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FORWARD

This final technical report summarizes our research on a fundamental

study of adhesion. The results of the past year's efforts at Virginia

Polytechnic Institute and State University are described starting on p. iii.

A second major th-ust of this year's effort was polymer synthesis

carried out by Paul M. Hergenrother, Adjunct Research Professor, at

NASA-LaRC. A summary of this work on polymer synthesis is given in

Appendix III.

Copies of the surface analysis activities published during the

total grant period (1.974-1981) are contained in Appendix IV.
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During the current grant period, our e.:perimental program has

focused on

(i) the characterization of pretreated and primed Ti 6-4 surfaces

by SEM/EDAX (scanning electron micr­,copy/energy dispersive

analysis of X-rays) and ESCA (electron spectroscopy for

chemical analysis),

(ii) the characterization of fractured lap shear bonded Ti 6-4

specimens by SEM/EDAX and ESCA, and

(iii) the characterization of TiO 2 powders by a number of surface

techniques

The scope of the program is outlined in Table I.

The rationale for the study of TO 
2  
powders is given below. Titanium

and its alloys show superior corrosion resistance due to protraction by an

inherent oxide film at low and moderate temperatures (1). The nature of

this oxide film has been the subject of a number of papers (2-9). The

rule of this oxide film in determining bond strength and 'bond durability

is not yet established as judged by the contradictory evidence in a

number of recent papers (2-4, 6-11). The particular crystal phase of

TiO2 making up the oxide layer on a Ti 6-4 surface has not been esta-

blished unambiguously.

There are only a limited number of studies which report the properties

I.	 of this surface oxide layer measured in situ. Indeed, a number of signifi-

cant surface properties of the oxide layer cannot b2 measured readily on

a flat coupon. These surface properties include surface area, surface

charge and the enthalpy change on spreading a primer solution across the

_	 z._
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TABLE I

':OPE OF EXPERIMENTAL PROGRAM

SAMPLE TECHNIQUE INFORMATION

Pretreated Ti, 6-4 SEM Surface Morphology

ESCA Surface Composition

Primed Ti 6-4 SEM Surface Morphology

ESCA Surface Composition

Fractured LSS(Ti 6-4) SEM Surface Morphology

ESCA Surface Composition

Tio	 Powders Sal Surface Morphology
2

ESCA Surface Composition

Immersional Calorimetry Heats of Immersion

X-ray Diffraction Crystal Structure

Microelectrophoresis Surface Charge

Nitrogen Adsorption Surface Area

Water Adsorption Hydrophilicity

4A
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Ti 6-4 adherend. Thus a study was initiated to characterize the

i	 surface properties of both anatase and rutile TiO2.

II. EXPERIMENTAL

A. Materials

1. Ti 6-4 Coupons - Fifty-six (56) pretreated and primed Ti 6-4

coupons were supplied by personnel at the Boeing Company under

NASA Contract NAS1-15505. The chemical pretreatments and primers

used are listed in Table II. Details of the various chemical

pretreatments are contained in Appendix I.

2. Adhesive Systems - Ten (10) adhesive systems were used in the bonding

of the pretreated and ;)rimed Ti 6-4 adherends by the Boeing Co. under

NASA Contract NAS1-15605. The adhesive systems studied in the present

work are listed in Table III. Details of the adhesive resins are

given in Appendix II.

3. Fractured Lap Shear Samples - These samples were supplied by

personnel at the Boeing Company under NASA Contract NAS1-15605.

A total of 150 samples were supplied resulting from the combination

of 8 chemical pretreatments and 10 adhesive systems at 2 test

temperatures. The particular samples which were characterized in

the current grant period are listed in Table IV. The average lap

shear strength is listed and also the strength of the particular

sample used in our study is given in parenthesis.

4. Titania Powders - The four titania powders characterized in this

study are listed in Table V. Tne crystal structure was determined

by X-ray diffraction.

5. LaRC-13 and PPQ Polymers - These polymers were obtained from

personnel at NASA-LaRC.
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TABLE II

LISTING OF CHEMICAL PRETREATMENTS AND PRIMERS

USED ON Ti 6-4 ADHERENDS

Pretreatment

Chromic Acid Anodize

Phosphoric Acid Anodize

Pasa-J'ell 107

Phosphate-Fluoride (Boeing)

Phosphate-Fluoride (Picatinny)

Phosphate-Fluoride (Grit Blast)

Turco

RAE

Primer

NR1-"OA2

NR150A2 + 30% Al

NR15OB2

NR150B2 + 30% Al

PPQ

LARC-13 + 3090 Al

BR-34
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TABLE III

LISTING OF ADHESIVE SYSTEMS

Boeing Designation

L13

L13M1

L13M2

PPQ

PPQM1

Composition

NASA LARC-13 Polyimide + 30 wt % Al
powder

NASA LARC-13 Polyimide + Amoco-
amide-imide AI-1130 + Al
powder

Methyl nadic capped polymer +
20 mole % m-phenylene diamine

Monoether Polyphenylquinoxaline

Monoether Polyphenylquinoxaline +
boron powder

F ,F
F

"^	 C

^.'.i.._r._............. .. ... v ^..:!r v	 ._..._..... _.. .«.. _._...r . w T-:,^^ ̂'r....:.^ =..b:a.rw.u...W.:, .̂.^_^	
-7«-»-.,....	 ..	 .,. _.	

.... _.	 ..	 .......su.S^
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TABLE IV

L?STING OF LAP SHEAR SAMPLES

Boeing Designation*	 Lap Shear Strength in psi

PPQ-A-7, RT 5250(4650)
PPQ-A-2, 450° 2280(2820)

PPQ-D-5, RT 2240(1950)
PPQ-D-4, 450° 2420(3000)

PPQ Ml-A--7, RT 2320 (2290)
PPQ Ml-A-4, 450° 1030( 972)

PPQ M1-D-5, RT 930( 720)
PPQ Ml- D-8, 450° 1000(1010)

L13-A-2, RT 2980(2170)
L13-A-2, 450° 2200(2168)
L13-D-5, RT 1650( 870)
L13-D-6, 450° 1490(0)

L13 M1-A-9, RT 2630(2750)
L13 M1-A-6, 450° 1910(1940)
L13 :11-D-9,	 RT 1330(1260)
L13 Ml-D-6, 450° 1130( 808)

L13 M2-A-2, 450° 540( 410)
L13 M2-D-8, 450° 400( 440)

*Adhesive resin (PPQ or L13) - chromic acid anodize (A) or phosphate-
fluori(le (D) - sample no. - test temperature.

M '
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TABLE V

LISTING OF TITANIA (TiO 2 ) POWDERS

Powder Crystal Structure

Al Anatase

A2 Anatase (87%)

Rutile (13%)

R1 Rutile

R2 Rutile

Surface Area(m2/g)

`0.5

.	 .0

7.04

7.82

Supplier

Glidden

Cabot

Glidden

duPont
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B. Methods and Procedures

1. Electron Spectroscopy for Chemical Analysis (ESCA) - ESCA data

were collected on a DuPont 650 pho l•oelectron spectrometer with a magnesium

anode (1!.a 
1,2 " 

1253.6 ev) and direct display of the spectra on an x-y

recorder. The carbon is level (taken at 285.0 ev) was used to evaluate the

work function of the spectrometer. Circular (6.4 mm diameter) samples

were mounted on the cop per sample probes using double sided adhesive tape.

2. Scanning Electron Microscopy/Energy Dispersive Analysis of X-rays

(SEM/EDAX) - SEM photomicrographs at various magnifications were obtained

on an AMR scanning electron microscope (Advanced Metals Research Corpora-

tion Model 900). Approximate vertical dimensions of each photomicrograph

appear at the right in the figures, and the corresponding magnification

is listed in each caption. Most SEM samples were run after ESCA analysis.

A thin (ti 20 nm) film of Au-Pd Alloy was vacuum-evaporated onto the samples

to enhance conductivity of insulating samples which were mounted on an Al

sample stub with copper conductive tape. A rapid semi-quantitative

elemental analysis was obtained on selected samples with an EDAX Inter-

national Model 707A energy-dispersive X-ray fluorescence analyzer attached

to the AMR-900 SEM. A photographic record of each EDAX spectrum was made

using a camera specially adapted for the EDAX oscilloscope.

3. Surface Areas - The surface areas of the titania powders were

measured by the BET method (12) using nitrogen adsorption at -196°C. Matheson

ultra high purity (99%) nitrogen was used as the adsorbate in the Surface

area studies. A Micromeritics Model 2100 D Surface Area-Pore Volume

Analyzer was used. The powders were outgassed for 1 hour at < 1 x 10-4 torr

at 100% prior to the surface area measurements.

4. X-ray Diffraction - The crystal structures of the titania powders

were measured on a Diano-XRD Model 8000 diffractometer using Cu Ka radiation.
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	5. Immersional Calorimetry - Heats of wetting of the titania powders in

various liquids were measured in a Calvet MS 70 Microcalorimeter at 36°C.

The powders were outgassed for 2 hr under vacuum (< 1x10 4 torr) over a

temperature range (25° - 400°C) prior to the heat of wetting measurement.

