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INTRODUCTION

In this report, we summarize work done under NASA Contract

NASI-15844 on compressible shear flows and drag reduction. The

report consists of this Introduction and the three following

sections that summarize our progress on different aspects of

this work.

In Section i, we present a summary of some work on analytical

and numerical aspects of conformal mapping. It describes a new

and very efficient and robust method for computation of these maps

in highly distorted geometries.

• In Section 2, we describe the computer code SPECFD written
l

for the CYBER-203 at NASA Langley Research Center. This code

solves the three-dimensional time-dependent compressible Navier-

Stokes equations by a mixed finite-difference-spectral algorithm.

It works efficiently on the CYBER-203 with resolutions of 32 x 32 x

64 and promises to yield new insights into the nonlinear dynamics of

compressible shear flows in wall-bounded geometries.

In Section 3, we describe our work on two-equation turbulence

modelling of turbulent flow over wavy walls. A modified Jones-

Launder model is used to include effects of the turbulence. This

transport model has been implemented in a two-dimensional spectral

code for flow in general wavy geometries. Results are presented

for both flow over flat plates and flows over wavy walls.

¶
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i. Analysis of Numerical ConformalMappiDg

Many two dimensional physical problems require the

; solution of Lapiace's equation in a complicated domain _ .

• One way to solve these problems is to conformally map D onto

. the unit disk D(0,1) or a half plane D(_). Once that is

done the Poisson kernel provides the solution to the Dirichlet

or restricted Neumann boundary value problems. Hilbert's

generalization solves a•mixture of the two where each applies
i

on part of the boundary (but it doesn't solve the general

Neumann boundary condition). Conversely any method of

computing the Dirichlet or Neumann solution can be used to _ _,
.............. L .............

calculate the conformal map (see Theorem 5.3 iofDubiner 1981)

but there is little reason to do it.

There exists a unique conformal mapping f of _ onto

D(0,1) up to specifying f(v) and Arg 8_ f(v) for some

v £_ . Classical Complex analysis demonstrates that on the

boundary _,.f is about as smooth as _ is and, of course,f

is analytic inside. However, [_uf(u)]-I is ill posed in
!

terms of any reasonable norm of _ even when u is restricted

to be well away from _. For example take

= 4_arctanh[tanh -_-.D(0,
_ ."o

,° .

where the notation means _= [_ar_tanh[tanh z]1z_D(0,1)} . ,
Q

. _.
,. . )



It is a smooth domain which looks like'an ellipse inflated

inside a rectangle centered at the origin of length 2Z and
-7£

width 2 - _archanhfe -2-). But the conformal mapping taking

to D(0,1) and 0 to 0 is

f(u) = coth _£--"tanh ___u (2)4 4

So

.. ._uf(u)Iu=z _£
_uf(U)_U=0 - c°sh-'2-4- (3)

which decreases exponentially in £ and equals 0.000000603

for £=10 ! The curvature of _ near the ends relative to

'S diameter is 0(£) but it is innocent of (3)_ The "

eccentric cigar shape of _ is to blame and the same would

i happen for the smooth paddle-shaped domain of Figure i.
i

Except near the ends example (I) is a slender domain.

"o iA domain _ zs called € slender with € small (say,0<_< )

i iff _,/{_} is composed of two connected components W0 and

W1 such that for each u_W0

{K(u,wo)1.{u-_{! € (4)

• aw1I_ ,.- (5_
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where u=W1 minimizes lu-ul and <(.U,Wo) is Wo'S

curvature at u. Condition•__.(4) requires W0 to be nearly

straight and condition (5) requires wi to be nearly

parallel to W0 . Parametrize w0 by its arc length s

starting from an arbitrary fixed point. Each usa can be

-uniquely wri'ttenas •

u = WO[s(u)] + t(u) n[s(u)] 0 < t < h[s(u)] (6)

L_

• where _(s) is the insidetunit normal at Wo(S) and h(s) is

the distance of n(s) from WO(s) along the direction n(s) so

that Wo(S)+h(s)_(s) E W1 . Let us normalize the coordinate
system (s,t) in an approximately isotropic way /

t

s(u) .... "
(u) _ dp + i t(.u) i [71"

= 2 [ f h(p) h[s(u)] 2]"" 0

The map g from _ onto A= {zl Jim z] < _-} is quasi•

conformal with eccentricitybounded by c_ (seeDubiner •1981 '.

for definition_).Let _g _be_the exa_ct_conformalm_apfrgm_,-__ont9......

] A sending !_0_!+_)to +_ resoectively. Clearly

.L

. f(u) = tanh g(u) (8)

o conformally maps _ onto D(O,I) and so does



o

• f(u) - f(v) ic(v) (9)
f(u,v) = e

i-f(u)_-_-_

and it sends v£_ to 0 • The real number c is determined by

_if(v,v)> 0 (i0)

Where B denotes differentiationwith respect to the first1 •
variable. Formula (8) is inserted in (9) and results in

, f(u,v) sinh[g(u)-g (v)] -i A_g_g(v)cosh[g(u)-g (v)] e (ii)
J

. ..

and _i)'s derivative is j
i .2

i

_ug(u) -i "Arg_vg(v) (12)i _ f(u,v) = cos[2Im'g(v)]e
u cosh2[g(u)-g(v)]

• Define f(u,v) by replacing g with g in (I0) . It is a
°o

quasi conformal map from flonto D(0,1) of at most c_

eccentricity sending v to 0 . Hence f(.,v) is expected to

• be close to f(.,v) in some sense. Indeed (3.3)of Dubiner -

(1981) and others prove that !

