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INTRODUCTION

In this report, we summarize work done under NASA Contract
NAS1-15844 on comptessible shear flows and drag reduction. The
report consists of this Introduction and the three following
sections that summarize our progress on different aspects of
this work. | |

In Section 1, we present a summary of some work on analytical
and numerical aspects of conformel mapping. It describee a new
and very efficient and robust method for computation of these maps
in highly distorted geometries.

In Section 2, we describe the computer code SPECFD written
for the CYBER-203 at NASA Langley.Research Center. This code
solves the three-dimensional time~-dependent compressible Navier-

Stokes equations by a mixed finite-difference-spectral algorithm.

It works efficiently on the CYBER-203 with resolutions of 32 x 32 x

64 and promises to yield new insights into the nonlinear dynamics of
compressible shear flows in wall-bounded geometries.

In Section 3, we describe our work on two-equation turbulence
modelliné of turbulent flow over wavy walls. 'A modified Jones-
Launder model is used toAinclude effects of the turbulence. This
transport model has been implemented in a two-dimensional spectral
code for flow in general wavy geometries. Results are presented

for both flow over flat plates and flows over wavy walls.
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1. Analysis of Numerical Conformal Mapping

Many two dimensional physical problems require the
solution of Lapiace's equatiqn in a complicated domain Q .

One way to solve these problems is to conformally map o onto

the unit disk D(O 1) or a half plane D(«) . Once that is

done the Poisson kernel prov1des the solution to the Dlrlchlet

or restricted Neumann boundary value problems. Hilbert's

. generalization solves a mixture of the two where each applies

on parf of the~boundary (but it doesn't solve the general
Neumann boundary condltlon). Conversely any method of

computing the Dirichlet or Neumann solutlon can be used to-

—

calculate the conformal map (see Theorem 5.3 of Dublner 1981)

but there is 11tt1e reason to do it.

There exlsts a unlque conformal mapplng f of sz onto

i D(O,l) up to specifying f(v) and arg v £(v) for some

veR . . Classical complex analyols oemonstrates that on the
boundary 9Q,f 1is about as smooth as 3p is and. of course, £
is analytic inside. However,[auf(u)]-l is i1l posed in
terms of any reasonable norm of 0 even when u is restricted

to be well away from 239 . For example take

arctanh[tanh %%A D{0,1)] (i)

o
o
EITS

where the rotation means Q= {%arctanh[ﬁanh%%’z]lzeD(O,l)}



it is a smooth domain which looks 1ike "an ellipse inflated

inside a rectangle centered at the origin of length 24 and

. -7 :
width 2 -~ %.arctanh(e 2 ). But the conformal mapping taking

Q to D(O,l)' and o to ¢ is

£(u) = coth T ~ tanh T o ' (2}
S0
L guf (0] u=t _ -2 mp
S Em w0 - O T @)

which decreases exponentially in & 'éndAequals 0.000000603

for g2=10 ! " the curvature of 3n near the ends relative to

g

qQ 's diameter is 0(f): but it is innocent of =~ (3). The’

eccentric cigar shape of 2 is to blamé'and the same would

happen for the smooth paddle-shaped domain of Figure 1.

Except near the ends example ' (1) is a slender domain.

A domain © is called € slender with € small (say, 0<e< 15 )

iff 99/{=} is composed of two connected components W, and

W

1 such that for each uewo

le(u,w) o Juw-gf < e (4)
aw, |u L - .
117 (5).



Figure 1

Figure 2
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where Gswl minimizes [y-u| and K(u(W;) is WO(s

curvature at u. »qu@;tion "(4) requires Wy to be nearly

straight and condition (5) reguires wi to be nearly
" parallel to w, - Parametrize W, by its arc length s
starting from an arbitrary fixed point. Each uegp can be

-yniquely written as

u = Wyls(uw] + t(u) pls(u)] O0<t<h[s(u)] (6)

where f(s) is the inside unit normal at W, (s) and h(s) 1s

the distance of n(s) from W (s) along the direction n(s) so

that W, (As)+h(s)ﬁ(s) e Wl . Let us normallze the Coordlnate
system (s,'t) in an approximately isotropic way P
: S s(u) P, o
- _T dp . t(a) 1 (7"
gtw) =5 I J rer T b EGB@T 2 |

The map g from Q onto A—{zl lIm zl < —} is quasi-

onformal with eccentr1c1ty bounded by ce (see Dublner 1981

for defln}ithn) Let g _be the exact conformal map from @ onto

e s ek e

! A sendlng Wo_f*‘f’). to ke res*oectlvely Clearly

£(u) = tanh g(u) . | S (8)

conformally maps © onto D(0,1) and so does
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£ - £(v) _ic(v) | (9)
1-f () FVY - o

f(u,v) =
and it sends veq to 0 . The real number ¢ is determined by
alf(v,v)> 0o . ) S . (10)

where 3 denotes differentiation with respect to the first
1 4

variable. Formula (8) is inserted in (9) and results in
_ sinh[g(u)-g(v)] _-i Argd, g(v)’ - | o
£u,v) coshig(w-g(v)] © ‘ (11) .
and  @1)'s derivative is L - L
o 3. g (u) . -i - |
2 Elu,v) = — cos[2Im g (v) e+ ATIVIV) (1)
cosh® [g(u)-g(v)]

~ pefine f(u,v) by replacing 9 with 9 in (10) . It is a.

- quasi conformal map from Q onto D(0,1) of at most C€ |
eccentricity sending v to 0. Hence %(;,V) is expected to
be close to £(-,v) "in some sense. Indeed (3.—'3_)—7(;f“—l‘3hubiilérzh-_h

(1981) and others prove that - .
|#n 9u.f(u,v) - zneuf(g,v)[5c515(u)-§(v)| . L (13)

" where . : ) i' R | .



