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}	 ABSTRACT

The objective of this research is to modify Fisher's sample linear

discriminant function through an appropriate alteration of the common sample

variance-covariance matrix. The alterations consists of adding nonnegative

values to the eigenvalues of the sample variance-covariance matrix. The

desired results of this modification is to increase the number of correct

classifications by the new 3lnear discriminant function over Fisher's

function. This study is limited to the two-group discriminant problem.

The present research has identified several feasible alterations on

the sample variance-covariance matrix which produce several different biased

1

	

	 linear discriminant functions. The performance of the biased discriminant

functions are compared through Monte Carlo experiments. Comparative perfor-

mance is based on the Conditional Probability of Misclassification (PMC).

Each biased discriminant function has been evaluated over seventy-two (72)

idifferent computer simulation design configurations which gave consideration

to:

!	 (1) Sample size,

(2) near-singularity in the variance-covariance matrix,

(3) Mahalanobis distance, and

(4) orientation of mean vectors.

Initially, it was believed that sufficient improvement in the conditional

PMC could be gained by defining a new discriminant function through the dels-

tion o: small eigenvalues (equating them to zero) in the sample variance-

covariance matrix. However, the difficulty of determining a "cut-off" value

led the researchers to consider several additional alternations on the sample

variance-covariance matrix.
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1 II^'1'RODUCTIN

In many situations it is necessary to assign (or classify) an object

Into one or two groups under conditions of uncertainty. As an aid in thin

classification process, procedures have been developed whereby an object is

measured on p variables whose values are believed to be influenced by the

group to which the object belongs. These measurements are compared, in

some way, with corresponding measures for objects known to belong to each

of the two possible groups under consideration. The object is then assigned

to the group to which it is most similar; similarity is based on some kind

of distance function. In this study, that distance function will be called

a discriminant function.

Two of the beat known discriminant functions developed to handle classifi-

cation problems of this nature are Fisher's (1936) linear discriminant

function (LDF) and the W classification statistics discussed by Anderson

(1958). Fisher's OF and Anderson's W give identical results when applied

to the same set of observations. In fact, one is a linear function cf the

other.

In any classification problem, it is desirable to get a measure of the

chance that an object will be misclassified by the discriminant function.

This measure of misclassification is commonly called the probability of

misclassification (PHO . Using Fisher's LDF, one may compute the exast

probability of misclassification if the probability distribution for the two

populations is multivariate normal with known equal covariance matrices and
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known mean vectors. However, in practice, the cosmon covariance matrix and

mean vectors are unknown and are obtained by unbiased sample estimates. Man

sample estimates replace the population parameters in the OF (LDF becomes

the sample linear discriminant function, SLDF), the exact probability of

misclassification becomes difficult to compute because the distribution of

the SLDF is virtually intractable (Lachenbruch, 1975). However, if the

sample estimates in the SLDF are considered fixed, the SLDF has a conditional

univariate normal distribution, and the conditional probability of misclassi-

fication can be computed (under the given fixed conditions). Hills (1966)

showed that the exact probability of misclassification obtained from the LDF

is always less than the conditional probability of misclassification computed

from the SLDF. This study is concerned with the problem of decreasing the

conditional probability of misclassifying an observation when fixed estimates

of the population parameters are given.

Many statisticians have investigated the behavior of the SLDF. The

exact distribution of SLDF was studied by Wlad (1944), Anderson (1951), and

Okamota (1963); estimation of error rates was studied by Dunn (1971), Hills

(1966), and Lachenbruch and Mickey (1968); variable selection was studied by

Cochran (1964), McKay (1976), McCabe (1975), Habbema and Herman (1977), and

Van Ness and Simpson (1976). Robustness to various departures from assump-

tion was studied by Gilbert (1968, 1969) and Kr$anowski (1977). Rao and

Mitra (1971) used the singular multivariate normal distribution to construct

a discriminant function between two alternative normal population with

singular covariance matrices. Recently and more relevant to the present

work, DiPillo (1976, 1977) and Smidt and McDonard (1976) showed that estimat-

- i
	 ing the population covariance matrix in the OF with a certain biased

estimator results in a decrease of the conditional probability of misclassi-

fication. DiPillo (1976, 1977) used Monte Carlo sampling experiments; the

2



results of his experiments suggest that if the population covariance matrix

Is ill-conditioned (its determinant is near zero), the sample covariance

matrix can also be expected to be ill-conditioned. Therefore, the condition-

ing of the sample covariance matrix has an effect on the performance of the

SLDF. Prior to DiPillo, Bartless (1939) simply alluded to the unstableness

of variable coefficients in the SLDF but did not pursue the problem any

further.

Biased estimators have received a great deal of attention in relation

to regression analysis. For the general linear model, it is well known that

least squares methods provide estimators with minimum variance within the

class of all unbiased estimators. However, within the last decade, such has

been written about the application of biased estimators to the linear model.

i	 Hoerl and Kennard (1970) introduced a biased estimation procedure known as

Ridge Regression. Other biased regression procedures are Latent Root

Regression, introduced by Webster, Gunst, and Mason (1973) and independently

	

^.	 by Howkins (1973), and Principal Components Regression, discussed by Massy

(1965), Hocking (1976), Mansfield, Webster, and Gunst (1977), and Marquardt

(1970). Relatively little has been done regarding the application of biased

estimators to the linear discriminant function. This study is an attempt

to apply principal component procedures in order to modify the SLDF to
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2 BASIC PROPBRTISS OF THE LUM
DISCRIMINAR POCTION

2.1 The Population Discriminant Function

Let X1 - (X , X , .... Xp) be a random vector from one of two popula-

tions *1 or w2 . Let R denote the domain of the p-dimensional vector. It

Is desired to classify X into one of these populations. The objective in

devising a rule of classification is to partition R into R l and R2 by same

optimum method so that:

If X falls in Rl , assign the object to *l.

r If X falls in R2 , assign the object to *2

This classification process involves two kinds of errors, namely, that
i.
t'	 (1) an object is assigned to population v 1 when it really belongs to v2 or

1.2) an object may be assigned to r2 when it really belongs to A
1. A good

classification rule should minimize the probability of these errors in

classification.

In order to construct a more specific characterization of the dis-

criminant problem, the following symbols are defined:

fj (X) - the joint probability density of elements of X for
population irj ; f  is assumed to be continuous.

qj - the prior probability of obtaining an observation from vj.

P(i1j) - the probability of classifying an observation into I I when
r	 it is really from rj (1 0 j).
l^

If

TP - the total probability of misclassification.

4
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Since a  is the domain for classifying an object into fit a v' observation

will have misclassification probability

Pali) - I fi (X)dX Wj) .	 (2.1)
Rk

From (2.1).

TP - P(211)gl + P(112) 
q2
	

(2.2)

As indicated above, a good classification rule is devised when Rl sud

and R2 are chosen such that TP is minimized. The minimum value of TP will

be denoted by OPT. Anderson (1958). wing an approach introduced by Welch

(1939), showed that

Rl - (X l fl(X /f2() > q2/ql)
	

(2.3)

and

R2 - V Ifl(-X)/f2(X) < q2/ql)	 . (2.4)

are the regions that minimize (2.2). Actually. flLX)/f2(X) is most

appropriately called the likelihood ratio which minimizes the TP.

No matter what the distribution f j (X) is, statements (2.3) and (2.4)

imply the following classification rules for an observation 4:

if 
fl (-o)/f2(Eo) > q2/ql- classify 4 into %.	 (2.5)

if fl ( ̂ )/f2( o) < q2/ql, classify X. into s2 .	 (2.6)

Now assume that the distribution fj (X) is multivariate normal That is.

f^(^ -
	 1	 1 a -1/2(X-U )'t'1(X-Uf .	 (2.7)

P(2w)	 ^i 
-1 1/2



lJ	 i

where	 1,2, 111j is the mean vector of X in *,, and E j is the variance-

covariance matrix of X in *j . With this assumption, an equivalent foss of

(2.5) and (2.6) can be derived. Taking the natural logarithm of both sides

(j	 of fl(1)/f2W • q2/qi, one obtains

1	 ,ttt(fl (7C /f2 (X)) • (1/2)X' (E21  - El )1+ X' (Elli11 - 12-U2)

I i

	

	 it
2	

UZS 2 - OiEiltll

El

The second expression in the equalities in (2.8) is called the quadratic

discriminant function because it is quadratic in the components of X. If

*l and 12 do not differ in their covariance matrices, that is, if

E1 • E2 • E, (2.8) reduces to

LX - (1/2)(U
l
 + 112)) 9z 1 (Ul - Ul) Ln q2/ql •	 (2.9)

where the left side of (2.9) is linear in the components of X. Hence, the

population linear discriminant function D(X) is defined by

DU • [X - (1/2) (U
l 

+ 112)11171 
(RI - 112)

	

X'E 1 (U1 
- U2) - (1/2)(Ul

 + 02)'E 
1 
% - U2) .	 (2.10)

The first term of the extreme right member of (2.10) is the theoretical

k equivalent of the linear discriminant function proposed by Fisher (1936).

The expression given by D(X) in (2.10), which is a discriminant function

used in this study, was denoted by Anderson (1958) as W.

If it is further assumed that ql - q2 - 1/2, rules (2.5) and (2.6) in

i
tt
^ ^	 terms of DU become:

D

l:
6
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If D(k) > 0, assign X0 into vl s (2.11)

If D(k) < 0 9 assign ,X9 into *2 (2.12)

Vote that the regions Rl and R2 are now defined by Rl • 111D(X) 10) and
R2 - (X(a(X 'c 	 From (2.1), it can be seen that

P(1 12) -	 I f2UdX and F(211) •	 I f1L)dX.	 (2.13)
D(X)_0	 DU 4C0

Also. D(j) is univariate normal because it is a linear function of components

of the multivariate normal vector X. If a transformation U • D(X), along

with (p-1) other suitable transformations, is defined, one can see that the

range of integration in (2.13) depends only on U. When the other (p-1)

variables are integrated out, (2.13) reduces to

0
P(2 1) - I N1 (U)dU , P(112)l N• 2 (U)dU .	 (2.14)o 

l
where N1 and N2 aro univariate normal probability distributions of U in

vi and v2 , respectively.

Since U - D(X), it is clear that

P(2 11) - Pr (U < 011 a v l) - Pr(D(X) < 0 L c vi)

and

P(112) - Pr(U > 0 k c v2) - Pr(D(X) !. 0 c v2) .
i

Furthermore, the means of D(X) are,

2	 (2.15)E(D(X) ^( c v1) • (1/2)(U1 - U2)'E 1`1 - U2) - -

t:	 E(D(X) c v2) (-1/2)(U j - 02)'E 1 Ul -22)	
2

- —D • (2.16)

and the variance is

i'
	 7

y . .



Var(D(R) L E *1) - Var(D(I)I X c *2)

-(01-Q2)'E1(11-12)-D2 •

where D2 - %L U2)tl 1(11 - U2). In most Mirrent literature, D - VD2

it called the Mshalanobis distance between vectors 11 and 12.

By makinf a transformation from 1 to T - 11 E(1)) /D, the univariate

standard normal distribution is obtained. Bence,

P(2 11) -- Pr(1 < 0 LZ c *1)

- 
Pr, 1 - 8 < 00= 2 2	 (2.18)

D	 D

- Pr(Y < -D/2)

- POT < -D/2)

- •(-D/2) •

where • is the standard normal cumulative distribution. Similarly,

P(1 12) - 1 - •(D/2) - •(-D/2)	 (2.19)

Since (2.18) and (2.19) are consequences of (2.3) and (2.4), the optimum

probability of miiiclassification is given by

OPT - (1/2)1t(-D/2) + 9(-D/2)) - 9(-D/2) , 	 (2.20)

where q1 - q2 - 1/2 in (2.2)

f_
2.2. The Sample Discriminat Function

t`	 Rote that all the results of section 2.1 were obtained under the "Sump-

^+.	 tion that I, 11 , and 12 are fixed and known population parameters. In most

applications, I, 11 , and 02 are unknown and mot be estimated from sample

t'	 data. The classical approach is this case is to replace 1 10 12 , and I in

r	 D(Z with their sample counterpart7I 1 , X2 , sad S. where X^ is the sample

estimate of Ij and S is the pooled sample estimate of I. That is,

a

'J



and

(xi2
 " X2)(41

2 
- 

a2)
11 , (2.21)

iIl (Ail - Xl)( 1 - Xl)' + i
S= n1 + n2 -

Xj • (1/nj) jXij
it

1

where Xij - ith random observation vector for population J. n j Z size of

random sample from populat ' -i	 i - 1, 2, ..., nj , j - 192; 
^j 

and S are

unbiased estimates for jjj and E, respectively. Making these substitutions in

(2.10), one obtains the sample analogue of D() as

Ds(X) 
_ (X - (1/2)(X_1 + X2)I'S 1 (X1 - 12).	 (2.22)

The rules of classification for a future observation 30 
are if Ds (Xo) > 0,

assign X0 to nl ; otherwise, assign it to n 2 . This assumes that q1 = q2'

Rec*ll that the distribution of D(X) is univariate normal. The

unconditional distribution of Ds (X) is not so easily handled. In fact the

unconditional distribution of Ds (X) is virtually intractable because S, X, and

Xj (j - 1,2) are all random variables. Ho% yever, one can determine the distri-

bution of Dx(X), provided Xj (j - 1,2) and S are considered fixed values.

When these values are fixed, D s (X) has a conditional univariate normal

distribution and the conditional means and variance of DS (X) can be determined.

That is,

E (DS (X)^X1 , X2 , S, X e n1) _ 
(Ul - (1/2)(X1 + X2))'S 1 (X1 - X2),

E(Ds (X) ^X1 , X2 , S, R E n) _ (U1 - ^1/2)(X1 + X2)) ' S"1(X1 - X2),

Var(Ds (X)^,X1. X2 , s) - (Xl - X2)
 
IX 1 -1(X1 -

 12)

9

and

(2.23)



Since D8 Q) is univariate normal when given that 11 , 12 , and S are

fixed, the probability of misclassification based cc the fixed values is

E^
	 computed by

PMC - (1/2)(Pa (112) + Ps(211)),

I " 0 where

Ps(112) - Pr (Y )' 72) , P8 (2 11 ) ` Pr(Y < Yl) s

and
-(U - (1/2)Ll + X2)S 1L7t1 - X2)

y j :	 —	 , (J s 1,2)

X2)
9
5 lES l (X1 - R2))1/2

(2.24)

(2.25)

(2.26)

t"

and Y has the standard normal distribution. The calculations leading to (2.26)

are given in appendix A.