5% PPQ polymer solution was prepared by dissolving the polymer in 1:1

xylene : m-cresol solution. 22% by weight LARC-13 was dissolved in dimethyl

formamide (DMF). Heats of immersion of the powder in two solvents xylene

m-cresol and DMF were first determined. Heats of immersion of all four

powders in 5% PPQ and 22% LARC-13 and of anatase in 1%, 3% PPQ solutions

were also determined.

6. Microelectrophoresis - The electrophoretic mobility (u) and isoelectric

point (i.e.p.) of the titania powders were determined using a Rank :dark II

microelectrophoresis apparatus.

Analytical grade potassium nitrate was used to prepare 0.02 M solutions,

whose pH was varied by appropriate addition of either nitric acid or

potassium hydroxide for use in the electrophoretic measurements (13). For

comparison purposes, pH was also adjusted using HU and NaOH. Powders were

dispersed ultrasonically in the potassium nitrate solutions and transferred

to the microelectrophoresis cell which was constructed from silica. The

cell was mounted in a perspex thermostatted tank (25°C) attached to the

stage of a microscope. The particles were observed by dark field illumi-

nation and about five particles were timed at each stationary level in

both directions.

7. Water Adsorption - Water adsorption on the titania powders was

measured using a differential capacitance manometer [Baratron MS 100 cell]

in a constant volume system constructed with Teflon stopcocks. The powders

were outgassed at < 1 x 10-4 torn for 2 hrs over a temperature range (250-

400°C) prior to the adsorption measurements. The quantity of water adsorbed
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was calculated assuming ideal gas behavior. Readsorption isotherms were

determined after heating the equilibrated samples at the specified temperature

for 2 hours.

8. Surface Acidity - Indicator solutions of p-nitro phenol (Fisher)/

toluene. alizarin (Fisher)/toluene and o-nitro phenol (Eastman)/iso octane

were used for acidity measurements. Indicator solutions were prepared by

dissolving 1 mg of the indicator in 25 cc of solvent. Color changes of

the adsorbed indicators were observed by mixing 1 g of the powder with 2 ml

of the indicator. The color changes were also observed on the samples evac-

uated at 300°C for 2 hrs, in glass ampoules with break off tips.

III. RESULTS AND DISCUSSION

A. Pretreated Ti 6-4 Surfaces

Representative 101M photomicrographs of the chemically pretreated Ti 6-4

adherends are shown in Figures 1-3. A representative SEM photomicrograph of

a chromic acid anodized Ti 6-4 adherend is shown in Figure 1 A. In the

substrate, there appears to be a surface layer containing minute cracks or

fissures of irregular shape. At the highest ( 10,000X) magnification (not

shown), the whole surface layer appears to be sponge-like presumably due to

the presence of small diameter pores not resolved in the SEM. A represent-

ative SEM photomicrograph of,a phosphoric acid anodized Ti 6-4 adherend is

shown in Figure 1 B. The surface features here are similar to those

described for the chromic acid anodized cases.

A representative SEM photomicrograph of a phosphate - fluoride [ Boeing]

treated Ti 6-4 adherend is shown in Figure 2 A. Fairly well defined alpha

(gray) and beta (white) phases appear as surface features in contrast to

their absence on bot h anodized surfaces. At higher (10,000A) magnification

(not shown), the beta phase crystals are poorly defined but the alpha phase

' s.-.w.^	 K	 :.3...j
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Figure 1.

S M photomicrographs (2,000x) of
(A) chromic acid anodized and
(B) phosphoric acid anodized

Ti 6-4 adherends.



m
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Figure 2.

SEM photomicrographs (2,000x) of (A) phosphate-
fluoride (Boeing], (B) phosphate-fluoride
(Picatinny], (C) phosphate-fluoride (grit blast],
and (D) Pasa-Jell treated Ti 6-4 adherends.

z._.
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shows regularly spaced edges about 100 nm apart. Representative SEM photo-

t '	 micrographs of phosphate-fluoride (Picatinny] and of phosphate-fluoride

J
[grit blast] treated Ti 6-4 adherends are shown in `,figures 2 B and 2 C,

respectively. The surface morphology is similar for all three of these

phosphate-fluoride treated surfaces. A representative SEM photomicrograph of

the Pasa-Jell treated Ti 6-4 adherend is shown in Figure 2 D. The surface

features are similar to those observed for the phosphate-fluoride treatment.

Closer inspection of Figure 2 D or of photomicrographs obtained at higher

magnification show that the surface is littered with "popcorn" particles

whose identity was not established. The conclusion here is that the four

acidic etches give rise to a similar surface morphology for Ti 6-4 adherends.

A representative SEM photomicrograph of a Turco treated Ti 6-4 adherend

is shown in Figure 3 A. The surface features for this alkaline etch are in

sharp contrast to those following the acidic pretreatments. The beta

phase appears to have grown at the expense of the alpha phase and exists

as highly fragmented structures. A representative SEM photomicrograph of

RAE alkaline hydrogen peroxide treated Ti 6-4 is shown in Figure 3 B. The

surface features here are unlike any of the preceding ones. A mottled

surface is obtained having no distinct features.

In summary, both the anodized surfaces have similar surface features

as is the case for the four acid etched surfaces. By contrast, there are

no similarities in the SEM photomicrographs of the alkaline treated surfaces.

The ESCA results for the different pretreated Ti 6-4 adherends are given

in Table VI. The binding energy (BE) in ev of each photopeak and the

atomic fraction (AF) for each element calculated using equation [1] are

Ai/ai
AF i	

y Ailvi

R

tabulated.

[1]
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Ai is the area of the i-th photoelectron peak and o f is the photoelectron

cross-section (15).

In addition to the photopeaks for ubiquitous carbon and for titanium

and oxygen, significant quantities of nitrogen and fluorine were detected

on the chromic acid anodized Ti 6-4. The binding energy of nitrogen suggests

the presence of a nitride. It is worthwhile to note that the same nitrogen

photopeak was observed on the Ti 6-4 surface following all six pretreatments.

The fluorine peak appeared as a doublet with the higher binding energy peak

at 687.6 ev being the larger. This result suggests two different bonding

states of fluorine in the surface. The ESCA results in Table VI for both

of the anodized surfaces are similar except that a small phosphorus photo-

peak is observed and the fluorine photopeak appears as a singlet for the

phosphoric acid anodized Ti 6-4.

The ESCA results in Table VI for the phosphate-fluoride (Picatinnyj

treated Ti 6-4 indicate the presence of trace calcium and phosphorus on

the surface. The ESCA results in Table VI for both of the acid etched

surfaces are similar except a chromium photopeak is observed for the Pasa-

Jell etch instead of a phosphorus photopeak.

The ESCA results in Table VI indicate the absence of fluorine for both

alkaline etched surfaces. A significant quantity of sodium is noted on

the Turco treated Ti 6-4 surface. Trace quantities of aluminum and calcium

are noted Dn the Ti 6-4 adherend surface after treatment by the RAE process.

B. Primed Ti 6-4 Surfaces

SDI photomicrographs of the PPQ-CAA and LaRC-PAA primed Ti 6-4 adherends

are shown in Figure 4. The PPQ primed surface shows two morphologies. Opaque

and transparent regions of the primed surfaces were noted on visual examination.

The photomicrograph in Fig. 4A was taken of an opaque region. The morphology



Figure 4.

SUt photomicrographs of (A)
Ti 6-4 (opaque region) (1,E
primed Ti 6-4 (transparent
and (C) LaRC 13 primed Ti E
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seen in Fig. 4A may be due to crystallized PPQ. A similar morphology has

been observed by Desai and Wilkes for the solvent induced crystallization

of polyethylene terephthalate (16). The photomicrograph in Fig. 4B was

taken of a transparent region. The chromic acid anodized Ti 6-4 substrate

is visible through amorphous primer film. The Al filler is apparent in the

SEM photomicrograph of the LaRC 13 primer shown in Fig. 4C. The Ti 6-4 sub-

strate is not visible in this case. The mosaic appearance may arise from

thermal retraction during cooling after primer curing at elevated temperature.

No Ti signal was observed in the EDAX spectra of any of these primed

adherends.

The ESCA results for the primed surfaces are shown in Table VII. Average

values for two separate LaRC-13 primed surfaces (CAA and PAA) are shown.

Again, no Ti signal was observed indicative of a thick primer coat. Thus,

the ESCA spectra observed for the primed adherend is just that of the

primer itself. The fact that no Al signal was observed suggests complete

coating of these filler particles by primer film. The C is region shows a

unique ESCA fingerprint for LaRC-13 including a shake-up satellite at

291.5 eV and a > C-U peak at 288.5 ev..

The ESCA results for PPQ are the average values for four separate

primed surfaces. The primed surfaces were (1) CAA-opaque region; (2) CAA-

transparent region; (3) PAA and (4) thin film deposited from a

m-cresol/.xylene solution. There were no significant differences in either

the binding energy or atomic fraction values for the four primed surfaces.