Im u | ' '(14)

is defined on nonanalytic functions. Let us press on with the

~ o~

heuristics. Formula (12) for £,9 shows that

's(ﬁ)‘

L o |
¢njd f(u,v) = -m| [ ———-I -fn &n{s(u)] -
u . sty h(p)
- a0 sinlrpreqy + 0 | (15)
Arg 5, £(u,v) = - al0,Wy[s(u)],Wy] + 0(1) (16) -

{.

where a[_:] is the change in anglé of W between 0=W0is(v)]
' ana u's projection on Wy, WG[S(u)]' . Thus glocbaly ¢
:'pefforms reasonable rotation but extreme scaling. 1In
retrospeét it should not be sﬁrptising because cqnformal maps
are defined by being locally angle pfeserving with no'scaling
) réstriétions attached.

Formula (16) is easy to interpret. It obviodsly holds
(up to translation in Arg auf(u)‘- depending on its
normalization) for ued , wﬁere 2 1is a general domain. Thus -

(16) states that for slender domains

-~

u

Arg 3,£(+,v) = 0(1) (17)
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where the notation means |Arg aaf(ﬁ,v) - Argauf(u,v). lip and
uedf is near u , say the closest boundary‘point. The result

v(l7) holds in general as proven by Theorem 5.4. of Dublner
“Ti§élf;'mF6£ﬁdlé*'Tlgfm‘ls not that easy to generallze “Unlike

(16), its right side depends on the structure of §§ between v

and u.__The first question is: what does 'between' mean in_

general? In order to gain some insight let us consider a more

complicated example.

_ Let 0 < € << 1

Q(e) = {x+1Y 'ex + cosy’>0 } - ' . (18)

The domain (18) has the following property."Any domain
is said to be a €>0 conjugation of the domains*{/\v}ve'I - iff

for any ueQ there exists a vel and two complex numbers a,b

such that
ueh(u) = ah, + b o | IR ¢ £)
o[u,ﬁ(u),Q] <€ | . , . - (20)

‘the distance from ' A(u)to Q relatlve to u is deflned by

(10 113) in Dublner (1981) The 1nterested reader may prove
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that any € slender domain is a ce tonjugation of

. ‘ T @ . (21)

Ay = Geriylly| <P -

where <¢>0 is constant. Domain (18) is a ce conjugation of
..Al and :' S o .: - .
A= {x+iy]x - 3y7> 0} o | (22)
A,=c\(-A,)) = {x+iy|x + 5y°>01} (23)
37! 2 21

Ag=c\u  [-e,i(2n+l)n] S (24)

. n=—o A i

where [a,b] 1is the closed interval between a and b . We
have to match the conformal maps from all the A(u),uef(g) .

In this case it is easiest to do when considering f£[*,=,Q(€)],
thé conformal map from §(e) onto the half plane D (x)

normalized by

alf(+w,§) =1 _ . (25)

The domain Q(€) is periodic and symmetric so we can limit

ourselves to
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(26)

We start from

1l .
4 Fu
f(u, o, A4) = 2 arcsinh e (27)
It is modified to
x>= -0 02;) Ix - =+ i(y-w) ]| >> ¢ (28)
€ “Je > .
Fix 4 4 ‘ 3 =D+ 1Y ey
flx + iy,«,0(e)] = 2 arcsinh e ) ;29)
where
— 1 1l
h(x) = arccos (—ex) - ix2z (30)
. l ) N
'E <x (31)

and the exact limitation (28) will follow from comparison

with the following formulas. A prioti rigorous bouhds can be

derived but as usual it is inconvenient. Next

. ‘ 32
f(u'm,Al) = 22 C ezu (3.‘)

11.



(there is no natural normalization). We already know how to
match the £[u,»,A(u)] = 's where A(u)=al;+b =z recall

(7,8). They match with (28,29) and give

' (33)
1 1 1 ) 1 . 1l,.
- o<x<T 4 0(—:) . x o+ =4 1y|}>e, | x- Ei-l(y-n)|>>g
zr_[si[h(x) J-si(m) . ;. ¥ ]
~ . _ 2 3 . h (x)
fx+iy,~,Q(c)] = 2&] : (38)
where
. . ® sin g o . : ‘
si(p) = | dq (35)
. 5 9 . « o
Now we can match £(e,»,A))  to (33,34). and obtain . ’
: 1 -1/3 . : . - o
xS+ iy | <<e - . S (36)
. ~._ msi(m) : S
-~ . Yy2ex+2
f[X+iY;”,Q(e)] = 4e 2¢e cos{:%ﬁJl - %[x + % + 1y —%%%;:3
similarly, £(-,,A;) is matched to  (28,29): (37)
' 1 . N ' _ ‘ o
|x+-é-+ i(y-m) | <<1 _ : (38)

12,



fx+iy,»,Q(e)] = V/2e (“\/1‘ +§- [x - %+ ily-h(x)] - l)
# . (39)
L
In particular the maximum and minimum of Iauf[ufw,Q(e)ll
are obtained at %-+ im, - %respectively and
0, €0 L+ im0t /2 (40)
: - _ msi(w)
1 2 41
2EL - 5 =) T e - | (41)

What have we learned from example (18)? Figure 3
illustrates the direction of information flow (The reverse of-*u
the direction of dependence) which were exhibited while
£[e,»,02(e)] has been constructed. The situation is quite
special yet we have some grounds to suspect that in general
3uf(u,v,9) and other fung??ons depend mainly on S}'s vart
taround' the curve of least Euclideéﬁ“ diétance-between v aﬁd

u: inside 2. A close inspectiéﬂmgfw‘ (27-38) reveals that

_the above mentioned curve from to u resembles

P b__ . f(w,°°,§2) ’ '
P(o,u,) = {weQ | O_FETET;T§T< 1}777 .(42)

The curvces T {u,v,Q) are called geodesics because they are
the geodesics of a certain ccnformally invarient netric

13.
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p(u,v,Q) of Theorem 1.1. Some geodesics of Al are

illustrated in Figure 0.4. MNotice for any two u,veAl far

away the most of (u,v,A,) is exponentially close to Ay's

axis of symmetry. Theorem 8.3 demonstrates that in genercal

the geodesics try to keep away from the boundary.
The connectlon between geode51cs and lines of least
Euclidian dlstance is proven in Theorem 9. 2(Dub1ner 1981).
Now that we have some idea on what 'between’ and
means it is time to find but how the rest of @ affects

n auf(u,v,Ql " and other quantities. For that purpose

let us return to e slender domains and computé a next order

correction to (7). We start by calculating aﬁé . The

gradient of (6) is

S
du = ﬁfs(u)][(—i+t(u)aé tn Als(u)])ds + at] (43)
and of (7).
ag(w) = spr=y Q- it () tn n(s))ds + idt] (44)

Formulas (43,44) combine into

.