The reader should note that (2.24) is not of much use in computing the

^, a
PMC in a practical situation because the yj in (2.26) cannot be evaluated

unless exact values of Rj and E are known. However, (2.24) can be evaluated

in sampling experiments where random observations are generated from known

values of E and !j . This approach will be used to compute the PMC in this

study.

Lachenbruch (1975) and Hills (1966) called the PMC computed by (2.4)

l

	 the actual error rate of D s (X). Hills also showed that

i

E[@(-Da/2)] < (1/2)[P(11).) + P (2 {1)] < (1/2) ( P81 12) + Pa (211)),	 (2.27)

where Ds 
( 1 - R2 ) ^S 1(X1 - Xs) and E[#(-D6

 /2)] is the expected value of

the estimate of 0(-D/2).

An objective of the present research is to show that D s (3) can be

t,
	 modified so that the right member of the inequality in (2.27) is closer to

the middle member.

ri
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1	 3 APPLICATION OF PRINCIPAL COMPONENTS

i

	 3.1. Population Principal Components

The principal components technique originated with Karl Pearson (1901)

as a means of fitting planes by orthogonal least squares and was further

developed by Hotelling (1933) for the purpose of analyzing correlation

structures in a multivariate system. However, principal components theory

1

	 can be studied by putting the usual developments of eigenvalues and eigen-

vectors of positive semidefinite matrices in statistical terms. This

1`

	 treatment is given below.

Let X be a p-component random vector with mean 0 and covariance matrix

E, where E is a real positive semidefinite matrix. Let tl ►1 > *2 > ... > 9p > 0

be the eigenvalues of E. It is well known from matrix theory that there

exists an orthogonal pxp matrix Z such that

^.	 EZ' - Z'* or E - Z'WZ ,	 (3.1)
E

1

	 where - 1#i1i-1 is a diagonal matrix of eigenvalues of E and Z'Z - I.

Note that for purposes of this study, a pxp diagonal matrix with elements dii

on the diagonal shal t be denoted by [diji-1' The ith column of Z', or

equivalently the ith row of Z, is tha eigenvector that corresponds to the ith

eigenvalue *i.

Let V be a p-component vector such that

ZI

ZZX

V - ZX -	 (3.2)

Z'X

i
^.^,	 11

r



where Zi is the ith r•.v of Z. That is, V is an orthogonal transformation of

X. The elements Vl, V
2
9 ... Vp of the vector V are called the principal

components of X.

From (3.1) and (3.2), it can be seen that the variance-covariance matrix

of the elements of the vector V is denoted by

Var(V) - Var(ZX) - ZEZ' - * . 	 (3.3)

Hence, the first population principal component is V 1 - V X with variance

and the ith principal component is Vi - 9%

3.2. Sample Principal Components

Assume now that the p-component random vector X has a multivariate

normal distribution with mean U and variance-covariance matrix E and that a

random sample of size n is available from the population of this distribu-

tion. An estimate S of E may be computed from this sample, where S is at

least positive semidefinite. Denote the eigenvalues of S by 1 1 1 A2 > " '
> A > 0. Just as in (3.1), there exists an orthogonal matrix T such that-. p

S - VAT ,	 (3.4)

i	 where A - IIi1i-1 is a diagonal matrix and T IT - I. The sample principal

components vector is defined by m - TX for a vector of observations, X. The

ith sample principal component is mi - t1X, where ti is the ith row of the

matrix T and m  is the ith linear compound of the p components of X.
f
7	 From a statistical point of view, the basic idea of principal components

i	 analysis is to describe the variation of an array of n sample points in a

p-dimensional space by as few linear compounds of the p-space variables as

`	 possible. For example, the sample variance of the ith principal component of

S is t'Sti - Ai , where Ai is the ith largest eigenvalue of S. If s

t:

i'	 12P

i

'.

._..A_.
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p
eigenvalues of S are zero, then trace S 	 8 1

p-s
Ai; hence, the study

i-1 i-1
k'. of p variables can be reduced to a study of the first (p-s) sample principal

`. components because all the varia -ion in the data is accounted for by the

i	 first (p-s) sample principal components.

For a clear picture of situations where S may have s zero eigenvalues

as opposed to having s eigenvalues that are near zero, consider the following

situations. Suppose first that n < p. Then the rank of S is known to be

less than p (i.e., at least (p-n) eigenvalues are zero) because n( <p) points

cannot possibly span a p-space. Alternatively, if n > p and there are s

^•

	

	 eigenvalues of S that are near zero but not exactly zero. Multicollinearity

exists whenever one or more of the eigenvalues are near zero. Much has

been written about the application of principal components analysis in this

#	 situation; see, for example, Morrison (1976), Rao (1964), or Gnanadesikan

f _. (1977).

Until recently, the application of principal components analysis has

been restricted to the analysis and dimension reduction for a multiple

variable system. Some of the more recent applications of the principal

component technique are provided in section 3.3.

3.3. Principal Components Regression Anaysis

Consider the standard multiple linear regression model

-	 Y - RB+E ,	 (3.5)

where

Y is an (nxl) vector of observations on the response variable.

R is an (nxp) matrix of n observations on p independent variables,

8 is a (pxl) vector of unknown parameters,

and

c is an (nxl) vector of unobservable random-error variables,

13



1	
such that E(E) 0 and E(e 6') - a 2I, where I is an (nxn) identity matrix,

0 and (el) vector of zeros, and a 2 is a nounegative scalar. Frequently, the

elements of Y and X are standardized; however, this restriction is not

necessary for the present discussion.

.^	 The usual least squares estimator of 0 is given by

- (X'X) -1X'Y ,	 (3.6)

with E(R) - 0 and Var(E) - (X 1 X)-1a2 . The properties of this estimator are

^-	 well known so the present review need not be extensive. For a more detailed

i	 treatment, the reader may consult, for example, Graybill (1976).

One of the well known properties of the estimator I is that it is

unbiased and the variance of its components is minimum within the class of

}	
all unbiased estimators of 0. However, difficulties arise with this

`-	 estimator when X'X is near-singular or, equivalently, when strong multi-

collinearities exist in the sample data. One of the primary difficulties is

that multicollinearity causes the components of P to have large variances.

To correct for the difficulties that arise when X'X is near-singular,

Massy (1965), Marquardt (1970), and Hawkins (1973), among others, have
i

recommended a technique called principal components regression. Another

approach for overcoming problems associated with data multicollinearity is

ridge regression, proposed by Hoerl and Kennard (1970). Hoerl and Kennard's

ridge estimator is defined by

IR - (X'X + K)-1 X-Y

where K is a general diagonal matrix and the principal components estimator

is defined by

14
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40Pvc - (Xlx) X'Y

where	
(X'X) - T'Ag T..

Ag ^	 1

11
1

12

^l

lg o

0

where A19 a2 . •••• Ap are the eigenvalues of X'X, g - p-s, the last a

smallest eigenvalues have been equated to zero and T is an orthogonal matrix

of X'%. The matrix (X'X) is generally referred to as the generalized

inverse of V AgT. Although	 and 
A

are biased estimators of P, it can

be shown that they are more stable (their components have a smaller

A
variance than the corresponding components of P) than the least squares

A
estimator ^.

3.4 Relation of Ridge Estimators to
"rincipal Components Estimators

In discussing the relation of ridge to principal components estimators,

it is convenient to employ a general form of a larger class of estimators

presented by Gunst and Mason (1977). Their general form is

-a i citi	
(3.16)

1-l
	

'

where ai depends on the particular estimator, c i - t'X 'Y is the same for all

estimators, and t ,i is the ith eigenvector of X'X. Gunst and Mason showed

that least Squares, principal components, ridge, and two other biased

regression estimators may be obtained from this general form by assigning

13



l
Y,

r^
t.

..^•..^'

the appropriate values to a i. Socking (1976) gave an alternate version of

(3.16). The general fora in (3.16) is equal to 0 if ai • 1/Ai, to 8oer1 and

Kennard's ridge estimator,, if ai • 1/(Ai + k), and to 	 when ai • 1/1
1
 if

i< p-s and a i • 0 if p-s < i< p.

In summary, principal components techniques are a fundamental process

through which biased estimators for the general linear model have been

developed. In every biased estimator of regression parameters, the eigen-

values and eigenvectors of X'X play an essential role in their development.

16
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4 PRINCIPAL COMPONENTS THEORY IN RELATION
TO DISCRIMINANT ANAL'ISIS

4.1 Analogy of Discriminant
Analysis with Regression

A natural parallel exists between the two-group linear dsicrisdnant

analysis problem, as developed in section 2, and multiple linear regression.

Rshirsagar (1972), Lachenbruch (1975), and, of course, Fisher (1936)

showed that by using dummy independent variables, the regression model can

be used to derive the sample linear discriminant function (2.22). In (2.22)

recall that Ds (X) was defined by

Ds (X) - (X - CX, + %2))'_1C  , - 12) or, equivalently,

Do (X)- X'S"1 XI - _X2) - % X1 + X2)'S 1(x1
 _12)
	 (4.1)

The first term on the right side of (4.1) is a linear combination of the

components of X, where S-]'L1 - 12) is the sample estimate of the population

coefficients 1-1 (Ul - U2), and the last term is a constant for fixed values

of %l ,
 

12 , and S. Recall that one purpose for altering a near-singular

matrix X'X in S - (X'X) 'X'Y was to reduce the variance in the components

of S. Because of the natural connection between linear discriminant

analysis and linear regression, it seems natural that more stable estimates

of the discriminant coefficients S1 (Ul - 1 2) would produce a discriminant

function whose PMC is lower than the FMC of Ds (X). In fact, DiPillo (1976)

and Smidt and McDonald (1976) showed by Monte Carlo experiments that the

application of the ridge technique to discriminant analysis improved the

wqz

fl.
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v
PMC of the sample discriminant function. They proposed an alteration on

the commonly used sample function; the general fora of their biased discrimi-

nant function is

Fill
Dk(X) - (X - %(al + 82))'(S + kI)-1 CXI - 12) ,	 (42) -

where k is a nonnegative scalar and S,	 (j - 1,2) are as defined in

section 2. DiPillo selected k - 1 while Smidt and McDonald determined the

constant k by

k - c1p
(4.3)

where a
P 

is the smallest eigenvalue of S and c - (p+2)/(N-p-2). where p is

the number of variables in X and N is the total sample size used to estimate

S. Smidt and McDonald called Dk (X) the ridge discriminant function. In

 this section, new biased discriminant functions will be introduced.

J	 4.2. The Effect of the Position of ill - U2
t^	 on the Variances of the

Discriminant Coefficients

The previous discussion stated that the two-population discriminant

function can be derived through multiple linear regression techniques.

Recall from (3.5) that I is the vector of regression parameters to be

 estimated, and the unbiased estimator is given in (3.6). For the linear
t	

1discriminant problem, the population parameter E- (Ul - 112) of the first

term in the last member of equality (2.10) is the vector of population

-,	 discriminant coefficients. The sample estimate of these coefficients is

{	 obtained by replacing E and U (j - 1,2) by their sample counterparts.

Just as small eigenvalues in X'X inflate the variances of the components
I

of S, the variances of the components of S 1 (X1 - X2) may be large for

similar reasons. Des Gupta (1966) showed that the variance-covariance

matrix of S 
l Ll - 12) is

1`	 18
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y^

'Var[S ldl - V 1 •
t
1 

((U
1

1_i
2- )'S"1 (U_t v2- )I + 921 + t 

3E-1(tF -n ) _v ) ]2-1—

where

Oil +n2-2)2

11 (nl + n2 - p - 2)(al + n2 • Mn + a2 _ p

(a1 + a2 - Mal + a3)
12 •
	

n 0
	

9

't3 • 
a1+42 -p- 1

 al+a2-p_3

and

I is the (pup) identity matrix .

Let d • Ul - U2 , 0; - angle between d and si , where Z. is the ith cipon-

vector of 1-1 ,  and 1/#1 is the ith eigenvalue of E-1
.  Then the expression

given by (4.4) may be written as

r	 1 _	 ((d'd)4cosfj)2

Var[S Q1 - X2))	
p	

I + t2I
i•1	 i

(4.S)
(d'd)y(cosAi)zid'

f	 + t3 	tl 	 ( 1 /t^i)Zi,Z^'
i•1	 1	 i•1

If at least one eigeavalue *i in (4.5) is small, then at least one component

I	 of S 1 (X1 -12) has a large variance.

The expression in (4.5) allows an assessment of the effect of the

position of d on the variance of the components of S 1 (X - X ). If p—	 1 —2	 1

Is small and d is orthogonal to .K , then the variability in certain

ry
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components is not as large as it would be if *1 were small in combination

with Z1 being near parallel to d. Therefore. the position of d in the

p-space should have a definite effect on the discriminant function when

multicollinearity exists.

4.3. Principal Components Discriminant
Function and Its Relation to
the Ridge Discriminant Function

A new definition of the principal components discriminant function will

now be given. Let S be the usual pooled sample estimator of E as defined

In (2.20). It will be useful in the sequel to think of 9 -1  or inverses of

matrices derived from 8 by adding at least one positive constant to the

diagonal of S or wj the eigenvalues of S as biased estimators of 1 -1 .  Let

the diagonal matrix A be the matrix of eigenvalues of S, and let T be the

matrix of eigenvectors, so that S - VAT. As in the case of principal.

components regression, suppose that s of the smallest eigenvalues in A are.

deleted to give

12

Ag
Ag

0

(4.6)

where g - p-s. Then. 
3  

is defined by

Sg a T' 8T and S9-T' =T,
	

(4.7)

20
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Where A= is the generalized inverse of Ag.

The principal components sample discriminant function is defined by

DSW • W- 
%C11 

+ 
-7111

S-SCRI - A).	 (4.8)
Observe that in the ridge discriminant function given in (4.2). the

compounding matrix may always be expressed by

(S + k0-1 • (VAT + M-1

• (VAT + kT'T)
-1
 • T'(A + kI)-1'Z.
	 (4.9)

Also notice that for any positive constant k, there exists a not of constants

(ci)i•1' so that
I

C*
To Ai	 T • T'(A + kl) -1T .	 (4.10)

i •1

when

ci/A1

ci p cl/A2
A	 (4.11)

i •1	
•.