A

l£n _uf(u,v) - £n_uf(u,v)l!cslg(u)-g(v) I (13)

i

where _,



i _ 1 i _ (14)_u = 2 Re u - 2 Im u

is defined on nonanalytic functions. Let us press on with the

heuristics. Formula (12) for f,g shows that

_nl_uf(U'V) =-_ _v) h(p)dp -Zn Zn[s(u)] -

(15)
t(v) + 0(i)

- £n sin[_h[s(v)]

•. Arg _u _iu'v) " - e[0,W0[s(u)],W0] + 0(i) (16)

where e[ "] is the change in angle of W0 between 0=W0[s(v)]

and u,s projection on w0, w0Is(u)] . Thus globa!y f

performs reasonable rotation but extreme scaling. In

retrospect it •shouldnot be surprising because conformal maps

are defined by being locally angle preserving with no scaling

restrictions attached.

Formula (16) is easy to interpret. It obviously holds

(up to translation in Arg _uf(U) depending on its

normalization) for ue_D , where _ is a general domain. Thus

(16) states that for slender domains
l

I_ = o(i) (17). rg (.,v) u



where the notation means IArg _uf(_,v) - ArgSuf(U,V) l<_c and

_ is near u , say the closest boundary point. The result

(17) holds in general as proven by Theorem 5.4_ of Dubiner

_---(i-981)-'--F0rmula- (i5)....is-n0t--that-easy-to-_generaiize. i-oniike .....

(16), its right side depends on the structure of _ between v

_____aD_d___Uo._The f!rst qu@st!on is: what does 'between'mean in

general? In order to gain some insight let us consider a more

complicatedexample.

Let 0 < ._ << 1

_(_)= {x+iy l£x + cosy > 0 } (18)

The domain (18) has the following property., Any domain

is said to be a _ > 0 conjugation of the domains-{Au}u_ I iff

1 " for any u_ there exists a _I and two complex numbers a,b

such that

u_A(u) = aA_ + b [19)

o[u,A(u),n]< (20)

the distance from A(u)tO _ relative to u is defined by

(10.113) in Dubiner (1981). The interested reader may orove
.

! 8. ° • '
i"



: that any £ slender domain is a c£ tonjugation of
I

i : _ (21)n

' _ A1 = {x+iyl]Yl<_}i
I

!
_ where c>0 is constant. Domain (181 is a ¢_ conjugation of

i A1 and ....
i " "

1 2
I A2={x+iylx - gy > 0} (22)
!

L

^ 1y2A3=c\(-A 2) = {x+iylx + _ > 0 } (23)

COA

A4=c\u [-_,i(2n+l)_] (24)n=-_

where [a,b] is the closed interval between a and b . Wet
i have to match the conformal maps from all the A(u),u_(_) .
I

!_ In this case it is easiest to do when considering f[',_,_(_)],
i

the conformalmap from _(_) onto the half plane D(_) :
j

normalized by

_lf('+_,_)= l (25)

The domain _(s) is periodic and symmetric so we can limit

. ourselves to

i •
i

• 9o



Figure 3 •



u = x + iy 0 < y < _ (26)
#.

We start from

". 1
_u

f(u,_,A4) = 2 arcsinh e (27)

It is modified to

x >--- 0 ( Ix - _ + i(y-_)I >> e (28)

q

l(x_ 1
f[x + iy,_,I%(€)]= 2 arcsinh e -_)+iy 2h(x) {29)

L

where

1 < x < 1 (30)h(x) = arccos (,_sx) - _-_ _

1 <x (31)

and the exact limitation (28) will follow from comparison

with the following formulas. A priori rigorous bounds can be

derived but as usual it is inconvenient. Next

"' . f(u _,A 1) = i c e 2u (32)
11.
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(there is no natural normalization). We already know how to

match the f[u,_,A(u)] 's where A(u)=aAl+b : recall

(7,8). They match with (_.8,29) and give

(33)
1_ _ _+

l<x<l + 0(-_i) ; Ix + { + iYI>>e' Ix- E i(Y-_) I>>_

f[x+iy,_,a(e)] = 2e _ si[h(x)]-si(_) + i h(x) (33)

where
.m

si (p) = _ sin q dq (35)
• 0 q

i

Now we can match f(-,_,A2) to (33,34).and obtain

-i/3

,iX + 1 + iy I<< e (361E

_si (_)

f[x+iy,_,_(S)] = 4e 2_ coS [2_- 2[x + 1 + iy 2/2_x+2]i_ h(x) _

(37)
i Similarly, f(. ,_,A3) is matched to (28,29) :i

Ix + 1 + i(y-_) I < < 1 (38)E
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_.

° _ f[x_iyl_ _(_)] _I 2_ _l_ _ £ [ x_ _l _ i[vNh(x)].. _ l 1

(39)
z- i

f[u,_ n(€)][In particular the maximum and minimum of [_u

1 + ig, 1 respectively andare obtained at _ - _

_if-[_i+ i_,_,n(£)]~_s (40)

• "" " wsi (_)

_if[ 1 2_ e 2_ (41)- _ ,-,n(_)]~ T

What have we learned from example (18)? Figure 3

illustrates the direction of informationflow (The reverse of

the direction of dependence) which were exhibited while

f[',_,_(e)] has been constructed. The situation is quite

special yet we have some grounds to suspect that in genera!

8 f(u,v,D) and other functions depend mainly on D's partu

'around' the curve of least Euclidean distance bet_._eenv and

u. inside _ . A close inspection of (27-38) reveals that

the above mentioned curve from to u resembles

F(_,u,n) = {w_n I 0 <f(w'_'n)< i} (42)•f(u,_,_)

The curvces F(U,V,_) are called geodesicsbecausethey are

• the geodesicsof a certainccnfor_allyinvarient_,¢tric

13-.
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p(u,v,_) of Theorem i.I. Some g_odesics of A1 are

illustrated in Figure 0.4. Notice for any two u,v_A 1 far
I

awaY the most of (u,v,AI) is exponentially close to A1 s

axis of symmetry. Theorem 8.3 demonstrates that in general

the geodesics try to keep away from the boundary.

