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1. FOREWORD 

The Solar Energy System Economic Evaluation - Final Report has been 
developed by the George C. Marshall Space Flight Center as a part of 
the Solar Heating and Cooling Development Program funded by the 
Department of Energy. The analysis contained in this document de
scribes the economic performance of an Operational Test Site (OTS). 
The objective of the analysis is to report the long-term economic per-

formance of the system at its installation site and to extrapolate to 
four additional locations plus an alternate installation site which have 
been selected to demonstrate the viability of the design over a broad 
range of environmental and economic conditions. 

The contents of this document are divided into the following topics: 

• System Description 
• Study Approach 
• Economic Analysis and System Optimization 
• Results of Analysis: Technical and Economic 
• Economic Uncertainty Analysis 
• Summary and Conclusions 

The data used for the economic analysis have been generated through eval
uation of the Operational Test Site described in this document. The data 
that have been collected, processed, and maintained under the OTS Develop
ment Program provide the resource from which inputs to the simulation 

programs used to perform technical and economic analysis are extracted. 

The Final Report document, in conjunction with the Seasonal Report [3, 4J* for 
each Operational Test Site in the Development Program, cUlminates the technical 

*Numbers in brackets designate references found in Section 8. 
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activities which began with site selection and instrumentation system 
design in April, 1976. The Seasonal Report emphasizes the technical 
analysis of solar systems performance. It compares actual performance 
with predicted performance derived through simulation methods where 
actual weather and loads defined the inputs. The simulation used for 
final report analysis is based on the technical results of the seasonal 
report simulation, with the exception that long-term weather, and de
rlved loads are used as inputs instead of measured weather and loads. 
This causes the expected value of solar system performance in the 
Seasonal and Final Reports to differ. In addition localized and stan
dard economic parameters are used for economic analysis in the final 
report evaluation. The details of the simulation program are described 
in References [6J and [7J. Other documents specifically related to the 
solar energy system analysed in this report are [lJ through [5]. 
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2. SYSTEM DESCRIPTION 

The Colt-Pueblo solar energy system was designed to provide space heating 
and hot water preheating for the U.S. Department of Transportation (DOT) 
Test Center at Pueblo, Colorado. Pueblo, Colorado is located 38 0 17' north 
latitude and 104 0 31' west longitude. The solar system is located on top of 
and interior to a warehouse that contains a race track which enables the DOT 
to test trains associated with the DOT. The solar system provides heating 
and hot water to an office area located in a corner of the warehouse. The 
solar energy system was designed to provide 34 percent of the combined space 
heating and hot water demands. The energy collection and storage subsystem 
consists of 583 square feet of Colt, Inc., A151 flat-plate collectors, a 
petroleum-based thermal energy transport fluid, and an 1,100-gal1on water
filled solar energy storage tank. The collector array faces south at an 
angle of 45 degrees from the horizontal. A heat exchanger in the solar 
energy storage tank serves to transfer collected energy to the water in the 
tank and isolates the collector loop fluid from the water. 

When there is a space heating demand, solar heated water is pumped from 
storage to a 1iqu;d-to-air heat exchanger within the space heating supply 
duct. If solar energy is not sufficient to meet the space heating demand, 
an auxiliary propane gas furnace provides the required additional energy. 
The building's air-circulation fan and motor-driven dampers distribute the 
energy to the building. 

Solar energy in storage is also used to preheat domestic hot water (DHW). 
This is done by utilizing a liquid-to-liquid heat exchanger internal to the 
solar energy storage tank that will permit cold water to pass through the 
heat exchanger to the DHW system's 30-gallon hot water tank when hot water 
demand occurs. The same heat exchanger in storage is used to maintain the 
DHW tank's temperature when solar storage temperatures are high enough to 
permit circulation of water between the heat exchanger 1n storage and the 
DHW tank. The hot water auxiliary is a standard electric resistance, im
mersion heater in the 30-ga110n domestic hot water tank. 
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The solar energy system piping is protected from freezing with heat tapes. 

The system, shown schematically in Figure 2-1, has four modes of solar 
operation and one conventional heating mode. The sensor designations in 
Figure 2-1 are in accordance with NBSIR-76-ll37 [8]. The measurement 

symbol prefixes: W, T, EP, I and F represent respectively: flow rate, 
Temperature, electric power, insolation, and fossil fuel consumption. 

Figure 2-2 is a pictorial view of the warehouse, including an expanded view 

of the collector array. 

Mode 1 - Co11ector-to-Storage: This mode is initiated when a differential 

controller senses that the indicated collector outlet temperature exceeds 
the indicated temperature in the top of storage by a predetermined value 
(nominally 20°F). When the mode is entered, power to pump P1 is applied 
to circulate collector loop fluid to transfer collected energy to storage. 
The mode is terminated and pump power turned off when the differential 

controller recognizes that the indicated collector outlet temperature no 

longer exceeds the indicated temperature in the top of storage by a pre

determined value (nominally 3°F). 

Mode 2 - Storage to Space Heating (Solar Only): This mode is initiated 

when there is a demand for space heating and the indicated temperature in 
storage is greater than 105°F. When the mode is entered, using pump P2, 
water is circulated from storage between a liquid-to-air heat exchanger 
located in the space heating subsystem supply duct and storage. The space 
heating subsystem supply plenum fan transfers energy to the building. 

1his mode continues until either the indicated thermal storage temperature 
drops below 105°F or the demand for space heating ceases. 

Mode 3 - Storage-to-Space Heating (Solar and Auxiliary): This mode 1S 

initiated when there is a demand for space heating, the temperature in 
storage is lower than 105°F, and the temperature of the water being deliver
ed to the liquid-to-air heat exchanger in the space heating subsystem supply 
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Figure 2-2 Colt Pueblo Warehouse Pictorial and Collector Array Detail 
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duct is greater than gO°F. Stage two of the space heating thermostat then 
activates the auxiliary furnace to supplement solar energy to satisfy the 
demand for heating. Using pump P2, water from storage is circulated between 
the liquid-to-air heat exchanger located in the supply duct of the space 
heating subsystem and storage. The space heating subsystem supply plenum 
fan transfers energy to the building from the heat exchanger and the furnace. 
This mode continues until thermal storage temperature drops below gO°F or 
the demand for space heating ceases. 

Mode 4 - Hot Water Preheating - This mode is initiated when the indicated 
solar storage tank temperature is greater than three degrees above the in
dicated DHW tank temperature. Water is circulated between a heat exchanger 
internal to storage and the DHW tank to supply solar energy to the DHW 
tank. This mode is terminated when the storage tank temperature becomes 
less than three degrees greater than the indicated DHW tank temperature. 
Hot water preheating also occurs when DHW consumption occurs and the sup
ply water passes through the storage-to-DHW subsystem liquid-to-liquid 
heat exchanger internal to the solar storage tank. 

Electrical power cannot be applied to the DHW tank's auxiliary heater ele
ments during operation of the DHW circulation pump. The auxiliary electric 
elements only supply additional energy to maintain the DHW temperature at 
the desired thermostat set point when that temperature cannot be maintained 
by solar energy storage. This mode is independent of all other modes. 

Mode 5 - Conventional Heating: When solar energy for space heating is 
not available, (i.e., the storage temperature is less than gO°F) stage 
two of the space heating thermostat activates the auxiliary furnace to 
supply the required energy to satisfy the demand for heating. The space 
heating subsystem supply plenum fan transfers energy to the building. 
This mode continues until the demand for space heating ceases. 

These modes in themselves are not exclusive since the system can be per
forming more than one function at any particular time. This is due to the 
independence of the differential controller for the collector pump, the 
differential controller for the space heating subsystem, and the storage 
temperature controller. The control system activates motorized control 
dampers to direct air flow to multiple independent space heating zones. 
In addition, the space heating zones can alternately be heated and cooled 
independently. 
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3. STUDY APPROACH 
3.1 Introduction 

The Final Report is an economic evaluation of the solar energy system 
(based on life cycle costs versus energy savings) for SlX cities which 
are considered to be representative of a broad range of environmental and 
economic conditions in the United States. Life cycle costs provide a mea
sure of the total costs of owning and operating a system over the life of 
the system rather than focusing solely on the initial cost of the system. 
The life cycle costs used in this evaluation consider hardware, instal
lation, maintenance, and operating costs for the solar-unique components 
of the total system. Energy savings result from replacement of conven
tional forms of energy by solar energy after the costs of producing the 
solar energy are deducted. The total system operates in a scenario that 
comprises long-term average environmental conditions, loads, fuel costs 
and other economic factors that are applicable in each of six cities. 

The six cities include four standard analysls sites which were selected 
according to the criteria listed below and the sites where the system was, 
in fact, installed and operated. The selection criteria were based on: 

• Availability of long-term weather data 
e Heating degree days (load related factor) 
o Cold water supply temperature (load related factor) 
• Solar insolation 
o Utility rates 
o Market potential 
Q Type of solar system 

To achieve the range of environmental and economic parameters desired, 
the four locations listed below plus the actual installation location, and 
an alternate installation location were used. The application of this solar 
system at Pueblo, Colorado and Yosemlte National Park are substantially 
dlfferent (i.e., number of collectors are different and heating load 
demands differ both in type and magnltude of demand). As a result it 
has been decided to evaluate the Colt Pueblo application only as this 
site~ performance actually performed best. However, the Colt Pueblo 
solar site application will be assumed to have been placed in the Yosemite 
National Park and considered as an additional alternate site. A solar 
energy system buyer may evaluate his own local environmental and economic 
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conditions relative to those considered in this Final Report by comparing 
the insolation available, the heat load, and the utility and propane gas 
rates against the results reported in Section 5. 

Albuquerque, NM 
1828 Btu/Ft2-Day average inso1ation* 
Medium heating load (429 Heating Degree Days (HOD)) 
High utility rates (0.06-0.07 $/kWh)** 
Propane gas rates (7.50 $/Mi11ion Btu)*** 

Fort Worth, TX 
1475 Btu/Ft2-Day average inso1ation* 
Light Heating load (2382 HOD) 
Medium utility rates (0.04-0.06 $/kWh)** 
Propane gas rates (6.78 $/Mil1ion Btu)*** 

Madison, WI 
1191 Btu/Ft2-Day average insolation* 
High heating load (7730 HDD) 
Medium utility rates (0.04-0.06 $/kWh)** 
Propane gas rates (7.41 $/Mi11ion Btu)*** 

Washington, DC 
1208 Btu/FT2-Day average inso1ation* 
Medium heating load (5010 HDD) 
High utility rates (0.06-0.07 $/kWh)** 
Propane gas rates (11.48 $/Mi11ion Btu)*** 

Pueblo, CO 
1673 Btu/Ft2-Day average inso1ation* 
Medium heating load (5395 DO) 
Low utility rates (0.035 $/kWh)** 
Propane gas rates (7.16 $/Mi11ion Btu)*** 

Yosemite, National Park, CA 
1794 Btu/Ft2-Day average inso1ation* 
Medium heating load (4507 DD) 
Medium utility rates (0.04 $/kWh)** 
Propane gas rates {6.63 $/Mi11ion Btu)*** 

*Inso1ation values are average daily long-term values on a horizontal surface. 
**Uti1ity rates are effective year-round averages based on 1000 kWh for 

January, 1980. See Appendix D. 

***See Appendix 0 for propane gas rate computation. 
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The parameters that define the system design were derived from the actual 

operating conditions of the system at the installation site. Solar energy 
system design may be economically optimzed for the site at which the 
system is installed. The fundamental objective in optimizing the design 
of a solar energy system on an economic basis is to mlnimize cost by 
allocating the required amount of energy between the solar and conventional 
portions of the system. To attain this objective, each unit of energy 
should be produced by the portion of the total system which generates 
the lowest incremental cost in producing that additional unit of energy. 
This is accomplished in the final report analysis by determining the 
optimal solar energy system size (collector area or equivalently, solar 
fraction). 