	

cp/Ap 	-

From (4.10). it is clear that ci/A i • IAA  + k); and this implies ci Ai/

(Ai + k) < 1 whenever k > 0. That is, the results obtained by addlo r, some

constant k to each diagonal entry of S may also be obtained by multiplying

the ith eigenvalue in T'A l *t by the value cl • A1AAI + k) < 1. This

suggests that a more general biased estimator of E-1 may be define? by

multiplying the ith eftenvalue in T'A 1T by some c  where C  < 1 and c  is

not necessarily AIAA I  + k). A good candidate for c  is c  • A i/( Ai + ki).

21
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[i

where ki > 0 and ki any or may not be equal to k  for i f J. It should be

pointed 	 i	 iinted out that choosin
g
C	 A AA 

i 
+ k) is equivalent to defining an

I:
	 estimator of E I by

	

T'(A + K) l7 ,	 (4.12)

where K is a diagonal matrix. Note that f ir a general diaconal matrix,

(4.12) is not the sane as (g+K)-I. The reader may refer to appendix 3 to

see why these two matrices are different. The performance of discriminant

functions based on (4.12) will be investigated. Their specific definitions

will be given in section S.

4.4. The General Biased Discriminant Function

Let

Dc() a (X - %CX, + 12) ]'T' (ci/Ai ] i-iTCXl - 12) ,	 (4.13)

where T and A i are defined above and c  is any nonnegative constant less
I
i	 than or equal to one, and c denotes a generic biased discriminant function.

If ci - 1 for i - 1, 2, ..., g and c i - 0 for g < 1 < p, where g is defined
I

in (4.6), then (4.13) becomes Dg 7I). If ci a A IAA I + k), where k is given

In (4.2), (4.13) reduces to %Q). Finally, if ci - 1 for all i - 1, 2,

..., p, Dc(X) is the standard sample linear discriminant function given in
Sa

section 2.

i

	

	 Under the condition that 11 , 12 , and S are fixed. Dc (, is normally

distributed. Calculations similar to those in (2.23) give

E(Dc (X) [1 ,X2 ,S jFWl] - (RI - %CXj+ 2)]'T'(ci /A
I
 ]i^ 1T(X1 2) , (4.14)

E(Dc(^) ^1.X2,7I,Xce2] 
(v2 - L-)]'T'(ci^Ai ] i-1

TCX
1 
^2) , (4.1 )

and, for any 19
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Var(Dc(X) i,X 1 ,XZ,sj	 (Xl 82)'T^[ci/Aiji=1TET'[ci/Aiji•1T(X_1 X
2). (4.16)

The conditional PMC components for D c(X) are

Pc(211) - f(yj) and Pc (112) - 1 - 4(yj) 9
	 (4.17)

where

y*
	 '(X1—

+ 12)l'T'Ici/ 1 i-1T(X1 - XZ	 (j=1,2).	 (4.18)
j	 [(X -X2) 'T'[ci/AijislTIV Ici

/Ai ji=1T(X1 121

The justification for biasing the S matrix in the sample linear

discriminant function is that under certain conditions this biased discriminant

function has a lower PWC than the standard sample discriminant function. The

lower PMC is achieved through a reduction in the conditional variance of the

sample discriminant function. That is, it will be shown that there exists

a set 
(ci)i=1 

so that

Var[Dc (X) [1 , X2 , Sj < Var[Ds (X)IXl , 12 , Sj	 (4.19)

It is clear that if c i - c < 1 for (i - 1, 2, ..., p), then

T'[c/A i ji-1T - cS 1 and

Var[Dc(X)IXl,X2,Sj c2 Var[Ds(X) ff 1,X2,S) < Var[D	 jilt— ' 1,X2,Sj.

However, this choice for the set {ci)i=1 
is not suitable for reducing the

PMC because (4.18) is invariant with respect to multiplying S-1 by a

constant.

The following will show that there exists a set (ci)i-1 
so that (4.19)

is true. Recall that E - Z'*Z, where Z'Z - I. If T is any orthogonal

r^	 (

1~	 matrix so that T I T - I, then TZ' - P' is also orthogonal and P I P - I. Let

Pj be the vector representation of the jth column of P' and P 	 the entry

r

^r

^y



Ld

in the ith row of and the jth column of P'. Then clearly, Pij • toz

`	 where t' is the ith row of T and Z is the jth column of Z', and Pi is-^	 _	 j

H

also the cosine of the angle between td and Z^. Let LXX - XZ)'T'

 (ml, m2 	 mp). The matrix TIT' in (4.16) is now represented by PI*P,

L..
where P' = TZ' and T is specifically the matrix of eigenvectors of S.

i	
Therefore, from (4.16).

Varl V (X)IX
l'K2 ' S) = m'Ici/li)i=1P'^Plci /lili-

= 1 I(ci/l i^i=1	 0 P Pjlci/1i)i=1°^_.	 j l

J•l
!4j—m' (c i /Ai ) p P P' Ic /A )p mi=1^^ i i

II	 (cl/AI)Plj
f

(c2 /"2)P2j	 (cIA1)Plj.(c2/A2)P2j.
_	 f► jm 	 m

	j=1	 ...,(ci
/Ap)pPi

f	 (cp11p)PPj

	

g	 g

• L *j 6 mi (ci/A i)Pi j 2
	

(4.20)
Jul i 1

4

I	 .

where, if ci 1 (1 = 1, 2, ..., p), (4.20) becomes

gm2

	

VarlD.QP Ill 12' S] _	 *j L	 (4.21)

j •l i•l i

To complete the existence proof, it is sufficient to show that a set

ri
	

(ci)i=1 may be found so that

C
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*4	 (cell
 i)Pi j	 < I ^p j 	 (mi /71i)Pi j	 (4.21)

a I f	

Jul	 1=1	 Jul	 1=1

i

Thus, if j is fixed at j', it is sufficient to consider the corresponding j'

term on opposite sides of the inequality in (4.22). That is, it is

sufficient to choose (ci)i=1 such that

P	 2	 2

*J '
 i=1 

i i 1 ij	 j	
i=l i i 

ij	 (4.23)

for each j'. If each pair of jth terms on opposite sides of the inequality

in (4.22) is related in this manner, a system of linear inequalities of the

form

i=1 (cirri/1i)Pij

	

<	 1 (mi/ i)Pij

	
(j = 1, 2 9 ..., p)	 (4.24)

must be satisfied by a vector c' _ (c l , c2 , ..., cp). It is known that

equality holds in (4.24) if c' = 1, 1, ..., 1); and the given inequality

holds if c' = a(1, 1, ..., 1), where 0 < a < 1. As pointed out just after

	

(4.19), .S'	 a(1, 1, ..., 1) is not a suitable choice for reducing the

conditional PNC. Since equality holds in (4.23) if c' _ (1, 1, ..., 1),

elements ofc or of 
(ci)i=1 are selected by the following process. Let cij

be the cariable c  in the jth equation that is obtained by assuming equality

in (4.24), and let wij be the value of cij where the jth equation in (4.26)

intersects axis ci . Now choose

ci = min	 (1,Iwijl)•

j=1,2,...sp
(4.25)



If C  = min	 (1, ^wij ^) = 1 for all i = 1, 2, ..., p, then any
j=1929..69p

combination of ci 's where ci < 1 for i = 1, 29 ..., p, satisfies (4.24).

The selection of c i as outlined above insures that (4.24) is true f,ir each

j = 1, 2, ..., p which implies that (4.22) is true for the selected set

(ci)i=1'

DiPillo (1976) showed that

Var[Dk(X) Ix 1 , 12 , S) < Var[DAD Ll . A2 , S1	 (4.26)

for any k 0. However, it will be shown sere that this result holds with

less generality than originally claimed. His claim is now investigated by

using (4.20), where c  is replaced by Ai/( Ai + k).

Thus let

h(k) = Var[Dk(XIX 1 , %1 , S]

2

j=1 J ( i!l(j 

I /(Ai + k))Pij

Then
i

ht(k) _ -2 ^^	 (m I/( i + k) )Pij	 (mi/Ai + k) 2)Pij)j i	 i 1	 i 1
So,

(4.27)

h'(0) _ -2	 0j	 (mi /Ai)Pij	 (mi/Ai)Pij
J l	 i 1	 1

_ -2(►j m'A-1Pj P I A 2m
Jul

_ -2m'A-1 1 4. PIA-2
J ul

_ -2='A iTST'A-2m
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i.

. 	 where A (Ai1i•1 
and A-2  A-l . A 1 . Since h is continuous and differ-

entiable on the interval (-Ap , +m), where Ap > 0 is the smallest eigenvalue

of 8, h is differentiable at k 0. If (4 . 26) is true for any k > 0, then

h'(0) < 0. That is, h is at least decreasing on some open interval contain-

,	 ing zero. But A-lTET ' A 
2 is not necessarily positive definite. Hence, there-

fore, DiPillo 's statement should be slightly revised to read, "There exists
1.
l '	 a k1 > 0 such that (4.26) holds for all k - k l ." Perhaps h' (0) is positive

only in extreme cases, such as for small samples; nevertheless, DiPillo's

claim is not generally true. In order to be certain that (4.26) is true for

any k > 0, something must be known about E. For example, if E - I, then

(4.26) is true for any k > 0, which also means that (4.22) would be true for

any combination of c i 's, where c  < 1 (1 - 1, 2, ..., p).

Further inspection of Dk(x) along with ci, where ci is defined in (4.11)

reveals that	 ^ci ^A i/(A i + k) - 0 for each I. This

implies that there exists some positive N1 such that for any c > 0,

cp/Ap l < c whenever k > Ni . Hence, when k is large and/or if the

eigenvalues {Ai)i-1 
are nearly equal, the eigenvalues of (S + kI) -1 ara

nearly equal. Increasing k beyond a point where the eigenvalues are almost

equal is the near equivalent of multiplying the numerator and denominator of

(4.18) by the same value. Therefore, when k is selected so that

1/(A 1 + k) ail/(Ap + k), no additional improvement in the conditional PMC

Of Dk(X) is expected from a larger k. This explains what Smidt and McDonald

(1976) observed as an "interesting phenomenon" when they evaluated the PMC

for Dk (X) based on observations generated from a distribution where E - I.

In the present study, several such biased discriminant functions . are

evaluated and compared as outlined in section S. For a justification of the



ki

I

';	 1

variance in (4.20). Note that (4.20) may be expressed as

Varl%(X) %. $2 , S) -- 12P^
Jul 1•1 1 i	 i

additional biasing methods presented here, further attention is given the

(4.28)

The expanded form of (4.28), for p=3 for example, is

3̂  31 21 ++
1 1 	 12	 13

P?12 2m2PZ2	 31?32 2+	 1	 +	 1	 +	 (4.29)

1	 2	 A3
t

2
2m2p23	 Y+	 +	 +	 3p33

11	
A2	

13

If S were, in fact, E or at least if T = Z, then Pii . 1 and Pij = 0 where

i # J.	 It is generally expected that the terms in (4.29) that involve the

factor/a i, where i > j, will contribute more to Var [Ds (X)lX 1 , X2 , S]

than those terms that have the factor	 /a, where i > j, because

j
/J►i 	> i/aj whenever i > J.	 Recall from (2.26) of section 2 that the

primary purpose for biasing Ds (X) is to increase the absolute value of yj.

Hills (1966) showed that	 hrj I is smaller than its population counterpart.

Therefore, the present study proposes to bias D s (X) so that biasing will

have its greatest effect on the 
jmipi^/1i 

(i = j) terms of (4.28).	 The

1 rationale is to add a different positive value k 	 to each eigenvalue X I so

- that ',/ A i < 1.	 In practice, the value of ^^ is unknown; therefore, Aj

will be substituted for^r
J

.	 The general form of k i will be

t^ ki	 f1 01 - A  + f2)	 (4.30)

l 28
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Note that if fl	1 and f2	 09 4-11 .011 + ki) < 1 for all i and J. since

11 > 12 — 000 > 1p•	 Simulation experiments will show that when k 
	 is

selected in this manner, for certain cases the magnitude of the reduction

In the denominator of (2.26) is greater than the corresponding reduction

in the numerator. Specific values for f l and f2 are given in section 5.

DiPillo (1976) and Smidt and McDonald (1976) restricted their biasing

t.

	

	 alteration of Ds (X) to adding some constant k to the eigenvalues of S. An

alternative approach is to bias the eigenvalues of R, where R is the sample

correlation matrix. To see this, let the matrix E n I4n1' 
where 

sii

Is the ith diagonal entry os S; then B1SE-1 n R. A biased estimate of

E1 is
i

P

S-1  n E-
lF 1	

1	 FE 1

R	 Yi + k1	(4.31)
_

in1

Where 
Y1 > Y2 > ••. > Yp

 are eigenvalues of R and F is the matrix of

eigenvectors of R, and k  is of the form given by (4.30). When S-1  in

(2.22) is replaced by S-1 , another biased linear discriminant function is

defined. Several biased functions defined in terms of S R are evaluated in

this study.

4.5. The Effect of Biasing in Relation
to the Position of U1 - U2

In this section, the behavior of yj in (4.18) is investigated as

ki ♦ 4-. For convenience, assume that Xj n U^ (j n 1,2) so that yi -y2'

Since k  + 4- for each i - 1, 2, .... p is equivt :l uat to letting ki n k-* +a

this investigation deals only with i i n k for all 1.

assumption, it is sufficient to examine only lim yl.
k*4-ft

Uader the above

Note that
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	 P

l Jim Y*. l^„	 $(U1 - U2) 'T' 7 ++k J
u l

- U2) ^ 	 .!

(U -U2)'T' a k
	

TET' l k
	 T(vl-U2)?	 -1

i	 Jul	 i	 Jul	 (4.32)	
1

W'dd

where d = U - U .and
-1 -2 di cos 2e

d'E ld •	
C	

i • D2 . d • Ed -	 ^4id'd cos20i
i=1	 1	 Jul

where 8 i is the angle between d and Z j ; and Zi is the ith eigenvector of

E. Also,

i► i cos 0i
=1	 :^

'	 and
I

y,

	

!,D = (d_'E"ld)	 Ad'J) 4	 0lob.) Cos 2o il	 .
a

I

where }D is the optimuw value for Y as given in Section 2. where

Y - (0 - E[U))/D and U is given in (2.18). Consider two extreme cases:

Case I. d is parallel to Zi for any i - 1. 2, ..., p. Then
t ,	 -

0i w 0 and Aj = n/2 for i # J. Hence,

%(d o d)Is
lim y? _ —^— s

k	
^2D 

•k-0-4-(^i)
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which is the optimum value of Y. Thus, if d is parallel to any Z, the

optimum PMC may be achieved by assigning a very large value to k.