" Define the g correctiom function

- ‘€9 _&n(hi) "’
dg = - [2i + —S———] du -

4hn ‘ l+it852nﬁ

n tasln(hn)

4h

du
l+itasznn

gl—g-é

Then

-~ : n - _ .

9_9y = - 93_9 = - 271 = yu= - 2rin
u 1 u h SR
Im g,|3Q =0

where = -

S it an(hls (W IAls(w)])

. u(u):-s—

1+it(u)asznﬁ[5(u)]

Notice that & is 0(e) slender iff

sup|u(u) | < ce
uefl :

(45)

(46)

(47)

-’/

|

(48)

(49)

+(R0)
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Problem (47,48) has a unique -solution .up to an additive real

constant .
| (51)
. n(w)o_f(w) n(w)o_f(w) 2
- . w , w
gl(u) ==-1i [ ] [- OO ! ___1Id w|
. Q Q) - f(w)
g(u) =g =if [ [n(w):awg(w)coth[q(u)—g(w)] -
Q o :
—— 2
e QRN tanh[g(u)-g(wi}ld w] - ,.(5?}
where : v :
“dZW‘ =d Re w* d Im w‘ o o - (53)

Formula (51) is an integral equation of the first kind which'

‘can be iterated to convergence. The first order correction to

-~

g -with some modifications is

gw) ~U + [ J [11 (w) coth (U=W) +TrT@) tanh (U-1) ] [4%w]
Q L -
(54)

where we have and will abbreviate

U =g, V=g, W=g o o (55)

Recall  (11)



Q
<

sinh (U-V) _

gn £(u,v) = fn V) _ 1 e 2 (56)
~cosh (U-V) 3V~
P ' ,
SO
. f(u,v)~ &n f(u,v) +
+ [ R, v, MKW, V701 |a’w]
@ | (57)
K(U,V,W) = coth(U-V) [coth (U-W)coth (V-W)] -
- tanh (U-V) [coth (U-W) ~tan1(V-W)] +
U+ -:ZL— sinh™? (v-w) - %- sinh—z('V—W) =
- cos (2Im v) (Sinh(U-v) _ cosh (U-%) -
~ 2sinh (U-W)sinh (V-W)sinh (V-W) “sinh (U-W) cosn({V-w) -
(58)
and
£n auf(u,v) = ¢n f(u,v) + in Bu ¢n £(u,v) _(59)

SO



{ -

w3 E,v) = m 3 £(u,v) +
+JF W WLU,Y,W) + TEILU,VLEH D @fe] (60
’auK(U,V,W)

auf(u,v)

L(u,v,W) = K(U,V,W) +

' 1 | » ) cos (2Imv) sinh (U-7)
2sinh (U-W) sinh (V-W) sinh (V-W) 51ph(V-w)

&

_ cos (2Imv) cosh (U-T) + 2 sinh (U-v) sinh (U=7)
cosh (V-W) . . sinh(V-W)

(61)

if we.aQSume that u(w) is not ohly of order e but is

1
h(s) |
~then the integration in (57,60) can be done explicitly. 0f

|2 1w, () +h(s)A(e)1 | <c=?

also slowly varying, for instance

course that results is much easier to derive directly and is
of no interest to us. What we have wanted and obtained is the

;élative dependence of auf(u,v) on the boundary part

1

. .
= - =A
o WO([S S ,S+ 5

5 A s]) centered at w = Wo(s)Of length As .

When
0<as <his) < |uw| , Jv=w|  {62)

the contrlling factor of ¢ 's influence is

-41 a- -~-r~ ." ' £ |
o 41nfig{w) [9(\)19(U)1|spp|u (o | ﬁ%zT {63)

18.



The asymptoticallv correct term is the same with ; replaced
by - g. &2 graphié interpretation of (63) follows. In order
to affect auf(u[§YmmEhé’dat; about a's ‘shpae must travel
from o« to v. It is provided a free ride in Q's portion
between u and v (in general on the geodesic T (u,v) Letween
.u and v) but it must pay fHTgTETT per distance for travel
around any point 2z not between u and v. The data is
thrifty so it will move along a geodesic (a cost minimizing
curve which turns out ﬁo agree with (42) to some point O

between v and u and will then enjoy a free ride tov . The

optimal choice of 0 is Ehe middle point among u,v,w . Let

us call the total minimal cost QX(W,AS,u,V) . Then when

the o data reaches Vv its intensity is deminished by a factor
-4p R

. X .

of e . A similar situation holds for other function of

the conformal map besides Qnauf(u,v) , except that the ride
on the geodesic between u and v is not free but on a_reduced
fare. For instance ‘ (57.58) shows that the controlling
factor of a's influence on n f(u,§) is

o-2inflg (W)= 1§ (v) , @ 11-215 -3 | 14 (o) jhe (64)

which means that the travel on T (u,v) is done on a half fare.
. Notice that this does not change 0, the point of transfer to
T'(a,v) - |

Now that we know what (63) means let us understand

19,
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-2p
where it comes from. The term e ~ is simply the decay of

Dirichlet or Neumann data from & to T(u,v) and is alreacy
present in (54) . ~However, in the computation of (587 a
-2p
¢ X
cancellation has occurred and another e has appeareil.