In the Operational Test Site (OTS) Development Program there are many solar 
energy systems designed by many different contractors. Some of the designs 
were installed in new buildings and some were retrofitted to existing build
ings. Consequently, there are a variety of factors which contrlbuted to the 
deslgn of a system at a glven site. In some cases the objectlve of optimizlng 
the design according to the previously stated criterion could not be met. A 
method of evaluation which establishes a common basis for evaluation of all 
these systems was required. The method selected is to optlmize the collector 
size through the f-Chart [6J, [7J design procedure. F-Chart is a design 
program developed by the University of Wisconsin for solar heating and/or do
mestic hot water systems. The program uses a set of design charts (developed 
by detailed simulations) which estimate the thermal performance of a solar 
system based on collector characteristics, storage, energy demands, and 
regional long-term weather data. Using the results of thermal analysis, an 
iterative procedure is implemented to select a collector area which minimlzes 
the life cycle costs. Once the optimal collector size has been determined, 
the resulting thermal and economic performance can be obtained. 

The resolution of two inter-related problems was required in order to adapt 
f-Chart to the evaluation developed in the Final Report. The first was how 
to use the data and experience gained from the actual operation of the solar 
energy system; the second was what procedure to follow in view of the fact 
that all solar energy systems to be analysed do not have optimal collector 
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area sizing. To resolve the first problem, the characteristics of 
design and operation of the existing solar energy system were used to 
develop the input parameters for f-Chart. This procedure, detailed in 
Appendix A, involved the normalization of collector flow rates and storage 
capacity to collector area. Collector characteristics developed from 
field data through a collector analysis program were substituted for the 
theoretical single panel parameters furnished by the collector manufacturers. 
To resolve the problem of different collector areas, an optimal collector 
area \~as derived for each site. The final adaption of f-Chart includes 
the inputs derived from operational data and optimal collector area. 

In addition to the f-Chart problems described above, certain internal 
modifications were required to enable the economic analysis of space 
heating and domestic hot water systems where the auxiliary energy 
sources were fossil fuels. This involved the modification of the 
loads from which the economic parameters were computed. To modify 
the loads two coefficients of performance, i.e., SHCOP for the space 
heating system and HWCOP for the hot water system, which are described 
in Appendix A, were introduced. These COP's are used to adjust the 
cost of fossil fuel auxiliary energy, considering the efficiency of 
the respective systems, relative to the cost of electrical energy 
at each analysis site. 

As the system application at each of the five analysis sites is studied, 
the loads are iteratively redefined, the site peculiar parameters are 
changed as described in Appendix A, and a new optimal collector area is 
computed. The economic factors are the result of the f-Chart analysis 
with these inputs. 
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3.2 Groundrules and Assumptions 

The cost differential between solar and the conventional system is 
significant to the economic evaluation in the Final Report. Cost 
items which were equal for both alternatives do not contribute to the 
differential cost. The cost of the conventional system was assumed 
to be identical with or without the solar alternative. Although a con
ventional system is usually selected according to the availability and 
cost of energy in a particular geographic region, this alternative is 
not permitted in the final report analysis because an existing system 
is being evaluated. Savings which might be realized by comparing solar 
against an auxiliary other than the design option were not evaluated. 
The system configuration, including the conventional auxiliary, is the 
same for all six analysis sites. 

The cost of the solar-unique hardware is based on mass production esti
mates. The total incremental costs for acquisition of a solar alterna
tive are the sum of a cost proportional to collector area and a cost 
independent of collector area. For economic evaluation, life cycle 
costs (i.e., costs of acquiring, operating and maintaining the solar 
systems) were forecast on an annual basis over the design lifetime of 
the system, then discounted to an equivalent s1ngle constant dollar 
(1980) value as described in Section 4. 

Fuel costs are calculated at current (1980) local values for each of the 
six analysis sites. Other economic parameters are standardized by 
referencing current natlonal economic conditions. Maintenance, lnsurance, 
depreciation, system life, salvage values (for commerclal systems) are 
determined from best experience. Tax credits allowed by the Federal 
Government for the solar energy systems are credited agalnst the acquisi
tion cost. A combined state and federal income tax rate of 48 percent 
is assumed for estimating tax savings resulting from the capital 
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investment in a solar system. Property taxes arlslng from the increased 
value of property with an installed solar system are neglected due to 
the current trend in many states to forego these taxes to prevent them 
from being a disincentive to solar energy usage. 

The primary measure of cost effectiveness of the solar system for the 
evaluation in the Final Report is: 

• Life Cycle Cumulative Savings (LCCS) - The present value of the 
cumulative energy savings (in dollars) that result from operation 
of the solar system instead of the conventional system. 

Two secondary measures that depend on life cycle cumulative savings 
are: 

• Year of Positive Savings - Year in which solar system first 
becomes profitable; i.e., the annual conventional fuel bill 
without solar exceeds the sum of the annual fuel bill with 
solar and the annual cost for the solar system. 

• Year of Payback - Year in which the compounded net savings 
equals the initial cost for the solar system. Net savings 
are computed with respect to the fuel cost of the conven
tional system. 

13 



4. ECONOMIC ANALYSIS 

4.1 Factors in Life Cycle Costs and Savings 

The economic calculations of this study are performed in the f-Chart 
program and are based on comparisons of life cycle costs of conventional 
energy systems with those of solar energy systems. The life cycle sav
ings of a solar energy system over a conventional energy system can be 
expressed as the difference between the total fuel savings that result 
from operation of the solar energy system and the increased costs that 
result from the investment in, the operation of, and maintenance of the 
solar energy system. The savings can be expressed by the relationship [9]: 

where LCCS = Life cycle cost savings of the solar 
energy system ($) in terms of present worth 

Pl = Factor relating life cycle fuel cost savings 
to first year cost savings 

CFE = Electrical energy cost per unit ($/Million Btu) 

CFF = Fossil fuel cost per unit ($/Million Btu) 

(1) 

nF = Fossil fuel unit efficiency or coefficient of performance (COP) 

LE = Load supplied by electrical energy (Million Btu) 

LF = Load supplied by fossil fuel (Million Btu) 

F = Solar fraction 

P2 = Factor relating life cycle investment 
operation and maintenance expenditures 
to the initial investment 

CA = Solar energy system costs dependent 
on the collector area ($/Ft2) 

A = Collector area (Ft2) 

CE = Solar energy system costs that are independent 
of collector area. ($) 
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It was assumed that the costs of components which were common to both 
conventional and solar heating systems (e.g. the furnace, ductwork, 
blowers, thermostat), and the maintenance costs of this equipment, are 
identical. Consequently, all references to solar energy system costs 
refer to the cost increment above the common costs. 

The multiplying factors, Pl and P2, facilitate the use of life cycle 
cost methods in a compact form. Any cost which was proportional to either 
the first year fuel cost or the initial investment can be included. These 
factors allow for variation of annual expenses with inflation and reflect 
the time value* of money by discounting future expenses to present dollar 
values. 

To illustrate the evaluation of Pl and P2, consider a simple economic 
situation in which the only significant costs are fuel and system equip
ment costs. The fuel cost is assumed to escalate at a constant annual 
rate, and the owner pays cash for the system. Here, Pl accounts for fuel 
escalation and the discounting of future payments. The factor P2 accounts 
for investment related expenses which in this case, consist only of the 
investment which is already expressed in current dollars. The factors Pl 
and P2 are then 

where 

Pl = PWF(N, e, d) 

P - 1 2 -

N = Period of economic analysis (yrs) 

e = Escalation rate of fuel price 

d = Annual discount rate 

(2) 

*Discounting refers to the fact that an expense that is anticipated to be 
$1000 in 10 years is equivalent to an investment today of $463 at a discount 
rate of 8%. 
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The function PWF(N, e, d) is the present worth factor that accounts for 
inflating payments in discounted money. 

When multiplied by a first period cost (which is inflated at a rate, e, and 
discounted at a rate, d, over N years), the resulting value is the present 
worth life cycle cost. 

In the more complex analysls the expenditures incurred by the additional 
capital investment cause P1 and P2 to take the following form: 

P1 = (1 - Ct) PWF(N, e, d) 

where P21 = Factor representlng the down payment 

P22 = Factor representing the life cycle cost 
of the mortgage principal and interest 

P23 = Factor representing income tax deductions 
for interest payment 

P24 = Factor representlng miscellaneous costs 
(maintenance, lnsurance, etc) 

P25 = Factor representing net property tax costs 

P26 = Factor representing straight line depreciation 
tax deduction for commercial installations 

P27 = Factor representing salvage (commercial installation) 
or resale value (residential installation). 
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The factors P21 through P27 are defined as follows: 

P21 = D (6) 

P22 = (1 - O) PWF (N, 0, d}/PWF (N, 0, i) (7) 

P23 = (l - D) t !PWF (N, i,d) [1 - l/PWF (~, 0, n] (8) 

+ PWF (N, 0, d}/PWF (N,O, i}l 

P24 = (1 - c1) MPWF (N, g, d) 

P25 = t (1 - 1) VPWF (N, g, d) 

P26 = (Ct/N) PWF (N, 0, d) 

P27 = G/(l + d}N 

where D = Ratio of down payment to the initial investment 

(9) 

(10) 

( 11) 

( 12) 

N = Period of analysis (Note that the period of analysis, 
the term of the loan, the depreciation lifetime, and 
the years over which the depreciation deductions con
tribute to the analysis are arbitrarily set equal in 
this report). 

d = Discount rate (after tax return on the best 
alternative investment) 

i = Annual mortgage interest rate 

t = Effective income tax rate 

C = Commercial or non-commercial flag (lor ° 
respectively) 
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M = Ratio of first year miscellaneous costs to 
initial investment 

g = General inflation rate 

t = Property tax rate based on assessed value 

v = Ratio of assessed value in first year to initial 
investment 

G = Ratio of salvage or resale value to initial 
investment 

For a given location, heating load, and economic situation, it is possible 
to optimize the system design variables to yield the maximum life cycle 
savings. The main solar energy system design variable is the collector 
area. The effect of collector area on the life cycle savings is illustrated 
in Figure 4-1 for the four sets of economic conditions. Curve A corresponds 
to an economic scenario in which solar energy cannot compete with the conven
tional system. Curve B exhibits a non-zero optimum area, but the conventional 
system is still the most economical. Curve C corresponds to the critical con
dition where solar energy can just compete with the conventional system. 
Curve 0 corresponds to an economic scenario in which the solar energy system 
is the most economical. 

Each curve of Figure 4-1 begins with a negative savings for zero collector 
area. The magnitude of this loss is CE, and reflects the presence of solar 
energy system fixed costs in the absence of any fuel savings. As the col
lector area increases Curves B, C, and D show increased savings unt,l reach
ing a maximum at some optimum collector area. As the collector area is further 
increased, the fuel savings continue to increase, but the excessive system 
cost forces the life cycle savings of the system to decrease. These collec
tor areas at each of the six analysis sites listed in this report have been 
optimized by the f-Chart program analysis technique for the long-term average 
weather conditions and the economic conditions at that site. 
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4.2 Federal Tax Credits for Solar Energy Systems 

The Federal Government has provided tax incentives that are applicable to 
solar energy systems after 1979. This credit is 15 percent of the dollars 
spent on a commercial solar energy system. The credit is applied in this 
analysis by reducing both the collector area dependent cost and the cost 
independent of the collector area, or constant solar cost, by an effective 
credit factor. 

As an example of the tax credit computation, assume the collector area 
dependent cost is $30/Ft2 based on 100 Ft2 and the constant solar cost 
is $900 for a total price of $3900. The effective credit factor is 0.15 
and there is no dollar limit on the tax incentive. 