The connection between geodesics and lines of least

Euclidian distance is proven in Theorem 9.2.(Dubiner 1981).

Now that we have some idea on what 'between' and

means it is time to find out how the rest of _ affects

£n _ f(u,v,_) and other quantities. For that purpose .u

let us return to £ slender domains and compute a next order

correction to (7). We start by calculating _u-g• The "

gradient of (6) is j

' du = n[s(u)] [(-i+t(u)_ £n n[s(u)])ds + dt] (43)S

and of (7)•
i

I

: dg(u) = 2h(s) [(1-it(U)_s£nh(s))ds + idt] (44)

, Formulas (33,44) combine into



•t_ £n(h_)"
dg = _ [2i + s ] du -

4hn l+it_ £n_
s

, t_ £n(hn)
_ n s du (45)

4h l+it_ £nn
s

0

Define the g correctio_ function
.............................

gl.= g - g (46)

Then

f
A

• _ n

_--gl = - _- g = - 2_i _ B= - 2_iq (47)
u u j.

• °

Im gll_ = 0 "(48)

where

' 1 it (u)_s£n(h[s(u)]n[s(u)])(u)= -- 49)U 8
l+it(u)8s£n_[s(u)]

Notice that _ is 0(e) slender iff

sup]_(u)] <__CC . (_0)
ua_

f

ag.
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Problem (47,48) has a unique solution.up to an additive real

constant .

(51)

gl(U) - i f f [n(W) awf(w) _ n(W)_wf(w)' = ' --'.d2wl]l
• • a f (u)-f (W] 1 _ f [¢.)j", fCu)

gCu) = g(u) = il I (W)Swg (W)coth [g (u)-g (w)] -

.......' - n(W)Bwg(W ) tanh[g(u)-a_-_]][d2w[ (52) .where ""

-Id2wl = d Re w- d Im w (53)
• - Jj

! -
i.

i Formula (51) is an integral equation of the first kind which

can be iterated to convergence. The first order correction to

g "with some modifications is
!

g(u) ~ U + f J [_(w)coth(U-W)+_--_tanh(U-W) ] Id2wl

(54)

where we have and will abbreviate

u = _(u),v = _(v),w = _(w) (55)
k,

.

. I

Recall (ii)
\

16.



--_ _ V
£n f(u,v) = 9onsinh(U-V) _ 1 Zn v (56)

cosh (U-V) 2 _
e V

SO

£n f(u,v)~ £n f(u,v) +

+ _ [ [_(u)K(U,V,W)+_(w)K(U,V,W+i_)] la2wl
n (57)#

K(U,V,W) = coth(U-V) [coth(U-W_coth(V-Wl] -

' - tanh (U-_)[coth(U-W)-tan I(_-W)] +

+ } sinh -2 (V-W) - 1 sinh-2 (V-W) =_- 2

_ cos(2Im v) [sinh(U-V) coshCU-V)-
2sinh (U-W)sinh (V-W)sinh (V-W)"sinh(U-W) cosh (_-€,j

(58)
o

and

£n a f(u,v) = £n f(u,v) + £n a £n f(u,v) (59)u u

SO ..........

q

a" •"

17.



• . o
• i

/ -

£P _uf(u,v) = £n 3 f(u,v) +F U

-- _ ]d2w+ I_ [_(w)L(U,V,W)+ _ (w)L(U,V_.W+i_] I (60)

3 K(U,V,W)
U =

L(U,V,W) = K(U,V,W) + 3 f(u,v)u

1 cos (2Imv)sinh(U-V)

_ 2sinh(U-W)sinh(V-W)sinh(_-W) [ sinh(v-_)

. cos(2Im,)cosh(U-V) + 2 sinh(U-v)sinh(U-V)
cosh(V-W) sinh(V-W)

[ •

t

• (61)

If we assume that _(w) is not only of order _ but is
_2

1 [3._[W0(s)+h(s)_(s)][<c _also slowly varying, for instance h(s) s --
then the integration in (57,60)•can be done explicitly. Of

course• that results is much easier to derive directly and is

of no interest to us. What we have wanted and obtained is the

relat'rve dependence of 3 f(u,v) on the boundary partu

IA s]) centered at w = W0(s)of length As ._= Wo([S- As,s+
When

\ •

o<_ _<h(s) _<lu-wl , lv-wl €62_

the contrllin_ factor of _ 's influence is

e-4i"fl_(w) - [Tjcv)'q(u)]!suplu €_)1 h(s)_= (63)
18.
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The asymptotically correct term is the same with g replaced

by g. A graphic interpretation of (63) follo_,zs. In order

to affect _uf(U,V) the _a_ about a's 'shpae must t_avel

from a to v. It is provided a free ride in _ 's portion

between u and v (in general on the geodesic F(u,v) bet_een

u and v ) but it must pay 2h[s(z)] per distance for travel

around any point z not between u and v. The data is

thrifty so it will move along a geodesic (a cost minimizing

curve which turns out to agree with (42) to some point 0

between v and u and will then enjoy a free ride to v . The

optimal choice of 0 is the middle point among u,v,w . Let

us call the total minimal cost Px(W,As,u,v) . Then when

the e data reaches v its intensity is deminished by a factor

x
Of e . A similar situation holds for other function of

the conforma! map besides Zn_ f(u v) , except that the rideU r

on the geodesic between u and v is not free but on a reduced

_are° For instance (57,58) shows that the controlling

factor of e's influence on Zn f(u,v) is

-2inf lg (w)- [g (v) ,g(u)] I 21g(w)-g(v)Isupi_(a ) i_(s ) (64)
e - As

which means that the travel on F(u,v) is done on a half fare.

Notice that this•does not change O, the point of transfer to

r(u,v) .