Lest it look like a freak accident let us derive it from

another point of view, close in spirit if not in technical

‘ complexity to section 10's. Suppose that @ is not oniy €

slender but is ¢ close to A. If w is between y and v

than pX = 0 so let us consider y between u and w (the

remaining case is similar). Define

Lo

f(z)‘= tanh(z - Re v) ' : : _ (655

A /
The domain £ () is close to the unit disk. The image of «

.—20
has length of order e *As . A major change in a modifies
E(Q) by a region away from B(w)y, £(v) whose area is of
...2p ) .
order (e XAS)2 . The details will be presented in Section

10 but it takes no great leap of imagination to conclude that

a 's effect is at most proportional to that area, and that is
_20
where the extra e X comes from. What about g(u) ? It is

normalized so that g(:=) = 1 and |E(w) - 1| orlf(w) + 1]
_2p e

is %f order e X so %'s influences on g(u) -is of order
. =20
(e = ¥ps)?
e~20x
The interpretation of (63,64) was chosen so that it i«

generalizable to arbitrary domains, with some modifications.

-~

&



The asymptotic theoty has to be replaced by estimation up_to‘a
constant tactor. The measure U of. f's deviation from A 's
shape is snecial and anyway there 1s no ideal general domain.
Instead we will pick a wide challange and consider a
perturbation of a general domain Q to a specified general

domaln Q . We w1ll d1v1de the perturbatlon 1nto parts and

as 1n Theorem 10. 5 I show that each such Da;tkd of dlqmeter‘ As

centered at W affectsln 3 f(uv) by &y (w AS,u,v) - which

is a generalization of (63) with Suplu (a) | replace3 by
%TS) The term d&(w,As,u, v) ieﬁgitst encdahteged in

Theorem 8. 6 and

Gx(w,As,u,v) = sup ‘ G(W;As;u,v) . (66)
‘ O0eT (u,v)

The general interaction between = u,v,w and 0 is described

_ by Theorem 4.6, which should bevcombined with Theorem 9.2

(Dubiner. 1981).

‘The local length scale h[s(w)] is generallzed 1nto

a(w,u,v) of (9.2). Its dependence on u,v is unfortunatly
unavoidable: consider a half plane @ D(x) . The lack of a
local 1ength scale, except of inf | w-3Q| which vanishes on
the boundary is the most important general ingredient
missing in slender domains. It is not fortuitous that the
conformalmctrfc. plu,v) Dblcus up at the boundafy.

Our examples were mostly of smooth domains but notice

that domain (18) has a ve: *  arp kend at %+iw ' which

21,
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_____That is an advantage when it works but it fails hear a rough

;gﬂgéfresponds to A's corner, and*it did.not distrub us from
completing a'unifoﬁm asymptotié approximation. Theorem (10.7)
proves an interesting property of a fractal, which is the
applied mathematician's ultimate in roughness. Howvever,

__Wé”ihéiSt‘bh obtaining épeéific estimates at"épecific points, =~
in contrast to the 'average' %Lyyse approach of P.D.E. Theory.

.boundary. In Sec. 5 of Dubiner (1981) it is shown how to

patch our results with P.D.E. Theory. Some synthesis is clearly

required. -

Let ﬁ;fhbw.consféér the ndﬁeficailEomputéfidﬁmgfhhu
”conformal mappings. As Qemarked earlier, any Laplace éolver
will do. Suppose that the domain @ is covered by O(Nz)

points, ﬁ of which are on the boundary 9%. Then a Lapf;ce
sol#er requires storiné 0(N2) numberé and performing from
0(ﬁ2wzn N) to 0(N3) operations, where the last estimate is
mbre realistic for complicated domains. The grid set up is

is troublesome, especialy for multiséaled and time dependent
(free boundary) domains. i |

One way to avoide an internal grid is using a vortex -

representation. That results in an integral equation of the
first kind which is numerically formulated as a set of N *N ,
iinear.equétions. It can be solved by by Gaussian elimination

which requires 0(N2) memory locations and 0(N3) operatios.

Alternativly one may iterate the cystem using O0(N) memory ond.
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O(Nz) operatlons per 1teratlon. “This is the numerical approximatioh'
to Neumann's series, and the later is guaranteed to converge for any
single sheeted domain satisfying some mild conditions. The best

existing Rayleigh—Taylor”instability simulation has been done'in that

way by Baker, rieiron and Orszag (1981). - It is relatively easy to program
and generalize to 3 dimensions. Moreover it can handle two incompressible

flulds problems which conformal mapplng alone can not solve unless the

e e me e e — i m e —— -

fluids density ratio is 0' or 1. However, Neumann's series's convergence

is precarious. The arte of convergence for the domain ¢ equals that for

e . . C . . . .
its exterior domain c¢ ©~ and in particular convergence fails for multi-

sheeted domains and is very slow when two separate parts of 9% approach
each other. The domain - (18) frequires 0(%-) iterations per order

reduction.in the error. Moreover thé Neumann series seems hard to modify
'in a way which williextract a singularity such as a corner and still preserv
convergence for general domains. |

The most natural numerical conformal mapping computation is done
by Taylorexpanding the conformal functlon from the unit dlSk onto Q.

Several such methods are listed in Sec. I. The best of them takes only

-O(N); memory locations and O(szn N) operatlons but we have seen that the

]

series will not converge to domain (18)  before N = ecﬁ: terms are taken

The flrst dlrect computatlon of the conformal map onto a

23.



cigar shaped domain has been done by Manikoff and Zemach (1980). Their _4‘

method is to set up a system of N XN nonlinear equations and..sciwve then by

. Newton iteration. Each iteration takes O(Nz) memory and 0(N3)

 operations and only few iterations are required.

