NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Assessment of Disk MHD Generator for a Base Load Powerplant

Donald L. Chubb
National Aeronautics and Space Administration
Lewis Research Center
F. D. Retallick, C. L. Lu, and M. Stella
Westinghouse Electric
and
J. D. Teare, W. J. Loubsky, J. F. Louis, and B. Misra
Massachusetts Institute of Technology

Work performed for
U.S. DEPARTMENT OF ENERGY
Office of Magnetohydrodynamics

Prepared for
Nineteenth Symposium on Engineering Aspects of Magnetohydrodynamics
Tullahoma, Tennessee, June 15-17, 1981
Assessment of Disk MHD Generator for a Base Load Powerplant

Donald L. Chubb
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
F. D. Retallick, C. L. Lu, and M. Stella
Westinghouse Electric
Pittsburgh, Pennsylvania
and
J. D. Teare, W. J. Loubsky, J. F. Louis, and B. Misra
Massachusetts Institute of Technology
Cambridge, Massachusetts

Work performed for
U.S. DEPARTMENT OF ENERGY
Fossil Energy
Office of Magnetohydrodynamics
Washington, D.C. 20545
Under Interagency Agreement DE-AL01-77ET10769

Prepared for
Nineteenth Symposium on Engineering Aspects of Magnetohydrodynamics
Tullahoma, Tennessee, June 15-17, 1981
Abstract

A summary of the results from a recent Westinghouse-MIT systems study of the disk MHD generator are presented. Both open and closed-cycle disk systems were investigated in the Westinghouse-MIT study. Costing of the open-cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed-cycle systems. Preliminary plant design for the open-cycle systems was also completed. Based on the system study results, an economic assessment of the open-cycle systems is presented in this paper.

The following open-cycle plant efficiencies, \(\eta \), were calculated. For a directly fired preheat system with 19200K (2996°F) preheat temperature \(\eta = 45.5\% \), for a directly fired system with 16500K (2996°F) preheat temperature \(\eta = 43.4\% \), for a separately fired preheat system at 19200K (2996°F) \(\eta = 39\% \) and for an oxygen enriched system with low temperature recuperative preheat \(\eta = 40.5\% \). Costs of the open-cycle disk components are less than comparable linear generator components. Also, costs of electricity for the open-cycle disk systems are competitive with comparable linear systems.

Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

1. Introduction

A systems study of both open and closed-cycle disk MHD generator power plants has recently been completed by a contract team managed by the NASA Lewis Research Center under contract to the Department of Energy. The Westinghouse Advanced Energy Systems Division was responsible for the overall study while MIT supplied design data for both the open and closed-cycle disk generators. Burns and Roe, Inc. supplied costing and plant layout data and Fluidyne Engineering furnished design and costing data. Also, some of the channel design information has already been reported in references 2-4. This paper will summarize the systems study results and present an economic assessment of the open-cycle systems.

Figure 1-1 is a schematic diagram of an outward flow disk MHD generator. Flow is introduced on the axis of the disk with both radial, \(u_r \), and azimuthal, \(u_\phi \), velocities. These velocities interact with the applied axial magnetic field, \(B \), to induce both radial, \(J_r \), and azimuthal, \(J_\phi \), current densities.

The load current is made up of the radial current density, \(J_r \), while the azimuthal current density, \(J_\phi \), is shorted within the plasma. Thus the disk generator with both radial and swirl flow can be considered the cylindrical analog of the linear diagonal MHD generator. The original descriptive paper \(^5\) of the disk generator points out the importance of the swirl velocity in obtaining increased efficiency. In the power density expression the term \((B + S)\) acts like an effective Hall parameter. Where \(B \) is the Hall parameter and \(S = u_\phi / u_r \) is called swirl.

\[
\text{Power Density} = -J_r B = \frac{a \cdot v_f^2 \cdot B^2}{1 + \beta^2}
\]

\(a \) - Hall Parameter
\(v_f \) - Load Parameter
\(\beta \) - swirl parameter

FIGURE 1-1 MHD DISK GENERATOR

The initial disk experiments \(^6,7\) were fundamental studies of plasma properties, nonequilibrium ionization and plasma interaction with a magnetic field. Later experiments introduced swirl into the flow and steady improvements in enthalpy extraction were obtained \(^8,9\). These experiments have established the potential of the disk as an MHD generator.

Early theoretical assessments of the disk as a possible commercial power plant were made in references 14 and 15. Recently, the feasibility of using a radial inflow disk generator has been investigated by a Stanford group \(^16,17\). The Stanford group has also recently begun an experimental program \(^18\).

Since the disk generator walls are insulators, larger electric fields than exist over the electrode walls of a linear generator can be sustained. The possibility of large electric fields means large magnetic fields and resulting high enthalpy extraction rates. Thus the size of the disk will be relatively small (\(\sim 10 \text{ m} \) diameter for 1000 MW system). Magnet design for the disk can be either a single coil as shown in Figure 1-1 or a Helmholtz pair with the channel between the coils. Either magnet design is simpler than the magnets necessary.
for linear generators. Also, the inverter system for the disk is simpler than for a linear generator since a limited number of electrodes are necessary to collect the load current. The minimum number would be a two terminal connection like that in figure 1-1.

One advantage of the disk generator is its simplicity. The channel, the magnet, and the inverter system for the disk will all be simpler and more economical than for a linear generator. Simplicity of the disk system should also mean greater availability and reduced maintenance. One of the objectives of this study was to assess the importance of the disk simplicity.

In the next two sections of this paper, the systems results for both the open and closed-cycle disk generators will be presented. It is emphasized that this study represents a first major attempt to integrate the disk generator into an electric power plant. It should, therefore, be considered a preliminary systems study. Design detail of the MHO components for the open-cycle system was carried out to the extent necessary to obtain reasonable cost estimates. Only preliminary cost estimates of the closed-cycle components were made.