Case II. ei - e^ - e for all i,j - 1, 2, ..., p. For this case,

h(d' d_)

Ila y -
k-*^	

cose ! ^► ^

•1

and

^sD -	 -h(d'd)1cos0 ! 1%^► 	 ''--
I	 -1	 i

I;

From the definition of e, cose - 1/,(p—. It will now be shown that

lim y2 < }D ,	 (4.33)

k-►+-
t

when e- e1 for all i - 1, 2, ..., p. The above substitution for cose
gives

lim Yj < }D

i
k*+Qo

iff

t	

1 ^(d d)	 t ^4 9d)^^	 k

p i•1
p •lpi

iff

i•1	 1.1	 J-1 i-1
(4.34)

'	 p +
if 

pi/^►j • p + i 
3

(^i /^Yj + pj 110

j
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The extreme right member of (4.34) contains }(p 2 - p) terms of the form

(*i/*i + *j /*i), where *i/*i is the reciprocal of j /*i . Any positive

number plus its reciprocal is greater than or equal to 2. Bence, (4.34) is

verified by p2 • p + 2[}(p2 - 01 .1 p +
ij 

(*I/*j + *j /*i). Therefore, the

relation in (4.33) is true. Mote that if all i 's are equal, the equality

part of (4.33) holds. Thus, if 8i • 8 and #j #i or if any 8i • 0, Otte

can expect to obtain a "near optium" classification model by biasing the

sample discriminant function with a large k. However, if 8i • 8 for i • 1,

2, ..., p and if there is a mixture of large and small * i 's biasing with a

large k may produce a function that is far from optimnmt.

{	 1
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5 SIMULATIONS, DISCUSSION AND CONCLUSION

5.1. Introduction

The objective of the computer simulation is to compare and eva

the effectiveness of different biasing procedures on the conditions.

when E is near-singular. The simulation is designed to control for

following factors:

1. The severity of the multicollinearity in E.

2. The orientation of U1 - U2 to the eigenvectors defining th

multicollinearity.

3. The Mahalanobis distance between 
v
  and A2.

4. The sample size.

The simulations were conducted on a UNIVAC 1108 computer at the George C.

Marshall Space Flight Center, Huntsville, Alabama, using a program written

by the author which incorporated subroutines from MATH PACK and STAT PACK.

5.2. Construction

The common variance-covariance matrix E is constructed so that varying

degrees of singularity, or multicollinearity, are represented. DiPillo

(1916) defined his E by

	

A	 A's

E	 ---	 (5.1)

a'A = a'Aa + a2
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P

(5.2)

i"
t^

Where e' - (1/p-1, ..., 1/p-1) is a 1 x (p-1) vector and where 0 is some

positive scalar znd A is a (p-1) x (p-1) symmetric matrix. The positive

scalar o2 is designed as a singularity control. It is implicit that,

when I is defined by (5.1), all the variables are involved in the multi-

collinearity. To see this, let X be a random vector so that

Vary - A(p-1)x (p-1) and A is positive definite.

UP-1variable is defined by P • -1 e 1XI -11 X such tha
i-1

lxp random vector where a is an arbitrary vector.

generality, it is assumed that E(X) - 0. Wow,

Cov[Xi , Xp) IN E[XiXpa - E[eiXi11 ♦ E[
j

Suppose that a pth

t X*' - [ X' Xp) is a new

Without any loss of

lejXJ	 ` e'=I •

where ai is the ith column of A and a is the vector of coefficients

I'

	 defining Xp . Also, Var(Xp) - E(e'X) 2 - e'Ae. Hence.

l:
A	 A'e

+	 Var(X*) - ----- ^^a

t	
L

Here, it is clear that o 2 - 0, and thus perfect multicollinearity exists and

Involves all the variables when e  - 1/(p-1) - a  for 1 - 1, 2, ..., p-1,

where a  is the ith component in vector a of (5.1). If o 2 is increased, the

degree of multicollinearity is decreased.

Following the approach of DiPillo, let

where a is as defined in (5.1) and jj is the (p-1) x 1 ith (j - 1, 2)

population mean vector corresponding to the common variance matrix A.

DiPillo stated that

(nl - %YA 1(nl - g2) - (Ul - 1!2)'1- 1(Ul - 112). 	( 5.3)

34

1!



where At to ni , and hj (j • 1,2) are as defined above. This egwlity is

reestablished here using any vector a in place of a. That is, let

h • nl - A2 and a be any nonzero (p-1) x 1 vector and a 2 > 0. Then,

-

:^h
A ! A's 	 h

^ } 
[h	 j

19A * ,As	 e'h

A-'  + e e' /a2 1 -0/0 2 	 h

/v2 1 1/0 2	 e'ti

•h'Alh .

Hence, the distance between the two populations is not affected by either

a2 > 0 or the form of the vector e.

The relative position of U' - U' • [n' = a'n j - [n' ' a'n j •—1 	 —2.	 1 i — —1 	—2 = — —2

(ni - ,R2' = a'(nl - r2)j to the pth eigenvector will now be examined where

0
J
 (j • 1,2) is as defined in (5.2). If perfect multicollinearity exists

In t, i . e., if a2 • 0 and t has only one zero eigenvalue, then the pth

eigenvector of E is [-e'j lj (or some scalar multiple of this vector)

because when perfect multicollinearity exists, it is defined by the eigen-

vector corresponding to the smallest eigenvalue, which is zero is a 2 • 0.

As a2 gets larger, the pth eigenvector deviates from [ -e' ; lj. Now,

h

e'h

which implies that

t'

3
I^

a

t.
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[69h

as defined in (5.6), is orthogonal to the eigenvector defining the mu1Li-

2 • 0collinearity. This means that when a 	 , UI - U—2 is confined to the

space of the first (p-1) eigenvectors; and hence the pth eigenvector

contributes nothing to the distance between the means. To see this, one

needs only to inspect D Z • (OI - U2), L-1 
(UI - U2) by performing a principal

components transformation. That is, D2 	di/#19 where di • ,Z^' (U1 -
 
12)

'	 i•1

and Z, is the ith eigenvector of E. If d i • 0, then 91 - 312 is orthogomal

to Av

The construction for the matrix I as used in this study will now be

defined along with the various orientations for the vector U 1 - U2 . Let

A be a (p-2) x (p-2) symmetric positive definite matrix. Let el be 1

i
(p-2) x 1 vector, e2 a (p-1) x 1 vector, and a 2 a2 be positive scalars.

Let
A	 ' e I

elA elA^l + 01

and

zl i E1`2

y • ----------------- .	 (5.5)
^	 2

!!'I j 'L-2 1E2
+ 0 2

The column vector Z ,, is the ith eigenvector of L and a i is a constant tc be

defined below. Let

U+^ 0 and Ui • I aiZi .

i•1



For this study, ai = [biwi/p) }, where bi controls the angle between Z

and Ui - U2. Note that if b i = 1 (1 - 1 9 2 9 ..., p), then

D= [LU1 - Ut)'E 1LUi - UJA	 1; and

(Rut - U*)' Z^	
^i

_ ^^'-^ • COs A .

[ (U1 - U1)' (U,1 - U2) J	
i

where Ai is .:,e angle between Zi and U1 - U2. When b i - 1 (1 - 1, 2, ...,

p), all principal components contribute equally to D. Also note that the

Mahalanobis distance can be controlled by defining.

U1 = UiD '	 aiZ D,
i=1

where D is the distance between 
w  

and n2 . If b1 # 1 for all i, then

(Ui - U2)'E (U1 - U2) - (1/p) 	 b1	 (5.6)
i-1

Therefore, b  will be selected so that I b  - p; and hence, (5.6) has a
i-1

value of 1 for any set of bi 's. This sum of the b i 's is easily controlled

by using the properties of arithmetic sequences and series.

The bi ' s are defined here in the following three different ways:

(1) bi	
2p_ii)

(2) bi = 1

(3) bi ' 2(1-1)

i-1, 2, ..., p.

i-1,2, ... 9p9

i - 1, 2, ..., p .

The above definitions of the b i 's are convenient for computer coding.
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S-1 a S-1
A	 c

S; = Scl

SGl = Scl

Y ^^

1	 _

r:

Let N • n  + n2, where n  is the size of the sample from vj . Recall

that any general biased estimator of E was denoted by S-1 •T'[ci/Ai]i=1T'

where ci 
• Ai/(Ai + k i ) 

and ki 1 0. Now, each procedure for computing ki

will correspond to a particular Sc l. The ki used in the simulation study

here and the corresponding symbol for 
Scl are listed as (a) through (f)

below and (g) through ( i) later.

Corresponding Symbol

ki	 for Scl

0 i i • 1

(a) ki • A  if A i >	 and i > 1
/A 1 Ai + x  if Ai <

'0 if i-1

(b) ki +
2I Ap if 

Ai > T and i > 1

NN-p?2 (^ - A
i p+ A) if Ai <

0 if i 1

(c) k	 -P+? A if A>	 and i> 1
i	 N-p-2 p	 i	 1

A

^. p?2(a^2 -= + Ap) if Ai < i

9-
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Corresponding Symbol

ki 	for S-1

k for i= 1, 2, 064 9  p

where

(d) ki a	 k1 . S-1

i	 c
k • i.p and ki

 
to as defined in

(c) above

(e) ki = 1 for i = 1. 2. 000 9 p	 SU1 . S`1

(f) ki = +• for i 1 9 2 9 000 9 p	
SF1 

= S-I • I

The choice of k  and the corresponding identity matrix in (f) are

motivated by the behavior of the limit of y; at k = 4-, where this limit is

evaluated in (4.32). Although it is clear that if k  -► +^ for i = 1, 2,

000 9 p, the corresponding matrix Scl in (f) converges to the zero matrix;

but, the ratio in (4.32) converges to the expression given there. Since

the function DF(X) _ [X - (X1 + 12)j'I(x1 - 
X2) produces the identical

ratio given in (4.32) when its expected value is divided by the square

root of its variance provided Xj = UU (j = 1,2), DF(X) is taken to be the

biased discriminant function that corresponds to k i = +- for 1 = 1, 2,

000 9 P.

The following symbols represent the biased estimator S c when the

eigenvalues of the sample correlation matrix are biased. For this case,

recall that Sc-1 = E 1F'[l/(Y i + ki)ji=1FE 
1 as given by (4.31).
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Corresponding Symbol

for S-1f	
ki

f

j	 0 I i•1

+2 - Y if Y > ^ and 1 > 1
N-p-2 p	 1	 l

(8) k t .
i

+2 
c Y
i _.^

N-p-2( a2 i.l	 + Yp) if Y 

S 1•S-1
R	 a

F
r

	

^-	 0 if i - 1

	

(h) k	 -1 = -1

	

i	 /Yi - Yi + Y  if Yi < 1	
SM Sc.

0ifYi>0.1
SD = Scl

+W if Y  < 0.1

The reader should recall that the situation where a particular k  is +-

while all other k i 'a are zero is equivalent to an earlier definition of the

principal component discriminant function where the i'th eigenvalue is

equated to zero. Each biased discriminant function is defined by

D(J)(X) _ [X - (g1 + 12)l' S(^)(X1 - X2)

where j - A, P, G, K, 0, F, R, M, D and the unbiased discriminant function

is denoted by D (R).

	

7	 s

For the present simulation study, p - 10, ei = (0, 0, 1/(p'2),

1/(p-2), 0, ..., 0), and e2	 (},, 0, ..,, 0), where p, ei , and e2 are

defined in (5.5). This means that when both of and a2 are small, multi-

	

'	 collinearities exist between variables 3, 4, and 9 as controlled by el

and variables 1, 2, and 10 which is controlled by e 2 . In order to achieve

the purposes outlined in section 5.1, the variables nl = n2 - n, al. oil

ai (i = 1, 1, ..., p), and D were assigned the following values:

	

r .	 40

S:



01 • .001, 10.0

a2	.001, 1.0

i

, [2(P-I)#

 9	 1	 f	 9	 oil

	

P ._	 _ P	 P

n • 10, 25

D • 0.6, 1.0, 3.0

This gives 72 different simulation design configurations to be evaluated

on each of the nine different biasing procedures (a) through (1).

To evaluate the 72 configurations, a computer program was written

to:

1. Generage an independent random sample of size n for each nj

0 • 1,2) population.
2. Compute 2-1 , X2 , and S for the sample.

3. Compute the values for k  as defined above.

4. Compute the conditional PMC for D s(X) and for each biased

discriminant function.

5. Replicate steps 1-4 30 times.

6. Calculate the means and variances of the conditional PMC's for

the 30 replications.

5.3 Summary of Results

The complete results of the sampling experiments are given in tables

8 through 79 in appendix D. The data contained in each column is described

below:

Column 1. Name of the estimator.
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Colummn 2. Average PMC for the 30 replications using D (j)I, where

j • S, K, G, R, D, M, A s P, 0, F.

Column 3. Variance of the PMC for the 30 replications

Column 4. Average PMC for a biased estimator minus average PMC

for estimator S evaluated on the 30 replications.

Column S. Number of times, out of 30, a biased PMC is lower than

that 3f estimator S.

The actual population values for D along with the associated PMC, denoted

ì by OPT, and the orientation of 111 
-42 are given for each table.	 Note

E that in tables 8-31, d2
P 
/*
P
 = 0 and di/*i > di+l/*i+l for i < p; in tables

32-55, d2hi = dj/*j (i#j); and in tables 56-79, d2 *3 = 0 and di/ i <

t
'2
d	 / gyp	 for i > 1,
i+l	 i+l

where
i 1

2
d /^► 	 (U
3	 1	 —1

, -1
- U) E	 (U	

- 42)'2	 1 2ri

5.4.	 Discussion of Results

In order to compare the performance of the biased procedures to the

standard unbiased one, it is necessary to examine the indicators of

improved performance in tables 8-79. The indicators are columns 3-4.

The most striking feature of tables 8-79 is the dominant influence of

the position of vector ill - 22 on the indicators of improved performance.

In tables 8-31, Ul - 1!2 is positioned so that di/*i > di+l/*i+l' For

this position, all biased procedures, except K, showed positive values for

i.	 column 4; and the entry in column 4 for K is positive when D > 1. A com-

parison of the variances of the estimators in tables 8-31 shows that when

D < 1.0, the variance of each biased estimator is greater than the variance

of the unbiased one; the opposite is true when D > 1.0, except for biased

estimators D and K. Indicators in column 5 are generally good for all

biased estimators except for K. but K was favorable when D > 1. Tables

32-55 show that the performances of biasing procedures are mixed. Here
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u
Ul - 112 is positioned so that all eigenvectors contribute equally to D

and the general trend is for all indicators to improve as D gets larger.