Any partial differential equatioqhonia time dependent domain

can be solved by a Green's”function method which utilizes only
' ) 2d-2

‘boundary data. This is not usually done because it takes O0(N )

memory locations and 0

N2d-2) operations in d dimensions which is

unreasonable for d 33{ For the v?2 operator in 2 dimensions better can be

done because then the Green's function G(u,v,%®) " is constructable from

from G(u,vo,Q) and its harmonic coﬁjugate where vb is

constant. That 1s the basis of our method. though 1t will be

— e ——— J—— — =

.presented in a dlfferent way. It takes O(N) memory locatlons

and O(NZ) operatlons. , S ] : N
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2. NUMERICAL SIMULATION OF COMPRESSIBLE SHEAR FLOWS
ON THE CYBER-203

INTRODUCTION

The objective of this work is the development of
an algorithm for the numerical simulation of three-
dimensional viscous compressible flows. This code
is'applied to basic studies of compressible shear
flows at high Reynolds number, such as .the simulation
of the incipient stages of transition to turbulence,
and receptivity of laminar- boundary layers to
external disturbances. Since the physical-‘instab-
ilities involved in such problems are of a delicate
nature thch could be easily masked by numerical
instabilities or other errors, it is essential to
use an accurate numerical algorithm_that.can be
efficiently implemented on the Control Data Corp. .
CYBER-203.

The primary purpose of this paper is to describe

- the mixed spectral-finite difference code, SPECFD,

as coded for the CYBER-203. We will focus on the
vectorization techniques for some of the computational
procedures With careful attention to the interplay
between the storage allocation, the vectorization
techniques, and their combined effects on input/
output (I/0) requirements for this virtual memory

machine.
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The next section describes the numérical method.
We then discuss the characteristics of the CYBERf203
at NASA Langley Research Center. The next section
describes vectorization techniques including data
base design and computational procedﬁres. Finally,
the overall flow of the code is outlined and a timing

analysis of the various parts is presented.



Governing Equations and Solution Technique

The compressible Navier-Stokes equations'are

-5
39 - _ |g.wd + Ly - (L v - )L v + Vet
5% [q Vg o' P 0/ v p 0 ) oy p

Y
©
]

- q:Vp-pV-q

3p __ -+ - -
L w2 . + — . -— 0 p
3t [q Vo + r{p - p_ )V q]\ §Ypavv q% + ﬁ%v-uv<g) + (y-1)o ,

where q,p0,p,X,%,0,Pr is the velocity vector, density,
pressure, viscous stress tensor, viscous dissipation,
ratio of specific heats, and Prandlt number, respectively.

The constitutive relation for the stress tensor is
T=AV 9T +u(va+va)
wheré A 1is assumed equal to - =u and u is

given by Sutherland's formula

u o= 1.4582 x 1078 3/2/(1 + 110.33) p,-sec

27.
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’

'The expression for viscous dissipation is

¢ =2@-92+ Led) + 0T ¢ 1@ + T,
The, assumption of a calorically perfect gas is
implicit in this formulation.

The addition and subtraction of the term (1/p)aVVp
in the momentum equation and a similar manipulation
in the equation for pressure regquire explanation.
(1/p)av is the average of the specific volume on
each horizontal X-y plane and hence is a function
of the z—coqydinate only. The Crank—Nicoison method
is used on the pressure terﬁ in thé curly brackét.

We resort to this kind of artifact to ensure convectiﬁe
stability at low Mach numbers without héving the severe

time step restriction demanded by an explicit method.
Boundary Conditions

We choose periodic boundary conditions in the
streamwise {x) and spanwise. (y) directions. This
permits spectral representation of the dependent
variables in these two directions. In the normal (2)

direction we use no-slip boundary condition on the

e



plate (z = 0). Using r = az/(az+b), the semi—
infinite physical domain 0 < z < « is mapped onto
the computational domain 0 <7< 1. ééro perturbation
boundary conditions are épplied at ¢ = 1. For free
shear flows, the physical domain =-®< z < ®» is
mapped onto 0 << 1 wusing a hyperbolic tangent

transformation. Zero perturbation boundary conditions

are applied at both top and bottom boundaries.
Numerical Method

The numerical method cqnsists of three stages
(fractional steps) based on the well-known technique
of operator splitting [1]. The first fractional

step includes the effect of the advection terms: -

> > n n,[ »>n ,»>n . (1 1 l n
q*=q + (Atl + At )[—q ‘Aq - {—— -l = Vop
a

- %Atn (-—1;1-) v oo (1)
p av

29,
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. i
p =0+ (at, +at™h [Gae" - 0"V Q"]

_ Atll-an~l°prn_lvf pn—lv_an—ll
X .
. |
oo = o+ (at, + At™) gV o" - r(p™-pD )V-q"]

+n-1 n-1 n-1 n-1

' +n-1
_Atl[ q Vp -xr (p7 = Py 1

)V-q

l,.n ->
= At e, Vg

n

1

where At, = (Atn)z/(zAtn_ ). A variable-~step

i
second-order Adams-Bashforth method has been used for
time discretization. The pseudospectral method is
used for calculating x- and y-derivatives, and
central differences are used to evaluate z-derivaﬁives
(using an equally spaced grid in the ¢ variable).

The second fractional step is an implicit

pressure correction:

L —

hol
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I
b
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This system of equations is reduced to a single

* % .
Helmholtz equation for p :

(3)

Using a spectral répresentation for p** in the

x- and .y—directions and central finite difference

in the z—directioh there results a tridiagonal matrix
equation for é** in wave number space.

In the third fractional step,viscous corrections

are added to the inviscid solution obtained in the

previous two steps. Use of the pseudospectral tecpnique

for the evaluation of viscous terms eptails a rather
unreasonable increase in the number of FFT's per time
step [2]. Consequently, the viscous terms are
discretized using central differences. The truncatioh
error is on the order of v(At-'rAu2 + Ay2 + Azz)
where v is the maximum kinematic viscosity. This
error is small since v is small in the high Reynolds
number flows of interest. Further, the well-known

problem of artificial viscosity f(due to the truncation

31.
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error of the advection terms) swamping the physical
viscosity does not arise in the present algorithm,

as the advection terms are evaluated pseudospectrally.
To avoid sevére time Stép restrictions resulting

from small Az in the stretched 2z-mesh, the z-
derivatives are treated implicitly. This results

in tridiagonal matrices for u,v,w, and p.