Now that we know what (63) means let us unclerstand
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where it comes from. The term e x is simply the decay of

Dirichlet or Neumann data from _ to F(u,v) and is already

present in (54)w-:-However, in the computation of (58_ a

-2P x
cancellation has occurred and another e has appeared.

Lest it look like a freak accident let us derive it from

another point of view, close in spirit if not in technica!

complexity to section 10's. Suppose that _ is not only

slender but is s close to A. If w is between u and v

than p = 0 so let us consider v between u and w (the
X

remaining case is similar). Define

f(z) = tanh(z - Re v) " (65)

^ /

The domain f(fi) is close to the Unit disk• The image of

has length of order e-2PXAs . A major change in e modifies

f(_) by a region away from _(u), _(v) whose area is of

-2PxAs)order (e 2 . The details will be presented in Section

i0 but it takes no great leap of imagination to conclude that

e's effect is at most proportional to that area, and that is
-2px

where the extra e comes from. What about g(u) ? It is

normalized so that g(+__)= 1 and l_(w) - 1I or I_(w) + 1I
-2px

is of order e so a's influences on g(u) is of order

(e-2pxAs)2
-2pxe

The interpretation of (63,64)was chosen so that it i_:

generalizable to arbitrary domains, with some modifications.

20.



The asymptotic theory has to be replaced by estimation up to a

constant factor. The measure _ of. D's deviation from A's

shape is special _nd any_:aythere is no ideal general domain.

Instead we will pick a wide challange and consider a

perturbation of a general domain _ to a specified genera!

domain _. We will divide the perturbation into parts and

as in Theorem 10.5 I show that each such part e of diameter As
2

centered at w affectsZn _uf(U,V) by 6x(W,_S,U,V) which

is a generalization of (63) with supl_ (e)l replace']by
As
h(s)" The term _(w,As,'u,v) is first encounteredin

Theorem 8.6 and
....... t

_x(W,_S,U,V) = sup _(w;As,u,v) (66)
OcI"(u,v) . .."

* The general interaction between u,v,w and 0 is described

by Theorem 4.6, which should be combined with Theorem 9.2

(Dubiner 1981).

The local length scale h[s(w)] is generalizedinto
...................... _ ......... L..............

a(w,u,v) of (9.2). Its dependence on u,v is unfortunatly

unavoidable: consider a half plane _ D(_) . The•lack of a

local length scale, except of inf Iw-_ Iwhich vanishes on

the boundary is the most important general ingredient

missing in slender domains. It is not fortuitous that the

conformalmetri'c,p(u,v) b_.'_sup at the boundary.

Our examples were mostly of smooth domains but notice

5 •that domain (18) has avc arp bend at +i._ , :,.,high

[



=_=_rresponds to A's corner, and-it did not distrub us from

completing a uniform asymptotic approximation. Theorem (10.7)

proves an interesting property of:a fractal, which is the

applied mathematician's ultimate in roughness. However,

we in§ist on obtaining specific estimates at specific points, .....
!

in contrast to the 'average'.......approach of P.D E Theory

.... _That is_@nadyai_tage•whenji__work9bu_ !t ;a!l_ear _S_u9 h

boundary• In Sec. 5 of Dubiner (1981) it is shown how to
I

i- patch our results with P.D'E. Theory. Some synthesisis clearly

required•

Let us now consider the numerical computation of

conformal mappings. As remarked earlier, any Laplace solver
I - • "

will do. Suppose that the domain _ is covered by 0(N2)

points, N of which are on the boundary _D. Then a Laplace

solver requires storing 0(N2) numbers and performing from

0(N2•£n N) to 0(N3) operations, where the last estimate is

more realistic for complicated domains. The grid set up is

' is troublesome, especialy for multiscaled and time dependent
.o

(free boundary) domains.

• One way to avoide an internal grid is using a vortex -

representation. That results in an integral equation of the

• first kind which is numerically formulated as a set of N ×N ,

linear•equations. It can be solved by by Gaussian elimination

which requires 0(N2) memory locations and 0(N3) operatios.

Alternativly one may iterate the system using 0(N) memory and_



\

0(N 2) operations per iteration. 'This is the numerical approximation •

to Neumann's series, and the later is guaranteed to converge for any

single-sheeted domain satisfying some mild conditions. The best

existing Rayleigh-Taylor instability simulation has been done in that

way by Baker, _ieironand Orszag (19_l)t,It is relativelyeasy to program

and generalize to 3 dimensions. Moreover it can handle two incompressible

fluids problems which conformalmapping alone can not solve unless the

fluids density ratio is 0" or i. Ho_zever,Neumann's series's convergence

is precarious. The arte of convergence for the domain _ equals that for

its exterior domain c _c and in particular convergence fails for multi-

sheeted domains and is very slow when two separate parts of _fl approach
! 1

each other. The domain (18) requires 0(_) iterations per order

reduction in the error. Moreover tb_ Neumann series seems hard to modify

• in a way which will extract a singularity such as a corner and still preserv

convergence for general domains.

The most natural numerical conformal mapping computation is done

byTaylorexpanding the conformal function from the unit disk onto _ .
...................... v.............................. :.....

Several such methods are listed in Sec. I. The best of them takes only
....................................................................

0(N) _ memory locations and 0(N2£n N) operations but we have seen that the
...........J !

series will not converge to domain (18) before N = ec_ terms are taken

The first direct computationof the conformalmap onto a

23.



cigar shaped domain has been done by Hanikoff and Zemach(1980)• Their

method is to set up a system of N ×N nonlinear equations and .scivethen by

Newton iteration. Each iteration takes 0(_) memory and 0(N3)
D

operations and only few iterations are required.