Following the performance, plant design, and cost results sections, the economic assessment section is presented. In this section, cost of electricity (COE) results for the open-cycle systems are presented. Also, improvements in availability and reduced channel lifetime requirements resulting from disk simplicity will be estimated. Finally, the COE resulting from improved availability and disk efficiency will be calculated.

II. Open-Cycle Studies

Systems

Studies have been performed for directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator. A result of these studies, base parameters for near-optimum-performance MHD/steam power systems of various types have been defined. The base parameters for the selected systems and a performance summary for each are presented in Tables II-1 and II-2, respectively. The selected systems consisted of two directly-fired cases, one at 1920K (2946°F) preheat and the other at 1650K (2905°F) preheat; a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired case; and an oxygen-augmented case with the same generator inlet temperature of 2839K (4650°F) as the high-temperature directly-fired and the separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization conducted as part of the study. System pressures were based on optimization of MHD net power. Supercritical reheat steam plants were used in all cases.

The resulting power plant efficiencies shown on Table II-2 are found to be in the range of similar studies on linear systems. As expected, a large difference of 6.5 percentage points in efficiency exists for the directly- and separately-fired cases at the same preheat level. The separately-fired case studied used a pressurized coal gasifier to fire the preheaters and a gas turbine energy recovery system driven by the preheater exhaust. The efficiency of the oxygen-augmented system is found to be slightly higher (1.5 percentage points) than the separately-fired case with the same generator inlet temperature. Thus, previous conclusions on the performance competitiveness of oxygen-enriched systems for linear generators also hold true for the disk systems.

In the case of the directly-fired system with a preheat level of 1920K (2946°F), it was found that the temperatures out of the radiant boiler to the preheater had to be at such a high level as to preclude attaining the desired low level of NOx in the boiler exhaust gas. Thus, for that case an NOx scrubber was specified.

The results of sensitivity studies on plant efficiency for the directly and separately-fired cases are presented in Table II-3.
A review of this table results in some interesting observations. First, it is to be noted that over the range of 500 Mwe to 2000 Mwe, the overall plant efficiency is affected approximately 1%. This is less variation than is found for comparable studies on linear generator systems.

Good system performance data does not require inlet swirl above 0.5 and performance is not overly sensitive to swirl below this level. Thus, assuming combusters can introduce swirl in the range of 0.5, extraordinary measures to introduce swirl are not required to be built into the generator.

For this study, the design Hall field was initially selected to be 12 kV/m. This value was somewhat arbitrarily assigned, recognizing that the disk should be theoretically capable of much higher values than a linear generator, but with a desire to remain on the conservative side. The study results indicate that no significant performance improvement is achieved with reasonable increases above this value.

The size of the disk, however, can be decreased with higher values of Hall field and thus the tradeoff can be between cost and risk of electrical breakdown without performance penalty.

Performance sensitivity to a B-field increase from 2T to 8T and 12T was evaluated. Based on the recommended configuration for the disk and magnet (see Power Train Arrangement Section), increased tesla design conditions appear to be more easily attained for the disk than for the linear system. In the single coil disk magnet design, the major structural limitations encountered in the design of linear system magnets with high tesla fields are not expected to be present. An efficiency increase of 1.2 percentage points was calculated for the increase of magnetic induction from 7T to 12T.

The diffuser recovery coefficient is reasonably influential on overall performance, with 0.5 points of efficiency gained by increasing the assumed recovery factor from 0.45 to 0.60. For a well-integrated generator, diffuser, and radiant boiler design, the higher values of recovery factor can be more easily achieved in disk generator systems, since boundary layer blockage at the diffuser entry is expected to be minimal, and the hot wall design of the disk generator and diffuser minimize density and velocity differences in the flow cross-section at any radius.

In performing and reviewing this study, it was found that differences in calculated plasma conductivities exist when compared to companion linear generator studies. Specifically, the Parametric Study of Potential Early Commercial MHD Power Plants (PSPEC) study performed by AVCO uses higher conductivities, and the PSPEC study performed by General Electric CO uses lower conductivity values. High plasma conductivity is important for the open-cycle disk generator configuration, which optimizes from a performance standpoint at supersonic inlet velocities. The uncertainty in conductivity differs from the other parameters studied in this program, because it is not a design parameter, except insofar as it is affected by the selection of a seeding level. Its importance lies primarily in assuring consistency between the results of various studies from which conclusions are to be drawn. Although the evaluation of the effects of a gross percentage change in conductivity is felt to be an extreme simplification (since the actual conductivity changes are derived from which species are included, rate constants, ionization potential, calculational methods, etc.), two cases, one each for an "across-the-board" increase and decrease in conductivity, were calculated and are included in Table II-3. As expected, the performance of the disk generator and thus the overall power system is sensitive to conductivity variations. Though not unduly so, variations in plasma conductivity affect the division of power generation capability between the topping cycle and the bottoming plant, more so than they cause significant changes in overall plant power output. The most significant effect of conductivity is the change in extraction length required to maintain equivalent performance from the generator. Variations in generator size have a great effect upon disk and magnet sizes, and therefore, costs. A direct and truly valid comparison of the overall performance and costing results obtained in this study with other studies can only be made following review and careful consideration of the differences in methods and assumptions used in the studies.

