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INTRODUCTION

This Final Technical Report summarizes research results obtained

by the Gas Dynamics Laboratory, Mechanical and Aerospace Engineering

Department, Princeton University, under NASA Grant NSG-2299. This Grant,

entitled "Compressible Turbulent Boundary Layer Interaction Experiments,"

extended from February 1, 1978 to January 31, 1981. The Co-^rincipal in-

vestigators of the research study were Dr. Gary S. Settles and Prof.

Seymour M. Bogdonoff. Dr. C. C. Horstman of NASA Ames Research Center

served as NASA Technical Officer and was also significantly involved in

part of the research effort on a cooperative basis. Some of the studies

reported here were jointly supported by the USAF Office of Scientific Research

under Contracts F44620-75-C-0080 and F49620-80-C-0092.

In the following summary, four phases of research results are re-

ported: 1) experiments on the compressible turbulent boundary layer flow

in a streamwise corner, 2) the two-dimensional (2D) interaction of incident

shock waves with a compressible turbulent boundary layer, 3) three-dimensional

(3D) shock/boundary layer interactions, and 4) cooperative experiments at

Princeton and numerical computations at NASA-Ames. Since much of this work

has either appeared in the open literature or been T Dorted previously to

NASD. (see REFERENCES and PUBLICATIONS BIBLIOGRAPHY), the present account is

appropriately abbreviated.
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I. A STREAMWISE CORNER IN COMPRESSIBLE TURBULENT FLOW

1. Introduction

The joining of two boundary layers at a streamwise corner is an

important problem in aerodynamic design and in the basic understanding of

complex flows. Beginning with Carrier s , several investigators 
2-5 

have

analyzed the problem for laminar flow, thus avoiding the obvious intracta-

bility of turbulent motion. Fluid compressibility was, however, taken into

account in the analyses of 	 3 and 4. These investigators agree that

an important feature of the streamwise corner is an imbedded secondary flow

consisting of counter-rotating vortices. For the laminar case, the direc-

tion of the secondary flow along the corner bisector is found to be outward,

away from the corner.

Both theoretical and experimental results are available for the in-

compressible turbulent streamwise corner flow (e.g., Refs. 6-8), in which

an inward motion is detected along the corner bisector. The detailed mea-

surements by Gessner7 , Mojola and Young 
B. 

and others, show that the three-

dimensional and turbulent aspects of this flow are intimately related.

For the case of the streamwise corner in compressible turbulent flow,

a number of experiments 
9-11 

and at least one numerical computation 
12 

are

available. In these studies, intersecting plates or wedges were used to

generate the corner flow, leading to a strong interaction between the tur-

bulent boundary layer and the shock waves originating from the wedge leading

edges. Under such conditions the corner flow is dominated by a complex im-

bedded shock wave system which precludes the study of the comparatively

weak secondary flow contributions due to the tut-bulence itself in such ex-

perimental geometries.

.-
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In contrast to the above, an unbounded streamwise corner flow offers

a certain elegance of simplicity; it is turbulent, compressible, and fully

three-dimensional, but has no shock wave system or streamwise pressure gra-

dient. This note describes an experimental attempt to study such an un-

bounded corner in a supersonic channel flow, as diagrammed in Fig. 1.

2. Experimental Arrangement

The streamwise corner flow of this study is that which develops in

the 20.3 cm. square channel downstream of the nozzle of the Princeton High

Reynolds Number Wind Tunnel. The test conditions include a Mach number of

2.9, a freestream Reynolds number of 6.3 x 10 7/meter, a stagnation pressure

of 0.69 MN/m2 , and an approximately adiabatic wall. The corner region was

surveyed with a 7-tube pitot rake which traversed normal to both the chan-

nel floor and sidewall. These rake surveys were carried out in sections 1

and 2 of the channel, at distances of 0.28 and 1.18 meters from the nozzle

exit, respectively. Measurements were also taken of surface pressures and

streak lines.

3. Results and Discussion

Figures 2 and 3 display the lines of constant pitot pressure in the

corner region at the two streamwise test stations. For both stations, the

region of corner influence is confined to 2 or 3 cm. from the corner loca-

tion. The floor boundary layer approaching the corner is quite uniform in

the Z direction. (This boundary layer has been extensively surveyed at

Z = 10 cm. and was found to be in an equilibrium state.) Such is not the

case for the adjoining sidewall boundary layer, which is thinner than the

floor boundary layer near the corner, and which grows significantly in

thickness as Y increases. Thus, the corner flow is not symmetric about

a bisector at either streamwise test station.
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The reason for this asymmetry lies in the inviscid wave system