Again, the ESCA spectra observed is that of PPQ itself and is not dependent

on the substrate. There were no significant differences in the ESCA

spectra of the opaque and transparent regions of the primer on CAA Ti 6-4

in contrast to the SDI photomicrographs.
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TABLE VII

ESCA RESULTS FOR PRIMED Ti 6-4 ADHERENDS

Primer	 Photopeak B.E.(ev) A.F.

LaRC-13 	 0 la 532.3 + 0.01 0.16 + 0.02

N is 400.5 + 0.1 0.050 + 0.006

C is 285.0,288.5,291.5 0.80 + 0.02

PPQ	 0 is 533.5 + 0.2 0.048 + 0.010

N is 399.2 + 0.1 0.062 + 0.008

C is 285.0,291.5 0.89 + 0.01
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C. Fractured Lap Shear Samples - PPQ

The fractured lap shear samples are discussed by polymer type, pretreatment

and strength test temperature. An extensive series of SEM photomicrographs

were taken of the numerous samples studied in the present worm. It is not the

purpose of this report to present and discuss all of these SDI ; ,,hotomicro-

graphs. Rather, the approach has been to point out similarities to what has

already been presented. A great deal of material has thus been eliminated

without sacrificing an understanding of the results.

1. Polyphe=lquinoxaline - chromic acid anodize-room temperature

[PPQ-A-7, RTj - Both members of all the fractured lap shear test samples

were photographed using a Canon 35 mm camera with a macro lens. The 35 mm

photograph of the above sample is shown in Figure 5 A. A cohesive failure

mode is assigned as judged by the fact than no adherend surface is observed

on either member. A circular 6.3 mm (0.25 inch) diameter sample was punched

out of one of the members. This circular sample was photographed with a

Bausch and Lomb Stereo Microscope. The optical photomicrograph of the

above sample is shown in Figure 5 B. Again, only scrim cloth is visible

indicative cf cohesive failure. SEM photomicrographs of this circular

sample are shown in Figures 5 C and 5 D . The fibers appear dewetted (Fig. 5 C)

but their orientation is not disrupted. Primarily brittle failure has

occurred with some plastic :reformation as seen by the plastic flow lines

on the right side of Fig. 5 D.

The ESCA results are listed in Table VIII. The presence of the glass

scrim cloth is evidenced by the Si 2p photopeak at 103.6 ev. This value is

in good agreement with the value of 103.3 ev reported by Kang (17) for

a-quartz. The N is photopeak is characteristic of polyphenvlquinuxaline as

described in Table VII. The 0 is photopeak appears at a higher binding

a -



25

Figure 5.

Photomicrographs of [PPQ-A-7, RT]
(A) original lap shear specimen (3X),
(B) punched SEM/FSCA sample (14X),
(C) SFM/fracture surface (95.1"), and
(D) SDI/fracture surface (475X).



►.	 u
^	 u
ai	

Mw.1 W

al V Ir

a	 ^n
^a	 •

x ^
.^ s o
cp .-^	 u
c ^- u

1r G `^
O ^

Q̂ Q r•.
Gr Q

h	 Gt^l

w ^ t0

^	 w

`_ v x

a. u
G J

w	 u
o -• ^a

^ w

7
a • N

^.	 YC	 L
a0	 c"+	 ►.^
O ^ 7
Ir	 u

V C :J

o v ^
a s

i

v
w

e



E

t	 r C

Q

► ^' Pur^K QUALM

co

V



27

TABLE VIII

ESCA RESULTS OF FRACTURED LAP

SHEAR SAMPLES (PPQ-A.RT, 4501

Sample Photopeak B.E.- 	 (ev) A.f.

(PPQ-A-1, RT) 0 is 535.0 0.17
No.	 23

N la 400.1 0.047

C is (285.U) 0.73

Si 2p 103.6 0.059

(PPQ-A-2. 4501 0 la 533.1 0.1?.
No.	 24

N la 399.2 0.061

C is (285.0) 0.82

(PPQ-A-2, 4501 0 is 532.9 0.092
No. 60

N is 399.0 0.049

Ca 2p 3/2 349.2 0.0068

C is (285.0) 0.83

Si 2s 154.9 0.024

V.



28

energy than for PPQ. The absence of a Ti 2p 3/2 photopeak is additional

confirmation of cohesive failure.

The ESCA analysis of the E Glass Cloth [Style 112, A1100 Finish] is

shown in Table IX. In addition to the Si 2s and 0 is photopeaks, a small

but significant N is photopeak at 400.8 ev is also observed.

2. Polyphenylquinoxaline-chromic acid anodize - 450 * [PPQ-A-2, 4501 -

The optical photomicrograph of this sample was similar to that for the room

temperature sample above. A cohesive failure mode was assigned to this

sample. SEM photomicrographs of the circular sample are shown in Figures

6 A-C. The fibers appear dewetted (Fig. 6 A), but their overall orientation

is still intact. The coating on the fibers appears to be peeling off

(Figs. 6 A,6 B). Plastic flow lines are observed in the adhesive as noted by

the arrows in Figs. 6 B, 6 C.

The ESCA results are listed in Table VIII. Runs No. 24 and No. 60

represent different punches of the same sample. The sample for Run No. 24

had more metal showing and the sample for Run No. 60 showed mostly scrim

cloth. No narrow ,; in Sf_ 2s photopeak was obtained on Run No. 2 1•	 A trace

Ca signal was noted ^n Run No 60 along with a Si signal. It is consistent

for cohesive failure that no Ti 2p 3/2 photopeak was observed.

3. Polyphenylquinoxaline - phosphate/fluoride (Boeing) - room tempera-

tune ]PPQ-D-5, RT] - The 35 mm photograph of the above sample is shown in

Figure 7 A. An interfacial failure mode is assigned in this case based on

the appearance of the adherend substrate on one member. The optical photo-

micrographs of samples punched from the metal failure or bare surface and

the adhesive failure or covered surface are shown in Figure 7 B and 7 C, resp.

The scrim cloth is visible in Fig. 7 C but it not seen in Fig. 7 B. When the

covered member was punched, the adhesive broke cleanly away from the adherend.

„e #
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Figure 6.

SEM photomicrographs of fractured
surface of [PPQ-A-2, 450] at 190X
(A), at 950X (B) and 950OX (C).

r



w
0 ,Q
V1 C
OJ	 tq
u
w
L
7
N x

O
p u1
v ON

^ L
u cq
u
tb	 w

W Q

W
O x

O
v1 a
a
cO L
^.1	 (b
00
O

u LM

.j
4.j N U
O ^ ^

I
Q

W ^ O

^ ^ a

u

s

r;



s	 z

V

m

Q



32

Figure 7.

Photomicrographs of [PPQ-D-5, RT]
(A) original lap shear specimen (2.5X),
(B) punched SEM/ESCA sample (13X) from
metal failure surface and (C) punched
SDI/ESCA sample (14X) from adhesive
failure surface.
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Thus two additional surfaces were produced, the so-called adhesive sub-

1
strate surface and the metal substrate surface. A schematic diagram of

this fractured lap shear specimen is shown in Figure 8. The optical photo-

micrographs of the adhesive and metal substrate surfaces are shown in

Figures 9 A and 9 B,resp. Similar features are seen in these figures as can

be seen in Figs. 7 B and 7 C.

The SEM photomicrographs of the four surfaces schematically pictured

in Fig. 8 are shown in Figures 10-12. The metal failure surface in Figure

10 Ashows features including the B-phase characteristic of the phosphate-

fluoride (Boeing) etched surface (see Fig. 2 A). Some remnants of the

primer/adhesive are noted in Figure 10 B. At the highest magnification shown

in Figure 10 C, subgranular features are noted.

SUM photomicrographs of the metal substrate surfaces are shown in

Figures 11 A and 1L B. The metal substrate (Fig. 11 A) and the metal

failure surface (Fig. 10 A) appear quite similar. No residual primer/

adhesive was noted on the metal substrate surfaces in this case however.

Calcium and silicon are detected in the EDAX spectrum of the metal failure

surface as shown in Fig. 11 C. Subgranular features are again noted in

the higher magnification photomicrograph in Fig. 11 B. Vanadium was

detected in the EDAX spectrum of the 8-phase as shown in Fig. 11 D.

The SEM photomicrographs of the adhesive failure surfaces are shown

at two magnifications in Figures 12 A and 12 B. No glass fibers are visible

and the adhesive surface clearly shows the imprint of the metal substrate.

For example, compare the features seen in Fig. 1' A with Fig. 11 A and in

Fig. 12 B with Fig. 11 B. The micro voids apparent in Fig. 12 A are places

where the $-phase pulled away during fracture.

The SEM photomicrographs of the adhesive substrate surface are shown

at two magnifications in Figures 12 C and 12 D. Again, no glass fibers
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ADHESIVE FAILURE SURFACE

ADHESIVE
	

ADHESIVE SUBSTRATE SURFACE

Ti 6-4
	 ETAL SUBSTRATE SURFACE

Figure S. Schematic of fractured lap shear specimen
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Figure 9.