Any partial differential equation on a time dependent domain

can be solved by a Green's function method which utilizes only
2d-2

•boundary data. This is not usually done because it takes 0(N )

memory locations and 0(N2d-2) operations in d dimensions which is

unreasonable for d >3. For the V2 operator in 2 dimensions better can be

done because then the Green's function G(u,v,_) is constructable from

from G(u,v0,_) and its harmonic conjugate where v0 is

constant. That is the basis of our method, though it will be
....... L............................................. -......... -_

presented in a different way. It tames 0(N) memory locations

and 0 (N2) operations.

_ .
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2. NU_[ERICALSIMULATION OF COMPRESSIBLE SHEAR FLOWS

ON THE CYBER-203

._

INTRODUCTION '

The objective of this work is the development of

an algorithm for the numerical simulation of three-

dimensional viscous compressible flows. This code

is applied to basic studies of compressible shear

flows at high Reynolds number, such as the simulation

of the incipient stages of transition to turbulence,

and receptivity of laminar"boundary layers to

external disturbances.• Since the physical-instab-

ilities involved in such problems are of a delicate

nature which could b_ easily masked by numerical

instabilities or other errors, it is essential to

, use an accurate numerical algorithm that can be

efficiently implemented on the Control Data Corp.
i

CYBER-203

The primary purpose of this paper is to describe

the mixed spectral-finite difference code, SPECFD,

: as coded for the CYBER-203. We will focus on the

I vectorization techniques for some of the computational

procedures with careful attention to the interplayJ
between the storage allocation, the vectorization

techniques, and their combined effects on input/

output (I/O) requirements for this virtual memory

machine.

J
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The next section describes the numerical method.

We then discuss the characteristics of the CYBER, 203

at NASA Langley Research Center. THe nextsection

describes vectorization techniques including data

base design and computational procedures. Finally,

the overall flow of the code is outlined and a timing

analysis of the various parts is presented.

i

J
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Governing Equations and Solution Technique

The compressible Navier-Stokes equations are

- -- - Vp + V.Y
_q "Vq + IV P- Vp _ av_t P av

-:............. _%__

8t q.Vp-pV.q

_-_= - "?p + r(p - Pav)?. - 7Pav?'q + V.p? + (y-l)_ ,

:I

where q,p,p,x,#,e,Pr is the velocity vector, density,

pressure, viscous stress tensor, viscous dissipation,

ratio of specific heats, and Prandlt number, respectively.

The constitutive relation for the stress tensor is

-- . -- . _TT = I V • q I +_(? q+V )

2
where 1 is assumed equal to - _ and _ is

given by Sutherland's formula

T3/2/]j = 1.4582 x 10 -6 (T +.110.33) Pa-Sec

27.



/
'The expression for viscous dissipation is

The_assumption of a calorically perfect gas is

implicit in this formulation.

The addition and subtraction of the term (I/P)avVQ

in the momentum equation and a similar manipulation

in the equation for pressure require explanation.

(l/p) is the average of the specific volume onav

each horizontal x-y plane and hence is a function

of the z-coordinate only. The Crank-Nicolson method I
J

is used on the pressure term in the curly bracket.

We resortto this kind of artifact to ensure convective

stability at low Mach numbers without having the severe

time step restriction demanded by an explicit method.

Boundary Conditions

We choose periodic boundary conditions in the

streamwise (x) and spanwise (y) directions. This

permits spectral representation of the dependent

variables in these two directions. In the normal (z)
J

direction we use no-slip boundary condition on the

28.



plate (z = 0). Using _ = az/(az+b), the semi-

infinite physical domain 0 ! z < _ is mapped onto

the computational domain 0 < _ < i. Zero perturbation

boundary conditions are applied at _ = i. For free

shear flowsl the _hysical odomain - _ < z < _ is

mapped onto 0 < _ < 1 using a hyperbolic tangent

transformation. Zero perturbation boundary conditions

are applied at both top and bottom boundaries.

Numerical Method

The numerical method consists of three stages

(fractional steps) based on the well-known technique

of operator splitting [i]. The first fractional

step includes the effect of the advection terms:

q * = q + (AtI + Atn) -_n.A_n - - V 0
\P /av

- AtlI-qn-l'vqn-i { 10n-i (---_--1-1)av}V pn-11

 onov



* n _ 0n?.-_n]p = p + (AtI + Atn) [-_n.Apn

_ Atl[__n-l.v,p n-I _ pn-iv._n-i ]
j

* n n n n
P = P . (Atl + Atn) [__n.v p - r(p -Pav)V'_n]

Atl[__n-I vpn-i r (pn-i n-I _n-l].... Pav )V.

1 n + n
-- _At PavV-q

where AtI = (Atn)2/(2Atn-l). A variable_step

second-order Adams-Bashforth method has been used for

time discretization. The pseudospectral method is

used for calculating x- and y-derivatives, and

central differences are used to evaluate z-derivatives

(using an equally spaced grid in the _ variable).

The second fractional step is an implicit

pressure correction:

** 1 tn <_n_ ** .*
q +_A Vp = q

V _

** i tn pn V -q = PP + _A r av

30.



This system of equations is reduced to a single

Helmholtz equation for p :

** 1 tn2 _ 2 Atn +* I" *P 4 A r OavV.[( ) Vp**J = O* 1 V.q = Q- - - r Pay
p av

(3)

*W

Using a spectral representation for p in the

x- and y-directions and central finite difference

. in the z-direction there results a tridiagonal matrix

equation for p in wave number space.

In the third fractional step,viscous corrections

are added to the inviscid solution obtained in the

previous two steps. Use of the pseudospectral technique

for the evaluation of viscous terms entails a rather

unreasonable increase in the number of FFT's per time

step [2]. Consequently, the viscous terms are

discretized using central differences. The truncation

error is on the order of v(A t + A_ 2 + Ay2 + Az2)

where 9 is the maximum kinematic viscosity. This

error is small since _ is small in the high Reynolds

number flows of interest. Further, the wel!-known

problem of artificial viscosity (due to the truncation

P
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e

error of the advection terms) swamping the physical

viscosity does not arise in the present algorithm,

as the advection terms are evaluated pseudospectrally.