Therefore the adjusted costs used as f-Chart inputs are: 

Collector area dependent cost 
CAl = $30 x (1 - 0.15) = $25.50/Ft2 

Constant solar cost 
CEI - $900 x (1 - 0.15) = $765 

The f-Chart economic analysis is modified by using these adjusted costs to 
reflect tax credit effects. Optimal collector area is modified in this 
analysis, as are the f-Chart economic parameters, by use of the tax credit. 
Items 23 and 24 in Table 5.1-2 reflect the solar costs after application of 
tax credits in terms of collector area dependent cost and constant cost. 
Initial system costs before and after tax credit incluslon are shown in 
Table 5.2-1 for each site based on optimal collector area. 
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5. RESULTS OF ANALYSIS 

5.1 Technical Results 

For each of the six analysis sites an optimal solar system based on the 
configuration of the actual installation is determined by using the f-Chart 
design procedure. The environmental parameters and the loads used in this 
procedure for each of the six sites are shown in Table 5.1-1. In applying 
the design procedure a process that iterates on the collector area is used. 
Figures 5.1-1 (a) - (f) show the results of that design procedure in terms 
of the expected solar fraction versus the collector area for each site. 
The expected solar fraction is the ratio of the expected solar energy 
used toward satisfying the load to the total load. The graphs in Figures 
5.1-1 (a) - (f) show that as the collector areas increases, the expected 
solar fraction increases. However, the economically optimal collector 
area was selected to maximize the economic benefits of the solar energy 
system, not the expected solar fraction. The optimal collector area is 
shown by the dotted line for each site. Increasing the collector area 
beyond the optimal value forces a diminishing return on the investment for 
the system. The expected solar fraction for the optimal collector area is 
shown in the last column in Table 5.1-1. 

The resulting thermal performance, once the optimal size system is selected, 
is shown in the graphs of Figures 5.1-2 (a) - (f) for each analysis site. 
The incident solar energy is derived from long-term average insolation at 
the site. The total load is computed based on design parameters of the 
actual system as installed, modified by environmental conditions at each 
site. The load calculations are detailed in Appendix A. The useful solar 
energy is the product of the system solar fraction and the total load. It 
shows on a month by month basis the portion of the total load that is ex
pected to be supplied by solar energy. The shaded portion between the 
total load curve and the curve of useful solar energy must be supplied by 
conventional energy. 
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The most significant obervation that can be made from Figures 5.1-1 and 5.1-2 
is that the solar energy system is only beneficial at the Pueblo, Colorado, 
Yosemite, California and Albuquerque, New Mexico sites where significant 
amounts of solar energy are available. The solar energy system is the 
worst at the Fort Worth, Texas site where the space heating and hot water 
loads are reduced resulting in a small optimal collector area requirement. 
The Washington, DC and Madison, Wisconsin site performances are low due to 
the low availability of solar energy and the high space heating and hot 
water loads. 

The technical parameters that uniquely describe this solar energy system are 
listed in Table 5.1-2 as Items 1 through 21 and Items 47 and 48 and described 
1n detail in Appendix A. Their values are listed by site in Table 5.1-3. 
The remaining technical parameters are assigned values which are constant 
for all sites. 

The economic parameters for the solar energy system are listed 1n Table 
5.1-2 as Items 22 through 46, and are also described in Appendix A with 
the source for the assigned value designated. 

The following items are a function of the analysis site. 

o Collector area 

• Collector slope 
o Azimuth angle 
• Effective building UA (applicable to space heating systems) 

• Water main temperature 
o Present cost of solar backup fuel 
o Present cost of conventional fuel 

These are listed by site in Table 5.1-3. 
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N 
W 

SITE 

PUEBLO 

YOSEMITE 

ALBUQUERQUE 

FORT WORTH 

MADISON 

WASHINGTON 

SUMMARY TABLE 

TABLE 5.1-1 

SOLAR SYSTEM LOAD FACTORS AND ENIVRONMENTAL PARAMETERS 

TOTAL ANNUAL LOAD (MILLION BTU) ENVIRONMENTAL PARAMETERS - LONG-TERM 

HEATING HOT INSOLATION HEATING SUPPLY WATER 
WATER BTU/FT2-DAY DEGREE DAYS TEMP (oF) 

156. 14 2.31 1623 5395 56 

130.56 2.33 1794 4507 61 

124.26 1.85 1828 429 73 

68.88 2.19 1475 2382 65 

223.71 2.63 1191 7730 54 

145.04 2.40 1208 5010 60 

*For optimal collector area 

: EXPECTED f 
I 

J SOLAR 
FRACTION* 
(PERCENT) 

40.7 

47.6 

46.0 

4.3 

8.1 

16.9 
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ITEMS 

TABLE 5.1-2 

f-CHART INPUT VARIABLES 

VARIABLE DESCRIPTION 

1 AIR SH+WH = 1, LIQ SH+WH = 2, AIR OR IQ WH ONLY = 3 
2 IF 1, WHAT IS (FLOW RATE/COL. AREA) (SPEC. HEAT)? ...•. 
3 IF 2, WHAT IS (EPSILON)(CMIN)/(UA)? ....•.••. 
4 COLLECTOR AREA . . . . . . . . . . . . . . . 
5 FRPRIME-TAU-ALPHA PRODUCT (NORMAL INCIDENCE) 
6 FRPRIM-UL PRODUCT .. . . . . . . . . . . . 
7 INCIDENT ANGLE MODIFIER (ZERO IF NOT AVAIL.) 
8 NUMBER OF TRANSPARENT COVERS . • . . . . . . . . . . . 
9 COLLECTOR SLOPE . . . . . . . . . . . • . . • . . 

10 AZIMUTH ANGLE (E.G. SOUTH = 0, WEST = 90) 
11 STORAGE CAPACITY .•........... 
12 EFFECTIVE BUILDING UA .......... . 
13 CONSTANT DAILY BLDG. HEAT GENERATION .. . 
14 HOT WATER USAGE ............•.. 
15 WATER SET TEr~p. (TO VARY BY MONTH, INPUT NEG.#) .... 
16 WATER MAIN TEMP (TO VERY BY MONTH, INPUT NEG. #) 
17 CITY CALL NUMBER ...........•....•.•.. 
18 THERMAL PRINT OUT BY MONTH = 1, BY YEAR = 2 .. 
19 ECONOMIC ANALYSIS? YES = 1, NO = 2 .....• 
20 USE OPTMZD. COLLECTOR AREA = 1, SPECFD. AREA = 2 . 
21 SOLAR SYSTH1 THERMAL PERFORMANCE DEGRADATION • . 
22 PERIOD OF THE ECONOMIC ANALYSIS . . . . . ... 
23 COLLECTOR AREA DEPENDENT SYSTEM COSTS . 
24 CONSTANT SOLAR COSTS ........ . 
25 DOWN PAYMENT (% OF ORIGINAL INVESTMENT) ..•. 
26 ANNUAL INTEREST RATE ON MORTGAGE . . . . 
27 TERM OF NORTGAGE . . . . . . . . . . . . . 
28 AtHWAL NOmNAL (MARKET) DISCOUNT RATE .. . . 
29 EXTRA INSUR./MAINT. IN YEAR 1 (% OF ORIG. INV.) 
30 ANNUAL % INCREASE IN ABOVE EXPENSE . . . . 
31 PRESENT COST OF SOLAR BACKUP FUEL (BF) .... 
32 BF RISE: %/YR = 1, SEQUENCE OF VALUES = 2 
33 IF 1, WHAT IS THE ANNUAL RATE OF BF RISE .. 
34 PRESENT COST OF CONVEtlTIONAL FUEL (CF 1 .. 
35 CF RISE: %/YR = 1, SEQUENCE OF VALUES = 2 
36 IF 1, WHAT IS THE ANNUAL RATE OF DV RISE ... 
37 ECONOMIC PRINT OUT BY YEAR = 1, CUMULATIVE = 2 • 
38 EFFECTIVE FEDERAL - STATE INCOME TAX RATE ..... . 
39 TRUE PROP. TAX RATE PER $ OF ORIGINAL INVEST. 
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VALUE UNITS 

1 
N/A 
1.11 

0.56 
0.95 
0 
1 

15.58 

0 
14 

116.0 

1 
1 
2 
o 

BTU/H" OF' FT2 

TABLE 5.1-3 

BTU/H" ° F' FT2 

TABLE 5.1-3 
TABLE 5.1 23 
BTU;oF'FT 
TABLE 5.1-3 

GAL/DAY 
OF 
TABLE 5.1-3 
TABLE 5.1-3 

20 . YEARS 
20.30 $/ FT2 

16890 $ 
20 % 
13.5 % 
20 YEARS 
8.5 % 
0.5 % 

10.0 % 
TABLE 5.1-3 

1 
12.5 % 

Note 1 
1 

12.5 % 
1 

48 $ 
0 % 



TABLE 5.1-2 

f-CHART INPUT VARIABLES (Continued) 

ITEMS VARIABLE DESCRIPTION 

40 ANNUAL % INCREASE IN PROPERTY TAX RATE . • • • 
41 CAL. RT. OF RETURN ON SOLAR INVTMT? YES = 1, NO = 2 
42 RESALE VALUE (% OF ORIGINAL INVESTMENT) •.• ••• • 
43 INCOME PRODUCING BUILDING? YES = 1, NO = 2 •..• 
44 DPRC.: STR.LN=1,DC.BAL.=2,SM-YR-DGT=3,NONE=4 ..••..... 
45 IF 2, WHAT % OF STR.LN DPRC.RT IS DESIRED? .•........ 
46 USEFUL LIFE FOR DEPREC. PURPOSES • . • • . . • • . • . . • • • 
47 ECONOMIC COEFFICIENT OF PERFORMANCE OF BACKUP HEATING SYSTEM 
48 ECONOMIC COEFFICIENT OF PERFORMANCE OF BACKUP WATER HEATER . • 

VALUE UNITS 

N/A 
l. 
o 
1 
2 

150 
20 

1 

NOTE: 1. The values of Collector Area Dependent System Costs and Constant Solar 
Costs depend on system size (because of the Federal Tax Credit). These 
costs are listed in Table 5.2-1. The Area Dependent Cost listed in 
Table 5.2-1 must be divided by the optimal area to obtain the value for 
Collector Area Dependent System Costs. 

NOTE: 2. Since the backup for the solar system is assumed to be the same type 
of system as would conventionally be used without a solar system, 
backup fuel costs and conventional costs per million Btu are equal. 
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TABLE 5.1-3 

SOLAR SYSTEM TECHNICAL PARAMETERS FOR F-CHART PROGRAM 

LOCATION 

VARIABLE DESCRIPTION UNITS P~EBL~ YO~EMI,1E ALB~QUERQUE FORT WORTH MADISON WASHINGTON 
iCITY CALL NUMBERS) 187 267 4) (83) ( 132) (245) 

COLLECTOR AREA- OPTIMAL FT2 490 396 443 47 163 349 

COLLECTOR SLOPE DEGREES 45 45 45 45 45 45 

AZIMUTH ANGLE DEGREES 0 0 a a a 0 

EFFECTIVE BLDG UA BTU/oF'DAY 28944 28944 28944 28944 28944 28944 

CONSTANT DAILY BLDG HEAT GENERATION BTU/OF' DAY 0 a a a a a 

SUPPLY WATER TEMPERATURE of SEE TABLE C-l FOR MONTHLY VALUES 

SYSTEM THERMAL PERF. DEGRADATION %/YR a 0 a a a a 

PRESENT COST OF SOLAR BACK UP FUEL (1) $/MMBTU 7.16 6.63 7.50 6.78 7.41 11.4d 

REFERENCE COST OF ELECTRICITy(2) $/MMBTU 13.57 11.83 20.39 13. 01 12.21 19.78 

ECONOMIC C.O.P. OF HEATING SYSTEM(3) - 1.14 1.07 1.637 1 . 151 0.99 1.03 
NOTE: 1. The solar back up for this system is propane gas. See Appendix D for the computation. 