Photomicrographs of punched SDI/ESCA
samples of (A) adhesive substrate
surface (14X) and (H) metal substrate
surface (14X).
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ù y
C	 .^

C) ye
G. u s

O u
Uf	 OJ

s ^ ^
O. y w
;O	 V

O ^ y
L y 4J
v v u

E 'p L
O ^9 uL	 y

G ^.. y

Q;

I)L
w0

r

x.

x



9

ot
	

w



38

Figure 10.

SEM photomicrographs of the metal failure
surface for [PPQ-D-5, RTJ at l,OUOX (A),
2,000X (B) and 20,000X (C).
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A

Figure 11.

5EM photomicrographs of the metal
substrate surface for [PPQ-D-S, RT]
at 1,000X (A) with EDAX spectrum (B)
and at 10,000X (C) with ED&X spectrum
(D).
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Figure 12.

SDI photomicrographs of the adhesive
failure surf a ,^e for [PPQ-D-5, RTj at
1,000X (A) and 20,000X (B) and of the
adhesive substrate surface for
(PPQ-D-5, RT] at 475X (C) and 9,500X
(D) .
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are seen and the imprint of the metal substrate on the adhesive is seen.

The holes corresponding to the location of the $-phase before fracture are

clearly seen in Fig. 12 D. Subgranular features are seen in both rigs. 12 B

and 12 D.

The ESCA results of the four surfaces discussed above are shown in

Table X. The metal failure surface (Fig. 10 A) shows a significant Ti

signal which fact is further confirmation of the assignment of interfacial

failure for this sample. The photopeak at a binding energy of 530.5 ev

is assigned to oxygen in the surface oxide layer. lie have reported (14) a

value of 530.5 ev for the 0 is photopeak following a phosphate-fluoride

treatment of Ti 6-4. Thus, the ESCA results support the existence of a

titanium oxide layer on the metal failure surface. The presence of Ca is

consistent with the results in Table VI where Ca was observed as a residual

on the Ti 6-4 adherend surface after the phosphate-fluoride treatment. The

N is photopeak at 399.3 ev is consistent with the N is photopeak observed

for the Ti 6-4 adherend surface after any chemical pretreatment (see Table VI).

However, the origin of the nitrogen is not clear since a N is photopeak

at about the same binding energy is observed for both pretreated Ti 6-4

and PPQ (see Table VII). The observation of a significant Si 2s photopeak

is quite interesting. Again, the origin of this Si signal is not clear.

However, the fact that failure occurred at this interface may be associated

with the presence of silicon. The SEM photomicrographs (see Fig. 10 A)

shows no evidence of glass fragment from the scrim cloth. It is known that

the scrim cloth is coated with an organo-silicon compound. Does in fact

degradation and subsequent migration of silicon-containing compounds to the

interface occur? The answer to this question will involve additional

experiments.

The adhesive failure surfaces give an 0 is photopeak at 532.7 ev
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ESCA RESULTS OF FRACTURED LAP SHEAR SAMPLE (PPQ-D-5, RT)

Surface Analyzed Phot_ opeak B.E.	 ev A.F.

Metal Failure Surface 0 is 530.5 0.27
No.	 38

Ti 2p3/2 458.9 0.044

N is 399.3 0.022
Ca 2p3/` 347.5 0.0078

C is (285.0) 0.60

Si 2s 153.5 0.052

Adhesive Failure Surface 0 is 532.7 0.13
No.	 34

N is 399.3 0.050

C is (285.0) 0.79

Si 2s 153.6 0.031

:Metal Substrate Surface 0	 is 530,21 0.27
No.	 58

V	
2p3/2 515.1 0.0020

Ti 2p 3/2 458.9 0.070

N is 399.4 0.020

Ca 2p 3/2 347.5 0.012

C is (285.0) 0.62

Pb 4 1: 139.0 0.0081

Adhesive Substrate Surface	 0 is
No. 59

Ti 2p3/`

N is

C is

Pb 4f 7/2

533.2
	

0.071

459.6
	

0.0037

399.0
	

0.057

(285.0)
	

0.87

138.7
	

0.0014
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(see Table K) characteristic of PPQ (set Table VII). again, a significant

Si signal is observed on this surface where no glass fibers are seen (see

Fig. 12 A). The absence of a Ti photopeak is additional confirmation of

interfacial failure. A further conclusion can be drawn. Failure occurred

at the primer/oxide interface rather than _i the oxide layer in which case

a Ti signal should have been observed.

The metal substrate surface (see Figs. 8,9 B, 11) shows an 0 is photo-

peak at 530.2 ev characteristic of the pretreated Ti 6-4. In this case a

small V peak and a significant Ti peak were detected. The presence of Ca

is consistent with the composition of a phosphate-fluoride treated Ti 6-4

surface. the presence of a trace quantity of lead on this surface and on

the adhesive substrate surface is not explained.

The adhesive substrate surface (see Figs. 8,9 A, 12 C, 12 D) shows an 0 Is

photopeak at 533.2 ev characteristic of PPQ. A small Ti peak was detected

here indicative of fracture of the oxide laver. No silicon was noted on

either of these substrate surfaces.

4. Polvphenvlquinoxaline - phosphate/fluoride (Boeing) - 4500

[PPQ-D-4, 450 .]. - A cohesive failure was assigned in this case based on

similar optical photomicrographs (see Figs. 5 A. i B). The SEM photomicro-

graphs of this sample were similar to the one shown in Fig. 5 C and so are

not repeated here. Punching out the ESCA samples did again cause separation

between the adhesive and substrate on both members as depicted in Fig. S.

The ESCA results for this sample are listed in Table XI. The 0 is

photopeak is characteristic of PPQ. Also, both Ca and Si are obse rred on

this surface which is consistent with cohesive failure resulting in exposed

scrim cloth thus reflecting the glass composition.

The sample separated when punched and the S^1 photomicrograph of the

adhesive substrate surface (see Fig. 8) appeared similar to the one shown
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TABLE XI

ESCA RESULTS OF FRACTURED LAP SHEAR SAMPLE (PPQ-D-4. 
4501

Surface Analyzed PhotoAeak B.E.	 ev A.F.

Adhesive Failure Surface 0 is 533.0 0.14

No.	 37 N is 398.9 0.044

Ca 2p3/2 348.5 0.011

C	 is (285.0) 0.76

Si 2s 154.0 0.039

Adhesive Substrate Surface 0	 is 533.3 0.33

Ti 2p 3/2 460.8 0.0032

N	 is 399.4 0.033

C	 is (285.0) 0.63

Pb 4f 7/2 139.0 0.0010

Metal Substrate Surface 0	 is 530.6 0.28

V	 2"3/2
516.0 0.0010

Ti 2p3/2 458.8 0.057

N	 is 399.3 0.012

Ca 2p3/2 347.5 0.0061

C	 is (285.0) 0.64

138.8 0.0034Pb	 4f 7/2
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in Fig. 12C. The EDAX spectrum showed both Ti and Al. The SEM photos

3	 graphs of the metal substrate surface (see Fig. 8) appeared similar t

c
the one shown in Fig. 11 A. The ESCA results of these two surfaces a

shown in Table XI. The adhesive substrate surface shows a minimal Ti

signal suggesting oxide transfer. The 0 is photopeak is consistent w

PPQ(see Table VII). The metal substrate surface shows a significant '

signal indicative of minimal primer/adhesive transferred to substrate

The 0 is photopeak at S30.6 ev is characteristic of the oxide and not rrq.

D. Fractured Lap Shear Samples - PPQ Mod I

1. Polyphenylquinoxaline Mod I - chromic acid anodize - room temperature

[PPQ M1-A-7, RTJ - The 35 mm photograph of this sample in Figure 13 A shows

mixed (interfacial and cohesive) mode failure. A representative sample was

punched as shown in the optical photomicrograph in Fig. 13 B. The SLM

photomicrographs in Figs. 13 C and 13 D show a cohesive failure region.

The glass fibers still appear wetted and their orientation intact. The

polymer portion (Fig. 13 D) has a high surface area. The interfacial

failure region is shown in Figures 14 A -C. The light areas in Fig. 14 A

appear to result from a residual primer/adhesive film covering the Ti 6-4

substrate. This film is shown at higher magnification in Fig. 14 B. The

high magnification SEM photomicrograph in Fig. lei C taken in a dark area

(Fig. 14 A) is representative of an anodized Ti 6-4 substrate.

The ESCA results for the sample are listed in Table XII. Run Nos.

25, 30 and 63 represent different punches of the same sample. The sample

for Run No. 30 showed about half metal/half scrim cloth; the sample for

Run No. 25 was taken from the metal section; and the sample for Run No.

63 showed about half metal/half scrim cloth. The oxygen is photopeak at

533.6 ev for Run Nos. 30 and 63 is characteristic of PPQ (see Table CII).	 I

Calcium and silicon result from glass fibers being exposed on fracture.

r.a
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Figure 13.

Photomicrographs of [PPQhSl-A 7, RTJ
(A) original lap shear specimen k2X),
(B) punched SEM/ESCA sample (14X),
(C) SEM/fracture surface (200X) and
(D) SEM/fracture surface (5,000X).
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Figure 14.