<table>
<thead>
<tr>
<th>TABLE II-3. MHD Power System Sensitivity Study Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHD Generator - Linear System</td>
</tr>
<tr>
<td>VARIATION</td>
</tr>
<tr>
<td>Hall Power</td>
</tr>
<tr>
<td>1500 Mwe - 1600 Mwe</td>
</tr>
<tr>
<td>Inlet Swirl</td>
</tr>
<tr>
<td>50% - 100%</td>
</tr>
<tr>
<td>Diffuser Recovery</td>
</tr>
<tr>
<td>0.5 - 1.5</td>
</tr>
<tr>
<td>Increased Magnetic Field</td>
</tr>
<tr>
<td>9 T - 12 T</td>
</tr>
<tr>
<td>Increased Conductivity</td>
</tr>
<tr>
<td>200 Mwe - 400 Mwe</td>
</tr>
<tr>
<td>Double Power</td>
</tr>
<tr>
<td>1500 Mwe - 1600 Mwe</td>
</tr>
</tbody>
</table>

In performing and reviewing this study, it was found that differences in calculated plasma conductivities exist when compared to companion linear generator studies. Specifically, the Parametric Study of Potential Early Commercial MHD Power Plants (PSPEC) study performed by AVCO uses higher conductivities, and the PSPEC study performed by General Electric CO uses lower conductivity values. High plasma conductivity is important for the open-cycle disk generator configuration, which optimizes from a performance standpoint at supersonic inlet velocities. The uncertainty in conductivity differs from the other parameters studied in this program, because it is not a design parameter, except insofar as it is affected by the selection of a seeding level. Its importance lies primarily in assuring consistency between the results of various studies from which conclusions are to be drawn. Although the evaluation of the effects of a gross percentage change in conductivity is felt to be an extreme simplification (since the actual conductivity changes are derived from which species are included, rate constants, ionization potential, calculational methods, etc.), two cases, one each for an "across-the-board" increase and decrease in conductivity, were calculated and are included in Table II-3. As expected, the performance of the disk generator and thus the overall power system is sensitive to conductivity variations. Though not unduly so, variations in plasma conductivity affect the division of power generation capability between the topping cycle and the bottoming plant, more so than they cause significant changes in overall plant power output. The most significant effect of conductivity is the change in extraction length required to maintain equivalent performance from the generator. Variations in generator size have a great effect upon disk and magnet sizes, and therefore, costs. A direct and truly valid comparison of the overall performance and costing results obtained in this study with other studies can only be made following review and careful consideration of the differences in methods and assumptions used in the studies.

A review of this table results in some interesting observations. First, it is to be noted that over the range of 500 Mwe to 2000 Mwe, the overall plant efficiency is affected approximately 1%. This is less variation than is found for comparable studies on linear generator systems.

Good system performance data does not require inlet swirl above 0.5 and performance is not overly sensitive to swirl below this level. Thus, assuming combusters can introduce swirl in the range of 0.5, extraordinary measures to introduce swirl are not required to be built into the generator.

For this study, the design Hall field was initially selected to be 12 kV/m. This value was somewhat arbitrarily assigned, recognizing that the disk should be theoretically capable of much higher values than a linear generator, but with a desire to remain on the conservative side. The study results indicate that no significant performance improvement is achieved with reasonable increases above this value.

The size of the disk, however, can be decreased with higher values of Hall field and thus the tradeoff can be between cost and risk of electrical breakdown without performance penalty.

Performance sensitivity to a B-field increase from 2T to 8T and 12T was evaluated. Based on the recommended configuration for the disk and magnet (see Power Train Arrangement Section), increased tesla design conditions appear to be more easily attained for the disk than for the linear system. In the single coil disk magnet design, the major structural limitations encountered in the design of linear system magnets with high tesla fields are not expected to be present. An efficiency increase of 1.2 percentage points was calculated for the increase of magnetic induction from 7T to 12T.

The diffuser recovery coefficient is reasonably influential on overall performance, with 0.5 points of efficiency gained by increasing the assumed recovery factor from 0.45 to 0.60. For a well-integrated generator, diffuser, and radiant boiler design, the higher values of recovery factor can be more easily achieved in disk generator systems, since boundary layer blockage at the diffuser entry is expected to be minimal, and the hot wall design of the disk generator and diffuser minimize density and velocity differences in the flow cross-section at any radius.

In performing and reviewing this study, it was found that differences in calculated plasma conductivities exist when compared to companion linear generator studies. Specifically, the Parametric Study of Potential Early Commercial MHD Power Plants (PSPEC) study performed by AVCO uses higher conductivities, and the PSPEC study performed by General Electric CO uses lower conductivity values. High plasma conductivity is important for the open-cycle disk generator configuration, which optimizes from a performance standpoint at supersonic inlet velocities. The uncertainty in conductivity differs from the other parameters studied in this program, because it is not a design parameter, except insofar as it is affected by the selection of a seeding level. Its importance lies primarily in assuring consistency between the results of various studies from which conclusions are to be drawn. Although the evaluation of the effects of a gross percentage change in conductivity is felt to be an extreme simplification (since the actual conductivity changes are derived from which species are included, rate constants, ionization potential, calculational methods, etc.), two cases, one each for an "across-the-board" increase and decrease in conductivity, were calculated and are included in Table II-3. As expected, the performance of the disk generator and thus the overall power system is sensitive to conductivity variations. Though not unduly so, variations in plasma conductivity affect the division of power generation capability between the topping cycle and the bottoming plant, more so than they cause significant changes in overall plant power output. The most significant effect of conductivity is the change in extraction length required to maintain equivalent performance from the generator. Variations in generator size have a great effect upon disk and magnet sizes, and therefore, costs. A direct and truly valid comparison of the overall performance and costing results obtained in this study with other studies can only be made following review and careful consideration of the differences in methods and assumptions used in the studies.