2. An effective rate is computed for each location based on 1000 kWh used. This effective rate includes 
all charges specified in the rate schedules in Appendix D. 

3. See Appendix A for an explanation of the Economic COP and the method of computation. 



5.2 Economic Results 

An essential factor in maximizing the life cycle savings of a solar 
energy system, or conversely, of minimizing life cycle costs is the 
economic optimization of the collector area based on equipment and 
fuel (conventional energy) costs and the capability of the solar sys
tem to replace significant quantities of conventional energy with 
solar energy. The replacement capability is directly dependent on 
the environmental conditions at the installation site, i.e. available 
solar energy. 

The graphs of Figures 5.2-1 (a) - (f) show the relationship of the factors 
comprising life cycle costs - equipment costs and fuel costs - as a func
tion of collector area. Both costs are presented in terms of present 
value, i.e. base1ined to today's dollars. It can be readily seen that 
as collector area increases, solar equipment costs increase proportion
ately. Also, as collector area increases the fuel costs decrease, 
although not as a straight line function. At some given collector area, 
the life cycle cost which is derived from the total cost including fuel 
and equipment costs (discounted by tax considerations for businesses) is 
a minimum, as shown by the life cycle cost (LCC) curve. This minimum 
defines the optimal collector area for the given installation site. 

The solar equipment costs discussed in the preceding paragraphs include 
the principal and interest paid on a 13.5 percent, 20 year mortgage, the 
income tax deduction for interest for an investor in the 48 percent bracket 
and the insurance and maintenance costs estimated at 0.5 percent of the 
initial costs. The fuel cost is that which is required by the conven
tional backup system and includes the effects of the f-Chart solar system 
model. 

The life cycle costs are not to be confused with life cycle savings. 
Life cycle savings is the difference between the life cycle costs of 
fuel for a conventional system and the life cycle cost of owning, operating 
and maintaining a solar energy system. 
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The life cycle cost curves of Figures 5.2-1 (a) - (f) are somewhat flat. 
However, a low point does occur which defines the optimum collector area 

for each site. It is to be noted that the commercial life cycle cost 
curve is not the sum of the back up fuel cost and solar equipment cost 
plus incidental expenses as it is for residential installations. This 
is because fuel cost is a business expense and the equipment cost is a 
capital investment, both reduced by the tax rate for businesses. The 
conditions for Fort Worth, Texas and Madison, Wisconsin are not conducive 
to reasonable optimization. However, for the other sites the optimal 
collector area is between 350 and 500 square feet. The actual collector 
area installed at Colt Pueblo was 588 square feet, which is reasonably 
close to the optimal area of 490 square feet estimated in this report 
for the site. 

A summary of the costs and savings for the conventional system and the 

solar energy system is shown in Table 5.2-1 in terms of today's dollars 
expended over the analysis period. It should be recalled that the equ1p
ment costs shown do not include the cost of the conventional system since 
this system must be provided with or without the solar energy system. 
The equipment costs include only the additional hardware that must be 
provided for the solar energy system. This includes the following: 

• Collectors and mounting hardware 
• Piping and duct work (including valves and dampers) 

• Heat exchanger(s) 
c Storage unit(s) 

• Control system 

The best estimates of equipment costs for solar energy systems indicate 
that costs fall into two categories; (1) costs dependent on collector area 
and, (2) costs independent of collector area, or constant costs. This 1S 
the case because regardless of the exact collector area used, certain items 
of equipment must be provided and the costs of hardware and labor for 
installation seem to be relatively constant. However, the cost of collectors, 
and certain incremental costs, are dependent on the size of the collectors used. 
These costs are shown in Table 5.2-1 for each of the six analysis sites and the 
total cost for the system is the sum of the constant cost and the area dependent 
cost multiplied by the collector area. 

40 



The initial cost of the system in this analysis should be adjusted 
for the federal tax credit (and any other tax credit allowed by the 
state or local governments) by the methods discussed in Section 4.2. 
These adjusted costs are shown in parentheses under "Initial Cost of 
System" in Table 5.2-1 and are used in computing the "Present Worth 
of Total Solar CostS." 

Some conventional energy must be expended with or without the solar 
energy system because, in most cases, the solar energy system will 
replace only a portion of the total energy required to support the 
load. Savings are possible with the solar system only when the 
total costs with the solar system are less than the costs of conven
tional energy. Consequently, the fuel costs over the analysis period 
(20 years) are shown in Table 5.2-1 with and without the solar system. 

It is assumed in this analysis that the solar system would be financed 
through a 20 year loan at an interest rate of 13.5. percent. Property taxes 
are assumed to be zero, but this may not be universally true. Insurance 
on the value of the solar energy system and maintenance costs are assumed 
to be 0.5 percent per year of the initial costs. Since business expenses, 
including maintenance, insurance, operating costs, interest on loans, and 
capital investment in solar equipment, are tax deductible, a 48 percent 
combined federal-state tax bracket was assumed for commercial solar appli
cation. The value of all these costs based on the assumptions of this 
analysis is shown as the "Present Worth of Other Solar Costs" in Table 5.2-1. 
Combined with the costs for fue'l with the solar system, the value is the 
"Present Worth of Total Solar CostS.1I 

Since only incremental equipment and associated costs are included in the 
analysis, the present worth of total costs for the conventional system without 
solar are simply the tax adjusted cost of fuel without solar. Then the "Present 
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Worth of Cumulative Savingsll is the difference between the IIPresent 
Worth of Total Costs Without Solar ll and the IIPresent Worth of the Total 
Costs With Solarll. These values for each of the six analysis sites 
are listed in Table 5.2-1. 

Finally, two economic performance parameters called IIYear of Positive 
Savingsll and the IIYear of Paybackll are shown in Table 5.2-1. As previ-
ously d1scussed the year of positive savings is the year after purchase 
in which the solar system first becomes profitable, i.e., the annual 
conventional fuel bill without solar exceeds sum of the annual fuel b111 
with solar and the annual costs for the solar system. The year of payback 
1S the year after purchase when the compounded net savings equals the 
initial cost for the solar system. Savings are compounded at the discount 
rate throughout the analysis period. The factors that determine years unt11 
positive savings are sho\'m in Figures 5.2.2 (a) - (f) for each analysis site. 
The factors that determine the years until payback are shown in F1gures 5.2-3 
(a) - (f) for each analysis site. The year corresponding to the intersection 
of the "Mortgage Principle Remaining" curve and the "Compounded Solar Savings" 
curve is the year that the savings are sufficient to payoff the mortgage 
balance. 

As shown in Table 5.2-1, the Colt Pueblo solar energy system is not economically 
feasible for any of the sites in this study. Three of the sites showed positlve 
savings occurring at 17 years. The Fort Worth, Texas and Madison, W1sconsin 
sites d1d not provide any positive savings due to the low cost of conventional 
energy. The compounded solar savings for all sites is increasing neg-
ative dur1ng the 20 years of the study suggesting that this system w111 not 
pay itself off. Conventional energy costs would have to increase sub
sta~tial1y for a system of this type to pay for itself in any reasonable 
time period. 
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MADISON, WISCONSIN 
OPTIMAL COLLECTOR AREA = 163 FT2 
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C'I .... 

SITE 

PUEBLO 

YOSEMITE 

ALBUQUERQUE 

FORT WORTH 

MADISON 

WASHINGTON 

SUMMARY TABLE 

TABLE 5.2-1 

COSTS AND SAVINGS OVER 20 YEAR ANALYSIS PERIOD IN DOLLARS (1980) 

PRESENT PRESENT 
WORTH WORTH PRESENT PRESENT 

INITIAL COST OF SYSTEM1 PRESENT WORTH OF OF WORTH WORTH 
OF FUEL COSTS OTHER TOTAL OF TOTAL OF 

AREA WITH WIO SOLAR2 SOLAR
3 COST WIO CUMULATIVE 

CONSTANT DEPENDENT TOTAL SOLAR SOLAR COSTS COSTS SOLAR SAVINGS 

19871 11702 31573 291338 26175 37980 35572 26175 -9398 
(16890) (9942) (26832) 

19871 9457 29328 20459 20291 35296 29279 20291 -8988 
(16890) (8039) (24929) 

19871 10580 30451 22664 21905 36637 31131 21905 -9225 
(16890) (8993) (25883) 

19871 1122 20993 19794 11150 25290 23631 11150 -12481 
(16890) (954) (17844 ) 

19871 3893 23764 68125 38565 28639 50535 38565 -11970 
(16890) (3309) (20199) 

19871 7809 27680 62519 39142 33296 50095 39142 -10953 
(16890) ( 6638) ( 23528) 

NOTE: 

1. Values in parenthese are adjusted for the Federal tax credit by the method detailed in, Section 4.2. 
2. These values include interest, principal, maintenance and insurance costs. 
3. The total solar costs for commercial investments are effectively discounted by the income tax 

deductions for operating costs and the depreciation of solar equipment. 

YEAR OF 
POSITIVE YEAR OF 
SAVINGS PAYBACK 

17 >20 

17 >20 

17 >20 

>20 >20 

>20 >20 

>20 >20 



6. ECONOMIC UNCERTAINTY ANALYSIS 

The economic evaluation methods presented in this report are based on the 
assumption that reliable values for economic variables can be assigned 
However, there is an inherent uncertainty in predicting future expenses 
and benefits which is magnified by international economic instability. 
As a consequence, the results of both the life cycle cost analysis and 
the optimization procedures must be accepted with discretion and the effect 
of uncertainties must be evaluated. 

For a given set of conditions, the change in the present worth of life 
cycle cumulative savings (Table 5.2-1), ~LCCS, resulting from a change in 
a particular variable, ~Xj' can be approximated by the following: 

~LCCS = aLCCS aX
J 

~x. 
J 

(13) 

The expression for aLccs/axj can be obtained by direct differentiation of 
the life cycle savings equation. The life cycle cost model of Equations 
(1), (4) and (6)-(12) will be used for this analysis. The derivatives of 
these equations for each variable are given in Appendix B. To illustrate 
the use of these relationships, Uncertainty Analysis Tables 6-1 through 
6-6 were made up for each analysis site. The tables give the change in 
solar system life cycle cumulative savings, ~LCCS, caused by a 10 percent 
relative increase in each of the variables. 