SEM photomicrographs of [PPQMI-A-1, RTJ
showing light and dark areas at 20OX (A),
light area at 1,000X (B) and dark area
at 9,50OX (C).
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TABLE KII

ESCA RESULTS OF FRACTURED LAP SHEAR SAMPLES [PPQMI-A, RT, 4501

Sample Photopeak B.E.(ev) A.F.

[PPQMI-A-7, RT] 0 is 533.6 0.12
No.	 30

N is 399.3 0.054

Ca 2p3/2 349.7 0.0074

C is (285.0) 0.78

Si 2p 104.7 0.035

[PPQMI-A-7, RT] 0 is 530.8 0.12
No.	 25

Ti 2p3/2 458.9 0.022

N is 399.3 0.041

C is (285.0) 0.81

[PPQMI-A-7, RT] 0 is 533.2 0.073
No.	 63

N is 399.2 0.056

Ca 2p3/2 349.1 0.0029

C is (285.0) 0.85

Si 2p 104.2 0.018

Pb 4f7/2 139.5 0.0002

[PPQMI-A-4, 4501 0 is 533.5 0.10
No.	 26

N is 399.1 0.058

C is (285.0) 0.84
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The absence of a Ti signal suggests a thin residual primer/adhesive film

with a minimal (<10%) area of exposed substrate. However, for Run No. 25,

a significant Ti signal was noted and the 0 is photopeak at 530.8 ev is

characteristic of the metal oxide layer which suggests interfacial failure

in this region. Surprisingly, no boron signal was detected on any of the

samples.

2. Polyphenylquinoxaline Mod I - chromic acid anodize - 4500

1PPQMI-A-4, 4501 - The 35 mm photograph and optical photomicrograph of this

sample in Figures 15 A and 13 B show again mixed mode failure. The SEM

photomicrographs in Fig. 15 C and 15 D show a cohesive failure region.

Glass fibers are seen and the adhesive shows considerable deformation with

a large amount of surface area. The SEM photomicrographs of the inter-

facial failure region were similar to those of PPQ-A-7, RT. The ESCA

results for this sample are listed in Table YII. The 0 is photopeak is

characteristic of PPQ. Again, no boron signal was observed.

3. Polyphenylquinoxaline Mod I - phosphate/fluoride - room temperature

(PPQMI-D-5, RTJ - The 35 mm photograph and the optical photomicrograph of

this sample showed interfacial failure. The SEM photomicrographs shown in

Figures 16 A and 1.6 B show the substrate surface with thin patches of

primer/adhesive remaining. Sub-granular structure is noted in Fig. 16 B.

The adhesive popped off the substrate when the circular sample vas

punched.

The ESCA results are lis ped in Table VIII for the different surfaces.

The 0 is photopeak appears at a higher binding energy on the adhesive

surface compared to the two metal surfaces. This has been a consistent

observation throughout the ESCA analysis. The Ti photopeak is observed on

the adhesive surface indicative of failure of the surface oxide laver.

A Ca photopeak is observed on the metal surfaces resulting from the phosphate/
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Figure 15.

Photomicrographs of [PPQMI-A-4, 450]
(A) original lap shear specimen (2X),
(B) punched SEM/ESCA sample (14X),
(C) SEM/fracture surface (475X) and
(D) SEM/fracture surface (9500X)
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Figure 16.

SDI photomicrographs of (PPQR1-D -5, RT]
at 10OX (A) and 5,000X (B).



A
U

O0H

x
w

U

a

w
O
;t7

G
O
00
O A
1r	 a3
u ^

B x
o c
L ,^
v ^
G, u'1

G

S

d
L
7
60
..r
s

,u,,..^. ,:,e^i;i.,	 .. ..^^_,	 -^^a.,...-, .:moo ,^L.;. ..x,.^w,m -	 -	 -	 ••	 .^.^,.



Q
	

m

Yr^^



59

TABLE XIII

ESCA RESULTS OF FRACTURED LAP SHEAR SAMPLE (PPQMl-D-5, RT)

Surface Analyzed Photopeak 3.E. (e A.F.

Metal Failure Surface Na	 la 1072.0No. 66 0.0011
F	 is 685.1 0.0068
0	 Is 530.4 0.23
Ti 2p3/2 458.7 0.056

Ca 2p3/2 347.9 0.0046
C	 is (285.0) 0.68
Pb 4f7/2 139.0 0.0036
Si 2p 103.4 0.020

Metal Failure Surface 0	 is
No.	 28 530.3 0.26

Ti 2p3/2 458.8 0.064
N	 is 399.4 0.025
Ca 2p3/2 347.6 0.0048
C	 is (285.0),288.5 0.61
Pb 4f 7/2 137.7 0.0032
Si 2p 101.4 0.025

adhesivF. Failure Surface 0	 isNo.	 32 532.J 0.16
Ti 2p3/2 460.3 0.020
N	 is 399.3 0.048
C	 is (285.0)289.4 0.75
Si 2p 102.7 0.019

j

ff—.
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fluor=de pretreatment. A Si photopeak is observed on all surfaces which

reinforces the suggestion that low lap shear strengths are associated with

the presence of Si in the interfacial region.

4. Polyphenylquinoxaline Mod I - phosphate/fluoride - 450°

(PPQMI-D-8, 4501 - The failure mode here is mixed. The adhesive showed

elastic deformation with a large surface area. The SEM photomicrograph of

the metal substrate appears .;imilar to that for the room temperature sample

shown in Fig. 16. Again, the adhesive popped off the substrate when punched.

The ESCA results are listed in Table XIV. Again the lower binding energy of

the 0 is photopeak is assigned to the surface metal oxide layer. No Ti signal

is observed on the adhesive failure surface suggesting that the surface oxide

layer remained intact.

E. Fractured Lap Shear Samples - L13

1, L13-chromic acid anodize-room temperature [L13-A-2, RT1 - The failure

mode here is mixed. The SEM photomicrographs in Figure 17 illustrate the

interface between adherend and the primer/adhesive. The Al filler particles

can be seen as protrusions in the adhesive. Deformation is seen only at the

edges of the adhesive. There is no evidence of scrim cloth. The ESCA results

are listed in Table XV. The presence of a Ti signal indicates partial inter-

facial failure. The presence of Si is noted but its source is unknown. The

fact that no Al signal is observed suggests that the filler particles (Fig. 17)

are covered with adhesive or the total exposed s.-ea of these particles is minimal.

2. L13-chromic acid anodize - 450° [L13-A-2, 4501 - These samples failed

cohesively and the SEM photomicrographs are shown in Figure 18. A high density

of Al particles are noted. Several void areas are seen in Fig. 18 B as well

as the scrim cloth. A more detailed look at the Al particles is shown in

Figure 19 A. The bottom of a void area in Fig. 19 A is shown in Fig. 19 B.

The Al particles tend to be small and are well covered by primer/adhesive.
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TABLE XIV

ESCA RESULTS OF FRACTURED LAP SHEAR SAMPLE (PPQMI-D-8, 450]

Sample Photopeak B.E. ev A.F.

Metal Substrate Surface 0	 is 530.4 0.28
No.	 33

Ti 2p3/2 458.4 0.071

N	 is 399.3 0.028

Ca 2p3/2 347.7 0.010

C	 is k_65.0) 0.61

Pb 4f 7/2 139.1 0.0049

Adhesive Failure Surface 0	 is 533.3 0.12
No.	 31

N	 is 398.9 0.047

C	 is (285.0) 0.81

Si 2p 103.9 0.031

x
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Figure 17.

SDI photomicrographs of [LA-A-2, RTJ
at 160X (A) and 400\ (B).
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TABLE YV

ESCA RESULTS OF FRACTURED LAP SHEAR [L13] SAMPLES

Sample Photopeak B.E.	 ev) A.F.

(L13-,X;-2-RT] 0 is 532.3 0.18

No.	 14 V 2p1/2 523.4 0.0098

Ti 2p3/2 459.8 0.0088

N is 400.1 0.024

C is (285.0) 0.75

Si 2p 102.4 0.027

[L13-A-2, 4501 0 is 532.3 0.21

No.	 15 N 1s 400.3 0.032

C is (285.0) 0.76

[L13-A-2, 4501 0 is 532.1 0.21

No.	 18 N 1s 400.0 0.040

C is (285.0) 0.66

Al. 2s 120.0 0.071

Si 2p 102.4 0.021

[L13-D-5, RT] 0 is 532.1,538.3 0.13

Adhesive Failure Surface Ti 459.4 0.0032
No.	 20 `p3/2

N is 400.7 0.042

Is (285.0) 0.82

[L13--D-5, RT] 0 is 530.6,	 531.9 0.26

Metal Surface
l
Substrate

Ti
2'3/2

458.4 0.081

N is 400.5 0.027

C is (285.0) 0.63

[L13-D-6, 4501 0 is 531.7 0.33

No.	 19 Ti
2p3/2

458.8 0.063

N is 400.7 0.026

Ca 2p 3/2 347.0 0.0048

C is (285.0) 0.58
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Figure IS.

