(t o ,(t 3y r

1t can be verified that

I=1/ Q(;,t) %%-d? = %% + P
with
1 2 5 0% L2, 2 Y 1. >
€= 8mpy fl(t) J (o) ;;5 (- ;?dr + fz(t) J 6(r) ;—E-(- ;)dr
y
g o £e@ A hat e —L e Wi - ©F®
+ 4mpg 1 2 *) 3xay r 12”po°3 1 1 1 1
+ fz(t)‘fnz(t) - fz(t)'f'z(t)}
and
P = ——l—‘g {(¥1(t))2 + ('f'z(t))z} . (41)

12ﬂp0c
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Since
T () =-D0 {(wm)z cos (W)t + (0-0) 2 cos(w—Q)t}
1 2
and
'f'z(t) --2 {(wm)z sin(WHDt - (w-0)2 sm(w-sz)t}

the power radiated by the rotating dipole has the instantaneous and time

average magnitudes,

2
p=—21 ™y St + (09 + 2(0%-95? cos 20t}
3 5 |
12Tp_.c
0
m® 4 22 4 2 2.2
=—{w + 6w?0? + O + (02-0%) cosZwt} (42)
3
24Tp ¢
0
and
- m2 4 2-2 4
P = ——————3-{w + 6w°N° + Q } R (43)
24ﬂ00c

respectively, the latter in agreement with the prediction of Sretenskii,
If the axis of the dipole oscillates symmetrically, within a limited
angular sector, about the x-direction, the characteristic source functions

in (38) are expressed by

fl(t) m cos Wt cos(Y cos fit)
and (44)

fz(t) = m cos Wt sin(Y cos §t)

Straightforward differentiation of these functions , as called for in the
power representation (41), yields the explicit result

2
P = ———EL—E-{cos2 wt (Y% sin? Q)2

12ﬂpoc

+ (2Yw sin wt sin Qt - YQZ cos Wt cos Qt)z}
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2
= --—E——-—g-{cos2 wt(w4 + ZYZMZQZ sin2 Qt + Y294 cos2 ft + YAQA 81n4 Q)
127p.c
0
+ 4Y2w292 31n2 wt sin2 Qt - Y2w93 sin 2wt sin ZQt} (45)

wherein the individual magnitudes of w and Q can be arbitrarily set.
Sretenskii, whose power analysis utilizes both the far field measure

of the dipole source and the development

(oo
oY cos Qt _ 5 ann(Y)eant (46)
(containing integer order Bessel functions Jn ), arrives at the result
m 2 2 r
P=——— [I{()+T (D] , T=1t-= (47)
3 1 2 c
lanoc
where 1
© 2 fln'ﬁ
Fl(T) + 1F2(T) = I (D" e Jn(y) cos(uwnd) T . 48)
n=-o
He defines, furthermore, an average value of P , viz.
_ 1 T )
P = Lim {EfP(t) dtf’ (49)
T 0
and, subject to the proviso that no relationship of the form 2w/Q = N
(integral) exists, obtains the expression
2 > 42
P=-—m—-3- 2 (wm®)"I () (50)
24mp.c” n=-
0
which, on the basis of Bessel summation, acquires 1ts ultimate version
- o 4 222 421 3 2
-~ {u' + 3t + @Y G+ D). (51)
3 2 8
24ﬂpoc

The power representation (45), which has finitely many terms in contrast
with (47) - (48), lends itself to integration and subsequent averaging over any

span of time, say 0 <t < T ; specifically,
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T 2
JP dt = {T(m + 3Y2w Q" + YZQ4(1-+—- 2))
0 24mpc
0
3 4 4
W 1 2 2 1 29 3 .40 .
+(-2—-EY(DQ +—4~’Y U-l-EY T)Slnsz
2 2 1 23 3 4.3 .
t (-3 vw Q +-Z Yy & - 16 Y Q7) sin 20T
1 2 2 2 l_ 2 3.1 24 5 44 sin 2(wt)T
Gy FoYW Fg vy - ge v Q) T e
1222 oL 203, 1 24 5 4k sin 2T
+ ( Q 7 YT+ gy 16 Y 9 ) - g
Y Q sin 2(wt2Q)T sin 2(w=2Q)T
* 32( w+20 T w-2m )} (52)

Thus, the non-trigonometric terms of (52) dominate 1n the limit

average value

span

T 21/Q

P , as defined by (49), corresponds exactly with (51).