Table 6-1 shows, for example, that a 10 percent increase in the discount 
rate from 8.5 to 9.4 percent yields a decrease in the value of P1 of 
approximately 1.27 giving a modified value of Pl = 12.55. The value of 
P2 decreases by 0.039 giving a modified value of P2 = 0.697. The value 
of LCCS increases by approximately $61 or a relative change of 0.6 per
cent in the baseline value of $9398. By comparing the magnitude of ~LCCS 
for each variable the relative sensitivity of the savings to a change in 
the variable can be assessed. From the table, it is evident that the savings 
are affected most by a change in annual rise in backup fuel costs, and least 
by a change in the electrical rates. This is because of the large heating 
load (fossil fuel load) and the rather small hot water load (electrical load). 
The complex relationship of the variables to each other makes an intuitive 
approach unreliable and necessitates analysis of this type. 
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The information of Tables 6-1 through 6-6 can also be used to estimate the 
uncertainty in life cycle cumulative savings due to uncertainty in different 
variables. If all the economic parameters are subject to variation a reason
able estimate of savings uncertainty can be obtained by the following: 

6LCCSprob = 
N 

~l ( aLCCS 
ax· 

J 

(14) 

As an example, assume uncertainties of ~10 percent in all eighteen of the 
variables listed in Table 6-1. The probable uncertainty estimate, using 
the data from the Table is: 

Pueblo, CO 
JLCCS prob = $3186 

The value is the present worth of cumulative savings of -$9398 for Colt 
Pueblo is given in Table 5.2-1. For a reasonable and favorable change in 
all the economic variables listed in Table 6-1, there is no possibility 
of a savings with this system. It is more probable that the loss will 
increase. The results for the other sites are as follows: 

Yosemite, CA 

6LCCS prob = $2940 
Cumulative Savings = -$8988 

Albuquerque, NM 

6LCCS probe = $3049 
Cumulative Savings = -$9225 

Ft. Worth, TX 

6LCCS prob = $1983 
Cumulative Savings = -$12481 

Madison, WI 

6LCCS prob = $2073 
Cumulative Savings = -$11970 
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Washington, DC 

~LCCS prob = $2516 
Cumulative Savings = -$10953 
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TABLE 6-1 

UNCERTAINTY ANALYSIS FOR PUBLO, COLORADO 

o .. 1 'ptlmlzed Col ector A rea = 4 F 2 90 T 

NOMINAL aP1 aP2 aLCCS ALCCS 
NOMINAL VALUE - -ax. ax. ax. 

COST PARAMETER (xj ) VALUES DELTA J J J 

AREA DEPENDENT COST (CA) 20.300 2.0300 0.0 0.0 -361 -732 
AREA INDEPENDENT COST (CE) 16890.000 1689.0000 0.0 0.0 -1 -1243 
ELECTRICAL ENERGY COST (C FE ) 13.570 1.3570 0.0 0.0 13 18 
FOSSIL FUEL COST (CFF ) 7.160 0.7160 0.0 0.0 1463 1048 
DOWN PAYMENT/INIT INV. (D) 0.200 0.0200 0.0 0.115 -3081 -62 
FIRST YR. MISC COST/INIT INV (M) 0.005 0.0005 0.0 10.954 -293977 -147 
FIRST YR. ASSESSED VAL/INIT INV (V) 0.0 0.0 0.0 0.0 0 0 
SALVAGE VAL/INIT INV (G) 0.0 0.0 0.0 -0.196 5250 0 
ANNUAL MKT DISCOUNT RATE (d) 0.085 0.0085 -148.90 -4.548 7234 61 
ANNUAL MKT RATE OF FUEL COST INC. ( e) 0.125 0.0125 131. 32 0.0 101266 1266 
ANNUAL INT. RATE ON MORTGAGE (i) 0.135 0.0135 0.0 3.129 -83966 -1134 
ANNUAL RATE OF GENERAL INFLATION (9) 0.100 0.0100 0.0 0.496 -13310 -133 
PROPERTY TAX RATE (t) 0.0 0.0 0.0 0.0 0 0 
EFFECTIVE INCOME TAX RATE (E) 0.480 0.0480 -26.57 -1.416 17517 841 
ELECTRICAL ENERGY LOAD (LE) 2.310 0.2310 0.0 0.0 76 18 
FOSSIL FUEL LOAD (LF) 156.140 15.6140 0.0 0.0 67 1048 
ANNUAL SOLAR FRACTION (F) 0.407 0.0407 0.0 0.0 26177 1065 
FOSSIL FUEL UNIT EFFICIENCY (nF) 0.600 0.0600 0.0 0.0 -17463 -1048 



TABLE 6-2 

UNCERTAINTY ANALYSIS FOR YOSEMITE, CALIFORNIA 

. . dell Op_tlmlze 0 ector A rea = 396 F 2 T 

NOMINAL aPl aP2 aLCCS LlLCCS 
NOMINAL VALUE -ax. ax. ax. 

COST PARAMETER (x j ) VALUES DELTA J J J 

AREA DEPENDENT COST (CA) 20.300 2.0300 0.0 0.0 -291 -592 
AREA INDEPENDENT COST (CE) 16890.000 1689.0000 0.0 0.0 -1 -1243 
ELECTRICAL ENERGY COST (C FE ) 11. 830 1. 1830 0.0 0.0 15 18 
FOSSIL FUEL COST (C FF ) 6.630 0.0630 0.0 0.0 1431 949 
DOWN PAYMENT/INIT INV. (D) 0.200 0.0200 0.0 0.115 -2862 -57 
FIRST YR. MISC COST/INIT INV (M) 0.005 0.0005 0.0 10.954 -273074 -137 
FIRST YR. ASSESSED VAL/INIT INV (V) 0.0 0.0 0.0 0.0 0 0 
SALVAGE VAL/INIT INV (G) 0.0 0.0 0.0 -0.196 4877 0 
ANNUAL MKT DISCOUNT RATE (d) 0.085 0.0085 -148.90 -4.548 9167 78 
ANNUAL MKT RATE OF FUEL COST INC. ( e) 0.125 0.0125 131. 32 0.0 91906 1149 
ANNUAL INT. RATE ON MORTGAGE (;) 0.135 0.0135 0.0 3.129 -77995 -1053 
ANNUAL RATE OF GENERAL INFLATION (g) 0.100 0.0100 0.0 0.496 -12364 -124 
PROPERTY TAX RATE (t) 0.0 0.0 0.0 0.0 0 0 
EFFECTIVE INCOME TAX RATE (E) 0.480 0.0480 -26.57 -1.416 16708 802 
ELECTRICAL ENERGY LOAD (L E) 2.330 0.2330 0.0 0.0 78 18 
FOSSIL FUEL LOAD (LF) 130.560 13.0560 0.0 0.0 73 949 
ANNUAL SOLAR FRACTION (F) 0.476 0.0476 0.0 0.0 20314 967 
FOSSIL FUEL UNIT EFFICIENCY (nF) 0.600 0.0600 0.0 0.0 -15813 -949 



TABLE 6-3 

UNCERTAINTY ANALYSIS FOR ALBUQUERQUE, NEW MEXICO 

OPtimized Collector Area = 443 FT 2 

NOMINAL aP1 aP2 aLCCS lILCCS 
NorYnr~AL VALUE -aXj ax. ax. 

COST PARAMETER (xj ) VALUES DELTA J J 

AREA DEPENDENT COST (CA) 20.300 2.0300 0.0 0.0 -326 -662 
AREA INDEPENDENT COST (CE) 16890.000 1689.0000 0.0 0.0 -1 -1243 
ELECTRICAL ENERGY COST (C FE ) 20.390 2.0390 0.0 0.0 12 24 
FOSSIL FUEL COST (C FF ) , 7.500 0.7500 0.0 0.0 1316 987 
DOWN PAYMENT/INIT INV. (D) 0.200 0.0200 0.0 0.115 -2971 -59 
FIRST YR. MISC COST/INIT INV (M) 0.005 0.0005 0.0 10.954 -283526 -142 
FIRST YR. ASSESSED VAL/INIT INV (V) 0.0 0.0 0.0 0.0 0 0 
SALVAGE VAL/INIT INV (G) 0.0 0.0 0.0 -0.196 5063 0 
ANNUAL MKT DISCOUNT RATE (d) 0.085 0.0085 -148.90 -4.548 8741 74 
ANNUAL MKT RATE OF FUEL COST INC. (e) 0.125 0.0125 131. 32 0.0 96110 1201 
ANNUAL INT. RATE ON MORTGAGE (i) 0.135 0.0135 0.0 3.129 -80981 -1093 
ANNUAL RATE OF GENERAL INFLATION (9) 0.100 0.0100 0.0 0.496 -12837 -128 
PROPERTY TAX RATE (t) 0.0 0.0 0.0 0.0 0 0 
EFFECTIVE INCOME TAX RATE (E) 0.480 0.0480 -26.57 -1.416 17209 826 
ELECTRICAL ENERGY LOAD (LE) 1.850 0.1850 0.0 0.0 130 24 
FOSSIL FUEL LOAD (LF) 124.260 12.4260 0.0 0.0 79 987 
ANNUAL SOLAR FRACTION (F) 0.460 0.0460 0.0 0.0 21982 1011 
FOSSIL FUEL UNIT EFFICIENCY (nF) 0.600 0.0600 0.0 0.0 -16453 -987 



en 
co 

TABLE 6-4 

UNCERTAINTY ANALYSIS FOR FORT WORTH, TEXAS 

Optimized Collector Area = 47 FT 2 

NOMINAL 
NOMINAL VALUE 

COST PARAMETER (xj ) VALUES DELTA 

AREA DEPENDENT COST (CA) 20.300 2.0300 
AREA INDEPENDENT COST (CE) 16890.000 1689.0000 
ELECTRICAL ENERGY COST (C FE ) 13. 01 0 1. 301 a 
FOSSIL FUEL COST (C FF) 6.780 0.6780 
DOWN PAYMENT/INIT INV. (D) 0.200 0.0200 
FIRST YR. MISC COST/INIT INV (M) 0.005 0.0005 
FIRST YR. ASSESSED VAL/INIT INV (V) 0.0 0.0 
SALVAGE VAL/INIT INV (G) 0.0 0.0 
ANNUAL MKT DISCOUNT RATE (d) 0.085 0.0085 
ANNUAL MKT RATE OF FUEL COST INC. (e) 0.125 0.0125 
ANNUAL INT. RATE ON MORTGAGE (1) 0.135 0.0135 
ANNUAL RATE OF GENERAL INFLATION (9) 0.100 0.0100 
PROPERTY TAX RATE (t) 0.0 0.0 
EFFECTIVE INCOME TAX RATE (t) 0.480 0.0480 
ELECTRICAL ENERGY LOAD (LE) 2.190 0.2190 
FOSSIL FUEL LOAD (L F) 68.880 6.8880 
ANNUAL SOLAR FRACTION (F) 0.043 0.0043 
FOSSIL FUEL UNIT EFFICIENCY (nF) 0.600 0.0600 

aP1 aP2 aLCCS LlLCCS - -ax. 
J 

ax. 
J 

aXj 

0.0 0.0 -35 -70 
0.0 0.0 -1 -1243 
0.0 0.0 1 2 
0.0 0.0 68 46 
0.0 0.115 -2048 -41 
0.0 10.954 -195467 -98 
0.0 0.0 0 0 
0.0 -0.196 3491 0 

-148.90 -4.548 75987 646 
131. 32 0.0 4556 57 

0.0 3.129 -55829 -754 
0.0 0.496 -8850 -88 
0.0 0.0 a 0 

-26.57 -1.416 24348 1169 
0.0 0.0 8 2 
0.0 0.0 7 46 
0.0 0.0 11148 48 
0.0 0.0 -771 -46 