Tables 56-79 show that all biasing procedures performed poorly when
l'

U1 -12 is defined so that d
id*i < d1+11+1.

Although most procedures

tended to improve on indicators in column 4 and 5 as the value of D

increased, the general performance of all biasing procedures was poor

when n - 25 and the orientation ofU1 - 4
2 was such that the principal

components associated with small eigenvalues contributed heavily to D.

.	 A noticeable exception is K. The amount of improvement in the mean PMC

for K over the mean PMC for S is considerable when n - 10 and D > 1.

It appears that no firm statements on the effects of eigenvalue size

or the degree of multicollinearity can be made, because the effects of

J eigenvalue size seem to depend on the position of the mean vector U 1 - U2.

A comparison of results in tables 1 through 4 adds support to this claim.

In tables 1 and 2,U1 - U2	^Z1 is parallel to Z l ; and in tables 3 and

4, Ul - .K2 =	 is parallel to any Zi , then the optimum PMC can bepZp

achieved by letting K-1- + W .	 This result was obtained under the assump-

tion that U^ - X^.	 Tables 1 and 2 show that when U^ - 'R
2
 is parallel to

t.
Zl, the mean PMC of F is close to the optimum PMC and all biased procedures

perform well even though a2 = 
a2	

.001, which is the worst multicollin-

earity case considered in this study. 	 However, in tables 3 and 4,

P.

performance of F and all other biased procedures is poor, in spite of

the fact that all configurations are the same as in tables 1 and 2,

except Ul - 112 is now parallel to Zp .	 The poor performance of biased

tprocedures in tables 3 and 4 is due to the large variances in the com-

ponents of S-1(X1 - X) as discussed in section 4.2. 	 It is also
1 2
l

r`
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Table 1

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D - 1.0 (OPT - . 085) , U l - 

2
2 = 1 ^G1) 1'n - 10

Number of Times
Mean	 Improvement Over	 PNC is LowerEstimator	 PMC	 Variance	

Estimator S	 than That of
Estimator S
(max - 30)

S .4482785 .0025357
K .4177978 .0279583 .0384815 15
G .3956326 .0020253 .0526459 27
R .3705756 .0020419 .0777029 29
D .3998220 .0923597 .0492565 26
M .3657406 .0022464 .0825379 29
A .3854223 .0016827 .0628562 28
P .3805779 .0018560 .0677006 28
0 .4082210 .0025667 .04005 75 26
F .3510729 .0034107 .0972056 28

Table 2

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

► 	 when D - 1.0 (OPT - . 3085), U1 - U2

n = 25

a..

Number of Times

Estimator
Mean

Variance
Improvement Over PMC is Lower

than That ofPMC Estimator S
Estimator S
(max - 30)

S .3978117 .0011525
K .3930133 .0017926 .0241985 20
C .3895865 .0010908 .0062253 21
R .3721815 .0008544 .0257103 30
D .3914080 .0611284 .0064038 20
M .3382653 .0002799 .0595464 30

`• A .3744258 .0008205 .0233860 28

1.
P .3835509 .0009451 .0142668 26
0 .3813010 .0009768 .0165107 29
F .3238669 .0000759 .0739449 30,_.
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Table 3

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 ReplicatLons,
when D - 1.0 (OPT - .3085), Q1 -,12 - (op) 

-Pn - 10

Number of Times
Improvement Over PMC is Lower

Estimator	
PMC

Variance Estimator S than That of
Estimator S
(max - 30)

S .4349328 .0018492
K .4679930 .0237833 -.0336602 11
G .4999833 .0000000 -.0650505 2
R .4999707 .0000000 -.0650379 2
D .5086451 .0000000 -.0651123 2
M .4999633 .0000000 -.0650305 2
A .4999865 .0000000 -.0650538 2
P .4999697 .0000000 -.0650569 2
0 .4999484 .0000000 -.0650156 2
F .4999921 .0000000 -.0650593 2

Table 4

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D - 1.0 (OPT - . 3085), U 1 - 42 - (*p)z p

n - 25

Plumber of Times

Mean	 Improvement Over	
PMC is Lower

Estimator PMC Variance. Estimator S than That of
Estimator S
(max - 30)

S .3956383 .0012857
K .4226880 .0030092 -.0270577 2
G .4998305 .0000000 -.1042082 0
R .4999249 .0000000 -.1042946 0
D .4999747 .0000000 -.1043444 0
M .4999791 .0000000 -.1043487 0
A .4999810 .0000000 -.1043587 0
P .4999485 .0000000 -.1043182 0
0 .4999029 .0000000 -.1042126 0
F .4999881 .0000000 -.1043577 0
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worthwhile to consider the variance of Xl - 	 in combination with the

magnitude of the components of_Xl - 
1
2 . In tables 1 through 491 - XZ

is an estimate of Ul - ]1
2
 and Var Ll - X2) - 1/(nl + n2); but the magnitudes

of the components of tl*l!l are larger than the magnitudes of the corres-

ponding components of ^p whenever #1 
is much larger than Grp. This

means that Xl - B2 , when used to estimate Ul - 112 -Zp, has a greater

chance of being the zero vector and some compenents could change signs

from sample to sample.

The above observations suggest that the performance of a biasing

procedure seems to be related to the ratio

	

(ill - 112)'(U1 - 1!2)
	

(5.7)

i•1 i
When this ratio is large, say greater than 1 /p, as is the case in tables

8-31, then biasing with a large k  tends to give good results. In tables

32-55, note that the ratio in (5.7) becomes 1/p when D • 1 and increases

(decreases) as D increases (decreases). Since the simulations of this

study did not focus on the ratio in (5.7) as a controlled condition, it

is perhaps worth considering in a future study.

It is also worthwhile to note that when d
i/*i > di+l/*i+1' there is a

tendency for the amount of improvement of the biased estimator over the

unbised one to increase as the k i 's get larger, as shown by column 4 of

tables 8-31. Recall from section 5.2 that the biasing constants k  in A

and P differ only by the multiple (p+2)/(N-p-2). When the sample size

is 2n • N - 20, the value of k i in P is larger than the corresponding k  in

A. When the sample size is 2n = N - 50, the reverse is true. This differ-

ence in A and P is also reflected in the relative change in the magnitudes
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jof column 4 as the sample site n changes from 10 to 25. This observation

In addition to the behavior of F provides evidence that for certain positions

of !I - 
11
2 , the amount of improvement of a biased estimator increase as the

ki 'a get larger.

The average PMC of a biased estimator may be compared to the average

PMC of the unbiased one through the application of the two sample t-teat,

t -1n((Xl -i2)//S7.—+—S7-). As a modification of the formula for a given

population value for D. let S 2 - maximum variance of the sample PMC; then

S 2 < ^. Hence, to/2^/3n may serve as a conservative value to

l_	
whichXl - X2 may be compared. That is, column 4 lists the difference

between estimator S and all other biased estimators. If any value in this

-.	 column that corresponds to a given biased estimator is larger than

ta/2328Z/4, then the biased estimator gives results that are significantly

^ 	 different from that of S at level a. The critical values C.V. for the

three values of D and a - .05 are as follows: when D - 0.6, C.V. - .0156;

when D - 1.0, C. - .0226; when D - 3.0, C.V. . .0329.

r'

a
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5.4 Conclusion

This study has extended and generalized recent published work in the

area of biased estimation IL discriminant analysis. Several methods of

biasing the sample linear discriminant function have been described and

compared on the basis of Monte Carlo experiments. The results of the

experiments show that no one method is uniformly best for all configura-

tions considered, although D give a relatively poor performance in all

situations studied. It is of special interest to note that M. A, and F

did well whenever the ratio in (5.7) was greater than 1/p. These methods

are particularly effective for the sample size n - 10 in combination with

(5.7) being larger than 1/p. The performance of K was erratic as can be

seen by comparing its variance to the variance of other estimators. With

some modification, K seems to have the potential to become a good biased

procedure for cases where d1
/0i 

> di+1' When n - 25 and d
i/*i ' d1+1/*i+l,

F showed the largest positive values for column 4. As mentioned earlier

and restated here, F is equivalent to ignoring the sample variance and

covariance between the components of X by defining a discriminant function

where the identity matrix replaces matrix S. In an applied situation, one

can easily determine whether F is likely to outperform the standard

unbiased function S by computing

(xl - x2)'(X1 - X2 )	 (5.8)I S ii

where Sii are the diagonal entries of matrix S. If this ratio is much

larger than 1/p, then F will probably do better than S.

i

I

i
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	 Finally, an examination of the simulation results seems to support the

following general conclusions:

1. The method of deleting the smallest eigenvalues of the sample

correlation matrix gives relatively poorer performance than the other biased

^.-	 procedure.

2. Biased discriminant functions labeled by M, A t and F (see section

3.2 for a description) performed better than all others when U - 0

i	
P	 ) Pe	 1 .2 is

positioned so that the ith principal component contributes more to the
r_

!!

	 Mahalanobis distance than the (1+1)th principal component.

(. I

	

	3. The effect of small eigenvalues in S on biasing procedures depends

on the positioi o of the vector Ul - U2.

4. When the orientation of U - U
2

 is such that d 
1/^'
2	 > d2

-1	 i	 i+l/*i+l'

where D2 
i`ld2/*i is the square of Mahalanobis distance. all biasing

methods are particularly effective for small samples.

1
	

In applying Hoerl and Kennard ' s ridge regression model to practical

C

problems, a general difficulty lies in the selection of an appropriate

value for k. Similar difficulties exist in choosing a set of ki ' a for the

biased discriminant models propozed by this paper. However, based on the

simulation results of this study, an applications orieated user of discri-

minant analysis should use the results of an inspection of the following

two items as an aid in deciding when a biased model should be used:

1. Eigenvalues of matrix R where R is the sample correlation matrix.

2. The ratio given by (5.8).

If one or more eigenvalues of R are small, say less than . 7. and if the

i
ratio (5.8) is larger than 1/p, then it is worthwhile to proceed with the

selection of a set of ki 'a. That is. items 1 and 2 provide evidence that
f

biasing will improve the performance of the discriminant function. Given

i	 that an inspection of items 1 and 2 show that conditions are suitable for
1	
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biasing, the recommendation here is to construct the unbiased discrimi-

nant function along with several biased discriminant functions, say A, M.

and F, where the k i 's for these. functions are defined in this section. The

error rates for the unbiased as well as for the biased discriminant functions

should be estimated by using one of the methodh described in Lachenbruch

(1975). The discriminant function to use would be the one which gives the

smallest error rate.

Lastly, any user should keep in mind that in a practical situation,

the error rate of the population discriminant function is unknown and that

the above method of choosing a discriminant function is simply an effort

to choose the best classification model possible from the available data.

The U method, as given by Lachenbruch (1975), of estimating error rates

seems to be an efficient procedure in terms of using available data. Hence,

this author recommends its use in estimating error rates in applied situa-

tions where a choice is to be made between using one of the biased discrimi-

nant functions or the unbiased one.

Results from this study raise the following questions that should

merit further study:

1. For biasing methods using kV there Is an optimum set of ki's

(perhaps not a unique set) for eAch problem, but no technique has been

developed to compute them.

2. Additional study is needed to determine how well each biased

procedure introduced in this paper will perform in multiple group discrimi-

nation In studying this proble, some consideration should be given the

orientation of population mean vectors.

3. Further $Lady is needed to assess the performance of both the

two-group and the multiple-group quadratic discriminant procedures under

biasing conditions introduced by this study.

So



APPENDIX A

CALCULATIONS LEADING TO THE EQUALITY
FOR Y  Its SECTION 2.2

Let W - (Ds (X) 1X1 , X2 , S) - [X - h(X_1 + 
1
2)"S 1 (X_1 - 

4
2), where

Xl , 12 , and S are fixed. The conditional probability of misclassif ica-

tiou abing Ds(X) is computed by

PMC - 111Pa (112) + Ps (211)] ,

where

Ps(112) - Pr[W > 0] and Ps (211) - Pr[W < 0] .

Since W is a linear function of the components of the multivariate normal

vector X, *W is univariate normal with means and variance (2.15)-(2.11).

Hence,

P (112) - Pr (W > 
01 - Pr W - E(W)	 -E(W)

s	 l(Var(W))4	 (Var(W)]I,

- Pr(Y ? Yl ) ,

where Y - 
W - E(W) 

is the univariate standard normal distribution, and
(Var(W)j

Y - -E(W_) t "[U1 - (11 + x2)s-1 (x, - 12)

1	
[Var(w)]I	 ((X1 - X2)'S"1ZS-1 (X1 - z2))

By a similar calculation,

Pa (211) - Pr[Y < Y2]

where

i

E

s
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-TTPRT^"-.. ..T .-^aw. 	 r ter'+.. t	
_..^	 ^...w..	 ... ^...	 -

-(U2	 }J(X l ♦ X`)1'5.1 (X 1 - X2)

_	 _	 •yZ
Mil - X 2 ) I s•l is-1 (X l - 12))

l.

I	
Therefore, in general

,t

P$(112) - Pr (Y 3, y l ) and %(211) • Pr(Y < 
y2)

where

-(u	 vxl +x2ws -1 (x( 1 - `^2)

y j l	 -1 —^ ..^ - 1.2
t(^l - X2) I S IS (X1 X2)I
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ArrEND1X S

Show that, in general, (5 + K) f VIA + KIT, where T is the matrix

of eiRenvectors of S, VT • TT' • t, A ^ 1%iIi•1 is a diagonal matrix so
thAt^ 1 > a Z	... ? a p is the Het of elgenvalues of S, K • IkiIi •1 is a

general diagonal matrix, and S is a p x p symmetric matrix.

It is clear that S + K • 1''(A + KIT if k i • k  for i J. Let it
be assumed that ki k, whenever i f ^. Then,

S+K•T'(A+KIT

S+K • VAT +T'KT

S + K - S+T'KT

iff

K - T'KT

iff

TK m KT .

Thus, it is sufficient to show that K and T are not generally pormutable.