To avoid severe time step restrictions resulting

from small Az in the stretched z-mesh, the z-

derivatives are treated implicitly. This results

in tridiagonal matrices for u,v,w, and p.

We write this three level time split scheme

symbolically as

un+l = _'_ _I _E (un' un-l)

q

where U (u,v,w, ,p)T and T indicates transpose.

Here the subscript E indicates the explicit

step, I the implicit pressure step, and V the

viscous step.

o
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Characteristicsof the CYBER-203

The CYBER-203 is a vector processing computer

manufactured by the Control Data Corporation (CDC).

As a vector processor, it _can perform vector operations

on 64-bit (32 bit) data at a peah rate of 50 (i00)

MFLOPS (millions of floating operations per second)

25 (i00) MFLOPS for multiplication, and 12.5 (50)

MFLOPS for division. With each vector operation

there is a vector startup which is independent of

the vector length. Vector operations of length

i000 achieve 80 to 85% of their peak rate. This

is about four_times faster than vectors of length

75. Consequently, it is desirable to use long vectors

where possible. The ability to do thisdepends upon

the algorithm being used as well as the storage

scheme selected by the program designer. The CYBER-203

can also do scalar processing and in this mode generally

will execute two to three times faster than the CDC

CYBER-175. The CYBER-203 has a virtual memory

implemented as "small" pages (512 words) or "large"

pages (65,536 words). The CYBER-203 at Langley

Research Center has I025K, 64-bit words of semi-

conductor memory (16 large pages). One can effectively

double the memory capacity by using the 32-bit word

• length features.

i
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Vectorization Techniques

The data base design and vectorization techniques

are inter-related on the CYBER-203 since vectors, by
9

definition, are contiguous locations in memory.
* ,

Notation:

We first introduce some notation helpful in

describing these two facets of the implementation.

Assume that the dimensions of the grid "in the

x,y,z_ directions are I,J,K. U will refer to the

vector (u,v,w,p,_)T and an operator such as _-_

operating on U should be applied to each component

of U. References to a "plane" of data are to one

of the x-y planes. These are typically the vectors

used in our code. U(k) refers to the kth plane.

The Thomas algorithm for solving a tridiagonal system

requires the storage of two pieces of data for each

equation, and consequently each grid point: (ew(k),Sw(k))

are the kth plane of such data for the w-momentum

equation. Also, U is the result of the

operator on Un, U the result of the I

operator, and Un+l the result of the _V operator.

L
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Data Base Design:

e

We wish to accomplish two things with our data

base design: (i) a storage scheme that permits operation

on long vectors, preferably over an entire plane of

the three dimensional grid, and (2) a scheme that

allows controlled paging by the virtual system. With

this in mind, each variable which is required over the

entire grid is stored on one x-y plane at a time,

with all variables at the kth plane stored in

succession (see Fig. i). The execution flow is then

• •to do all computations possible at plane k before

proceeding to plane k+l. It has been shown [3]

that this data layout and computational strategy is

important for controlling paging when the large pages

are involved. The paging per time step is further•

reduced by (i) marching forward, then in reverse

through the data base (z-direction) and (2) applying

all three operators in one forward-reverse sweep.

The first technique permits the I/O requirements

for each time step to be proportional to the amount

by which the data base exceeds central memory [3]

and the second technique means that only one pass

through the data base is required per time step

instead of three. The latter approach does cause some

• k •
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programming inconvenience when computing the z-

For instance, the _I operator computation
derivatives.

at the kth plane requires u (k+l) - u (k-l),

* _Ewhere u is computed by the operator. The

requirement for u (k+l) implies that the L I

operator must be lagged one plane behind the

operator.

Main Computation Modules:

There are three algorithms which are a major part

of the overall computational procedure and which have

been vectorized for the CYBER-203. These are:

\

1. One Dimensional Fast Fourier Transform (1-D FFT)

The x and y derivatives in the _I and

_N operators are computed using the one-dimensional

FFT. For instance

d -I
d--xu(x) = F (i_g(_)),

where g(_) is F(u), the Fourier transform of u

with respect to the x variable and _ is the wave
f

number. The CYBER-203 implementation described in

reference [4] is used and will be detailed more

fully under the section "Performance".



i
I
I
I 2. Two-Dimensional Fast Fourier Transform (2-D FFT)

The _I operator involves applying the two-

- dimensional FFT operator, Fxy, to equation (3).

• If we define

P (kx,ky,z)= FxyP (x,y,z),

then the resulting second order differential equation
w.

in z for P can be central differenced leaving

an independent tridiagonal system, implicit in the

z-direction, for each (kx,ky) wave number. The

• right-hand side for each system is the appropriate

element from FxyQ*. The coefficients can be

analytically determined. The solution to each system
**

yields P (kx,ky,Z) and then one computes

** -I _(kx,ky z).P (x,y,z) = Fxy

The CYBER-203 software described in reference (5)

to apply Fxy and F-I .
is used

xy

3. Systems of Tridaigonal Equations

The c)I and operators both generate systems

of tridiagonal equations implicit in the z-direction

37.



There is an independent system for each (kx,ky) or

(x,y) point, respectively, in a plane. The usual

Gauss elimination based tridiagonal solver, frequently

called the Thomas__l_Qr!tb_m__!s inherently scalar but

since we must solve, say , M = I_J systems

simultaneously, vectors of length M can be used.

The forward sweep of the Themas algorithm is done

a plane at a time saving only the pairs (_(k), 8(k))

required for the back substitution of a unit upper

bidiagonal system of equations. Since the variables

are interleaved a plane at a time, the storage is

appropriate for both the iQng vectors and the

controlled paging.
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Performance

The CPU efficiency of any highly vectorized program on a

vector computer like the CYBER 203 relative a p_rticular scalar

computer is direct].y 'proportional to the vector lengths involved.