We write this three level time split scheme

symbolically as

gt - /3/; i A, W, v h

whére U= (u,v,w, ,p)T and T indicates transpose.

Here the subscript E indicates the explicit

step, I the implicit .pressure step, and V the

viscous step.
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[ Characteristics of the CYBER-203

The CYBER-203 is a vector processing computer
manufactured by the Control Data Corporation (CDC).
As a vector processor, it ‘can perform vector operations
on g4—bit (32 bit) data at a peak rate of 50 (100)
MFLOPS (millions of floating operations per second)
25 (100) MFLOPS for multiplication, and 12.5 (50)
MFLOPS for division. With each vector operation
there is a vector startup which is independent of
the vector length. Vector operations of length
1000 achieve 80 to 85% of their peak rate. This
is about four times faster than vectors of length
75. Consequently, it is desirable to use long vectors
where poséible. The ability to do this'depends upon
the algorithm being used as well as the stofage
scheme selected by the program designer. The CYBE§—203
can also do scalar processing and in ﬁhis mode generally
will execute two to three times faster than the CDC
CYBER-175. The CYBER-203 has a virtual memory
implemented as "small" pages (512 words) or "lafge“
éages (65,536 words). The CYBER-203 at Langley
Research Center has 1025K, 64-bit words of semi-
conductor memory (16 large pages). One can effectively
double the memory capacity by using the 32~-bit word

length features.
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Vectorization Techniques

The data base design and vectorization techniques

are inter-related on the CYBER-203 since vectors, by

definition, are contiguous locations in memory.
- _

Notation:

We first introduce some notation helpful in
describing these two facets of the'implémentation.

Assume that the dimensions. of the grid in the

X,Y,z directions are I,J,K. U will refer to the
vector (u,v;ﬁ,p,e)T and an operator such as ;E

operating1on U should be applied tp~each component"
of U. References to a "plane" of data are to one
of the x-y planes. These are typically the vectors
used in our code. U(k) refers to thg kth plane.

The Thomas algorithm for solving a tridiagonal system

‘requires the storage of two pieces of data for each

equation, and consequently each grid point: (aw(k),Bw(k))
are the kth plane of such data for the w-momentum

* : .
equation. Also, U is the result of the ‘Z;
. *%
operator on Un, U the result of the )fI

1

operator, and Un+ the result of the va operator.



Data Base Design:

We wish to accomplish two things with our data
base design:b (1) a stdrage scheme that permits operation
on long vectors, preferably over an éntire plane of
the three dimensional grid, and (2) - a scheme that
allows controlled paging by the virtualvsystem. With
this in mind, each variable which is required over the
entire grid is stored on oge X-y plane at a timé,
with all variables at the kth plane stored in
succession (see Fig. 1). The execution flow is then
‘to do all computationé possible at plane k before
proceeding to pléne k+l. It has been shown [31
that this data layout and computatiohal_strategy is
impbrtant for controlling paging when the large pages
are involved. The paging per time step is further-
reduced by (1) marching forward, then in reverse
through the databbase (z-direction) and (2) applying
all three operatoré in one forward-reverse sweep.

The first technique permits the I/0 requirements
for each time step to be proportional to the amount
by which the data base exceeds central memory [3]
and the second technique means that only one pass
through the data base is required per time step

instead of three. The latter approach does cause some
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programming inconvenience when computing the  z-

derivatives. For instance, the C%; operator computation

* « %
at the kth plane requires u (k+l) - u (k-1),

* . ' , e
where u is computed by the d<E

. ,
requirement for wu (k+l) implies that the L

operator. The

I
.operator must be lagged one plane behind the a%;

operator.

Main Computation Modules:

There are three algorithms which are a major part
of the overall qomputétional procedure and which have ' -

been vectorized fbr the CYBER-203. These are:

1. One Dimensional Fast Fourier Transform (1-D FFT)
The x and y derivatives in the 5{; and
*%; operators are computed using the one-dimensional

FFT. For instance
d I R
a{-u(xr— F (iwg(w)),

where g(w) 1is F(u), the Fourier transform of u | -
with respect to the x variable and w is the wave
number. The CYBER-203 implementation described in
reference [4] 1is used and will be detailed more

fully under the section "Performance".



2. Two-Dimensional Fast Fourier Transform (2-D FFT)

The J& operator involves applying the two-

-~ dimensional FFT operator, ny, to equation (3).

If we define

-

* % '
,Z):-‘F P (XIYIZ)I

* %
P (kx,ky Xy

then the resulting second order differential equation
in z for P** can be central differenced leaving
an independent tridiagonal system, implicit in the
z-direction, for each (kx,ky). wave number. The
right-hand side for each system is the appropriate
element from FXyQ*. The coefficientg can be
anaiytically determined. The solution to each system
yields P**(kx,ky,z) and then one computes-

*

* ~
P (x,v,z) =F P(kx,ky,z).‘

-1
XY
The CYBER-203 software described in reference (5)

. - l ’
is used to apply ny and ny .

3. Systems of Tridaigonal Equations

The c;I and ﬂf; operators both generate systems

of tridiagonal equations implicit in the z-direction

37.
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controlled paging.

There is an independént system for each (kx,ky) or
(x,y) point, respectively, in a plane. The usual
Gauss eliminatipn based tridiagonal solver, frequently
called the Thomas_gigg;i;th_is inherently scalar but
since we must soive, say , M= Ixd systems
simultaneously, vectors of length M can be used.
The forward sweep of the Thcmas algorithm is done

a plane at a time saving only the pairs (a(k), B(k))
required for the back éubstitution of a unit upper
bidiagonal system of equations. Since the variables
afe interleaved a plahe at a time, the storage is

appropriate for both the lgng vectors and the



Performance

The CPU efficiency of any highly vectorized program on a
vector computer like the CYBER 203 relative a particular scalar

computer is directly proportional to the vector lengths involved.