<table>
<thead>
<tr>
<th>TABLE II-3. MHD Power System Sensitivity Study Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHD Generator - Linear System</td>
</tr>
<tr>
<td>VARIATION</td>
</tr>
<tr>
<td>Hall Power</td>
</tr>
<tr>
<td>1500 Mwe - 1600 Mwe</td>
</tr>
<tr>
<td>Inlet Swirl</td>
</tr>
<tr>
<td>50% - 100%</td>
</tr>
<tr>
<td>Diffuser Recovery</td>
</tr>
<tr>
<td>0.5 - 1.5</td>
</tr>
<tr>
<td>Increased Magnetic Field</td>
</tr>
<tr>
<td>9 T - 12 T</td>
</tr>
<tr>
<td>Increased Conductivity</td>
</tr>
<tr>
<td>200 Mwe - 400 Mwe</td>
</tr>
<tr>
<td>Double Power</td>
</tr>
<tr>
<td>1500 Mwe - 1600 Mwe</td>
</tr>
</tbody>
</table>
The study called for an estimate of the costs of the major components in open-cycle disk MHD plants that can differ significantly in design from their linear counterparts. A summary of this data is presented in Table 11-4. A review of the cost of these disk-related components against their counterparts in the most recent linear studies indicates a potential cost reduction from 24-56% for the disk components, or in absolute dollars a value of $23 x 10^6 to $103 x 10^6 (mid-1978 basis) for the 1000 MW plants investigated. The large range results from major differences in the estimated cost of the generator and the magnet for the comparison linear systems. It was found that the combustor system will be of similar cost to that for linear systems. The MHD generator consisting of the nozzle, channel, and diffuser, the magnet, and the channel power management system will all have significantly lower costs than for a linear system of similar power rating. The radiant boiler, as conceived for this study, is slightly higher in cost than for a linear system. Based on observations of the physical design differences, and based on the National Magnet Laboratory assessment of magnet costs, the potential for cost savings is heavily biased toward the upper end of the 23-103 million dollar range indicated above. Verification of this conclusion is dependent on resolution of the large differences presently existing in studies of the linear system components.

Table 11-4: Major MHD Generator Unit Estimates for Disk Generator Plants of 1000 MW Capacity

<table>
<thead>
<tr>
<th>Components</th>
<th>Direct Labor</th>
<th>Indirect Labor</th>
<th>Additional</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBUSTOR</td>
<td>$97,400</td>
<td>$91,800</td>
<td>$90,200</td>
<td>$280,000</td>
</tr>
<tr>
<td>NOZZLE/CHANNEL</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>DIFFUSER</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>GENERATOR</td>
<td>47,400,000</td>
<td>47,400,000</td>
<td>47,400,000</td>
<td>142,20,000</td>
</tr>
<tr>
<td>RADIANT BOILER</td>
<td>50,000,000</td>
<td>50,000,000</td>
<td>50,000,000</td>
<td>150,000,000</td>
</tr>
<tr>
<td>ACCESSORIES</td>
<td>25,000,000</td>
<td>25,000,000</td>
<td>25,000,000</td>
<td>75,000,000</td>
</tr>
</tbody>
</table>

Power Train Arrangement

A selection study was performed to arrive at a candidate plant arrangement. Figure II-1 is a drawing of the MHD portion of the disk generator plant selected for layout. An attempt has been made to utilize the natural features of the disk to provide significant advantages in cost, operation, and maintenance. A simple single solenoidal coil magnet is used and is positioned below the radial outflow disk at ground level. This allows for an easily supported magnet installation with rapid access from above to the channel for maintenance and replacement. The combustor is in a vertical orientation for gravity slagging and fires upward through the central hole in the magnet into the center of the disk. Tunnel access is provided to the combustor for servicing and removal, and for routing of feed lines.

The outflow of the disk undergoes sonic transition and is radially diffused at the disk periphery, where it is fed to three upright cylindrical radiant boiler sections. The flow from these three radiant boiler sections is collected by means of insulated ducting and manifolding and directed to a single train of heat and seed recovery equipment with configurations virtually identical to equipment used in linear systems.

The overall arrangement of the channel and combustor is especially encouraging from serviceability, support, and structures considerations. The diffuser design, and that of the radiant boilers and ducting, is straightforward and feasible; yet it appears that considerable work must be done in this area to combine the functions of these three elements and optimize their performance as integrated portions of the heat recovery and gas dynamic systems.

There are several features of the disk power train which, when combined, could result in major operating systems advantage. These can be in the form of power plant availability advantages or power plant integration advantages. It is believed that the selected simplified arrangement of the disk and magnet
could result in major time advantages for removal and/or repair of the disk. Likewise, the disk itself with many fewer parts and electrical interconnections may well prove to be considerably more rugged than linear units. The quantification of such features in terms of plant availability is very difficult without operating experience, yet if even 1-2% availability difference can be attributed to these features, it can overcome a sizable plant efficiency difference when viewed from the standpoint of cost of electricity. In terms of plant integration, the lower heat loss from the walls of the disk channel as compared to the linear makes the combining of the turbine plant feedwater train with the channel cooling load an easier task. The use of stainless steel cooling passages in the disk, as designed herein, assures compatibility of water chemistry requirements with the bottoming plant. The incompatibility of copper passages, as presently used in linear systems, has been avoided.

Component Characteristics

The combuster envisioned fires vertically upward with slag tapping at the bottom, and incorporates two stages of combustion. Its characteristics are like those for linear system combusters with the exception that swirl is desired at the inlet to the disk. This swirl is introduced by tangential inflow of the oxidant to both stages. Swirls up to 0.5, which improve the system performance, are conceived as being possible from the combuster alone, thus eliminating the need for swirl vanes in the disk generator inlet. The conclusion that such devices may not be necessary is an important one, and considerably enhances the engineering feasibility of the disk generator.

Preliminary calculations for a radial inflow design indicate large combuster heat losses. Therefore, a radial outflow design appears more desirable.