This is true assuming:

i. The same algorithms are implemented in both the scalar

and vector computers.

2. No extra wprk, typically in forra of data raovement, is

required to achieve the vector lengths used.

Program SPECFD is highly vectorized. For an I x J x K

grid all vector operations, except the evaluation of the one
[

: and two dimensional FFTs are of length I*J or I*J+2I and, hence,

i .t

quite efficient. The derivative evaluation by the FFT routine
J

J

is somewhat more difficult to analyze.

' The software to implement the FFT algorithm simultaneously

computes the one-dimensional FFT of M independent complex data

sets each of size N. It requires that the first components of

each data set to be stored consecutively, followed by the second

components, etc. With this arrangement, it achieves average

vector lengths of Mlog N. It is obvious that the data structure

is quite important and that increases in M will yield higher CPU

efficiency.

39.



T_e'total data base includes 17 variables stored over the

entire grid. These are (u,v,w,p,_),their respectiveconvective

derivatives (du,dv,d_-,dp,d_)from the previous timestep for

the explicit operator, and the four Thomas algorithm pairs

(eu 'Su )' (ev ,Sv )" (_w ,Bw•),_and (ep ,Sp ). Since eu= ev

only one of these is stored. For a 32 x 32 x 64 grid , the

data base, code and system requirementsare nearly 21 large

pages. Testing has shown that each forward-reversesweep

gives only 5 large-page faults per time step, as predicted.

SPECFD uses the CYB_'_203 ADVISE feature to overlap the I/O

time with CPU execution. The total CPU time for a 32 x 32 x 64

run is about 3.1•sec per time step.
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Introduction

A general computer code to solve the Navier-Stokes

equations in two-dimensional geometries with a

turbulence model has been developed. Here we report

on the results for flows over wavy walls including

turbulence effects by means of one- and two-equation

turbulence models and compare the results with

available experimental results.

In order to compute turbulent flows in complicated

geometries at realistic Reynolds numbers, it is necessary

to model the ~ffects of turbulence. Perhaps the

simplest model is a one-equation model in which the

Reynolds stress is determined by the mean-velocity

gradient in terms of a relation of the form

-(u.u.
1. J

2
3

O.. k)
1.J

au. aU.
= "T (ax~ + ax:)

J 1.

is then modeled in terms of a

where "T "is an appropriate eddy viscosity.

eddy viscosity "T

The

turbulent length scale L as

"T

2 d U. au. (l u . 1/2
= L [ax~ (ax~ + ~)]

J J 1.
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The turbulence length scale 'L' includes effects

of pressure gradients as well as other effects such

as the presence of a wall. The choice of 'L'

will generally involve one or more free constants

CL that must be chosen to match experimental results.

One equation turbulence models of the form

(I.!) have been quite successful at modeling flows

that are in equilibrium. However, the constants

CL used in the closure must be changed when the flow

changes. In highly non-equilibirum flows (such as

flows undergoing strong acceleration), the optimal

choice of these modeling constants may be difficult,

if not impossible, to achieve. Also, in flows where

there is flow reversal, the utility of one-equation

models is dubious.

In the last decade, there have been several attemots

to improve upon the one-equation models of turbulence

by means of multi-equation models. In two-equation

models of k-e type, gradient transport equations are

developed for turbulent kinetic energy (k) and

turbulent energy disipation (e). Such two-equation

models have been successfully applied to the calculation

of flows in the presence of strong pressure gradients.

There has also been some work with three- and four-equation

turbulence models but the payoff for the increased computational

and analytical complexity of these latter models has not

yet been spectacular.
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The principle drawback to the use of two-equation

turbulence models is that it increases the computational

complexity of the system of equations one has to solve.

There is also the difficulty of having more free constants

in the model than in one-equation models. It is only

in the past few years that these two-equation models

have been coupled with full two-dimensional Navier-

Stokes codes. The present work is notable in that

we present results for the time deoendent Navier-

Stokes equations coupled with two-equation models in

complicated wavy geometries• We choose to use a

• modified version of the two-equation turbulence model

due to Jones & Launder (1972), as modified by Chien

(1980). The test results discussed below are presented

for relatively low Reynolds number flows because of

the special interests of these flows in applications.

At low Reynolds numbers, the validity of the two-equation

models is severely tested.

43.



Method of Solution

The two dimensional Navier-Stokes equations are

_v
. _ Zp

_t + v'Vv_ = --_x+ _x---8TeB (II.l)

and

V'_ = 0 (II.2)

where the stress tensor T includes both viscous

stresses and turbulent Reynolds stresses. Equations

(II.l, 2) are solved in the region

0 < x < 2_, f(x,t) < y < _ (II.3)

above the wall y = f(x,t). Periodic inflow-outflow

boundary conditions are applied in x:

v(x < 2_, y,t) = v(x,y,t) (II.4)

A conformal mapping technique (Meiron,Orszag &

Israeli 1981 and Sec. I) is used to transform the

region in (II.3) into the region

0 < _ < 2_, 0 < n < _ (II.5)
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non-conformal stretching of the n variable is

used to implement the spectral methods used to solve

the Navier-Stokes equations.

Eqs. (II.l - 5) are solved by a fractional-step

spectral method described in detail by Meiron, Orszag

& Israeli (1981). The principle changes concern

the turbulence model, which will now be described.

The turbulence model used in our calculations is

that of Jones & Launder (1972), as modified by Chien

(1980). The modeling equations are:

_u. _u.