Theorem 3, page 223 of Gantmacher (1960) states that, "If two matrices A

and B are permutable and one of them, say A, has quasi-diagonal form

rAl = 0

0	 A2

where matrices Al and A2 do not have characteristic values in common, then

the other matrix 8 must have the same quasi-diagonal form . . ." Using

this theorem, it is clear that since the general form of K requires that

if f

if f

t
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Its diagonal elements are generally pairwise different, a necessary

condition for permutability between K and T is that T be a diagonal matrix.

However, T is not generally diagonal; therefore, to general, TK # KT and

hence (S + K) # V (A + K)T for the general diagonal matrix K.
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APPENDIX C

D	 Nahalanobis distance between two populations.

D()	 Population discriminant function.

Dc	Generic representation for any biased discriminant function

DS Q)	 Unbiased sample discriminant function.

j1di)p	
A pxp diagonal matrix with dii on the diagonal.

fj (X)	 The probability density function for the jth population.

S	 The number of nonzero eigenvalues in matrix Sg.

Yj	The jth eigenvalue of matrix R.

kj	A nonnegative bias factor added to the jth eigenvalue of

matrix S.

lj	The jth eigenvalue of matrix S.

N	 al + a2.

nj	The size of sample from jth population.

on	 Total optimum probability of misclassification.

0	 Standard normal cumulative distribution.

*	 The jth population
c	 j

f^
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P(ilj) The probability of classifying 'an observation into v i when it

is really from 
I  

(1 f j).

PM Probability of misclassification.

The jth eigenvalue of matrix E.

qj The prior probability of obtaining an observation from vj.

R
i

Sample correlation matrix.

Rj The region for classifying X  into 
vj.

S Sample estimate of matrix E.

Sgl Generalized inverse of Sg (when Sg is singular).i

E Common covariance matrix.

i
l	 Ej The jth population covariance matrix.

oi,c? Positive values used to control multicollinearity in E.
l

SiI
Sample estimate of-matrix Ej.

o Angle between jth eigenvector of E and vector II - Q .
1 2^

F	 i
TP Total probability of misclassification.

V The jth population mean.

X
Sample estimate of U .

X
Observation vector to be classified.

E

► 56
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APPENDIX D

CONTROL FACTORS FOR SIINILATIONS

1. Sample Size: N - 10 9 25.

2. Mahalanobis Distance: D • ( (1 - 12)11: -1 	 - 12)1ii

D - 0.6 9 1.0 9 3.0.

3. Severity of Multicollinearity:

Matrix 1:' a 2 - .001, 02 - .001

Matrix 2: a 2 - .001, a2- 1.00

Matrix 3: a1 • 10.00, a2 • .001

Matrix 4: a 1- 10.00 9 a 2 - 1.00

See tables S and 6 for eigenvalues of the correlation and covariance

matrices for the four data matrices used.

4. Orientation of (U-1 - OZ) to eigenvectors of the four covariance

matrices.	 ^
10 ru (10-J))

Orientation 1: 11 - 12 
•i9

.,.o DZ
j-1

10
Orientation 2: 41 - U2 -	 10 DZj1l 	 ^

10 2*̂( j_1)
Orientation 3: Al - 42	 90	 mi

j•1

,>	 I

where Z
j 

- the j th eigenvector of matrix E,

^j • the jth eigenvalue of matrix E,
D - Mahalanobis distance between 1 and 2•
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See table 7 for specific values of cos8 j . where 8j is the angle between

zj and {ul — UZ).
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Table 5

Eigenvalues of Population Correlation Matrices Used

Matsix
Eigea-
valuas

1 2 3 4

.1 2.953026 2.889975 2.646488 2.565580
2 1.710753 1.686068 1.416878 1.410616
3 1.282204 1.282135 1.150556 1.150228
4 1.070584 1.070579 1.061076 1.061044
5 0.870809 0.871681 0.890215 0.891328
6 0.834498 0.835236 0.846128 0.846285
7 0.682985 0.683049 0.763410 0.763500
8 0.594070 0.594387 0.631768 0.631794
9 0.000971 0.085915 0.593380 0.593710

10 0.000098 0.000971 0.000098 0.085913

Table 6

Eigenvalues of Population Covariance Matrices Used

Matrix

E
ig-n-	 1	 2	 3	 4
alues

1 26.192363 26.291875 26.357706 26.453878
2 17.175468 17.224441 17.226322 17.280056
3 13.037192 13.152136 13.399986 13.494534
4 12.107236 12.107237 12.340140 12.351819
5 8.822387 8.860483 9.410080 9.438447
6 7.934043 7.954317 8.620528 8.636769
7 7.283433 7.107305 7.916816 7.938362
8 5.959092 5.963760 7.280512 7.303905
9 0.000970 0.649324 5.959092 5.963760

10 0.000667 0.000970 0.000667 0.649323
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Table 7

Orientations for RI R2 Expressed IA Tom of rose

Orientation
Eisen- Matrix
vector Matrix 2

1
3

2 3

2
3

6037
:409

.5156
*4175

0
.2675

-6036 .3140
0

4 .3758
.3353

.3638 .3297
.4604
,3764 -4160

•3633
.2647

5
6

•2612

1

.3306
2992

.3891
3835. •3344 •3487

.3271
.3844

7
a

.2216
.18 38

.2837.
.2719

. 4065 , 
•3612
.2211 .2984

.2827
.3797
•.4021

9 -1336 •2460
4267

:4170
,1838
.1353

* 2710 A224
10 •0012

0
-0031 .0057 -0316

.2447
.0808 .4120

.0026 .0050 0 .1454
.0031 .0059

Matrix 3
Matrix 4

2 3 1 2

2
3

.5956
. 4540• -3985

.4929 0.2365 .5956 .4915

3

0
4 .3745

.3327
3514

:3372
.2950 .4539

3732
:

.3973
•3510

.2344

.29293
6 .2652 .2944

.3467 3323
2652

•3358 .3432
7 .2271

.1885
.2818
.2645

:
3496
3741 .2270 .2936

, 2809
.3465
.3706A

9 .1476 .2590 •:43096288 "1884
.1475

.2693 .3892
10 .0944

0
.2344 .3935 .0942

.2582
.2333

.4031
-0025 .0044 0 .0770

.3894

.1364

00
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Table 8 i
Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
when D • .6 (OPT • .3821), Orientation 1,

Matrix 1 9 a 0 10

Number of Time
meanO Improvement Over	 PMC is Lower

Estimator	 Variance	 Estimator	 than That ofP:iC	 Estim
m
ator S	 Estimator S

(max • 30)

S	 .4721895 .0007165 * •
K	 .5004223 .0182717 -.0282328 11
G	 .4614415 .0009447 .0107480 22
8	 .4579530 .0006195 .0142365 20
D	 .4652601 .0011444 .0069294 18
M	 .4577994 .0008638 .0143960 20
A	 .4577805 .0007817 .0144090 22
P	 .4563847 .0007113 .0158047 20
0	 .4661020 .0012684 .0060875 22
F	 .4522470 .0008839 .0199425 23

Table 9

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • .6 (OPT - .3821), Orientation 1,
Matrix 1, n • 25

Number of Times

Mean	 Improvement Over	 PMC is Lower
Estimator PMC Variance Estimator S than That of

Estimator S
(Uax a 30)

S .4621413 .0005747 ^►

G	 K .4665843 .0012835 -.0044430 15
G .4594191 .0007630 .0027222 19
A .4550403 .0007587 .0071010 23

Q	
D .4597875 .0007535 .0023538 17
H .4467804 .0007187 .0153609 26
A .4553200 .0008518 .0068213 20
P .4578666 .0007875 .0042747 18

`	 0 .4570331 .0007556 .0051082 21
r .4394531 .0006497 .0226882 28
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Table 10

Comparison of Probabilities of Misclassification for
Several Discrivi.- out Functions, 3u Replications,

when D • .6 (OPT • .3621), Orientation 1,
Matrix 2 0 a • 10

Number of Tres
Improvement Over PNC is Lower

`	 Estimator ^
Variance Estimator S than That of

{ Estimator S
(sax • 30)

S .4731673 .0006971
K .3039392 .0161971 •.0327919 11
C .4616265 .0008701 .0115407 22
R .4576283 .0006411 .0155389 23
D .4700283 .0013315 .0031390 16
M .45 75804 .0006680 .0155869 21
A .4574815 .0007038 .0156858 23`	
P .4558591 .0006424 .0173082 22
O .4655391 .0010692 .0076281 21
F .4535410 .0009435 .0196263 23

Table 11

Comparison of Probabilities of Hisclassification for
Several Discriminant Yunctions, 30 Replications,

when D • .6 (OPT • .3821), Orientation 1.
Matrix 2, n • 25

Number of Times
Mean

Estimator Variance Improvement Over PMC is Lower
than That ofPMC Estimator S
Estimator S
(max • 30)

S .4619189 .0006033

4	
K .4613094 .0007568 .0006095 17
C .4591505 .0007032 .0027684 20
a .4553493 .0007457 .0065696 22

{	 D .4597061 .0007579 .0022128 17
I	 M .4486507 .0006848 .0132681 23

`	 A .4558683 .0009036 .0060505 20
P .4578710 .0008038 .0040479 21

s	 O .4570830 .0007464 .0048358 22
t .4412313 .0006982 .0206876 27

i

62

4 1



f

1	 t

Table 12

.Comparison of Probabilities of Misclassification for
Several Discriminant functions. 30 Replication,,

when D • 1.0 (OPT • .3085) . Orientation it
Matrix 1, o • 10

Wober of Time

Estimator	
Msm	 Variance Improvement Over 	 PMC is Lover

PMC	 Estimator S	
than That of
Estimator 8
(msx • 30)

S .4352535 .0019316 * •
L .4102368 .00259528 .0249987 17
0 .4036046 .0018006 .0316509 24
1 .4026084 .0016065 .0326471 22
D .4136102 .0022986 .0216454 19
M .4021:68 .0016737 .0330987 22
A .3978281 .0014702 .0374273 25
P .3963853 .0013612 .0388703 25
0 .4146123 .0024739 .0206432 22

i	 P .3885997 .0016683 .0466558 24

Table 13

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 1.0 (OPT • .3085) 0 Orientation 1.
Matrix 1. n • 25

Dumber of Times

Estimstos	 Mean	 Variance	 improvem*at Over	
P.4C is Lower

PMC	 Estimator S	
than That of

i

	

	
Eatimator S
(max • 30)

S .4021431 .0013089 +► •
X .3973249 .0019124 .0048202 19
6 .3946661 .0013566 .0074790 25
R .3846051 .0011317 .0175400 27
D .3962313 .0013599 .0059136 21
M .3723917 .0007196 .0297534 23

-	 A .3830196 .0012260 .0191255 25
P .3897421 .0012888 .0124030 25

'	 0 .3892117 .0012410 .0129334 26
f .3619399 .0004518 .0402052 28

t'
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Table 14

^•	 Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 1.0 (017 n .3085), Orientation 19
^.	 Matrix 2, a • 10

i

Number of Va"

Improvement	 PHC is Lover
Estimator	

PMC	
Variance	

E ties of r 3
	

than That of
Estimator 3

? (max • 30)

c	 S .4357742 .0018595 •
t	 x .4207499 .0226456 .0130244 35

G .4027121 .0016542 .0330621 26
R .3996047 .0012180 .0361695 22
D .4187074 .0026853 .0170668 18
.M .3988943 .0012721 .0368800 23
A .3961644 .0013449 .0396099 27
P .3943118 .0012238 .0414625 25
0 .4135403 .0021135 .0222340 24
7 .3892598 .0015826 .0465145 23

l

S

Tab Is 15

Comparisaa of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 1.0 (OPT - .3085), Orientation 1,
Matrix 2, a • 10

Number of Times

Uprovement 	 PM Is Lover
Estimator	

PW	 Variance	 Estimator S e
	

than That of
Estimator 6
(max • 30)

S	 .4012635 .0013480 • +t
[	 .3955002 .0015308 .0057632 Z1
G	 .3944540 .0012847 .0068095 22
N	 .3842272 .0010717 .017)362 26
D	 .3955788 .0013032 .0056846 19
M	 .3743676 .0007243 .0268959 25
A	 .3839115 .0012546 .0173500 24
P	 .3895937 .00126 .0116697 25
0	 .3892706 .0012074 .0119929 26
T	 .3642246 .0005054 .0370389 26
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Table 16

Comparison of Probabilities of Misclassification for
{ {	 Several Discriminant Functions, 30 Replications,
4 i	 vhen D = 3.0 (OPT = :0668) , Orientation 1,

Matrix 2, n = 10

r	 ^. Number of Times

Estimator	 Mean Variance	 Improvement Over
PMC is Lower
than That ofPMC Estimator S
Estimator S
(max = 30)

..	 S .2532152 .0085259
N .1302365 .0126336	 .1229787 27
G .1368733 .0016761	 .1163419 30

f	
R .1323025 .0011064	 .1209127 28
D .1745411 .0024220	 .0786741 22
M .1312406 .0010598	 .1219746 28
A .1241410 .0011634	 .1290742 30

`•	 P .1216026 .0009846	 .1316126 29
0 .1634272 .0029187	 .0897879 25

3	 F
4 ..

.1094501 .0002702	 .1437650 29

Z

Table 17

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

When D = 3.0 (OPT = .0668), Orientation 1,
i

i
Matrix 2, a = 25

Number of Times
Mean	 Improvement Over	 PMC is LowerEstimator	
PMC	 Variance	 Estimator S	 than That of

Estimator S
(max - 30)

S .1339836 .0019074
K .1106339 .0013456 .0233497 29
G .1156332 .0013953 .0153504 27
R .1026748 .0006175 .0313068 28
D .1225503 .0015961 .0114333 23
M .0982620 .0002503 .0357216 26
A .0981882 .0005615 .0357954 Y9
P .1082184 .0008354 .0257652 28
0 .1099456 .0008859 .0240381 28
F .0965SS3 .0001367 .0354283 26
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Table 18

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D = 3.0 (OPT • .0668), Orientation 1,
Matrix 2, n • 10

Number of Times

Mean Improvement Over PMC is Lower
Estimator	

PMC
Variance

Estimator S than That of
Estimator S
(max • 30)

S .2565326 .0080737 e e
K .1228519 .	 .0102818 .1336807 27
G .1344490 .0015525 .1220836 30
R .1285779 .0007489 .1279547 29
D .1761069 .0032892 .0804257 25
M .1285241 .0007831 .1280085 28
A .1210284 .0010253 .1355042 30
P .1180248 .0008606 .1385078 30
0 .1618516 .0024774 .0946810 30
F .1697688 .0003251 .1467638 30