SEM photomicrographs of (1.13-A-2, 4501
at 40X (A) and 160X (B).

m.
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Figure 19.

SEM photomicrographs cf [L13-A-2, 4501
at 50X (A), at 30OX (B) and at 50OX (C)
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A fracture surface in Fig. 19 A is shown in Fig. 19 C. A broad particle

size distribution of filler particles is seen here.
[

Two SEM photomicrographs of the aluminum powder No. 101 used as a
R

filler in the L13 matrix are shown in Figure 20. The ellipsoidal partic

cover a wide size distribution range. The ESCA analysis of the aluminum

powder is given in Table IX.

The ESCA results are listed in Table XV. Runs No. 15 and No. 18 are

different pinches from the same sample. The sample for Run #13 showed

more Al filler on the surface than the Run 1115 sample. No Ti signal is

observed consistent with cohesive failure. The Al signal here is consistent

with the high density of filler particles (Fig. 19 C). The Si signal here

could arise from the scrim cloth visible in Fig. 18 B.

3. L13-phosphate/fluoride-room temperature [L13-D-5, RTJ - This

sample failed interfacially. The adhesive popped off when that lap shear

member was punched. The metal failure surface shows islands of polymers

left behind as in the [L1.'-A-2, RTJ case. The adhesive substrate surface

mirrors the metal substrate surface as was noted in the [PPQ-D-5, RTJ

sample. The EDAX spect,um of the adhesive substrate surface showed Al and

Ti signals.

The ESCA results are listed in Table XV. The adhesive failure surface

shows a small. Ti signal suggesting transfer of oxide layer from the adherend

to the adhesive. A shake-up satellite for C is was observed at 291.0 ev

which is a characteristic spectral feature of L13. The photopeak at 538.3

ev was assigned to an 0 is shake-up satellite which is unusual.

4. L13-phosphate/fluoride - 450° [1,13-D-6, 450) - The failure *rode

here was mixer.' ithou2h this particular sample had a zero lap shear strength.

:hed. The SEM photo-

E adhesive on the
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Figure: 20.

SEM photomicrographs of No. 101
aluminum powder at 10OX (A) and
at 500 X (H).
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adherend surface as was seen in Fig. 11. The adherend surface shows

features characteristic of phosphate/fluor-We pretreatment (Fig. 10 A).

The ESCA results are shown in Table XV. The Ti signal again reflects

partial interfacial failure and the Ca signal was observed in the original

phosphate/fluoride pretreated Ti 6-4.

F. Fractured Lap Shear Samples - L13 Mod I

1. L13 Mod I - chromic acid anodize - room temperature [L13 Ml-A-9, RT] -

This sample showed mixed ­ode failure. Examination of SEM photomicrographs

showed that the fibers remain well wetted and intact with Al particles

visible in and on the scrim cloth. The exposed adherend appeared to be

covered with primer/adhesive. The ESCA results of this sample are shown

in Table XVI. The weak Ti signal supports partial interfacial failure.

However, the inability to scan the sample surface with ESCA necessarily means

one cannot differentiate between exposed adherend surface or a collection of

debris produced on fracture on the adhesive-containing areas.

2. L13 Mod I - chromic acid anodize - 450° [L13 M1-A-6, 4501 - The

sample showed mixed mode failure and the SEM photomicrographs here are

quite similar to the room temperature sample [LA M1-A-9, RT] discussed

above. The ESCA results are shown in Table XVI. The Al signal is due to

filler particles but an expected Ti signal was not observed. The fact that

no Ti signal was observed could be due to sample bias.

3. L13 Mod I - phosphate/fluoride - room temperature [L13 M1-D-9, RT] -

A mixed mode failure is observed here and the SEM photomicrographs show

features characteristic of a phosphate/fluoride treated Ti 6-4 adherend

(see Fig. 10 A). The ESCA results in Table XVI support again partial inter-

facial failure by .observation of the Ti signal.

4. L13 Mod I - phosphate/fluoride - 450° [L13 M1-D-6, 450] - Interfacial

t
failure was noted in this sample and the SEM Photomicrographs of the adherend

;fir i t	 z_ _.	 - -	 - i
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TABLE XVI

ESCA RESULTS OF FRACTURED LAP SHEAR [L131111 SM1'LES

Sample Photopeak B.E.(ev) A.F.--—

[L13M1-jk -9, RTJ 0	 is 532.2 0.16

Ti 2p 3/2 458.8 0.0065

N	 is 400.2 0.045

'
I

C	 la (285.0) 0.79

j [L13M1-A-6, 450] 0	 is 531.9 0.17

N	 is 399.9 0.043

C	 is (285.0) 0.75

Al 2s 119.1 0.035

[L13M1-D-9, RT] 0	 is 532.6 0.23

' Ti 2p3/2 458.8 0.037

N	 is 400.3 0.044

C	 is (285.0) 0.69

[L13M1-D-6, 4501 0	 is 531.6 0.23

Ti 2p 312 458.6 0.031

N	 is 400.2 0.047

C	 is (285.0) 0.69

i
j

C

I
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surface appeared similar to Fig. 10 A. The SE4 photomicrographs in

Figure 21 show a high density of filler particles contained in the adhe€

There are several ' pockets' where Al particles have been displaced. Tht

ESCA results in Table XVI are similar to what was seen for Sample (L13 ^

RT1 above.

G. Fractured Lap Shear Samples - L13 Mod II

Only the 450 0 test samples were received on this series.

1. L13 Mod II - chromic acid anodize - 450 6 (L13 M2-A-2, 4501 - The

failure mode was interfacial in this case. The SEM photomicrographs show

a thin laver of adhesive over the adherend with some thicker adhesive

islands. The adhesive failure surfaces shows considerable deformation.

The Al filler particles are seen but no scrim cloth is apparent. The ESCA

results are shown in Table XVII. The metal failure surface shows Ti as

evidence of interfacial failure and Si of undetermined origin. The adhesive

failure surface shows Ti and suggests transfer of Ti from the adherend to

the adhesive.

2. L13 Mod II - phosphate/fluoride-450° (1,13 M2-D-8, 4501 - Inter-

facial failure was observed for this sample. The adhesive popped off when

punched. The SDI photomicrographs show a characteristic phosphate/fluoride

pretreatment morphology for the metal failure surface. Scattered patches

of primer/adhesive are also noted on the adherend. The metal substrate

surface appears similar to the metal failure surface. The adhesive failure

surface shows no scrim cloth but unbonded Al filler particles are seen. There

are some voids and some deformation.

The ESCA results are listed in Table XVII. Ti is noted with the two

metal surfaces but not on the adhesive failure surface suggesting that no

surface oxide was transferred from the adherend to the adhesive on fracture.

Ca noted on both metal surfaces and P noted on the metal substrate surface

a
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Figure 11.

Scat photomicrographs of [L13M1-D-6, 4501
at 1,000X (A) and at 5,000X (H).
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Stele

[L13M2-A-2, 4501
Metal Failure Surface

[L13M2-A-2, 4501
Adhesive Failure Surface

[L13M2-D-8, 4501
Metal Failure Surface

[L13M2-D-8, 450]
Adhesive Failure Surface

[L13M2-D-8, 4501
Metal Substrate Surface
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TABLE XVII

ESCA RESULTS OF FRACTURED LAP SHEAR [L13M2j SAMPLES

Photooeak

0 is

Ti 2p3/2

N is

C is

Si 2s

0 is

Ti 2p3/2

N is

C is

0 is

Ti 2p3/2

N is

Ca 2p3/2

C is

0 is

N is

C is

0 is

Ti 2p3/2

N is

Ca 2p3/2

C is

P 2s

Al 2s

B. E. ev

532.1

458.7

400.3

(285.0)

153.5

531.8

458.8

400.2

(285.0)

531.8

458.4

399.1

347.4

(285.0)

532.0

400.2

(285.0)

531.7

458.6

400.2

347.2

(285.0)

191.3

119.3

A. F.

0.17

0.011

0.039

0.77

0.010

0.17

0.0062

0.049

0.77

0.29

0.038

0.024

0.0045

0.65

0.17

0.040

0.79

0.24

0.047

0.031

0.0047
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are residuals left from the pretreatment (see Table VI).

H. Summary

A summary of the results obtained for the fractured lap shear samples

are shown in Tables XVIII and XIX for the PPQ and L13 adhesives, reap.

The following conclusions are based on the summary tables:

(1) There is a pronounced tendency for both adhesives to "pop-off"

of the phosphate/fluoride pretreated surfaces independent of test tempera-

ture.

(2) The presence of Ti as established by ESCA can be used as a

criteria for interfacial failure and as a criteria for fracture of the

metal oxide laver.

(3) The presence of Pb in the surface of only the PPQ samples is not

explained.

(4) The presence of Ca in both the PPQ and L13 samples is associated

only with the Ti 6-4 adherend surfaces.

(5) The persistent observation of Si particularly in the PPQ samples

needs to be rationalized. There are at least three sources of silica in the

adhesive system, namely (i) scrim cloth, (ii) degradation of scrim cloth

coating and (iii) contamination of neat polymer.