generated in the two-dimensional wind tunnel nozzle. As illustrated in

Fig. 1, the static pressure at the sidewall center inside the nozzle is

lower than that at the corners (an effect that is not present on the

nozzle floor or ceiling). Thus a secondary flow is induced, which causes

boundary layer fluid to "pile up" along the sidewall centerlines. This

effect has been known since the early days of supersonic wind tunnel

testing 
13,14 

How seriously it affects the corner flow symmetry can be

judged from Figs. 2 and 3. The sidewall "bumps" appear to grow with in-

creasing X, and will eventually join together far downstream. Also, this

effect is expected to grow worse at Oi qh: r nozzle exit Mach numbers, which

seems to be confirmed by measurements reported in Ref. 15. Sublayer fences

on the nozzle sidewall have been used 
14 

to partially alleviate this secon-

dary flow by breaking up the nozzle pressure.gradient.

The sidewall static pressure distribution was measured at both t%st

stations and found to be constant and equal to the freestream static pres-

sure within +l p . This fact makes it reasonable to assume that the entire

corner flow exists at a constant static pressure. In such a case, the pitot

isobars of Figs. 2 and 3 are equivalent to lines of constant velocity. The

velocity profiles thus obtained have been analyzed using a compressible

"Clauser plot" technique to yield the estimates of skin friction coefficient

shown in Fig. 4.

The cf values on the channel floor in Fig. 4 are roughly constant at

about the values given by the Van Driest II theory. In contrast, cf on the

sidewall increases toward the corner, reflecting the relative thinning of

the adjoining boundary layer there.

3
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The measured surface streak lines show a very slight divergence

away from the corner. This divergence does not clearly indicate anything

more than the growth of boundary layer displacement thickness in the cor-

ner region with increasing X.

II. 2D INCIDENT SHOCK/BOUNDARY LAYER INTERACTIONS

1. Introduction

This study of the incident shock wave/turbulent boundary layer

interaction was intended to supplement previous work 
16-21 

and to provide

critical data for the mathematical modeling of turbulent flows. In parti-

cular, the effects of streamwise curvature were to be assessed by comparing

the incident-shock interaction with the data from compression corner experi-

ments22 at the same flow condi + ions. As there has always been some doubt

about the two-dimensionality of the flow in the previous incident-shock

studies, we first concentrated on examining this important aspect of the

flowfield.

The experiment was carried out in the Princeton University 20 x 20

cm. Supersonic Wind Tunnel. The incident-shock wave generator, shown in

Fig. 5, is 32.4 cm. long and 19.7 cm. wide, and is not sealed at the side-

walls. The shock generator angle, a, can be continuously varied around a

pivot located at a front part of the shock generator, as illustrated in

Fig. 5. The generator angles tested were 4°, 8° and 10°. The pressure

behind the generated shock wave was measured by an orifice located 12.7 cm.

from the leading edge of the shock generator on its centerline. The angle

of the shock generator was set by reading this pressure during the run,

considering the influence of the boundary layer displacement thickness to

M.
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the apparent angle of the shock generator, and adjusting the generator

angle accordingly.

The test conditions were: Mach number = 2.95, stagnation pressure =

6.80 atm, stagnation temperature - 258°K ± 5%, and free stream unit Rey-

nolds number = 6.10 x 107Aieter. The incoming turbulent boundary layer

had an overall thickness, 
60 , 

of abov* 1.5 cm.

In order to check the two-dimensionality of the interaction, surface

oil flow techniques, surface static pressure measurements, and pitot pres-

sure surveys were carried out. Aerodynamic fences were used to prevent

secondary flow from the sidewalls. The geometries of the two fence con-

figurations are shown in Fig. 6, and a table of fence configurations for

the test series is given. Note that "double fences" (configuration B) were

used in one case in an attempt to properly isolate the interaction region.

2. Results

Surface Flow Patterns

Surface oil flow patterns for a = 8° and a = 10° are shown in Figs.

1-11. Without aerodynamic fences, strong three-dimensional disturbances

are observed after boundary layer separation (denoted by "S"). The re-

attachment line is quite curved compared to the separation line. For a = 8%

the separation line appears reasonably straight even without fences, but a

strong inflow from the sidewalls is observed near the separated region.

With a change of fence position, the shape and location of the separation

line also changes slightly, while the reattachment line is always curved

and the three-dimensionality is not eliminated.

Surface Pressure Distributions

Shown in Fig. 12 are the streamwise surface pressure distributions

for a - 8° and 10% measured along the centerline. The upstream influence
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starts about 1.1 do for a - 8° and 2.2 do for a = 100 . The separation

and reattachment locations are denoted in Fig. 12 by "S" and "R". The

pressure level after the interaction is lower than the theoretical invis-

cid level, which is shown by dotted lines in Fig. 12. Further, the mea-

sured pressure distributions exhibit a "peak" followed by a slight pressure

decrease. This pressure decrease seems to be due to the strong three-

dimensionality of the flow after reattachr%-nt. It is noticed from the

surface patterns that t`.:re is a secondary flow inward from the fences

toward the centerline at the beginning of interaction, followed by an out-

ward flow from the centerline toward the fences further downstream. This

outward flow seems to correspond to the pressure decrease after the "peak".