TABLE 6-5 

UNCERTAINTY ANALYSIS FOR MADISON, WISCONSIN 

Ot·· dC11 JP' lmlze 0 ector A rea = 163 FT2 

NOMINAL aP1 aP2 aLCCS llLCCS - -NOMINAL VALUE ax. ax. ax. 
COST PARAMETER (xj ) VALUES DELTA J J J 

AREA DEPENDENT COST (CA) 20.300 2.0300 0.0 0.0 -120 -243 
AREA INDEPENDENT COST (CE) 16890.000 1689.0000 0.0 0.0 -1 -1243 -
ELECTRICAL ENERGY COST (C FE ) 12.210 1. 2210 0.0 0.0 3 4 
FOSSIL FUEL COST (CFF ) 7.410 0.7410 0.0 0.0 417 309 
DOWN PAYMENT/INIT INV. (D) 0.200 0.0200 0.0 0.115 -2319 -46 
FIRST YR. MISC COST/INIT INV (M) 0.005 0.0005 0.0 10.954 -221262 -111 
FIRST YR. ASSESSED VAL/INIT INV (V) 0.0 0.0 0.0 0.0 0 0 
SALVAGE VAL/INIT INV (G) 0.0 0.0 0.0 -0.196 3951 0 
ANNUAL MKT DISCOUNT RATE (d) 0.085 0.0085 -148.90 -4.548 58153 494 
ANNUAL MKT RATE OF FUEL COST INC. (e) 0.125 0.0125 131. 32 0.0 29731 372 
ANNUAL INT. RATE ON MORTGAGE (i) 0.135 0.0135 0.0 3.129 -63197 -853 
ANNUAL RATE OF GENERAL INFLATION (9) 0.100 0.0100 0.0 0.496 -10018 -100 
PROPERTY TAX RATE (t) 0.0 0.0 0.0 0.0 0 0 
EFFECTIVE INCOME TAX RATE (t) 0.480 0.0480 -26.57 -1. 416 22590 1084 
ELECTRICAL ENERGY LOAD (LE) 2.630 0.2630 0.0 0.0 14 4 
FOSSIL FUEL LOAD (L F) 223.710 22.3710 0.0 0.0 14 309 
ANNUAL SOLAR FRACTION (F) 0.081 0.0081 0.0 0.0 38616 313 
FOSSIL FUEL UNIT EFFICIENCY (nF) 0.600 0.0600 0.0 0.0 -5153 -309 



TABLE 6-6 

UNCERTAINTY ANALYSIS FOR WASHINGTON, D.C. 

o . . d 1 Iptlmlze Co lector Area = 327 FT 2 

NOMINAL aP1 aP2 aLCCS lILCCS 
NOMINAL VALUE - -ax. ax. aX

J COST PARAMETER (xj ) VALUES DELTA J J 

AREA DEPENDENT COST (CA) 20.300 2.0300 0.0 0.0 -257 -521 
AREA INDEPENDENT COST (CE) 16890.000 1689.0000 0.0 0.0 -1 -1243 
ELECTRICAL ENERGY COST (C FE ) 19.780 1.9780 0.0 0.0 6 11 

FOSSIL FUEL COST (C FF) 11.480 1. 1480 0.0 0.0 564 648 
DOWN PAYMENT/INIT INV. (D) 0.200 0.0200 0.0 0.115 -2752 -55 
FIRST YR. MISC COST/INIT INV (M) 0.005 0.0005 0.0 10.954 -262623 -131 
FIRST YR. ASSESSED VAL/INIT INV (V) 0.0 0.0 0.0 0.0 a 0 
SALVAGE VAL/INIT INV (G) 0.0 0.0 0.0 -0.196 4690 0 
ANNUAL f1KT DISCOUNT RATE (d) 0.085 0.0085 -148.90 -4.548 38007 323 
ANNUAL f1KT RATE OF FUEL COST INC. (e) 0.125 0.0125 131. 32 0.0 62644 783 
ANNUAL INT. RATE ON MORTGAGE (i) 0.135 0.0135 0.0 3.129 -75010 -1013 
ANNUAL RATE OF GENERAL INFLATION (g) 0.100 0.0100 0.0 0.496 -11891 -119 
PROPERTY TAX RATE (t) 0.0 0.0 0.0 0.0 a a 
EFFECTIVE INCOME TAX RATE (f) 0.480 0.0480 -26.57 -1.416 21278 1021 
ELECTRICAL ENERGY LOAD (LE) 2.400 0.2400 0.0 0.0 46 11 
FOSSIL FUEL LOAD (L F) 145.040 14.5040 0.0 0.0 45 648 
ANNUAL SOLAR FRACTION (F) 0.169 0.0169 0.0 0.0 38998 659 
FOSSIL FUEL UNIT EFFICIENCY (nF) 0.600 0.0600 0.0 0.0 -10800 -648 



7. SUMMARY AND CONCLUSIONS 

The Colt Pueblo Solar Energy System is not economically beneficial under 
the assumed economic conditions at Pueblo, Colorado; Yosemite, California; 
Albuquerque, New Mexico; Fort Worth, Texas; and Washington, DC as shown in 
Figure 7-1. Economic benefits from this solar energy system depend primarily 
on two factors: (1) decreasing the initial investment required; (2) the 
continuing increase in the cost of conventional energy. The system appears to 
be hi9h priced, however the capability to decrease the cost of the system 
relative to its present level is uncertain. It depends on favorable tax 
treatment from the various levels of government, local through federal, 
as well as the continuing development of the solar energy industry. On 
the other hand, increases in the cost of conventional energy are virtually 
assured. From the economic uncertainty analysis in Section 6, fuel costs 
would have to increase drastically while the cost of the system would have 
to remain constant or decrease for the system to become economically feasible. 

The analysis and result given in this report can be used to guide a potential 
solar energy system buyer in evaluating the purchase of this type of solar 
energy system. To do this the solar insolation in the buyer's geographic 
area must be known. This data is available from several sources, including 
[11], and [12]. The cost of conventional energy must also be known. The 
local utility company can furnish rates from which a comparison cost based on 
1000 kWh use can be computed in dollars per kWh or dollars per Million Btu. 
The suppliers of propane gas can furnish rates from which comparison costs 
of propane in dollars per Million Btu can be computed. These values can then 
be compared with the characteristics of the analysis sites given in Section 3.1. 
The results for that analysis site can be ascertained from Section 5.1 and 5.2. 
The primary economic parameters such as solar system cost, mortgage rates, 
inflation rates, discount rates, etc., are generally known by the buyer 
for his area. Deviations in these economic parameters from the values 
assumed in developing the results in this report can be evaluated from 
material included in Section 6. The ~LCCS values given in Tables 6-1 

t 

through 6-6 were computed based on a 10 percent increase in the economic 
parameter in question. A 10 percent decrease simply means changing the sign 
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of the value in the appropriate table. Larger increases or decreases in 
an economic parameter can also be obtained by multiplying the ~LCCS value 
by the ratio of the desired increase to the 10 percent increase used 
in the original computation. 

As an example of the discussion above, assume the buyer has determined 
that the characteristics of his locale are similar to Pueblo, Colorado, 
and is considering the results reported for this solar energy system in 
Pueblo, Colorado. He notes that the reported loss from Table 5.2-1 is -$9398; 
however, the conventional energy cost of his locale is $0.040/kWh, instead 
of the $0.46/kWh (Table 5.1-3) used in developing the Pueblo, Colorado loss. 
To modify the loss to consider the new rate the change is computed as: 

0.040 - 0.046 x 100% = 13% (decrease) 
0.046 

In Table 6-1 for Colt Pueblo it can be seen that a 10 percent increase in the 
electrical energy cost yields a value for ~LCCS of $18. The impact on the Life 
Cycle Cost Savings of a 13 percent decrease in fuel cost can be computed as 
follows: 

~LCCS = -13 * $18 = $23 (decrease) 10.0 

Therefore, the new loss is: 

-$9398 - $23 = -$9421 

Consequently the solar system 1S moved to a slightly less competitive 
position because of the lower rates for conventional energy. 

The buyer can evaluate the result of a change in any of the economic para
meters in the same manner. However, he should be aware that the parameters 
are sometimes inter-related and a change in one parameter may affect the 
~LCCS for several parameters. Consequently, the larger the change the less 
the accuracy. However, approximate results may be obtained that prove of 
value in making a final decision. 
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APPENDIX A 

f-Chart Procedure 

Modifications are made to f-Chart to enable the program to be used to 
perform economic analysis of the following: 

1. Systems that use heat pumps and fossil fuel space 
heating systems, as well as electric resistance heat. 

2. Systems that use two different energy sources for 
domestic hot water heating and space heating. 

The problem of analysis of the solar energy system with a conventional 
backup other than electric resistance heat is resolved by introducing 
Coefficients of Performance (COP's) (Item Nos. 47 and 48) whose values 
are dependent upon the types of backup systems. Typical COP's of heat 
pumps are computed from a heat pump model which uses as inputs the ambient 
and building temperature. Fossil fuel furnace COP's are assumed to be 0.60 
unless different efficiencies, based on manufacturer's or other sources of 
data, are available. 

The problem of analysis with two different energy sources is resolved 
by adjusting the COP's of the space heating system and domestic hot water 
system relative to the cost of electrical energy. This is necessary be
cause the structure of f-Chart assumes electric energy to be the source 
for both space heating and domestic hot water. The adjustment factors 
are the adjusted ratios of the rates for the two energy sources used. 
The general expression for this is: 

[

SH COP '] = El ectrica 1 Energy Rate ($/mi 11 ion Btu) 
or [SH Auxiliary Fuel Ratej($/million Btu) 

HW COP' or 
HH Auxil iary Fuel Rate 

where the Electrical Energy Rate is the effective rate for 1000 kWh 
and the SH or HW Auxiliary Fuel Rate is the actual cost for fuel 
converted to $/million Btu. Electrical Energy Rate will also be 
used for the value of Items Number 31 and 34 for systems of this 
configuration. 
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The value of SH COP' is input to the modified f-Chart program. 
This value is used to compute an adjusted total load. The load, 
in turn, is used to derive the solar fraction which is input to 
the f-Chart economic analysis subroutine. 

Major considerations of the final report analysis procedure are the 
definitions of the loads that the system supports as it is analyzed 
in different geographic locations, and the sizing of the system to 
handle these loads at the various locations. The method is outlined 
in the following paragraphs. 

The monthly long-term heating load at the selected analysis sites is 
computed in the f-Chart procedure from the following equation: 

where 

HL LT = UA*HDDLT - HTGEN DAYS 

UA is the modified building energy loss coefficient 

HDDLT is the monthly long-term average heating degree days 

HTGEN is the internally generated heat computed from 
measured data. 

It is to be noted that UA is a modified parameter. The modification is 
to compensate for the fact that housing standards differ from location 
to location, i.e., the construction standards for a Florida house are not 
suitable for the New York environment. The UA factor used is derived from 
the ASHRAE 90-75 Standard [10] as a function of long term heating degree 
days according to the appropriate U-value. The area, A, is derived from 
the building where the system is installed. 
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HTGEN is a factor that accounts for the part of the load which is 
internally generated. This is assumed to be the heat added which 
brings the building to the desired (comfortable) temperature when 
the outside ambient temperature is 65°F and no auxiliary heat is 
being added to the building. HTGEN, once derived, is assumed to 
be constant since it is a function of the life style of the occupants. 
The value of HLLT is the monthly long-term average heat load input 
to f-Chart. 

Additional technical and economic parameters that are input to f-Chart 
for the final report analysis are listed below with applicable 
comments. 

1. Air SH + WH = 1, Liq SH + WH = 2, Air or Liq WH Only = 3 

Comment: This is a definition of system type. The value 
is 1, if the system uses air collectors and supplies both 
space heat and domestic hot water; 2, if the system uses 
liquid collectors and supplies both space heat and domestic 
hot water; 3, if the system uses either type of collector 
and supplies only domestic hot water. 

2. (Flow rate/col. area) * (Spec. heat) 

Comment: If the system is an air system, this parameter is 
applicable. It is the air mass flow rate in lb/min divided 
by the gross collector area multiplied by the specific heat 
of air at standard conditions. The value of this parameter 
is computed for the system at the actual installation site. 
This value is then maintained constant as the collector size 
is optim1zed for all analysis sites.* 

*f-Chart uses an optimized value of 2.15 Btu/Hr-oF-Ft2 for this parameter. 
In resizing a system, only the collector size is varied. The system 1S 
not given the benefit of further optimization. 
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3. eCmin/UA 

Comment: If the system is a liquid system and uses a liquid 
to air heat exchanger in the space heating loop, this parameter 
is applicable. It is the manufacturer's heat exchanger effec
tiveness multiplied by the minimum capacitance rate through 
the heat exchanger and divided by the building energy loss 
coefficient. If the heat exchanger effectiveness is unknown, 
a default value of 0.5 is specified. The capacitance, Cmin, 
is the minimum product of mass flow rate and specific heat, 
which usually occurs on the air side. The UA value is the mod
ified parameter applicable to the site. Deriving this value 
of UA has been previously discussed. The value of eCmin/UA 
is computed for the system at the actual installation site. 
This value is then maintained constant as the collector size 
is optimized for all analysis sites.* 

4. Collector Area 

Comment: This is the gross collector area which is optimized 
for all analysis sites. The optimization is extended to the 
actual installation site if an optimum sizing is not apparent 
in the original design. The predicted performance with optimal 
collector sizing is then compared to the predicted performance 
of the actual design and the actual measured performance. 