I. Titania Powders

BET surface areas determined by N, adsorption and the crystalline

phases determined by x-ray diffraction for the 4 titan'.a powders Al, A2,

R1, and R2 are given in Table V. Calculated d spacings of 0.325 nm for

rutile and 0.352nm for anatase agree well with reported values (18).

The elemental composition of the titania powders by ESCA analysis is given

in Table XX. Powder A2 appears to be pure without any trace elements.

Aluminum (III) is present on both rutile samples presumably as a thin (<5 nm)
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alumina coating since a significant Ti signal is also observed. The

oxygen photopzak on both rutile surfaces was a doublet. The peak at

ev is	 to titanium oxide while the peak at 531.2 ev is due to alums

oxide (19). SEM photomicrographs showed fine particles lumped together

in all four powders.

The heats of immersion (dwH) values of the titania powders in water as

a function of the outgassing temperature of the powder are shown in Figure 22.

The A 
w 
H values for the anatase -Al powder do not change as much with out-

gassing temperature, as the R1, R2 and A2 samples. A similar behavior has

been shown previously by Herrington and Lui (20) and Iwaki et al. (21).

For rutile-R1, A 
W 
H increases rapidly up to 300% and less rapidly to 400°C.

Anatase A2 which is a mixture of rutile and anatase shows A 
w 
H values between

rutile and anatase.

Water adsorption isotherms for Al, A2, and R1 samples as a function

of outgassing temperature are shown in Figures 23, 24 and 25 respectively.

The water adsorption data are consistent with the heat of immersion data.

The rutile R1 shows an increase in water adsorption with increasing outgassing

temperature up to 300°C, while water adsorption on anatase does not show a

significant dependence on outgassing temperature. Water adsorption on A2

shows an intermediate behavior of rutile and anatase, itti outgassing temper-

ature. Day (22), Jones and Hockey (23) and Dawson (24) have all shown that

the following three types of H2O may exist on a TO 2 surface: (i) ;issocia-

tively chemisorbed water present as hydroxyl groups; (ii) non-dissociatively

chemisorbed water found as a co-ordinating ligand to surface cation Lewis

acid sites; and, (iii) physically adsorbed water present in a monolayer and

in multilayers. Jones and Hockey (23) and Day (22) have shown that non-

dissociative chemisorbed molecular water on the (100) and (101) planes of
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Ti02 is retained up to 200 °C and hydroxyl groups which arise from dissoci-

ative chemisorption on the (110) plane are nearly all desorbed on outgassing

at 400°C. Thais the increase in water adsorptive capacity of rutile with

increasing temperature can be explained in terms of successive desorption

f	 of different kinds of hydroxyl groups present on the surface. Rehydroxyl-

ation of the evacuated TO surfaces occurs when the surface is a-ain exposed

to water. Anatase does not show any variation in water adsorption capacity

with outgassing temperature. Dawber et al. (25) have shown that rutile

adsorbed more water than anatase per unit area and also that dried anatase

re-adsorbed approximately only one molecular water laver whereas dried

rutile could re-adsorb about 6 molecular water lavers. Thus the decreased

water adsorptive capacity of anatase with increased outgassing temperature

is in agreement with the work by Dawber at al. (25).

acidity measurements taken with indicators are given in Table XXI.

All four powders were found to be basic and their pKa values < 7.6. When

the powders were evacuated at 400°C for 2 hours an increase in acid

strength was observed on rutile-R1, with a measured pKa value between 7.0

and 7.6. The increase in acid strength may be due to the exposure of

coordinately unsaturated cations by removal of water molecules at a higher

temperature (26).

The isoelectric points (i.e.p.) measured with microelectrophoresis for

R1, R2, Al and A2 samples are 5.1, 6.6, 3.8, and 5.6 respectively. The

presence of Cl on both the Al and R1 sampl,as was seen by ESCA in Table Y.X.

However the anatase-A1 sample has a larger amount of C1 compared to the

rutile-R1 sample. Parfitt at al. (13) have suggested that the surface

E	 chlorine plays an important role in determining the isoelectric point in

TiO,, powders. lie indicated that both surface and bulk chloride have the

9
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effect of lowering the i.e.p. Thus our results are consistent with his

findings. Anatase-Al has the lowest i.e.p. and rutile-Rl has a lower

i.e.p. than the other two powders. When the pH was adjusted with HC1 and

NaOH instead of HNO 3 and KOH, no change in the i.e.p. was observed. Even

though the surface chloride ions changes the i.e.p. value, the external

addition of chloride ions does not change the i.e.p.

Solutions of 5% PPQ 11 :1 xylene : m-cresoll, and 22% LaRC-13

Ldimethylformamide] are used as primers on freshly pretreated Ti 6-4

metal coupons. The heat of immersion values of the TiO I powders in these

solutions are listed in Table X%II. The J H values in 1:1 xylene : m-cresol

are similar for all four powders. However, the heat of immersion for anatase

Al is higher in the 52 PPQ solution than that in the solvent o-ly. For the

other three powders, the A 
w 
H values are similar in the solvent and in the 5%

PPQ solution. Thus there appears to be a specific, preferential interaction

of PPQ with anatase Al. This may be due to the lower water adsorption capac-

ity and the higher chloride content on the anatase Al surface compared to

other powders as seen by the water adsorption and ESCA studies. Surface

hydroxyl groups, cations. and chloride groups on anatase Al are not covered

with water molecules and are readily available for interaction with PPQ.

The A H values for anatase Al on immersion in PPQ solutions of different con-
w

centrations are shown in Figure 26. The A 
w 
H values increase with increasing

concentration of the polymer. This further confirms that there is specific

kind of interaction with the polymer on the anatase Al surface.

The AWH values in Table VC11 for DMF and for 22% LARC-13 are similar for

each of the TiO 2 powders. This means there apparently is no preferential

interaction of the LARC-13 polymer with any of the TiO2 powders.
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TABLE XXII

NEAT: OF IMMERSION OF TITANIA POWDERS IN XYLENE:m-CRESOL,

5% PPQ, DIMETHYLFORMAMIDE(DMF) AND 22% LARC-13

aWH(mJ/m2)

Liquid	 A	 Rl	 R2	 A2

1:1 xylene : m-cresol	 252	 282	 229	 273

5% PPQ in 1:1 xylene	 382	 271	 274	 286
i	 m-cresol

DMF

22% LARC-13 in DMF

267 326 240 342

279 320 227 362
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APPENDIX I

ADHEREND SURFACE TREATMENT PROCESSES (27)

A brief description of each surface treatment is provided I

of the Appendix.

A. Chromic Acid Anodize

The process procedures used for this surface treatment are

specification BAC 5980. These procedures included:

(1) Alkaline clean (Turco 2623) 15 minutes @ 333K (14(

(2) Hot rinse

(3) Nitric - hydrofluoric etch 90 seconds at 294K (70"F)

(4) Cold rinse

(5) Cro 3 Anodize - 5 volts, 12.7 Amps/M 2 (1.2 Amps/FT 2)

- CrO3 48.8 gm/Liter (6.5oz./gallon)

- 20 minutes @ 291K (65°F)

(6) Cold rinse

(7) Hot air dry @ 338K (150`F)

B. Phosphoric Acid Anodize

The process procedures for this surface treatment are as specified in

Boeing specification SAC 5555. General procedures are:

(1) alkaline clean (Turco 2623) 15 minutes @ 333K (140°F)

(2) Hot rinse

(3) Nitric - hydrofluoric etc}i 90 seconds @ 294K (70`'F)

(4 1 Cold rinse

(5) Phosphoric acid anodize - 5 volts, 19 Awp3/M ` (1.8 Amps/FT )

- H3PO4 - 112.: gm/liter (15 oz/gallon)

- 20 minutes @ 297K (75°F)

(6) Coid rinse

(7) Hot air dry @ 338K (150°F)

C. Pasa-Jell 107

These process procedures for this treatment are:

(1) alkaline clean (Turco 2623) 15 minutes @ , 333K (140°F)

(2) Hot rinse

(3) Nitric-hydrofluoric etch 90 seconds k3 2014K (70°F)

(4) Pasa-Jell 107 12 minute immersion in Pasa-Jell 107

(5) Hot air dry 3 338K (150°F)
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D. Phosphate Fluoride (Boeing)

Process procedures for this surface treatment are as specified in Boeing

specification BAC 5514. General procedures are:

(1) Alkaline clean (Turco 2623) 15 minutes @ 333K (140'F)

(2) Hot rinse

(3) Nitric - hydrofluoric etch 90 seconds @ 294K (70'F)

(4) Cold rinse

(5) Phosphate fluoride treat per BAC 5514 WS seconds @ 294K (a0 °F)

(6) Cold rinse

(7) Hot water leach 15 minutes @ 355K (18C*F)

(8) Hot air dry @ 338K (150 °F)

E. Phosphate Fluoride (Pieatinny)

General procedures for this surface treatment are:

(1) Alkaline clean (Turco 2623) 15 minutes @ 33;.K (140°F)