This is true assuming:

1. The same algorithms aré implemented in both the scalar
and vector computers.

2. No extra work, typically in form of data movcment, is
required to achieve the vector lengths used.

Program SPECFD is highly vectorized. For an I x J X K
grid all vector operations, except the evaluation of the one
and two dimensional FFTé are of length I*J or I*J+2I and, hence,
quite efficient. The derivative evaluation by the FFT routine
is somewhat mofe difficult to analyze.

The software to implement the FFT algorithm simultaneousiy
computes the one-dimensional FFT of M independent complex data -
sets each of size N. It requires that the first components of
each data set to be stored consecutively. followéd by the second
components, etc. With this arrangement, it achieves average
vector lengths of Mlog N. It is obvious- that the data structﬁre
is quite important and that increases in M will yield higher CPU

efficiency.
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‘ _ v
ﬂhe_total data base includes 17 variables stored over the

entire grid. These are (u,v,w,p,p), their respective convective

de;ivatives (du,dv,dw,dp,Cp) from the previous timestep for

the explicit operator, and the four Thomas algorithm pairs

(@, By dr Oy By Yu (o ,By ), and (@ ,By). Since o= a,
b

only one of these is stored. For a 32 x 32 x 64 grid . the

data base, code and system requirements are nearly 21 large
pacges. Testing has shown that each forward-reverse sweep

gives only 5 large-page faults per time step, as predicted.
SPECFD uses the CYBER 203 ADVISE feature to overlap the I/0

time with CPU execution. The total CPU time for a 32 x 32 x 64

run is about 3.1 sec per time step.



" Introduction

A general computer code . to solve the Naviér-Stokes o

equations in two-dimensional geometries with a
turbulence model has been developed. Here we report
on the results for flows over wavy walls including
turbulence effects by means of one- and two-equation
turbulence models and compare the results with
available experimental results.

In order to compute turbulent flows in complicated

geometries at realistic Reynolds numbers, it is necessary

to model the effects of turbulence. Perhaps the
simplest model is a one-equation model in which the
Reynolds stress 1is determined by the mean-velocity

" gradient in terms of a relation of the form

an R
EREAE I AT LU Bt oy

where Vo 'is an appropriate eddy viscosity. The

eddy viscosity vT is then modeled in terms of a

turbulent length scale L as

53U, 03U, U, 1/2
L == (—= + )]
T 9X. 9X. 9 X.
_ 3 i
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The turbulence length scale 'L' includes effects
of pressure gradients as well as other effects such
as the presence of a wall. The choice of 'L!
will generally involve one or more free constants
CL that must be chosen to match experimental results.

One equation turbulence models of the form
(I.1) have been quite successful at modeling flows
that are in eqﬁilibrium. However, the constants
CL used in the closure must be changed when the flow
changes. In highly non-equilibirum flows (such as
flows undergoing strong acceleration), the optimal
choice of these modeling constants may be difficult,
if not impossible, to achieve. Also, in flows where
there is flow reversal, the utility of - one-equation
models is dubious.

In the last decade, there have been several attemvots
to improve upon the one-equation models of turbulence
by means of multi-equation models. In two-equation
models of k-e type, gradient transport equations are
developed for turbulent kinetic energy (k) and
turbulent energy disipation (e). Such two—equation
models have been successfully applied to the calculation
of flows in the presence of strong pressure gradients.
There has also been some work with three- and four-equation
turbulence models but the pavoff for the increased computational
and analytical complexity of these latter models has not

vet been spectacular.



The principlé drawback to fhe use of two-equation
turbulence models is that it increases the computational
complexity of the system of equations one has to solve.
There is also the difficulty of having more free constants
in the model than in one-equation models. It is only
in the past few years that these two-equation models
have been coupled with full two-dimensional Navier-
Stokes codes. The present wbrk is notable in that
we present results for the time dependent Navier-

Stokes equations coupled with two-equation models in
complicated wavy geometries. We choose to use a

ﬁodified version of the two-equation turbulence model

due to Jones & Launder (1972), as modified by Chien
(1980). .The test results discussed below are presented
for relatively low Reynolds number flows because of

the special interests of these flows in a@plications;

At low Reynolds numbers, the validity of the two-equation

models is severely tested.
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Mcthod of Solution

The two dimensional Navier-Stokes equations are

o . - _9p . 3
o B
and
VeV = 0 (I1.2)

where the stress tensor T includes both viscous
stresses and turbulent Reynolds stresses. _Equations

(IT.1, 2) are solved in the region
0 <x <2m, £f(x,t) <y < (II.3)

above the wall vy = £(x,t). Periodic inflow-outflow

boundary conditions are applied in x:
-> > )
v(x < 2m, y,t) = v(x,y,t) (I1.4)
A conformal mapping technique (Meiron,Orszag &
Israeli 1981 and Sec. I) is used to transform the

region in (II.3) into the region

0 <g<2m, 0 <n<e (I1.5)



non-conformal stretching of the n variable is
used to implement the spectral methdds used to solve
the Navier-Stokes equations.

Egs. (II.1 - 5) are solved by a fractional-step
spectral method describéd in detail by Meiron, Orszag
& Israeli (1981). The principle changes concern
_the turbulence model, which will now be described.
The turbulence model used in our calculations is

that of Jones & Launder (19272), as modified by Chien

(1980). The modeling equations are:
BUi 3U.
i3 = (v+vT) (§§T + 5;%) » (I1.6)
3 i
2 2 -c,y+
De _ € U € € 4
be- % Vrk By "% Y ze
\Y . Y
d T, d¢g 3 T, d€ .
+ % (v+ -6_—-) 3% + W (v+ g—) '5—y— (IT.7)
€ €
2
-[—)-}i = V (-a_[_].) € - __..2\)k
Dt T oy 2
: Y
v v
) T 9k 3 T, 3k
+${'(V+g;)§§'+§'§(\)+a—]:)w | (11.8)



where the 'eddy viscosity' Vip is given in terms

of the turbulent kinetic energy k and dissipation

€ by
2 -Cc,.V
y = K™ i_. 3%
Vg = Cv = (1-e ) (IT.9)
here the modeling constants are chosen as
~Rp/Cys
c, = 1.35, c, c21(l-c22e )
C - = - =
21= 1.8, Cyo 2/9, Cyy = 36, Cy 0.5 (IT.10)
-4
c, = 0.09,v=1.57 10 °, 0p = 1, 0. = 1.3
where R, = kz/ev is a turbulent Revynolds number

T

and the subscrip£ + indicates wall units. The remaining

modeling constants ¢, 1is chosen a posteriori to

achieve the best agreement between our calculations

and available experimental data.