This pressure decrease becomes smaller as the fence distance, W, decreases,

as shown in Fig. 13.

As a further indication of the spanwise uniformity of the flow, span-

wise pressure distributions are shown for a = 8° at several test stations

in Fig. 14. One notes in this figure that the initial flow just upstream

of the interaction is quite uniform in the spanwise direction. However,

as one progresses downstream through the interaction, symmetrical variations

occur in the spanwise pressures. At first, these distributions become

"cupped" so that a maximum pressure is seen near the tunnel centerline.

Further downstream this trend reverses, the centerline pressure dropping

below that at the sides. These measurements clearly indicate the progres-

sively three-dimensional secondary flow phenomena which appear under the

influence of the incident shock wave.

Pitot Pressure Measurements

Pitot surveys were carried out to determine if the incoming shock

wave was planar. The pitot pressures just ahead of and behind the shock
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were measured in the crosswise direction using a streamlined probe. The

survey height was about 6.4 cm, which is well ahead of the interaction

with the floor boundary layer. We found some indications that the shock

may already be slightly convex before the interaction begins.

3. Summary of Observation!.

After several attempts to create a two-dimensional flow field, the

following observations are made:

a) The flow reattachment line shows a strong three-dimensionality.

Just after reattachment the surface flow directs toward the centerline

and then changes to an outward direction.

b) Aerodynamic fences seem to improve the flow ahead of the sepa-

ration line, but not the flow after reattachment nor the reattachment line

itself.

c) The region where the crosswise surface pressure distribution is

uniform is only 5 cm. wide around the tunnel centerline. The aspect ratio

of the separated region is about 4, which is too small to be considered as

two-dimensional.

d) The pressure level after the interaction is generally lower

than inviscid pressure level. There is also a slight decrease in pressure,

apparently due to the three-dimensional flow after reattachment.

III. SCALING LAWS IN TWO- AND THREE -DIMENSIONAL
SHOCK/10UNDAPY L	 N E	 N̂  S

1. A Brief Review of the State of the Art

Shock wave interactions w':th compressible turbulent boundary layers

have been studied many times by past investigators. Most of these studies

have concerned the two-dimensional or semi-infinite case because the inves-

tigators felt that the problem was already sufficiently complex without the

s 4-- - -	 -	 -
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added difficulty of a gird dimension. They proceeded to at" 'iot to

characterize these two-dimensional (2D) interactions through experimental

measurements and some approximate calculations.

The earliest investigators (e.g., Refs. 23 and 24) learned that

the streamwise length scales of these interactions depended upon Mach

number, Reynolds number, overall pressure rise, incoming boundary layer

thickness, and (sometimes) experimental geometry. Through the years, as

a body of experimental evidence was built up, empirical correlations and

approximate analyses have evolved into what we now know as the scaling

laws of 2D shock/boundary layer interactions, which describe with reasonable

accuracy the effects of the above parameters on interaction length scales 25

However, even with the simplifying assumption of 2D flow, some of

these scaling laws have not been developed sufficiently to provide a eng eral

picture of the interaction scaling. For example, it has been commonly

assumed 
24.26 

that the length scale of a 2D interaction is proportionrl to

the incoming turbulent boundary layer thickness, do , if all other para-

meters are held constant. Indeed, limited experimental data supported

this view for many years. Only recently have more detailed studies 25,27'28

shown that this is an oversimplification, and that the unit Reynolds number

is also an important part of the interaction scale.

Figure 15 (from Ref. 28) illustrates the Reynolds number and boun-

dary layer thickness scaling of upstream influence ahead of Mach 3 com-

pression corners, as we now understand it. Stated simply, if do is taken

as the interaction scale, then a Red "residual" effect remains to be
0

,aken into account. This has been done in Fig.

mong the three leading experiments in the field is shown in terms of an

mpirical 6
0 

and Re60 scaling function.

15, where good agreement
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Still, the scaling of 2D interactions is not yet perfectly under-

stood. The physical mechanism of upstream influence, for example, has

been the subject of a long-term effort by many distinguished researchers,

end is still not clear. Recent developments of the so-called "triple-

deck theory" 29 may point the way to an eventual understanding of this

mechanism (we hope).