While most commercial-scale linear generators are designed for subsonic flows, the disk generators in these systems are designed for inlet Mach numbers ranging from 1.7 to 1.9. Disk generators designed for subsonic operations are found to have much inferior performance than supersonic disk generators. Particular emphasis was placed on determining electrical constraints, and a constant radial electric field throughout the channel was found to provide the best generator performance. Although single-load (two-terminal) disk generators can be designed on the basis of this constraint, the off-design performance characteristics of such single-load devices are found to be highly undesirable. The single-load generator tends to operate as a constant current device at the typical magnetic field strength. Small variations in front-end load current would result in rather drastic changes in the generator behavior. Fortunately, segmenting the channel using a small number (3-5) of intermediate electrode rings permits satisfactory off-design operations without making the generator design unduly complicated. Control of the radial voltage gradient is achieved by the inverters between adjacent electrode rings.

The selection of a disk geometry brings about important simplification in the specification of channel wall requirements. Basically the walls of a disk generator have only to: (1) support the Hall field, and (2) provide power takeoff points which as explained above can be few in number. It is to be noted that the Faraday current closes on itself within the gas, and thus it is not necessary to provide external closure paths as in a linear diagonal machine, nor to accommodate multiple loading as in the linear segmented Faraday case. This also has important simplifying implications for the magnet and the power management subsystem as discussed below.

Figure 11-2 indicates the conceptual design of the disk generator and its radial diffuser as developed in this study. The disk consists of two pierced fiberglass walls to which are joined water-cooled ceramic walls operating at high temperature. The electrodes are water-cooled copper rings separated from the refractory walls at their inner and outer radii by appropriate insulating materials. A typical diameter of 5.2 meters is shown for the active channel of a 1000 MW plant. Two points of design importance for the disk are: (1) the walls are much simplified from those of the linear systems with their complex and intricate multiple electrodes, and (2) the mechanical design should be easily scaleable from small size prototypes; a characteristic that is not obvious for linear systems.
The choice in magnet configurations is between: (1) a pair of coils to provide a substantially uniform axial field with radius, but having difficult support requirements (penetration of the disk for upper coil support), thus making it difficult to maintain and replace the disk; and (2) a single coil below the disk generator with a substantial radial field that increases with radius as depicted in Figure 11-3. The advantages of the single coil approach were considered so overwhelming that it together with a flat disk geometry was adopted for the study.

If the disk were dome shaped like the bottom half of figure 11-3, then the flow would be perpendicular to the resultant magnetic field. This arrangement will give better magnetic field utilization. An increase in disk generator enthalpy extraction is to be expected if this approach is adopted, and it is recommended for future investigations.

The channel power management system consists of the equipment necessary for consolidation, conversion, and conditioning of the MHD generated power to make it acceptable for transmission.

As previously indicated, an initial review of the voltage-current relationship of the disk generator in a two-terminal configuration showed significant sensitivity at design point to current changes. For example, variations in front-end load current of less than 0.33 resulted in a 55% change in Mach number. This indicates that successful operation of the channel would require adjustment of the back-end electrical loading to maintain compatibility with gas dynamic conditions. This was accomplished by segmenting the channel into four parts by providing intermediate current take-off electrode rings which typically decrease in radial spacing from inlet to outlet. Although the feasibility of radial field control has been established by the study, future efforts will be beneficial in defining more precisely the power takeoff electrode requirements, and their location, as well as defining potential regulator circuits applicable to the task.

The channel power management system provides the disk configuration and subsystem and provides the disk configuration with a key electrical advantage that translates into reduced cost and increased reliability. The costs of such a disk conversion system have been estimated to be approximately 43% of the cost of that for a linear generator MHD power plant, based on the simplification outlined above.

Figure II-1 indicated the general arrangement of the MHD power train and Figure II-2 indicated the conceptual design of the diffuser. As previously indicated, arrangement studies showed the highly desirable effects of locating the disk in a horizontal plane above the magnet. Likewise, the conceptual design of the disk generator indicated the desirability of a section of radial diffuser at the periphery of the disk generator through which struts could be built thus allowing it to serve as a structural member for supporting the disk walls. The additional desire to have an area of access over the disk for maintenance and removal resulted in the selection of a concept using three discrete silo-type radiant boilers located around the periphery of the radial diffuser. This appears to be a rather straightforward, low risk approach. Extensive insulated ducting and manifolding is required to collect the exhaust from the three radiant boilers and direct it to air preheaters or to a common train of downstream heat and seed recovery equipment.

Refactory water wall construction has been assumed for the diffuser and radiant boilers, and refractory-insulated exhaust ducting has been proposed. Costing estimates are consistent with that performed on similar studies for linear systems. Based on the costing information developed and on the best interpretations of linear MHD power plant data, the radiant boiler system was found to be approximately 40% higher in cost in the separately-fired case and 20% higher in the oxygen-augmented case.

The arrangement and design of the combined diffuser, radiant boiler, and ducting is not a feasibility problem, but it does appear that this area could benefit from additional conceptual effort directed at enhancing functions to minimize cost and complexity, and to optimize aerodynamic and heat recovery performance.
III. Closed-Cycle Studies

The study of closed-cycle disk systems required extensive effort in defining acceptable analytical representations for the disk generator and its integration into systems models. As a result, the primary effort in this study was concentrated on determining the general characteristics of the disk generator and on predicting the level of system performance with emphasis on overall plant efficiency. Conceptual design and costing were given only a cursory evaluation.

Systems Studies

The power plant configuration which was investigated consisted of regenerative refractory heaters fired directly with coal combustion products, heating an argon closed-cycle fluid seeded as necessary with cesium. On the basis of previous studies and early exploration in this study, the energy derived from a supercritical steam bottoming plant was matched to the pump work required in the cycle, and electrical power output of the plant was totally derived from the disk generator. Figure III-1 is a schematic diagram of the cycle investigated.

![Diagram](image)

Thirty-three system performance cases are presented in the body of this report covering a range of disk generator variables. All calculations were performed with a 120K (2996OF) inlet temperature to the channel and a magnetic field of 61. Optimization of the closed-cycle disk is complicated by the fact that the electron population of the plasma is not in thermal equilibrium with the surrounding gas and electron temperature becomes an additional variable. Thus, plasma turbulence and impurity level are parameters which must be considered in addition to swirl, Mach number, and seeding level.