Table 19

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 3.0 (OPT - .0668), Orientation 1,
Matrix 2, n • 25

Number of Times

Mean
Estimator Variance

Improvement Over PMC is Lower
than That ofPMC Estimator S
Estimator S
(max • 30)

S .1317634 .0017680
K .1180470 .0015949 .0137164 30
G .1193976 .0012774 .0123658 28
R .1007304 .0004446 .0310330 30
D .1210195 .0012470 .0107439 21
M .0962238 .0002184 .0355395 27
A .0982682 .0004192 .0334952 29
P .1076276 .0006695 .0241358 28
0 .1095399 .0007521 .0222235 28
F .0989428 .0021467 .0328205 23
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Table 20

of Probabilities of Misclassification, for
Several Discriminant Functions, 30 Replications*

when D a .6 (OPT - .3821), Orientation 1,
Matrix 3. n a 10

Number of Times

Mean	 Improvement Over	
PMC Is Lower

Estimator PMC Variance Estimator S than That of
Estimator S
(am = 30)

S	 .4733989 .0006782
K	 .4971384 .0145314 -.0237395 10
G	 .4626321 .0008694 .0107668 21
R	 .4553495 .0009316 .0180494 21
D	 .4658064 .0011544 .0075925 is
M	 .4552476 .0009972 .0181514 21
A	 .4576955 .0007795 .037034 22
P	 .4559194 .0007378 .0174795 22
0	 4680424 .0010460 .0053565 19
F	 .4528751 .0009568 .0205238 23

Table 21

Comparison of Probabilities of Misclassificatioa for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 1,
Matrix 3, n - 25

Number of Times

Mean	 Improvement Over	 PMC is Lower
Estimator PMC Variance Estimator S than That of

Estimator S
(max - 30)

S	 .4619080 .0005039
9	 .4668184 .0011250 -.0049104
G	 .4592696 .0006578 .0026385 20
R	 .4531585 .0006627 .0087495 24
D	 .4602147 .0006546 .0016933 17
M	 .4418609 .0007154 .0200471 23
A	 .4531532 .0007265 .0087548 23
P	 .4568853 .0006745 .0050225 21
0	 .4566850 .0006546 .0052231 22
F	 .4379801 .0005992 .0239279 27
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Table 22

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications.

When D - .6 (OPT - . 3821). Orientation 1,
Matrix 3, n - 10

I	 Number of Times

E	 Mean	 Improvement Over	 PMC is LoverEstimator	
PMC	 Variance	 Estimator S	 than That of

Estimator S
i	 (max - 30)

S	 .4738649	 .0006150
E	 .5022683	 .0136387	 -.0284034	 10
G	 .4622541	 .0007822	 .0116107	 21

t	 R	 .4556584	 .0007593	 .0182065	 23
D	 .4675753	 .0012553	 .0062896	 19
M	 .4548204	 .0007921	 .0190445	 23

^-	 A	 .4575199	 .0007348	 .0163449	 22
P	 .4556534	 .C307061	 .0182114	 24
0	 .4671534	 .0008232	 .0067114	 20
F	 .4543066	 .0010736	 .0195582	 25

Table 23

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

j	 When D - .6 (OPT - .3821), Orientation 1,
Matrix 3, n - 25

Number of Times

Mean	 Improvement Over 	 PMC is Lower
Estimator PMC Variance Estimator S than That of

Estimator S
(max - 30)

S	 .4620522	 .0005445	 *	 +^
B	 .4624846	 .0007348	 -.0004324	 16
G	 .4596430	 .0006425	 .0024092	 21
R	 .4533117	 .0006838	 .0087405	 24
D	 .4610649	 .0006666	 .0009872	 18
M	 .4417442	 .0006493	 .0203080	 27
A	 .4533371	 .0007548	 .0087151	 Y3
P	 .4573193	 .0007006	 .0047329	 20
0	 .4576000	 .0006637	 .0044522 23
F	 .4398371	 .0006321	 .0222151	 26
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Table 24

-Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D 1.0 (OPT - .3085), Orientation 1,
Matrix 3, n - 10

r Number of Times

Mean Improvement Over PMC is Lower
Estimator	 PMC

Variance Estimator S
than That of
Estimator S
(max	 30)

S .4357952 .0018402

K .4189812 .0200049 .0168140 17
C .4071377 .0017119 .0286575 24
R .3964953 .0018037 .0392999 22

` D .4145193 .0021565 .0212759 20
" M .3958199 .0019141 .0399753 22

A .3988230 .0015270 .0369722 25_
P .3962343 .0014592 .0395609 24

".. 0 .3192497 .0021358 .0165455 22

t

F .3888942 .0017892 .0469010 24

Table 25

Comparison of Probabilities of Misclassification for
"	 Several Discriminant Functions, 30 Replications,

when D 1.0 (OPT - .3085), Orientation 1,
Matrix 3, a - 10

Number of Times

Mean	 Improvement Over	 PMC is Lower
Estimator	

PMC	
Variance	 Estimator S	 than That of

Estimator S
(max • 30)

S .4018569 .0010668
1 .4007859 .0015441 .0010709 19

E	 C .3951770 .0010529 .0066799 24
R .3814448 .0008253 .0204121 27
D .3980616 .0010812 .0037952 17
M .3637072 .0005564 .0381497 29
A .3802136 .0009138 .0216433 28
P .3890553 .0009586 .0128015 27
0 .3892713 .0009437 .0125866 27
F .3591038 .0003616 .0427531 29

{t
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Table 26

Comparison of Probabilities of Misclassification for
iSeveral Discriminant Functions, 30 Replications,

When D • 1.0 (OPT .3085), Orientation 1,

`	
Matrix 4, n - 10

Number of Times
PMC is Lower

1	 Estimator	
Mean	

Variance	 Improvement Over	 than That ofPMC	 Estimator S	
Estimator S
(max • 30)

1

S .4354159 .0017285 e e
R .4251562 .0195306 .0102597 16
G .4057336 .0015603 .0296823 24
R .3958520 .0013321 .0395640 25
-D .4158819 .0024094 .0195341 19
M .3941198 .0013734 .0412961 23
A .3973010 .0014017 .0381150 25
P .3943527 .0013213 .0410632 25
0 .4184096 .0017654 .0170063 23
F .3901320 .0018553 .0452840 23

Table 27
t

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 1.0 (OPT - . 3085), Orientation 1,
Matrix 4, n - 25

Number of Times

Mean	 Improvement Over	 PMC is LowerEstimator	
PMC	

Variance	
Estimator S	 than That of

Estimator S
(max - 30)

S .4021550 .0011225
R .3981924 .0013287 .0039626 24
G .3956099 .0010401 .0065451 26
R .3815127 .0007640 .0206423 27
D .3985176 .00 10365 .0036374 20
M .3631856 .0004110 .0389694 30
A .3805082 .0009086 .0216468 28
P .3893249 .0009615 .0128301 27
0 .3907515 .0009609 .0114035 27
F .3616395 .0004015 .0405156 29
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Table 28

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 3.0 (OPT • .0668), Orientation 1,
Matrix 3, n • 10

Number of Times
PHC is Lower

Estimator	 PMC	 Variance
	

Improvement

 S 
e	

than That of
Estimator S
(max • 30)

S	 .2535330 .0087476
K	 .1433302 .0166587 .1102027 26
G	 .1390474 .0020212 .1144855 30
R	 .1217244 .0009741 .1318086 28
D	 .1678301 .0022194 .0857029 23
M	 .1198355 .0008380 .1336974 29
A	 .1243295 .0013497 .1292035 20
P	 .1209760 .0011145 .1325570 29
0	 .1668324 .0036922 .0867086 29
F	 .1062285 .0002769 .1473044 29

Table 29

Comparison of Probabilities of :misclassification for
Several Discriminant Functions, 30 Replications,

when D - 3.0 (OPT • .0668), Orientation 1,
Matrix 3, n • 25

Number of Times

Mean	 Improvement Over	
PMC is Lower

Estimator	
PMC	

Variance	
Estimator S	

than That of
Estimator S
(max a . 30)

S .1333216 .0017915
E .1192148 .0013915 .0141068 28
G .1198772 .0012919 .0134444 29
R .0998444 .0004592 .0334772 30
D .1223266 .0014919 .0109950 25
M .0922712 .0001474 .0410504 28
A .0968348 .0004249 .0364867 28
P .1081441 .0007065 .0251775 29
0 .1102384 .0007987 .0230832 28
F .0944551 .0001096 .0388664 25
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Tab le 30

y Comparison of Probabilities of Misclassification for
Several Discriminant Functions,

when D - 3.0 (OPT - .0668),
30 Replications,

Orientation 1,
Matrix 4, a - 10

Number of Tines

Mean
Estimator Variance Improvement Over PMC is Lower

than That ofPMC Estimator S
Estimator S
(max	 30)

S .2558041 .0089398
K .1336960 .0123173 .1221051 28
G .1333707 .0016500 .1224334 30
R .1214726 .0005824 .1343315 29
D .1590654 .0025688 .0967387 26
M .1208897 .0005408 .1349144 28
A .1200201 .0011033 .1357840 30
P .1166758 .0009311 .1391283 30
0 .1671048 .0032112 .0886993 30
F .1070920 .0003425 .1487121 29

Table 31

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D 3.0 (OPT - .0668), Orientation 1,
t
t

Matrix 4, a • 25

Number of Times

Mean
Estimator Variance Improvement Over

Is Lowerthan ofPMC Estimator S
Estimator S
(max	 30)

S .1328329 .0015465
K .1205019 .0011633 .0123709 30
G .1196864 .0009976 .0131464 30
R .0983347 .0002869 .0344982 29
D .1208810 .0010090 .0119519 21
M .0907088 .0000900 .0421240 29
A .0954688 .000912 .0373640 29
P .1072921 .0005331 .0255408 30

^ y	0 .1113893 .0006753 .0214436 30
F .0951386 .0001210 .0376943 25
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Table 32

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 2,
Matrix 1, n - 10

Number of Times

Mean	 Improvement Over	
PMC is Lower

Estimator PMC Variance Estimator S than That of
Estimator S
(max - 30)

S	 .4748426 .0009860 * +^
N	 .5155 888 .0148181 -.0407462 8
G	 .4696251 .0007778 .0052174 18
R	 .4675198 .0006312 .0073228 17
D	 .4732984 .0008981 .0015442 .17
M	 .4677484 .0006629 .0070941 17
A	 .4672965 .0006134 .0075461 14•
P	 .4664045 .0005490 .0084381 1S
0	 .4731800 .0010791 .0016625 18
F	 .465+012 .0006399 .0094413 20

Table 33

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 2,
Matrix 1, n - 25

Number of Times

Mean	 Improvement Over	 PMC is Lower
Estimator PAC Variance Estimator S than That of

Estimator S
(max - 30)

S	 .4627196 .0006670 * +►
K	 .4719242 .0014018 -.0092046 10
G	 .4694026 .0009036 -.0066830 6
R	 .4668919 .0009133 -.0041723 14
D	 .4695432 .0008943 -.0068236 6
M	 .4616642 .0008998 .0010555 18
A	 .4676708 .0010138 -.0049511 12
P	 .4687074 .0009316 -.0059878 9
0	 .4679746 .0009010 -.0052550 10
F	 .4581825 .0008614 .0045371 17
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Table 34

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 2,
Matrix 2, n - 10

^..	 Number of Time

Improvemen t	 PMC is Lower
Estimator	

^n	 Variance	 Etima	 oto  8 er	 than That of
Estimator S
(max - 30)

1	 S .4748407 .0009862
X .5124921 .0142417 -.0376514 9

^-	 C .4689430 .0007691 .0058977 17
R .4666333 .0004998 .0082074 18

'	 D .4777118 .0010373 -.0028711 IS
M .4670981 .0005090 .0077425 17
A .4665159 .0005723 .0083248 14
P .4655785 .0005018 .0092622 15
0 .4713298 .0010116 .0035109 19
F

t.
.4658244 .0006795 .0090163 17

Table 35

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 2,
Matrix 2, n - 25

Number of Times

	

n	 Improvement Over	 PMC is LowerEstimator	
PMC	 Variance	 Estimator S	 than That of

Estimator S
(max - 30)

S .4627164 .0006672 •
i.^	 [ .4644286 .0007672 -.0017121 12
it	 C .4660719 .0007766 -.0033555 8

f	 R .4654612 .0008201 -.0027447 13
D .4692930 .0008660 -.0065766 6
M .4625991 .0007796 .0001173 13
A .4668268 .0009913 -.0041104 it
P .4669938 .0008796 -.0042774 u
0 .3657500 .0008180 -.0030336 12
F .4591060 .0008321 .0036104 17
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Table 36

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - . 3085), Orientation 2,
Matrix I t n - 10

Number of Time

MeanImprovement Over	 PMC is Lower
Estimator PMC Variance Estimator S than That of

Estimator S
(max - 30)

S	 .4353746A .0015345
.4330599 .0203526 .0023147 14
.4219073

R
.0014967 .0134672 18

.4226489
D

.0013245 .0127256 18
.4308677

M
.0018493 .0045069 16

.4230547
A

.0013879 .0123198 18

P	
.4179050 .0011787 .0174696 17
.4171228

0
.0010810 .0182518 21

.4311192F .0021821 .0042554 18

.4151206 .0012979 .0202540 22

Table 37

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - . 3085), Orientation 2,
Matrix 1, n - 25

Number of Times

Mean	 Improvement Over	 PMC is LoverEstimator	
PMC	 Variance
	 Estimator S	 than That of

Estimator S
(max - 30)

S	 .4032747 .0014401 +►
R	 .4051522 .0022599 -.0018774 16
G	 .4152298 .0017743 -.0119551 9
R	 .4079954 .0015654 -.0047206 12
D	 .4164404 .0017685 -.0131657 9
M	 .3989645 .0011283 .0043102 16
A	 .4069522 .0016618 -.0036775 14
P	 .4117239 .0017241 -.0084492 12
O	 .4112504 .0016739 -.0079757 11
F	 .3917771 .0008223 .011497, 17

75



r.