So, while some questions remain about the generality and physical

basis of the 2D interaction scaling laws, there is nevertheless a reas ,3n-

able scaling framework with which to proceed. The situation for 3D inter-

actions is, unfortunately, not nearly so good. Far fewer 3D experiments

have been done, and each one has seemed to stand by itself with little

obvious connection to the others. While * the individual 3D experiments

have shown some radical departures from the known 2G behavior, it has not

been possible to judge from them how large a particular 3D interaction

scale should be, or how it might vary with b 0 , Re, M., shock strength,

etc. Basic knowledge has been lacking, both in terms of a sufficient

range of experimental measurements and a framework within which to relate

them.

This problem has been studied in recent years by Settles, Dollina,

Oskam, Bogdonoff, and other investigators at the Princeton University Gas

Dynamics Laboratory. Our efforts have been concentrated on a particular

class of simple 3D geometries which produce representative (though not

necessarily simple) 30 interactions. This class of geometries, illustrated

in Fig. 16, includes those which we call the "sharp fin," "swept fin,"

"blunt fin," and "swept compression corner."

In conducting experiments with this class of 3D interactions, our

long-term goals ar= listed as follows:



1) develop scaling laws governing the individual interactions

in terms of pertinent flow and geometric parameters,

2) develop a framework within which the scaling of the indi-

vidual interactions can be related to the interaction class

as a whole,

3) investigate, through detailed measurements, the physical

mechanisms which occur within these interactions and give

rise to their overall scaling behavior, and

4) provide detailed data sets, from these measurements, which

can be used for code validation and turbulence model develop-

ment in computational fluid dynamics.

We have made some progress in reaching each of the above goals so

far, though much work remains to be done. For example, some basic scaling

information on three of the four interactions of Fig. 16 is given in our

recent publications
28,30-33

 One of the interactions — the sharp fin —

has been surveyed extensively to yield detailed data which serves some of

the purposes of goals 3 and 4 above. 
30 

Most recently, companion papers

by Settles and Dolling 
28,33 

developed the Reynolds number and boundary

layer thickness scaling laws for the swept corner and sharp fin, respec-

tively, and showed how the two interactions are related in that sense (the

general scaling law being the same for both).

Our most recent work is concentrating on the scaling behavior of

the stated class of interactions in term!, other than Reynolds number and

boundary layer thickness, that is, shock strength, Mach number, sweepback

angle, etc. This effort is expected to require both the further analysis

of results already in hand and further experiments as well.

0 

L
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An important part of the experiments concerns the "swept fin" of

Fig. 16, which is designed to generate a doubly-swept shock wave which

skews across the incoming 2D turbulent boundary layer.

2. Swept Fin Interaction

Under NASA Grant NSG-2299 we conducted an exploratory set of experi-

ments using the swept fin geometry. The geometry and range of parameters

tested are shown in Fig. 17. So far, only surface flow visualization records

have been taken for this set of experiments, as shown by an example kerosine-

graphite trace in Fig. 18.

Briefly, these results showed that the swept fin interaction is more

highly swept back than the corresponding unswept (sharp) fin interaction

for equal values of the deflection angle a. Our immediate goal in these

experiments was to compare the 3D interactions generated by the swept fin

and the swept compression corner (ramp) under conditions of the same compound

shock angle. As shown in Fig. 19, there is a region of overlap of these two

interactions in terms of shock angle (thus also overall pressure rise) at

Mach 3.

For the time being we have not been able to make this comparison,

since it requires knowledge of the inviscid shock location in the swept

fin case. Obtaining this information is an important part of our continuing

research under new NASA sponsorship.

IV. COOPERATIVE EXPERIMENTS AND COMPUTATIONS

In the past, useful progress has been made in a cooperative effort

of experiments by the present investigators and computational solutions

of the time-averaged Navier-Stokes equations by Dr. C. C. Horstman of

NASA-Ames. A good example of such cooperative efforts — carried out
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under previous funding from NASA — is given in Ref. 34.

During the course of NASA Grant NSG-2299 this cooperative effort

was continued. Specifically, the results of a flow reattachment experi-

ment we conducted under other sponsorship were compared with a computational

simulation of that flow, carried out by Dr. Horstman. With a large 2D

separation zone, this particular experiment 
35 

is a particularly difficult

one to compute. However, Dr. Horstman's solution was generally successful

and revealed several interesting points which pace future progress. This

cooperative effort was reported at a recent AIAA Meeting (see PUBLICATIONS

BIBLIOGRAPHY).

The present investigators are also participating in the 1980-81

AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, at which a

general effort is being made to identify "benchmark" experiments and to

evaluate current solution methods. In fact,.several of our past experi-

ments were accepted for the Data Library of this Conference, including

some work carried out under previous NASA support. Dr. Horstman of NASA,

and others from various organizations, are now performing calculations to

be compared with the experiments in the Data Library at the upcoming second

meeting of the Stanford Conference (September 1981).
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