The systems analysis covered a range of power levels, mass flow rates, inlet pressure levels, inlet swirls, inlet Mach numbers, and seed ratios; with selected investigation of turbulence levels and seed ratio levels. A summary of the performance survey results is presented in Table III-1. These cases have generally been optimized on system efficiency within the constraints of an effective Hall parameter limit, an exit Mach number of 1.0-1.1, and the required matching of steam power and pumping power. Several observations can be made from reviewing the information contained in this table.

<table>
<thead>
<tr>
<th>Case</th>
<th>Power Level</th>
<th>Inlet Mach</th>
<th>Turbulence Level</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>3</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>5</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

1. The level of optimum system efficiency for all the cases investigated is within a relatively narrow band centered around 44% and is of a level comparable to that calculated for linear closed-cycle investigations.

2. The system efficiency does not decrease with power level, making the closed-cycle disk potentially attractive for small size plants.

3. For the optimized cases investigated, a change in the impurities from 100 to 200 PPM did not cause a significant degradation in performance. The impact of impurities on a given design needs further investigation.

4. High turbulence levels force a requirement for high swirl and high inlet Mach numbers, and as investigated herein, resulted in power plants that attained maximum efficiency at relatively low power levels (162-246 MWu).

5. The seeding ratio declines with decreasing swirl, for example, to 0.005% at a swirl of 1.0 and thus implies limitations from the control viewpoint. However, the performance benefits afforded by the reduced plasma turbulence resulting from full ionization of the seed have not been investigated. Higher coefficients should be allowable which would increase the system efficiency. Better control of the generator operation is implied since the electron density is proportional to the gas pressure in the fully ionized limit.

![Diagram](image)
The closed-cycle disk generator was found to be a compact high interaction unit. Swirl is much more beneficial to the performance of the closed-cycle disk than it is to the open-cycle disk, with the potential for a one-half to one percentage point gain in plant efficiency for a swirl increase of $S = 0.5$ at a given power level. The compact arrangement minimizes the friction losses in the generator and minimizes boundary layer thickness flowing to the diffuser. Within the constraints of the one-dimensional modeling of the closed-cycle disk used in this study, its turbin efficiency appears to be approximately four points higher than an equivalent closed-cycle linear Faraday generator for the same enthalpy extraction.

The study has established that the NMD closed-cycle disk generator achieves levels of system efficiency which are comparable with or exceed those published in previous linear closed-cycle investigations. This comparison is based on using compatible assumptions for the generator and diffuser in each case, together with less optimistic assumptions about losses throughout the remainder of the disk system than were used in the linear system studies. The study was carried to the point where it was possible to determine cost or design concept relationships to the many variables. The use of a disk generator does not alter the demanding requirements on the regenerative argon heater defined in previous studies. Closed-cycle streams using direct combustion of coal for the reheat gas source to the heaters will also require scrubbers for SO$_x$ and NO$_x$, since seed is not contained in the combustion gas stream to provide a means of sulfur removal, and no system comparable to the radiant boiler exists for reduction of the NO$_x$.

Disk Generator Characteristics and Cost Trends

Figure III-2 is a schematic arrangement of the closed-cycle disk generator where the aerodynamic configuration is drawn to scale. As a result of high interaction, the generator is relatively short ($L/D + 2.0$) and two-dimensional electrical and gasdynamic effects can be expected to be of some significance. For a representative 1000 MW$_e$ power plant (case 22 of Table III-1 has been selected as representative), the channel inlet radius is 1.8 meters, the exit radius is 2.78 meters, and the inlet channel height is 0.5 meters.

Due to the compactness of the generator and its high current, low voltage characteristics, surface provisions within current density limits for the cathode and anode are best provided outside of the interaction length. The practical aspects of this requirement are evident in the selected case by the fact that nearly the entire wetted surface area available within the channel itself would have to be used as electrode surface area if current densities not exceeding 30-50 kA/m2 are to be used. To ease this situation, the anode in the sketch of Figure III-2 is envisioned as consisting of a series of collector rings installed in the exit gas stream. Electrode consolidation circuits would therefore be required for cathode connection.

A simplified cost evaluation of closed-cycle disk components was performed by relating them to corresponding elements in the open-cycle part of this study. Case 22 in Table III-1 was again selected as typical for a 1000 MW$_e$ closed-cycle disk configuration. The operating conditions of the closed-cycle disk which have a bearing on structural design of the disk itself are not markedly different. Therefore, the structural design could be assumed similar to that of the open-cycle disk and cost relations as a function of radius developed; such an approach indicates the closed-cycle disk structure can be expected to have a cost in the range of 30-50% of that for the open-cycle case. The complications of introducing electrodes with the large surface areas presumably required is expected to substantially affect design complexity and cost, which may offset this advantage to a large degree.

A similar approach was used on the magnet in applying cost scaling relationships derived during the open-cycle work. This indicated that the closed-cycle magnet costs were expected to have a substantially lower cost than for comparable open-cycle generator cases.

Three major considerations enter into the cost of the power management system for the closed-cycle disk. First, since all power generated for transmission comes from NMD, the amount of power to be converted and conditioned is greater than twice that for the same size open-cycle plant. Secondly, without a steam turbine generator as part of the system, VAR compensation must be provided by added components, which may be either static or rotating. Thirdly, the high current, low voltage characteristic of the disk requires a large number of converter bridges to stay within accepted amperage limitations per bridge.