Comment: The basic value of FR {La} is derived from the col
lector analysis program. This value is more consistent with 

actual operation than the manufacturer's or laboratory single 

*f-Chart uses an optimized value of 2.0 (dimensionless) for this parameter 
In resizing a system only the collector size is varied. 
The system is not given the benefit of further optimization. 
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panel test values. If the system has a heat exchanger 
between collectors and storage, the derived value of 
FR (,a) was modified by the FR'/FR factor as outlined 
in Section 2.4.4 of EES Report 49-3 (f-Chart Users 
Manual). [6] Note that the values input to f-Chart are 
assumed to be derived in accordance with ASHRAE specified 
method. 

Comment: Same comment as Item 5. 

7. Incidence Angle Modifier 

Comment: In general, the default value of 0 is used. For 
evacuated tube collectors modeled as flat plate collectors 
the collector angle incidence modifier is obtained from the 
collector manufacturer. 

8. Number of Transparent Covers 

Comment: This is specified according to the characteristics 
of the collector. 

9. Collector Slope 

Comment: Collector Slope is changed according to the 
latitude of the site and the type of system. When the site 
analyzed is the existing site, the actual slope value is 
used. For other analysis sites the slope is computed as 
follows:* 

o Latitude +10 0 if space heat and domestic hot water 

o Latitude if domestic hot water only 

*The collector slopes for this system are set at a compromise value 
of 45 0 for all sites. 
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10. Azimuth Angle 

Comment: At sites other than the existing installation site the 
azimuth angle is 0°. At the existing site the actual azimuth 
angle was used for analysis. However, any resulting performance 
degradation is noted. 

11. Storage Capacity 

Comment: This parameter is computed as the product of storage 
mass and specific heat divided by collector area for the exis
ting site. The same value of storage capacity is used for all 
sites. 

12. Effective Building UA 

Comment: The building UA, if not known, is derived from the 
measurement data contained in the Seasonal Report [4J. The 
computed value of UA is compared for reasonableness with a 
corresponding value of UA derived from ASHRAE Standard 90-75. 
For other analysis sites the value of UA is derived from 
ASH RAE 90-75 as a function of building type and heating 
degree-days for each site. 

13. Constant Daily Building Heat Generation 

Comment: For residential type buildings, this parameter is 
derived from the mea~urement data contained in the Seasonal 
Report [4]. The derived value is held constant for all analysis 
sites. 

14. Hot Water Usage 

Comment: An effective average hot water consumption rate 
that accounts for actual load plus standby losses was 
computed from the following equation: 

A-7 



HWSE + HWAT 
HWCSMPEFF = Cp (TMAIN ~ TSET) * (TSET - TMAIN) * RHO (TMAIN ~ T5ET) 

Number of Days in Month 

15. Water Set Temperature 

Comment: The actual value of this parameter at the existing site 
is used for all analysis sites. 

16. Water Main Temperature 

Comment: The inputs for this parameter are a series of monthly 
values. The actual monthly value at the existing site is 
referenced to the average long-term ambient for the month for 
analysis at that site. For analysis at other sites the 
monthly value of TMAIN was established by site measurement 
at a nearby site referenced to the average long-term ambient 
for the month. (See Appendix C) 

17. City Call Number 

Comment: If the analysis site is located at a city listed in 
the November 1978 Input Data For Solar Systems that site is 
entered into the f-Chart data record. If the analysis site 
is not a part of the data record, an interpolative routine 
computes the data for any arbitrary site from nearby sites 
where data is available. 

18. Thermal Print Out by Month 

Comment: None 

19. Economic Analysis 

Comment: In general, all runs made for Final Reports specify 
print out of economic analysis. 
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Residential 

Item 

22 
23 

24 
25 
26 
27 
28 
29 

30 

31 
32 

20. Use Optimized Collector Area = 1, Specified Area = 2 

Comment: In general the runs made for Final Reports use 
an optimized collector area. 

21. Solar System Thermal Performance Degradation 

Comment: A value of zero percent is used. 

22.-46. Economic Parameters 

Comment: The values of the economic parameter \'1ere worked 
out between MSFC and IBM for the Final Reports. The source 
of the value is given in the notes on page A-1l. 

Variable Description Value Units Source 

Period of Economic Analysis 20 Yrs. SAl l 

Collector Area Dependent System Costs MSFC2 

Constant Solar Costs MSFC2 

Dmm Payment (% of 0r:igina1 Investment) 20 % SAIl 
Annual Interest Rate on Mortgage 13.5 % MSFC2 

Term of Mortgage 20 Yrs. SAl l 

Annual NOminal (Market) Discount Rate 8.5 % SAIl 
Extra Insur.) Maint. in Year 1 0.5 % MSFC2 

(% of Orig. Inv. ) 
Annual % Increase in Above Expenses 10.0 % MSFC2 

Present Cost of Solar Backup Fuel (BF) Actua1 3 

BF Rise: %/Yr. = 1, Sequence of Values = 2 1 
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Residential (Continued) 

Item Variable Description 

33 Annual Rate of BF Rise 
Electricity 
Oi 1 

Natural Gas 
34 Present Cost of Conventional Fuel {CF} 
35 CF Rise: %/Yr. = 1, Sequence of Values - 2 
36 Annual Rate of CF Rise 

37 

38 

39 

40 

41 

42 

43 

44 

El ectri city 
Oil 
Natural Gas 

Economic Print Out by Year = 1, 

Cumulative = 2 
Effective Federal State Income Tax Rate 

Residential 
Commercial 

True Property Tax Rate Per $ of Original 
Investment 

Annual % Increase in Property Tax Rate 

Calc. Rt. of Return on Solar Investment? 
Yes = 1, No = 2 

Resale Value {% of Original INvestment} 
Income Producing Building, Yes = 1, 

No = 2 
Dprc.: Str. In. = 1, Dc. Bal. = 2, 

Sm-yr.-Dgt. = 3, None = 4 

Value 

12.5 
12.5 
12.5 

1 

12.5 
12.5 
12.5 
2 

30 

48 

o 

Units 

% 

% 

% 

01 
JO 

% 

% 

% 

% 

% 

NA If #39 is "0" 

o 

2 % 

45 

46 

If 2, What % of Str. Ln. Dprc. Rt. is Desired 150 % 

Yrs. Useful LIfe for Deprec. Purposes 20 

A-l0 

Source 

MSFC2 

MSFC2 

MSFC2 

Same as #31 4 

MSFC2 

r~SFc2 
MSFC2 
Analyst 

Option 

Analyst 

MSFC2,5 

Site 
Dependent 
MSFC2 

MSFC2 

MSFC2 



47. & 48. Economic COPs for Auxiliary Systems 

Comment: These are new parameters defined for f-Chart to 
account for economic analysis of solar systems having aux
iliary backup other than electric resistance heat. The 
default values of these parameters are as follows: 

Heat Pump Auxiliary 
Fossil Fuel Auxiliary 
Electric Resistance 

COP = 2 
COP = 0.6 
COP = 1.0 

The values of the basic COPs are modified, according to the method described 
on page A-2, to account for differences between the fuel used for the 
domestic hot water and the fuel used for space heating. 

NOTES: 

1. Source is Science Applications, Inc. (SAl) Draft Final Report on 
"Comparison of Solar Heat Pump Systems to Conventional Methods for 
Residential Heating, Cooling, and Water Heating,1I April 1979. 

2. These items are based on judgment and best experience. 

3. The actual current utility rates for the analysis sites selected 
are obtained. (See Appendix D). 

4. The assumption for final report analysis is that the backup 
system actually used for the installation is the same type of 
system that would be used if the solar system was not installed. 

5. The d9clining balance technique never permits 100% depreciation of 
the asset no matter how long the period. The balance remaining at 
the end of the system lifetime is treated, for accounting purposes, 
as salvage value is presumed to exist. 
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APPENDIX B 

ECONOMIC UNCERTAINTY ANALYSIS 
EQUATIONS 
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APPENDIX B 

ECONOMIC UNCERTAINTY ANALYSIS EQUATIONS 

1. Area dependent investment costs (CA) 

flLCCS
CA = 

2. Area independent investment costs (CE) 

.. 

3. Ratio of downpayment to initita1 investment (D) 

flLCCSD = -(CAA + CE) { 1 - (-"t) ffN, 0, 
tN, 0, ~i + 

'ff(N, i, d) [0 1 
1 - f (N, 0, 1) ] } (flO) 

4. Ratio first year's misc. costs to init. inv. (M) 

[(1 - ct) f(N. g. d~ (AM) 

5. Ratio first year's assessed value to init. inv. (V) 

= [t ( 1 - t) f(N. g. d)] 

6. Ratio salvage or resale value to init. inv. (G) 

= 
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7. Annual market discount rate (d) 

= (CFELE + CFFLF/nF)F(l - Ct) ~d f(N, e, d) (fld) 

( ) ~ 1-0 a ( ) - CAA + CE l f(N, 0, i) ad f N, 0, d + 

[(l -CI) M + t (1 - t) V ] ~d f (N, g, d) -

(l - 0) I [f(N,lO,;) ~d f(N, 0, d) + 

(i - f(N~ 0, i) ) ;d f(N, i, d)J + (1 + :~N+1 

- ~t ;d f(N, 0, d) } (od) 

. 
8. Annual market rate of fuel price increase (e) 

= 

9. Annual interest rate on mortgage (i) 

= f N, 0, dh 
fN, 0, i) 

~i f(N, 0,1) - I (1 - 0) [i - f(N~ 0, l)J 
~i f(N, i, d) - I (1 - D) f(N, i, d) 

[1 + f(N: 0, ,)2 ;i f(N, 0, i~ I 01 
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10. Annual rate of general inflation (g) 

= 

~g f (N, g, d) (6g) 

11. Effective income tax rate (t) 

= 

+ (D -1) f(N, i, d) 

[i-f(N: o. ilJ-t Vf{N. 9. d)-C [Mf{N. 9. d) + 

~ f{N. o. d) ] l{~t) 
12. Property tax rate (t) 

= 

13. Cost of electrical energy in the first year (C FE ) 

6LCCS CFE = 

14. Cost of fossil fuel in the first year (C FF ) 

6LCCSCFF = P1(LF/nF) F (6C FF ) 

15. Annual hot water load (L E) 

= 

16. Annual heating load (L F) 

6LCCS LF = P1(CFF/nF) F (6LF) 
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I 
I : . 