T -+ « and the

If the

equals the precessional period of the dipole, the appertaining average power
Q 2m/Q _
o S Pdt =P
0
- RN R R R
24ﬂpoc
4 4 4
Q 1 3 1.2 2 1 20 3 40 W
Top QU TR YWY Tt Y Y Q
1 .222 1 1 2.4 5 4.4
. A Y 0w +-§ mQ + = 3 Yy o - 16 Y (53)
w+ Q
222 1 2 3 1 2.4 5 44
LG Y w o o- > Y W™+ 3 Y Q- 1€ Y Y j1-31n A
w - £ 2n 2
+ Y494 ( 1 1 )Jg-sin hﬂw}
32 w+ 20 w- 2072 Q
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has the limiting estimate
= m2 2.4 3.2 2 2
p=—L—lyta+2vH) v o@D}, e (54)
24ﬂp0c
where the explicit (leading) terms are multiplied by a factor of 2 relative
to the like pair inferred from (51).
The average power relative to a period based on the intrinsic frequency
of the dipole, T = 27/w , can be directly ascertained from (51) and its

estimate readily secured 1f w >> Q .

§3. Sound Radiation from Point Forces

To commence the analysis of power radiation associated with a vectorial
source function, namely an impressed force, suppose that the latter has a
variable magnitude and a fixed orientation, i.e.,

7
i

F(E, o) = 17, 1) (55)

> > o>
where 1,3,k are the trio of unit vectors in the x,y,z directions, respectively.

Then

F _ ¢ IF

> 3
VxF =3 3y

(56)

and the vorticity relation which 1s an immediate consequence of the second of

the basic equations (13), namely

3 > >
pO BEVXV_VXF, (57)
admits the integral
> 1 [ € 3F 5> T
Vxv=—4] [J=2dt -k [ *=dt . (58)
pO —00 9z —00 ay ’
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After eliminating the pressure p from the system (13), it follows that

>
A N éz]
PoWV © vV = 2 Bt[F Po Bt
and thus, relying on the vector identity
VXVUXxv=W-v-Vy (59)

->
together with (58), an inhomogeneous wave equation for v obtains

2 > t t
v2$-i23—23=—%%——1—%<{3? ;3 -% s g—g"dt}
c 3t poc p0 ~c0 —
t .2 2
=;{__1_3_59'+L f<8_9’+ aJ)dt} (60)
2 3t o) 2 2
DOC 0 - By oz

t L2 2
+[ 1 S3°7 1 37 }
+J{ % _foo 3%y dt}+kJL f Py dt ) .

Only the x-component of this equation needs to be reckoned with in analysing

> -
the local source activity or scalar product of F and v , viz.

2 1 3 __ 1 g, 1 F(dw,
(v __2_2> - - f( LESaE )dt. (61)

o 2
pO ot PO —o Jy 322

>
If the source function Z(r,t) has a concentrated spatial nature and is

temporarily written in the form

-+ _ - <_1P_
F(r,t) §(r) it

the subsequent version of (61),

2 2
<V2——12——a—§)vx=— 126(—;)1’(11) +ip(t) ('8—24'8_2)6(;) ’
¢ 9 PyC Po 3y dz



-15-

admits the retarded time solution

S S 1S Y A G R LA
vx(r,t) = 5 -c +

4ﬂp0c r Byz 3z2 r
with the development

v 2 2

> _ 1 p(t) _ 1ess _ 2 3 3 1

vx(r,t) = 2{ - c p(t) - c"p(t) (—2 +—2>r
4WDOC dy 9z

2 2
1 e a a 2 oo 1
- 330 (L5 ) e+ L5 +op)

oy oz c

After identifying and grouping all contributions to the integral
I=f8@p)v (F,0) dr

which are expressible in the form of a time derivative the remainder, viz.

1,2
= 13'3(1’) ’
4npoc

la~]
|

can be interpreted as a measure of power radiation; and, if the replacement

5(t) = f(t) be made therein, the outcome

* 2
P=—1 = (£(D) (62)
12np0c
is suited to the source function
F(Z,6) = §(DE(L) (63)

with a time varying strength f(t)

The pair of functions

fx(t) fO cos 0t cos wt

and (64)

il

fy(t) fo sin Qt cos wt
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specify instantaneous components of a force with proper frequency ® that
rotates in the x,y plane at the angular frequency ! about its point of

application. According to the evident counterpart of (62),

1 p 2 : 2
p=—t— )%+ (& (n?} (65)
X y
lZﬂpoc
it follows that
p=—2—{w +? - 0% cos 2 ot} (66)
247p C
0
and the average radiated power,
= fg 2 .2
P = — 3 (w+e") , 67)
24wp0c

corresponds precisely with an integral of the far field energy flux (whose
expression can be found in Morfey and Tanna (1971)).
A time harmonic point force whose line of action oscillates through

a plane angular sector is characterized by the components

h
]

x fO cos wt cos(y cos ft)

and (68)

£ f. cos wt sin(y cos Qt) .