.. = (v+vT)T13 (_-_-_.+ ) (II.6)3 l

De _ _ _U 2 2 -c4Y+
Dt el VT k (__v) - c2 _ + 2_ ey

+ _ (v+ _--1_-_+ (V+ _--1._• (II.T)g E

2

Dk VT(_U ) _ 2vkD--t= _ 2 -_
Y

• _ VT _k _ VT _k (II.8)+ (V + Ok ) _ + (v+ _k ) _y
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where the 'eddy viscosity' 9T is given in terms

of the turbulent kinetic energy k and dissipation

by

k2 -c v
_T = C _- (l-e 3% ) (II.9)

here the modeling constants are chosen as

2

cI = 1.35, c2 = c21(1-c22e-RT/c23)

c21= 1.8, c22 = 2/9, c23 = 36, c4 = 0.5 (II.10)

= 0-4 =c 0.09,9 = 1.57 1 ' _k = i, _ 1.3

where RT = k2/£_ is a turbulent Revnolds number

and the subscript + indicateswallunits. The remaining

modeling constants c3 is chosen a Dosteriori to

achieve the best agreement between our calculations

and available experimental data.

46.



Results

In Fig. i, we plot the skin friction distribution

as calculated from flow over a flat plate with zero

gradient. In this figure, we show results obtained

using our spectral code with both a one equation

turbulence model and a two-equation model described

in Sec. II. Results are presented for the two-

equation model with several choices of the modeling

constant c3. Chien (1980) suggested the choice

c3 = 0.0115; we find that c3 = 0.010 gives better

agreement with experiment.

The agreement between experiment and numerical

calculation achieved in Figure 1 is noteable because

of the apparently significant difference between the

periodic boundary conditions employed in the computer

code and the true physical inflow-outflow boundary

condition. It appears that periodic boundary Conditions

can be used to model the true physics of these boundary

layer flows with little or no distortion of the results.

This conclusion is extremely important for time-dependent

solutions of the Navier-Stokes equations. With inflow-

outflow conditions, a large computational domain must

be used to stimulate flow over a long physical body,

while with periodic boundary conditions, the calculations

can be done over domain of limited spacial extent.
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In Figure 2, we plot the distribution of Reynolds

2
stress (normalized by u ) as a function of the wallT

variable y+ , again for a flat plate with zero pressure

gradient. The agreement with the classical data of
o.

Schubauer is excellent.

In Figure 3, we plot £9/u_ as a function of

y+, again for a flat plate with zero pressure gradient.

In Figure 4, we again plot £9/u_ vs y+, at

21 downstream locations (as determined by the transformation

x = Ut where U is the free-stream velocity and

t is the integration time in the quasi-steady state

achieved by the periodic boundary condition code).

These downstream locations have Reynolds numbers

R8 varying from 2000 to 4400. Observe that the

results lie on a universal (R8 - independent) curve.

In Figure 5, we plot the kinetic energy distribution

k (normalized by U2 ) as a function of y+ forT

flow over a flat plate. The peak of k occurs at

y+ = 25, in good agreement with available measurements.

We have used the two-equation models together

with our spectral code to study turbulent flows

over wavy walls. Here we will report results only

for flows over sinusoidal wavy walls:
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y = a sin (kx) (III.i)

in the runs reported below, ka = 0.078 so the ratio

o£ amplitude to wave length, a/l, is 0.125.

In Figure 6 7, we plot the variation of U+

(downstream velocity in wall units)_as a function

of y+ in the region of maximum adverse and f_orable_

pressure gradient, respectively. In Figure 8, we

plot the distribution of boundary layer thickness

• as a function of position over the wave. In

agreement with experiment, the bounary layer is

thickest at the tough of the wave.
J

In Figure 9, contours of the turbulent kinetic

energy distribution k, over the wave surface are

plotted. In Figure i0, a similar plot of the

turbulent dissipation , s, is made. From these

Figures, it is apparent that both turbulent kinetic

energy and dissipation tend to become smaller in the

region of favorable pressure gradients. As the

waves get steeper, this indicates the tendency for

relaminarization in these regions, so there may be

a serious problem with two-equation turbulence models
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in regions of favorable pressure gradient induced be

steep curvature.

In Figure ii, we plot contours of the pressure

distribution over the wavy wall. The maximum value

of the pressure coefficient Cp and the phase of

the pressure distribution over the wall a_ ,._e!!

with available experimental da_ _orrelations.

i
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• Figure 1. Variation of coefficient of sk{n friction for
a flat plate boundary layer vs R0 . IIerethe
solid curve is obtained from the two-equation
model (II 6)-(II.10) with c_ = 0.i0. The other •

• points are: A Model solutzon with c3 = 0.02;
_Model solution with co = 0.0115, as used by
Chien; c3One equation m_del; O cq = 0,008;
X Experimental results due to Weighardt. 51.
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Figure 2. Variation of Reynolds stress vs y+ for

a flat plate boundary layer in zero pressure '

gradient.
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Figure 3. A plot of s9/u4Tvs y+ for a flat plate

boundary layer in zero pressure gradient.
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Figure 4. A plot of E9/uT vs y+ at 21 x stations

with R8 varying from 2000 to 4400. The
calculations were made for a flat plate

with zero pressure gradient using the

two-equation model with c3 = 0.0115.
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Figure 5. A plot of the kinetic energy distribution

for flow over a flat plate in zero pressure

gradient, as determined by the two-equation
model.
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Figure 6. A plot of U+ vs y+ for flow over a wavy

surface. The plot is made at the location

of maxim_n favorable pressure gradient with

ka = 0.0785.
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of maximum adverse pressure gradient.
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Figure 8. A plot of the boundary layer thickness as a

function of x for flow over a wavy surface

with ka = 0.0785. Here x = 0 corresponds

to a wave crest while x = 3.14 corresponds

to a wave trough.
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Figure 9. A contour plot of the kinetic energy distribution

for flow over a wavy surface with ka = 0.0785.
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Figure i0. A contour plot of the turbulent dissipation for

flow over a wavy surface with ka = 0.0785.
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Figure ii. A contour plot of the pressure distribution

. for flow over a wavy surface with ka = 0.0785.
i
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