Taking these items into consideration, the cost of the power management system for the closed-cycle disk is more than twice the cost for an open-cycle plant of similar net electrical power output.
IV. Economic Assessment

Closed Cycle

Since no detailed costing of the closed-cycle disk components was done, it was not possible to calculate a COE for the closed-cycle systems. However, of all the disk closed-cycle components, only the inverter was calculated, the cost advantages resulting from disk simplicity to be discussed for the open-cycle disk should apply to the closed-cycle disk.

Costs of Electricity for Open-Cycle Systems

Levelized cost of electricity (COE) was calculated for each of the open-cycle disk systems. Cost information for the disk components was obtained from reference 1. No costing of the steam plant and auxiliary components was done in the Westinghouse study. Therefore, the specific cost ($/watt) of these components was extracted from the PSPEC Linear system study completed by Avco and General Electric.

Westinghouse's cost data for the separately-fired and O2 enriched systems are compared with the PSPEC results in Table IV-1. The numbers appearing under the Avco and G.E. headings refer to case numbers used in references 19 and 20. The disk power management system is about one-half the cost of the linear system. Generator magnet costs compared to G.E. are also about one-half. Only the disk radiant boiler is more costly than the comparable radiant boiler for a linear system.

The expression used to calculate the capital costs of the disk system is the following.

\[C_{\text{cap}} = C_{\text{disk}} \times (C_{\text{gas}} + C_{\text{st}} + C_{\text{rb}}) \times P_{\text{st}} \times (C_{\text{aux}} + C_{\text{gas}} + C_{\text{co}2}) \times P_{\text{MHD}} \]

Where \(C_{\text{disk}} \) is the capital cost of the disk components which include the combustor, nozzle, channel, diffuser, inverter, magnet, and radiant boiler. The specific cost factors taken from Avco and G.E. are \(C_{\text{st}} \) the steam plant specific cost, \(C_{\text{rb}} \) the radiant boiler specific cost (which must be subtracted from \(C_{\text{st}} \) since the radiant boiler cost is included in \(C_{\text{disk}} \)), \(C_{\text{gas}} \) the specific cost of the gas handling, preheater, and seed processing equipment, and \(C_{\text{aux}} \) the specific cost of the oxygen plant. Note that \(C_{\text{gas}} \) is not calculated in this study. Therefore, mid-1978 dollars are used for costs in this study.

The specific cost factors are shown in Table IV-2. There is close agreement between the Avco and G.E. specific steam plant costs, \(C_{\text{st}} \), for the separately-fired preheat system. The Avco cost is 12% higher than the G.E. cost.

Using equation (1) to obtain the capital cost, \(C_{\text{cap}} \), for the disk power plants, the COE's for each of the open-cycle systems was calculated using the following expression.

\[\text{COE} = \frac{C_{\text{cap}} \times FCR}{B_{\text{ref}} \times F_{\text{el}}} + \text{LEV} 3.412 \times \text{FUEL} \times \text{O&M} \]
where, FCR is the fixed charge rate (.18 for PSPEC and this study), CP is the capacity factor (.65 for PSPEC and this study), P5 is the electric power output of the plant in MW, \(\eta \) is the plant efficiency at the design point, FUEL is the fuel cost in $/MMBTU (.81 for PSPEC and this study), and LEV is the fuel and O&M leveling factor (.194 for Avco and .1882 for G.E.).

The COE's for the disk with directly-fired preheat systems are shown in Table IV-3. Results are presented for specific cost factors shown in Table IV-2 obtained from both Avco and G.E. The capital cost portion of the COE is nearly the same using either Avco or G.E. cost factor data. The major difference between the Avco based results and G.E. based results occurs in the O&M costs. As expected, the directly-fired system with 192M (29960F) preheat has the lowest COE. However, it should be pointed out that a NOX clean-up system, which is required for the 192M preheat case, has not been included in the COE calculation.

The COE results in Table IV-4, the disk systems appear to be competitive with linear systems. The disk COE's are slightly higher than the corresponding Avco system. However, the disk COE for the separately-fired preheat system is significantly less than the corresponding G.E. system. Although the disk system already appears to be competitive with linear systems based on COE, it may be even more competitive if we consider the simplicity advantages of the disk.

Simplicity of Design Benefits

It is difficult to assess in a quantitative way the advantages of the disk generator design simplicity. However, the greatest impact of the disk simplicity should be on the plant capacity factor, CP. Referring to equation (3), it can be seen that the capital cost portion of the COE depends inversely on CP. Also, the fuel portion of the COE depends inversely on the total efficiency, \(\eta \). For current fuel costs, the capital cost portion of the COE is always greater than the fuel cost portion of the COE. As a result, increasing CP will have a greater effect on reducing COE than increasing efficiency, \(\eta \).

Consider the layout of the disk directly-fired system shown in Figure II-1. As discussed in the Power Train Arrangement section, the time required to remove the nozzle, channel, and diffuser and replace them should be short. In a system where a spare channel, nozzle, and diffuser is available for replacement, the system availability is a function of this changeover time. A shorter changeover time means a higher availability.
If we assume that all outages of the disk power plant result from forced outages, then the availability, \(A \cdot CP \), where \(A \) is total plant availability. The total availability is the product of the component availabilities, \(\prod A_i \). Therefore, shorter changeover time means higher capacity factor.

In reference 22, the following expression is derived for MHD channel availability.

\[
A_c = \frac{2}{1 + 2a}
\]

(4)

Where,

\[B = (1 + a)^2 + 2ST/MTBF \]
\[a = MTTR/MTBF \]

Equation (4) is the availability for a two channel system. However, only one channel is in the generator system at any given time. The second channel is either being repaired or in a standby mode outside the generator system. Terms appearing in equation (5) are \(ST \), the time required to remove the channel from the system and replace it with another channel, \(MTBF \), the mean time between channel failures and \(MTTR \), the mean time to repair a channel.