17. Coefficient of Performance 

= 

18. Annual load fraction supplied by solar (F) 

= 

NOTE: Three functions used above require definition, as follows: 

f(N, a, b) = [l-(l:~n 1 
b - a 

~a f(N, a, b) = 1 [ N ( 11 ++ ab ) NJ b - a f(N, a, b) - 1 + a 

a 3b f(N, a, b) = 1 
b - a [ 1 

N 
+ b ( ~ : ~ t -f(N, a, b)] 
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APPENDIX C 

MONTHLY AVERAGE WATER 
SUPPLY TEMPERATURES 
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n 
I 

N 

SITE NAME 

PUEBLO, CO 

YOSEMITE, CA 

ALBUQUERQUE, NM 

FORT WORTH, TX 

MADISON, WI 

WASHINGTON, DC 

J 

49 

44 

66 

42 

34 

42 

TABLE C-1 

MONTHLY AVERAGE WATER SUPPLY TEMPERATURES IN of 

MONTH 

F M A M J J A S 0 N D 

53 57 64 73 74 74 71 69 56 51 51 

50 58 65 73 74 74 73 65 58 53 49 

66 66 70 74 76 80 83 79 74 71 66 

49 58 65 73 80 82 83 78 63 53 49 

37 39 50 61 68 70 72 68 63 54 36 

42 52 56 63 67 67 78 79 68 55 46 



APPENDIX 0 

ENERGY COSTS FOR 
ANALYSIS SITES 
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PUEBLO, CO 

GAS 

2.51$/MONTH MINIMUM CHARGE 1 THERM = 100,000 BTU 
0.27001$/THERMS +3% FRANCHISE + 6% STATE AND LOCAL TAX 

EFFECTIVE RATE OF 10 MILLION BTU = 2.95 $/Mi11ion Btu 

ELECTRICITY 

Winter 

o - 30 kWh 0.118$/kWh 
30 - 50 kWh 0.08215$/kWh 
50 - 200 kWh 0.0526$/kWh 

>200 kWh 0.04155$/kWh 

Summer (June - September) 

>600 0.04627$/kWh 

1000 kWh 
EFFECTIVE RATE 
0.04631$/kWh = 

13.574$/Mi11ion Btu 

+6% STATE AND LOCAL INCLUDED IN ABOVE FIGURES 
0.04551$/kWh SURCHARGE INCLUDED IN ABOVE RATES 

FUEL OIL 

0.98$/GALLON 

EFFECTIVE RATE = 7.00 $/Mi11ion Btu 

PROPANE 

0.618 $/GALLON + 6% STATE AND LOCAL TAX 

EFFECTIVE RATE = 7.16 $/Mi11ion Btu 

ECONOMIC COP = 13.57 x 0.6 (Furnace Efficiency) 
7.16 

0-2 

1 GALLON = 140,000 BTU 

1 GALLON = 91,500 BTU 

= 1.14 (Space Heating) 



YOSEMITE, CA 

ELECTRICITY 

0.04$/kWh 
TAX 1% 
1000 kWh EFFECTIVE RATE = 0.0404 $/kWh = 11.83 $/Mi11ion Btu 

FUEL OIL 

0.922$/GALLON 1 GALLON = 140,000 BTU 

EFFECTIVE RATE = 6.59 $/Mi11ion Btu 

PROPANE 

0.61 $/GALLON 1 GALLON = 91,500 BTU 

EFFECTIVE RATE = 6.63 $/Mi11ion Btu 

ECONOMIC COP = 11.83 x 0.6 (Furnace Efficiency) = 1.07 (Space Heating) 
6.63 
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ALBUQUERQUE, NM 

GAS 

0-165 THERMS 0.0803$/THERM 
165-340 THERMS 0.0826$/THERM 
340+ THERMS 0.0966$/THERM 
SERVICE CHARGE $1.25 
FUEL ADJUSTMENT 0.2114$/THERM 
TAX 4% 

1 THERM = 100,000 BTU 

EXAMPLE 
30 THERMS * 0.2114 = $6.34 

EFFECTIVE RATE OF 10 MILLION BTU = 3.16 $/MILLION BTU 

ELECTRICITY 

0-200 kWh 0.05294$/kWh 
200-800 kWh 0.04794$/kWh 
800+ kWh 0.03894$/ kWh NOV-MAY 

OR 
800 + kWh 0.04094$/kWh JUN-OCT 

FUEL RATE ADJUSTMENT 0.016680$/kWh 
SERVICE CHARGE $2.60 
TAX 4.5% 

1000 kWh EFFECTIVE 
RATE = 0.069576 $/kWh 
YEAR-AROUND 

1000 kWh EFFECTIVE RATE = 0.069576$/kWh = 20.39$/Mil1ion Btu 

FUEL OIL 

0.999$/GALLON 
TAX 4% 

EFFECTIVE RATE = 7.42 $/MILLION BTU 

PROPANE 

0.66$/GALLON 
TAX 4% 

EFFECTIVE RATE = 0.69 $/GALLON = 7.50 $/MILLION BTU 

1 GALLON = 140,000 BTU 

1 GALLON = 91,500 BTU 

ECONOMIC COP = 20.39 x 0.6 (Furnace Efficiency) = 1.63 (Space Heating) 
7.50 
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FORT WORTH, TEXAS 

0-1000 MCF 4.05$/MCF 
1000-MCF $2.433/MCF 

SERVICE CHARGE 0 
TAX 0 

ELECTRICITY 

0- 25 kWh $6.00 (MINIMUM) 
25+ kWh 0.0285$/kWh 
FUEL CHARGE 0.008899$/kWh 
SALES TAX 4% 

MCF = 1000 FT3 = 106 BTU 

1000 kWh EFFECTIVE RATE = 0.0444$/kWh = 13.01$/Million Btu 

FUEL OIL 

NOT USED IN FORT WORTH AREA 

PROPANE NATURAL GAS 

0.62¢/GALLON 1 GALLON = 91,500 BTU 

EFFECTIVE RATE = 6.78 $/MILLION BTU 

ECONOMIC COP = 13.01 x 0.6 (Furnace Efficiency) = 1.15 (Space Heating) 
6.78 
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MADISON, WI 

GAS 

0-20 THERMS 0.28732$/THERM 
20-50 THERMS 0.27936$/THERM 
50+ THERMS 0.26892$/THERM 

ALSO 
FUEL RATE CHARGE 
TAX 
SERVICE CHARGE 

ELECTRICITY 

0- 100 kWh 0.0360$/kWh 
100- 500 kWh 0.0350$/kWh 
500-1000 kWh 0.0320$/kWh 

1000+ kWh 0.0275$/kWh 

0.0762$/THERM 
o. 
2.00$/MONTH 

FUEL RATE CHARGE (JAN) 0.00607$/kWh 
ALSO TAX 0 

SERVICE CHARGE 2.00$/MONTH 

1 THERM = 100,000 BTU 

1000 kWh EFFECTIVE RATE = 0.04167$ $/kWh = 12.21$/Mi11ion Btu 

FUEL OIL 

0.919$/GALLON 1 GALLON = 140,000 BTU 

TAX o FOR RESIDENTIAL 4% FOR COMMERCIAL 

PROPANE 

0.678 $/GALLON 

EFFECTIVE RATE = 7.41 $ /MILLION BTU 

ECONOMIC COP = 12.21 x 0.6 (Furnace Efficiency) 
7.41 

D-6 

1 GALLON = 91,500 BTU 

= 0.99 (Space Heating) 



WASHINGTON, DC 

GAS 

5.00$/MONTH SERVICE CHARGE 
0.3255$/THERM + 5% TAX 

ELECTRICITY 

5.00$/MONTH SERVICE CHARGE 

NOV - MAY 
WINTER RATES 

o - 600 kWh 0.06024 $/kWh 
600 - 1500 kWh 0.05334 $/kWh 

1500 + kWh 0.04289 $/kWh 

TAX 16% OF FIRST $15.00 ($2.40 MAX) 

1 THERM = 100,000 BTU 

JUNE - OCT 
SUMMER RATES 

o - 600 0.06024 $/kWh 
600 - 1500 0.06924 $/kWh 

1500 + 0.26638 $/kWh 

FUEL CHARGE 0.01500 $/kWh (INCLUDED IN ABOVE RATES) 

1000 kWh EFFECTIVE RATE = 0.0675$/kWh YEAR-ROUND = 19.78$/Million Btu 

FUEL OIL 

0.989$/GALLON 
TAX 5% 

PROPANE 

1.00$/GALLON 
TAX 5% 

EFFECTIVE RATE = 11.48 $/MILLION BTU 

ECONOMIC COP = 19.78 x 0.6 (Furnace Efficiency) 
11.48 

0-7 

= 1.03 (Space Heating) 
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DETERMINATION OF ENERGY 
LOSS (UA) COEFFICIENTS 
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DETERMINATION OF THE UA VALUE OF DETACHED ONE AND TWO FAMILY DWELLINGS 

(Al) AND ALL OTHER RESIDENTIAL BUILDING 3 STORIES OR LESS 

1. WALLS 

a. Determine the gross area of all exterior walls, including 
windows and doors. (Aw) 

b. Refer to Figure E-l [10] to obtain combined thermal transmittance 

value (Uow value) for geographic region. 

c. Multiply gross wall area by value found in (b) to derive 
UowAw for wa 11 s. 

2. CEILING 

a. Determine total interior surface of ceiling. 

b. For geographic areas where: 

• 

• 

HDD ~ 8000, U = 0.05 BTU/H-oF-FT2 oc 

HDD > 8000, U = 0.04 BTU/H-oF-FT2 
oc 

c. Multiply interior ceiling area by value found in (b) to derive 

UocAc 

3. FLOORS 

a. FLOORS OVER UNHEATED SPACES 

(1) Determine the interior floor area (AF) 

(2) Refer to Figure E-2 to obtain thermal transmittance 
value (UOF value) in geographic region. 
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(3) Multiply interior floor area by value found in (2) to 

derive UO~F for floors. 

b. SLAB ON GRADE FLOORS 

(1) Determine the perimeter of the exposed edge of the 
floor. 

(2) Multiply perimeter length by a factor determined from 
the following table to derive CHLLF for floor. 

TO 
Outdoor Design 
Temperature (OF) 

-20 to -30 

-10 to -20 
o to 10 
Above 10 

CHL 
Heat Loss 

Coefficient (BTU/H-FT) 

50 

45 

40 

35 

(3) Divide the CHLLF product by the difference of the 
outside design temperature (To) and the average 
winter building temperature (TB). 

4. BUILDING UA FACTOR 

The UA factors determined in Steps (1) - (3) are added as follows: 

5. If the UA factor for the building at the actual site is known, computing 
the UA factor as described in Steps (1) - (4) will give a comparison 
value. If this comparison value is less than th~ given value at the 
actual site, the given value should be used in f-Chart, and the computed 
value for every other analysis site should be increased by the percentage 
difference from the computed value at the actual site. Simi1arily, if 

the comparison value is greater than the given value for the actual site, 
the given value should be used, and the computed value for every other 
analysis site should be decreased by the percentage difference from the 
computed value at the actual site. 
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Fi gure E- 1 

Uo WALLS-TYFE HA" BUILDINGS 
TYPE A BUILDINGS SHALL INCLUDE: 
Al DETACHEDONEANDlWO FAMILY DWELLINGS 

A 2 ALL OTHER RESIDENTIAL BUILDINGS, THREE 
STORIES OR LESS, INCLUDING BUT NOT LIMITED 
TO: 

MULTI-FAMILY DWELLINGS 
HOTELS AND MOTELS 

ANNUAL CELSIUS HEATING DEGREE DAYS (18 C BASE) 
(IN THOUSANDS) 

1 2 3 - 4 5 6 

I 

1IB1m1m1llm1lim1fii- I 

1 2 3 4 5 6 7 8 9 10 11 

ANNUAL FAHRENHEIT HEATING DEGREE DAYS (65 F BASE) 
(IN THOUSANDS) 
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Figure f- 2 

Uo VALUES-FLOORS OVER UNHEATED SPACES 
ANNUAL CELSIUS HEATING DEGREE DAYS (18 C BASE) 

(IN THOUSANDS) 

1 2 3 4 5 6 

1 2 3 4 5 6 7 8 9 10 11 12 

ANNUAL FAHRENHEIT HEATING DEGREE DAYS (65 F BASE) 
(IN THOUSANDS) 
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