(2) Hot rinse

(3) Nitric-hydrofluoric etch, SAC 5514 Method II with 7.5 g/liter

(28.4 oz/gallon) anhydrous sodium sulfate added, 90 seconds

@ 294K (70°F)

(4) Cold rinse

(5) Phosphate Fluoride per BAC 5514, 105 seconds @ 294K (70°F)

(6) Cold rinse

(7) Hot water leach 15 minutes @ 35.5K (180°F)

(8) Hot air dry @ 339K (150°F)

F. Phosphate Fluoride with grit blast

This procedure is identical to process TM . above except for the grit

blast. The general process is:

(1) Vacuum blast with 80 grit aluminum oxide @ 0.21 MPa (30 psi)

(2) Alkaline clean (Turco 2623) 15 minutes @ 333K (140 °F)

(3) Hot rinse

(4) Nitric-hydrofl ,..oric etch 90 seconds (a 294K (70°F)

(5) Cold rinse

(6) Phosphate fluoride treat per BAC 5514 105 seconds (3 294K (70°F)

(7) Hot water leach @ 355K (180°F)

(8) Hot air dry ? 338K (150°F)
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j	 G. Turco 5578

General procedure for this process are:

(1) Plkaline clean (Turco 2623) 15 minutes @ 333K (140°F)

(2) Hot rinse

(3) Turco 5578 immersion, 10 minutes @ 361K (190°F)

solution - 432 gms/litesr (3.6 LB/gallon)

(4) Hot .nse

(5) Hot air dry @ 338K (150°F)

H. RAE Prociss (NaOH/H2n2)

General procedures for this British developed process are:

(1) Vacuum blast with 90 grit aluminum oxide @ 0.21 MPa (30 psi)

(2) Alkaline clean (Turco 2623) 15 minutes @ 333K (140°F)

(3) Hot rinse

(4) Immerse in solution of 20 g/liter (76 oz/gallon) sodium hydroxide

plus 30% hydrogen peroxide 22.5 ml/liter

(3 oz/gallon) added immediately prior to immersion

(5) Hot rinse

(6) Hot air dry @ 338K (150 °F)

Cou:.mon solutions for the above surface treatments using BAC 5514 are:

(1) Turco 2623 alkaline cleaner

Concentration: 37.5 - 60 gm/liter (5-8 oz/gallon)

operating temperature: 330 - 352K (135-175°F)

(2) Nitric - hydrofluoric etch solution

- Nitric Acid (40-42 DEG BE) - 300 - 450 gm/liter (40-60 oz/gallon)

- Hydrofluoric acid (70%) - sufficient to maintain etch rate

- FC -95 wetting agent - surface tension of 35-45 dynes/cm

- Operating temperature - 291-305K (65-90°F)

- Etch rate 0.008 - 0.020 mm (0.002-0.005 inch)/surface/hour

(3) Phosphate fluoride solution

- Sodium phosphate (Na 3PO4 . 12H 20), 45-50 gm/liter (6.3-6.7 oz/gal.)

- Potassium fluoride (KF • 2H 20), 19-30 gm/liter (2.5-4.0 oz/gal.)

- Hydrofluoric acid (HF), 15-21 gm/liter (2.0-2.8 oz/gal.)

- Operating temperature - ambient
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APPENDIX II

CANDIDATE ADHESIVE RESINS (27)

1) LARC-13 Polyimide Adhesive - This resin was " Iected as an

adhesive candidate based on preliminary data obtained by

Boeing which demonstrated good elevated temperature thermal

stability and desireable failure modes. The base resin

synthesis and cure chemical reactions are illustrated below:
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LARC-13 base resin formulated with 30 weight percent

aluminum powder (Alcoa 101) is supplied by NASA Langley

for this program. The adhesive is subsequently impregnated

by Boeing on Style 112, A-1100 finish 	 glass fabric and

B-staged to a low flow state. The control of B-staging

just prior to crosslinking reaction is critical to low or

no volatile release during final cure.

a
i

2) LARC-13 Modification I	 LARC-13 does demonstrate good

adhesive properties, however, it also exhibits undesiiible

processing characteristics. This modification consisted

of Amoco Amide-imide AI-1130 mixed at 50 phr with the base

LARC-13 formulation plus addition of Alcoa 101 aluminum

powder to 60 phr. This adhesion formulation provides

controlled flow and honeycomb filleting for structural

bonding. Style 112, A-1100 glass fabric films were prepared

for bonding operations.

3) LARC-13 Modification II 	 In addition to copolymer (amide-

imide) studies performed on Modification I, a second modifica-

tion was selected/evaluated which involves methyl nadic

capped polymer and addition of 20 mole percent of meta phenylene

diamine as codiamines. This results in a nominal polymer

molecular weight of 1,300. The modification procedures just

described were performed by Boeing technical personnel using

identical synthesis procedures as those used by NASA Langley

RC in making the LARC-13 resin.

4) Polyphenylquincxaline (PPQ) 	 This resin is supplied by NASA

Langley as monoether polyphenvlquinoxaline in a

solvent mixture 1:1 of practical grade m.-Cresol and mixed

xylenes. Solids content is reported at 16.6% based upon

final polymer weight. PPQ has demonstrated excellent

elevated temperature stability and represents a different

family of polymers for evaluation in this program.

C

r-

.
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5) PPQ MOD I This modification consists of the addition of

boon powder at 30 phr. This modification was done in an

attempt to modify the adhesive's coefficient of thermal

expansion to the coefficient of thermal of expansion of the

metal substrate. This modification was deemed desirable for

adapting the system for large area bonding.
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APPENDIX III

NASA-LANGLEY POLYMER WORK

Experimental work was conducted at the NASA Langley Research Center polymer
laboratory on the synthesis, characterization, and evaluation of the following
materials as high performance and/or high temperature adhesives and laminating
resins.

1. Acetylene-Terminated Imide Oligomers and Polymers Therefrom

2. Acetylene-Terminated Phenylquinoxaline Oligomers and Polymers Therefrom

3. Polyphenylquinoxalines

4. Cyanato-Terminated Polysulfones

Work of a more basic nature was performed on the development of novel crosslink-
ing routes and the elucidation of a unique hydration of an ethynyl substituted
imide.

Consultation to NASA was provided in the following areas.

1. Improved structural resins for conventional use (rubber toughened epoxies
and cyanates, polysulfones, and 250 and 350°F cure epoxies)

2. Quality control of epoxy graphite prepreg

3. High temperature adhesives for titanium joining

4. High temperature laminating resins

The following papers were presented or published during this reporting period.
Abstracts are provided where appropriate.

1. "Thermal Reaction of Ethynyl Phthalimides and Hydration of N-(4-Ethynyl-
phenyl)phthalimides" P. M. Hergenrother Journal of Heterocyclic Chemistry 17,
5 (1980).

Three ethynyl substituted phenylphthalimides were prepared and characterized
by high pressure liquid chromatography, differential scanning calorimetry, and
mass spectroscopy. When the preparation of N-(4-ethynylphenyl)phthalimide was
attempted by the thermal cyclodehydration of N-(4-ethynylphenyl)-2-carboxybenza-
mide, N-(4-acetylphenyl)phthalimide was obtained as the major component. This
unusual hydration of an ethynyl group was investigated and a mechanism was pro-

	

(	 posed to explain it.

2. "Acetylene-Terminated Imide Oligomers and Polymers Therefrom" 180th National
American Chemical Society Meeting, 1980; P. M. Hergenrother Div. Polymer Chemistry
Preprints 21(1), 81 (1980).
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Acetylene-terminated imide oligomers (ATIs) prepared by end-capping
anhydride-terminated amic acid oligomers with ethynyl substituted aromatic
amines (e.g. 3-ethynylaniline) followed by cyclodehydration are being evalu-
ated as high temperature structural resins. As part of this program, amine
terminated amic acid oligomers were end-capped with 4- ethynylphthalic anhydride
and subsequently cyclodehydrated to provide a new series of ATIs. These
materials were characterized primarily 'jy differential scanning calorimetry
(DSO and torsional braid analysis (TBA). The ATIs were thermall , cured and
the resultant polymers characterized by thermogravimetric analysi (TGA) and
isothermogravimetric analysis (ITGA). Prior to polymer work, a model compound,
N-phenyl-4- ethynylphthalimide was prepared and its thermally induced reaction
compared with that of two other ethynyl substituted pienylphthalimides. In
addition, work was conducted to show why the 4-ethynylphenyl terminated imide
oligomers failed to process and cure like that of the 3-ethvnvlphenyl end-capped
oligomers (e.g. Thermid-600 (8) ). During the thermal cyclodehydration of
4-ethynylphenyl terminated amic acid oligomers, a substantial portion of the
ethynyl groups undergo hydration to yield 4-acetylphenyl terminated imide
oligomers.
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Norfolk, LA., Oct., 1974.

J. P. Wightman and T. A. Bush and M. E. Counts, "The Use of Scanning
Electron Microscopy, Electron Spectroscopy for Chemical analysis (ESCA),
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`leetg., Philadelphia, PA, April, 1975.
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