y 0
On substituting their first derivatives into (65) the radiated power is
found to have the instantaneous magnitude
P = — 3 { 31n wt + Y Qz s2 wt sin2 Qt} (69)
lZﬂpo
and 1ts net accumulation or integral between t =0 and t =T has the

explicit form
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j"r P dt =(w_2+_'y_2{2_2)T -9 gin 2wT + YZQZ (sin 20T _ sin ZQT)
0 2 4 4 8 © Q
2.2 .
_xY$f (sm 2(wHT | sin 2(w-Q)T)
16 w+ N w-9
Hence

|
I

T
= Lim {l /P dt}

T-c0 T 0

f2

0 2,1 2.2
(it ]
24np0c

specifies the long time average power output, and

=5 _ f0 w2 1292 wl . 4w y293 . 4w
P=—"———<d{— + - - sin + sin
312 4 8 Q 167w Q2
lZﬂpoc

YR (1, 1
321 2 \w o

specifies the average output during a precessional period T = 2n/Q .

Q >>w it follows from (72) that
2 2

. f0 YZQ wZ
lanoc Q

and this is nearly double the amount predicted by (71).

§4. Extended Source Distributions

(70)

(71)

(72)

If

(73)

-
When the pointwise nature of the source function Q(r,t) , manifest

by the representation (24), is set aside and a series development based on

powers of 1/c invoked for the appertaining wave function (23), namely

B(E,0) = = f{Q(r"t) -2

4Ty |z-2"|

> 2 N
Qx',t) + J—r%L 2 oG,
2¢c at

> 2 3
- r—r3 3—3 Qr',t) + } dr' ,
6c ot

(74)
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the concomitant version of the source activity integral becomes

[
|

—)
= [ o(F,t) %t—t—) az

L eEo L@ o,

dr dr' -
4ﬂ00 ! |¥_;|l t 4np0c

2
fQ@E,t) 3—2 Q(r',t) dr dr'
ot

3
=2 7 [EEedE e 25 @y o df

8ﬂp0c ot
4
-—L @ By @y 6F @+ o/ (75)
24ﬂp0c at

On taking note of the various relations

; Q(%,t) a_at Q(r',t)

d? d?' = %i S Q(}*’t)Q(?',t) >

5 > dt I?_}*'l dr dr

|x-x"]

(76)

-> -
(justified by the symmetric character of the integrand relative to r and r')

2
5 Q(T, t) —3—2 Q(F',t) dr dr'

ot
2 > ) - aQ(-lt, t) BQ(?' ) 1 > oy
J‘{Bt (Q(r,t) 3t Q(r ,t)) St St ] dr dr

d > 3 >, > d -> > 2
3/ re) 5o QGet, ) dr dr' - (g S e, dn)” (77)
and
aling > 33 > > >
S |r-r' o, v) == (T',t) dF dr’

3t3

2 -> +' 2 -
- l?-?'l{a—i(Q('r’,w ¥ oG, n - RED NGELY |, 20G Q(?.,t)>} i O
\ ot

ot ot Btz

3.~
- 3 EUED gLy oF e
ot

b

or (on the basis of the aforementioned symmetry)
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3 >
[EE e, e ARELE g g
ot

(78)
2 - -
_4d > > 9 _ 1 9q(r,t) 2Q(r',t) > >
=4 [ |-t |{Q(r,t) 3t2 Q(r',t) 5 T 5t dr dr
and, finally,
32 3@, > o
[ - %q(r, ) £ gr af
ot

3 >, - 2 >,
-4 |2{Q(;, 6 _B_Oir_at_) & g - 3Q§Z,t) 3°Q(x it)}d? 2
ot at”

2 > 2
+ f |;;;.|2 9Q(r,t) 9°Q(r',t) 4> >

(79)
at2 at2
it follows that
- de
I= at + P
where
1 d > >\2 1 > >012 32902, £) 82Q(E',t) > >
P=g (EE S Q(x,t) dr‘> -—— f |r-r'| 5 7 dr dr'
Po 24ﬂp0c ot ot
+ 0(1/c”) (80)
and
£=—t f QE, QG0 g7 g3 _ L i(f Qi t)d?)z + o(i) (81)
81rp0 l;_¥,| 8ﬂp0c dt C2

The prior representations (29) and (35), appropriate to the case of a
point monopole or dipole, are directly recovered from the first and second
terms of (80), respectively, on deploying the source functions (24) and (32).

> > -+ ->

If a distributed though unidirectional force F(r,t) = i%(r,t) acts
the power characterization analogous to (80) has the form

9 z +>\2
po_ 1 (, Z(x,t) dr)
3 ot
4ﬂp0c
1 > > 12 BRF(E,t) PFGE ) & >
—J -] L L) 4r dr' + ...

1201Tp0c5 32 52

(82)
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