Now consider the improvement in availability, \(A_c \), that can be attained by reducing the changeover time, \(ST \), while keeping \(MTBF \) and \(MTTR \) constant. From equation (4) we obtain the following result.

\[
\Delta A_c = \Delta ST \left[\frac{MTBF \cdot B_0 - \Delta ST}{2} \right] \]

(6)

Where,

\[\Delta A_c = A_c - A_c \]
\[\Delta ST = ST_0 - ST \]

Figure IV-1 is a graph of equation (6) for \(MTBF = 2000 \) hrs., \(MTTR = 200 \) hrs., and \(ST = 100 \) hrs. As figure IV-1 indicates, a 50% decrease in channel changeover time (\(\Delta ST/ST_0 = 0.5 \)) yields about a 4% increase in channel availability (\(\Delta A_c/A_c = 0.04 \)). This would result in approximately a 4% reduction in the capital cost portion of the COE.

Rather than using the reduced changeover time to increase the availability, it may be more advantageous to keep the availability constant and reduce the MTBF requirement. Channel construction methods may not produce lifetimes of 2000 hours or more. Therefore, in order to have a workable system, it may be necessary to accept a smaller MTBF. Consider how MTBF depends on the changeover time, \(ST \). From equation (4), the following result is obtained.

\[
MTBF = \frac{1}{2(A_c ST - MTTR (1 - A_c))} \]

(8)

For cases of interest \(A_c > 0.9 \), therefore, it is a good approximation to assume \((1 - A_c) - 0\). Making this approximation in equation (7) yields the following.

\[
MTBF = \frac{(2A_c/1 - A_c) ST}{(1 - A_c) - 0} \]
(9)

Note that for this limit, the MTBF is independent of \(MTTR \).

Equation (9) shows that MTBF is approximately a linear function of \(ST \). As a result, for a constant availability, any reduction in \(ST \) will produce a corresponding reduction in MTBF. For the example presented in figure IV-1, the channel lifetime requirement can be reduced from 2000 hours to approximately 1000 hours if \(ST \) is reduced from 100 hours to 50 hours with no change in channel availability. If channel lifetime requirements of 2000 hours or more cannot be satisfied, the same COE can be obtained with a system having \(ST = 50 \) hours. The disk design simplicity offers the possibility for \(ST \) in the range of 50-100 hours.

Possible Performance Improvements

Based only on a reduced changeover time, we have shown that about a 4 percent reduction in the capital cost portion of the COE can be attained. It is also possible that the fuel costs can be reduced. This will result if the efficiency can be increased. Most probable improvement in the total efficiency will result from increased enthalpy extraction of the disk generator. As discussed in the Component Characteristics section, larger enthalpy extractions are obtained by using a dome-shaped disk. With dome-shaped design, the magnetic field is always perpendicular to the flow direction.

From reference 19, the following expression for total efficiency is obtained.

\[
\eta_t = \eta_{MHD} + \eta_{St} (1 - \eta_{MHD}) - \epsilon - L_{aux} \]

(10)

Where, \(\eta_{MHD} \) and \(\eta_{St} \) are the disk and steam plant efficiencies, \(\epsilon \) is the auxiliary power factor, and \(L_{aux} \) are the auxiliary power requirements.
As discussed in the last section, a dome-shaped disk design offers the possibility of improved enthalpy extraction. Assuming this improved enthalpy extraction would lead to \(\Delta n_{MH} = 0.03 \), the efficiency improvements given by equation (13) result.

Using \(CP = 0.68 \) and the efficiency improvements given by equation (13), the COE's for all the disk systems were calculated. These results are shown in Table IV-5 along with the PSPEC results for the linear generator systems. With these improvements, all the disk systems become the cheapest except the O\(_2\) enriched case. The O\(_2\) case when compared to Avco is very nearly the same.

Table IV-5

<table>
<thead>
<tr>
<th>Disk System</th>
<th>COE using PSPEC, DH/klw/hr</th>
<th>COE using PSPEC, DH/klw/hr</th>
<th>COE using PSPEC, DH/klw/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directly fired preheat</td>
<td>40.72</td>
<td>44.30</td>
<td>55.16</td>
</tr>
<tr>
<td>Separately fired preheat</td>
<td>43.79</td>
<td>44.32</td>
<td>46.39</td>
</tr>
<tr>
<td>O(_2) enriched</td>
<td>42.17</td>
<td>41.91</td>
<td>48.15</td>
</tr>
</tbody>
</table>

III. Conclusions

First consider the disk closed-cycle system. No detailed costing was done for the closed cycle. However, the disk generator performance is better than comparable linear systems (for the same enthalpy extraction the isentropic efficiency of the disk is greater than that of a comparable linear system). Also, good efficiency is attainable at low power levels.

The open-cycle disk systems have lower overall efficiency than the corresponding PSPEC linear systems. However, the disk generator components (nozzle, channel, diffuser, magnet, and power management) are cheaper than comparable PSPEC components. Costs of electricity for the disk systems are within 5% of Avco PSPEC results and more than 5% lower than G.E. PSPEC results.

Disk design simplicity should lead to increased plant capacity factor, \(CP \), or a reduction in the channel lifetime requirement. For a reduction in channel changeover time, \(S_T \), from 100 hrs. to 50 hrs., a 4% increase in \(CP \) or a factor of 2 reduction in channel lifetime requirement was calculated. Also, open cycle disk enthalpy extraction can be increased with a dome-shaped channel design. An improvement of 2% (\(\Delta n_{MH} = 0.02 \)) was calculated.
Using the improved capacity factor and efficiency, costs of electricity were again calculated. These results give disk COE’s that are less than the comparable PSPEC linear systems except for the O2 enriched system when compared with the Avco is very nearly the same.

Based on a COE argument, the disk open-cycle systems are competitive with linear systems. What the disk lacks in performance it makes up with lower cost. In addition, the disk design simplicity provides the possibility of reduced changeover time and greater availability.

References