46,



Results

In Fig. 1, we plot the skin friction distribution
as calculated from flow over a flat plate with zero
gradient. In this figure, we show results obtained
using our spectral codé with both a one equation
turbulence model and a two-equation model described
in Sec. II. Results are presented for the two-
equation model with several choices of the modeling

constant c Chien (1980) suggested the choice

3.

= 0.0115; we find that c, = 0.010 gives better

¢ 3

3
agreement with experiment.

The agreement between experiment and numerical
calculation achieved in Figure 1 is noteable because‘
of the apparently significant difference between the
periodic boundary conditions employed in the computer
code and the true phyvsical inflow-outflow boundary
condition. It appears that periodic boundary'éonditions
can be used to model the true physics of these boundary
layer flows with little or no distortion of the results.
This conclusion is extremely important for time-dependent
solutions of the Navier-Stokes equations. With inflow-
outflow conditions, a large computational domain must
be used to stimulate flow over a long physical bodyv,
while with periodic boundary conditions, the calculations

can be done over domain of limited spacial extent.
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In Figure 2, we plot the distribution'of Reynolds
stress (normalized by ui ) as a function of the wall
variable Y, ¢ again for a flat plate with zero pressure
gradient. The agreement with the classical data of
Schubauer is excellent.

In Figure 3, we plot sv/ui as a function of
Yyr again for a flat plate with zero pressure gradient.

In Figure 4, we again plot ev/ui vs y,, at
21 downstream locations (as detérmined by the transformation
X = Ut where U is the free-stream velocitv and
t 1is the integration time in the quasi-steady state
achieved by the periodic boundary condition code).

These downstream locations have Reynolds numbers
Re‘ varying from 2000 to 4400. Observe that the
results.lie on a universal (R6 - independent) curve.

In Figure 5, we plot the kinetic energy distribution
kX (normalized by Ui ) as a function of Y for |
flow over a flat plate. The peak of k occurs at
Y, = 25, in good agreement with available measurements.

We have used the two-equation models together
with our spectral code to study turbulent flows

over wavy walls. Here we will report results only

for flows over sinusoidal wavy walls:



y = a sin (kx) ‘ (I11.1)

in the runs reported below, ka = 0.078 so the ratio
ol amplitude to wave length, a/\, is 0.125.
In Figure 6,7, we plot-the variation of U,

\\
(downstream velocity in wall unitsY\as\g function

of Y, in the region of maximum adverse and favorable .
pressure gradient, respectively. In Figure 8, we

plot the distribution of boundary layer thickness

as a function of position over the wave. In

agreement with experiment, the bounary layer is

thickest at the tough of the wave.

In Figure 9, contours of the turbulent kinetic
energy distribution k, over the wave surface are
plotted. 1In Figure 10, a similar plot of the
turbulent dissipation , €, 1is made. From these
Figures, it is apparent that both turbuient kinetic
energy and dissipation tend to become smaller in the
region of favorable pressure gradients. As the

waves get steeper, this indicates the tendency for

relaminarization in these regions, so there may be

a serious problem with two-equation turbulance models

49,
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in regions of favorable pressure gradient induced be
steep curvature.

In Figure 11, we plot contours of the pressure
distribution over the wavy wall. The maximum value
of the pressure coefficient CP and the phase of
the pressure distribution over the wall aagves well

with available experimental du.s ~srrelations.
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Figure 1. Variation of cocfficient of skin friction for
a flat plate boundary layer vs R, . lere the
solid curve is obtained from the two-equation’
model (II.6)-(II.10) with c, = 0.10. The other:
points are: /A Model solution with cy = 0.02;

VModel solution with c. = 0.0115, as used by
Chien; O One equation model; Oc, = 0.008;
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Figure 2. Variation of Reynolds stress vs Yy for

a flat plate boundary layer in zero pressure
gradient.
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Figure 3. A plot of ev/ug Vs ¥, for a flat plate
boundary layer in zero pressure gradient.
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EwNU/UTxay

Figure 4.

y
A plot of ev/uT vs y, at 21 x stations

with Ry varying from 2000 to 4400. The

calculations were made for a flat plate

with zero pressure gradient using the
two-equation model with cy = 0.0115.
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Figure 5.

A plot of the kinetic energy distribution

.for flow over a flat plate in zero pressure

gradient, as determined by the two-equation

model.
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Figure 6. A plot of U, vs Y, for flow over a wavy
surface. The plot is made at the location

of maximum favorable pressure gradient with
ka = 0.0785.
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Same as Figure 6 except at the location

of maximum adverse pressure gradient.
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Figure 8.

A plot of the boundary layer thickness as a

function of x for flow over a wavy surface
with ka = 0.0785. Here x = 0 corresponds
to a wave crest while x = 3.14 corresponds

to a wave trough.



3.50% -
A K. BERGT. 1Tk 4001

- F 123 11 bl
2.60% |- ’
1.2135
T —— S b
?\ /
. BI7S

\/(

LI e e e e T
o e R

A

o
ST U S NS SO S WY S T |

-.0785 1t 1 13 | B W | BT i g 2
0.co 1.57 3.1¢ 4.7% 6.28
CONTOUR FROM 0. 10 .11200E-01
COMTOUR INTERVAL 15 .7C00CE-03 LABELS SCALED BY 16000.

Figure 9. A contour plot of the kinetic energy distribution

for flow over a wavy surface with ka = 0.0785.
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Figure 10. A contour plot of the turbulent dissipation for
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