.,

l^

Table 38

Comparison of Probabilities of Misclassification for
1 Several Discriminant Functions, 30 Replications.

when D • 1.0 (OPT • . 3085), Orientation 2.

f Matrix 2, a • 10
^	 r

Number of Times
i Mean Improvement Over PMC is Lover

Estimator	 PMC Variance Estimator S than That of
Estimator S
(max • 30)

S .4353760 .0015353 * +►
X .4288924 .0192817 .0064836 15
G .4197841 .0014778 .0155919 19
R .4194766 .0010147 .0158995 19
D .4386382 .0021675 -.0032621 13
M .4196677 .0010474 .0157083 19
A .4154792 .0011159 .0198969 18

-	 P .4145854 .0009961 .0207906 20
0 .4278291 .0020048 .0075470 18
F .4149475 .0013041 .0204286 22

Table 39

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 1.0 (OPT - .3085), Orientation 2.

E
Matrix 2, a • 25

Number of Time

Mean	 Improvement Over	 PMC is LowerEstimator	
PMC	 Variance	 Estimator S	 than That of

Estimator S
(max • 30)

S .4032655 .0014404 +► •
9 .4003054 .0016533 .0029601 18
G .4080359 .0015667 -.0047704 9
R .4042938 .0013951 -.0010283 14
D .4158558 .0017483 -.0125903 9
M .3998658 .0009956 .0033997 12
A .4057463 .0016503 -.0024808 13
P .4079364 .0016128 -.0046709 13
0 .4062713 .0015187 -.0030058 14
F .3935481 .0008284 .0097173 14
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-	 Table 40

^•	 Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatioaa,

when D • 3.0 (OPT - .0668) 9 Orientation 29
R

•	 Matrix 1, a a 10

Nrber of Times

Estimator	 ka	 Variance 
^at^en= Over PrlC is Loverthan That of

j	 Estimator S
l	

(osa - 30)

8
^-

.2495078 .0060483 #
9 .1123621 .0066941 .1371437 29
0 .1692414 .0020379 .0902664 27
R .1709730 .0015075 .0785348 26
D .2105048 .0029329 .0390030 20
M .1707156 .00]5022 .0787921 27
A .1577452 .0014461 .0917623 26
P .1566116 .0013031 .0928962 26
0 .1952627 .0031542 .0542450 25
F .1514887 .0007328 00980191 27

i
Table 41

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 3.0 (OPT - .0668), Orientation 2,
Matrix 1, a • 25

Slumber of Times

Estimator PMC Variance	 Imp rEs	 Gt	 3
PMC is Lower
than That of
Estimator S
(max - 30)

S .1331733 .00:9557	 • •
K .1144944 .0012634	 .0186789 22
G .1477542 .0016095	 -.0145809 7
ti .1316691 .0007811	 .0015042 13
D .1522981 .0018516	 -.0191248 6
M .1279512 .0004250	 .0052221 13

t	 A .1255118 .0006575	 .0076615 13
P .1364622 .0009679	 -.0032889 13
0 .1390306 .0010629	 -.0058573 12

1.	 T .1303412 .0002908	 .0028321 12
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Table 42

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 3.0 (OPT - .0668), Orientation 2
Matrix 2, o - 10

Number of Times
Mean 	 Improvement Over	 PMC is LowerEstimator	
PMC	

Variance	
Estimator S	 than That of

Estimator S
(max - 30,

t	 S .2495055 .0060521 +► e
K .10 78930 .006 2406 .1416125 29
C .1632755 .0019554 .0862300 27
R .1633573 .0011703 .0861482 27
D .2102215 .0030642 .0392840 19
M .1644306 .0012311 .0850749 27
A .1523755 .0013742 .0971300 27

j	 P .1512669 .0011787 .0982386 27
O .1874490 .0028035 .0620565 27
F .1493155 .0008663 .1001900 27

Table 43

Comparison of Probabilities of Misclassification for
Several Discriminant Functions. 30 Replications,

when D - 3.0 (OPT - .0668), Orientation 2,
Matrix 2, a - 25

Aumbet of Times

Mean
Estimator Variance

Improvement Over FMC is Lower
than That ofPMC Estimator S
Estimator S

f
(max • 30)

S

R
.1331843 .0019554 * +►

C .1195333 .0016524 .0136510 25

R
.1364841 .0016179 -.0032998 12

D
.1232534 .0005845 .0099309 15

M .1508638 .0016469 -.0176795 6
.1247775 .0003938 .0084068 15

a .1222640 .0004822 .0109203 160 .1291367 .0107964 .00404 76 15
F .129 7228 .0009 705 .00 34615 16

-.1297631 .0002820 .004212 13

r
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Table 44

.Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

^M	 when D - .6 (OPT - .3821), Orientation 2,
Matrix 3, n - 10

Number of Times

Mean Improvement Over PMC is Lower
Estimator PMC

Variance
Estimator S than That of

Estimator S
t (max - 30)

S .4748412 .0009861
K .5065296 .0128271 -.0316884 8
G .4673149 .0007657 .0075263 16
R .4629258 .0007699 .0119154 19
D .4712337 .0010013 .0036075 17
M .4634376 .0008083 .0114036 21

j	 A .4645034 .0006641 .0103378 16
P .4637172 .0006158 .0111240 17
0 .4711998 .0009542 .0036414 17
F .4638498 .0007231 .0109914 22

Table 45

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 2,
Matrix 3, n - 25

Number of Times

Mean	 Improvement Over	 PMC is Lower
Estimator PMC Variance Estimator S than That of

Estimator S
(max - 30)

S	 .4627221 .0006673
K	 .4711118 .0014803 -.00838S7 8
G	 .4659117 .0008821 -.0031907 9
R	 .4020172 .0009123 .0007048 16
D	 .4667498 .0008699 -.0040277 8
M	 .4548056 .0009987 .0079165 20
A	 .4622694 .0009641 .0004527 16
P	 :4644339 .0009030 -.0017118 13
0	 .464272() .0008835 -.0015499 13
F	 .4540535 .0008569 .0086696 18
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Table 46

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • .6 (OPT - . 3821), Orientation 2,
Matrix 4, n - 10

Number of Times

MeanEstimator Variance Improvement Over PMC is Lower
than That ofPMC Estimator S
Estimator S

k (m • 30)

^.	 S .4748412 .0009861
R .5056651 .0125282 -.0308240 9
G .4662255 .0006887 .0086157 18

r	 R .4616149 .0006204 .0132263 20
D .4720771 .0010743 .0027641 17
M .4614755 .0006246 .0133657 20
A .4635341 .0006006 .0113071 18
P .4627018 .0005589 .0121394 18
0 .4695581 .0008809 .0052831 18
F .4641099 .0007820 .0107313 20

Table 47

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • .6 (OPT - .3821), Orientation 2,

0
Matrix 4, n - 25

Number of Timms
MeanEstimator Variance Improvement Over PMC is Lower

than That ofPMC Estimator S
Estimator S
(max - 30)

S .4627165 .0006672
R .4640364 .000867? -.0013198 13
G .4630044 .0007643 -.0002878 15
R .4599910 .0008376 .0027255 17
D .4668319 .0008721 -.0041153 9
M .4538565 .0008490 .0088601 19

E	 A .4613622 .0009365 .0013543 14
f	 P
Y

.4629706 .0008562 -.0002540 16
0 .46 2409 7 .000 7983 .0003069 16
F .4550720 .0008097 .0076445 19
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Table 48

.Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - .3085), Orientation 2,
Matrix 3, a - 10

Number of Times

Estimator
Mean

Variance Improvement Over PMC is Lower
than That ofPMC Estimator S
Estimator S

w
(max - 30)

S .4353813 .0015353 e e
K .4351904 .0161037 .0001908 15
G .4179437• .0014845 .0174375 22
R .4120051 .0015629 .0233762 21
D .4263450 .0019593 .0090362 16
It .4125457 .0016542 .0228355 21
A .4127833 .0012942 .0225979 19
P .4116455 .0012239 .0237358 20
0 .4277025 .0019486 .0076788 18
F .4107671 .0014623 .0246141 22

Table 49

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - .3085), Orientation 2,
Matrix 3, n - 25

Number of Times

Mean
Estimator Variance

Improvement Over PMC is Lower
than That ofPMC Estimator S
Estimator S
(max - 30)

S .4032712 .0014404
K .40 74098 .0021665 -.0041386 14
G .4083671 .0016222 -.0050959 9
R .3976231 .0013577 .0056481 18
D .4112139 .0016231 -.0079427 8
M .3844087 .0009758 .0138625 20
A .3962300 .0013994 .0070412 18
P .4034277 .0013071 -.000156: 13
0 .4038810 .0014969 -.0006098 15
F • .3829356 .0007398 .0203356 20
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Table 50

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - .3085), Orientation 2,
Matrix 4, n - 10

Estimator Mean
PMC Variance Improvement Over

Estimator S

Number of Times
PMC is Lower
than That of
Estimator S
(max - 30)

S .4353760 .0015352
K .4296659 .0160573 .0057101 15
G .4149252. .0013206 .0204508 23
R .4092804 .0012022 .0260956 21
D .4271838 .0023609 .0081922 15

.M .4087731 .0012207 .0266029 21
A .4099 878 .0011568 .0253882 21.
P .4086955 .0010835 .0266805 21
0 .4242760 .0016659 .0111000 19
F .4105393 .0015412 .0248367 22

Table 51

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - . 3085), Orientation 2,
Matrix 4, n - 25

i	 Number of Times
Mean	 Improvement Over	 PMC is Lowerthan That ofEstimator	 PMC	 Variance	

Estimator S
Estimator S
(max - 30)

.	 S .4032658 .0014404
K .4001522 .0016495 .0031135 23
G .4017023 .0013862 .0015634 16
R .3936941 .0011592 .0095717 19

h D .4109952 .0016423 -.0077294 11
M .3823102 .0007632 .0209556 20
A .3948253 .0013578 .0084404 15

^•	 P .3999439 .0013950 .0033219 15
1	 =	 0 .3996254 .0013405 .0036404 17

F .3848586 .0007157 .0184072 21
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Table 52

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D = 3.0 (OPT = .0668), Orientation 2,
Matrix 3, n = 10

Number of Times

Mean
Estimate Improvement OverVariance

PMC is Lower
than That ofPMC Estimator S
Estimator S
(max • 30)

S 2495 356 .0060531	 * +►
R .1154327 .0070086	 .1341029 29
G .1572698 .0022482	 .0922657 30

{	 R .1462953 .0010922	 .1032402 27
D .1921527 .0029914	 .0573829 21

i	 M .1457720 .0010216	 .1037635 27
^-	 A .1444945 .0014105	 .1050411 28

P .1430998 .0012529	 .1064358 27
0 .1831795 .0035418	 .0663560 30

. F .1366920 .0006592	 .1128435 28

Table 53

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

'when D = 3.0 (OPT = .0668), Orientation 2,
Matrix 3, n = 25

r Number of Times

Mean
Estimate Improvement OverVariance

PMC is Lower
than That ofPMC Estimator S

t Estimator S
(max • 30)

S .1331344 .0019566
R .1201515 .0014764 .0130329 22	 -
G .1360312 .0014838 -.0028958 14

`	 R .1158102 .0005663 .0173742 22
D .139S344 .0017496 -.0066500 9
M .119S309 .0002947 .0223536 18
A .1112550 .0004612 .0218995 22

l	
P .1233566 .0007553 .0098279 16
0 .1265220 .0009095 .0066024 16
F

P
.01149391_  .0002346 .0152453 16

i•+
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Table 54

`-	 Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 3.0 (OPT • . 0668), Orientation 2,
Matrix 4, a • 10

Number of Times
i.l Improvement  Over P.4C is Lower

Estimator Variance
r SEstimator than That of

Estimator S
(max • 30)

S .2495033 .0060513 * •
K .1080565 .0063426 .1414469 29
G .1494012 .0019507 .1001021 30
S .1444231 .0008757 .1050802 28
D .1854059 .0030886 .0640974 24
M •.1454299 .000 8298 .1040735 28
A .1384619 .0013410 .1110414 29
P .1371177 .0011693 .1123856 28
0 .1760073 .0032529 .0734961 30
F .1349167 .0008031 .1145866 28

Table 55

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 3.0 (OPT • .0668), Orientation 2,
Matrix 4, n • 25

Number of Times

Mean	 Improvement Over	
PMC is Lower

Estimate	
PMC	

Variance	
Estimator S	 than That of

Estimator S
(max • 30)

!	 S .1331843 .0019555
K .1190056 .0015548 .0141787 30
G .1246015 .0012961 .0085828 20
R .1081321 .0003603 .0250521 24
D .1373143 .0013923 -.0041300 11
M .1072330 .0001883 .0259513 23

t-	 A .10744 17 .0003566 .0257426 22
P

F
.1164354 .0006504 .0167489 22

0 .1188429 .0008790 .0143414 22
F .1145743 .0002266 .0186100 17
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i	 Table 56

t.
.Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
a ,	when D - .0 (OPT = .3821), Orientation 3,

Matrix 1, n a 10

Number of Times

Mean Improvement Over PMC is Lower
Estimator

PMC
Variance

Estimator S  than That of

i. Estimator S
(max	 30)

j,	 S .4715319 .0011503
K .5323469 .0096985 -.0608149 9
C .4768534 .0006249 -.0053214 13
R .4778623 .0004963 -.0063303 11
D .4800106 .0005833 -.0084787 12
M .4788593 .0005130 -.0073274 11
A .4770617 .0005008 -.0055297 12
P .4771987 .0004606 -.0056668 12
0 .4785215 .0008829 -.0069895 12

6	 F .4803006 .0003943 -.0087686 10

Table 57

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D	 .6 (OPT - .3821), Orientation 3,
!!`
E

Matrix 1. n - 25

Number of Times

Mean Improvement Over PMC is Lower
Estimator	 PMC

Variance
Estimator S than That of

Estimator S
i (max • 30)
r.

S .4644161 .0008756 +^

R .47:S874 .0017452 -.0132713 9
C .4800509 .0011086 -.0156348 4
R .4794635 .0011293 -.0150474 7
D .4800156 .0013013 -.0155995 5

.. M .4778069 .0010842 -.0133908 11
A .4806339 .0012203 -.0162178 7
P .4801776 .0011342 -.0157615 5
0 .4796249 .0011068 -.0152088 6
F .4784315 .0009580 -.0140154 9
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Table 58

.Comparison of Probabilities of Misclassification for
Several Discriminant Functions. 30 Replications,

when D - .6 (OPT - .3821), Orientation 3,
Matrix 2, a - 10

Number of Times
Mean	 Improvement Over 	 PMC is Lower1mator PMC Variance Estimator S than That of

Estimator S
(max - 30)

S	 .4720387 .0012039
R	 .5150609 .0119458 -.0430222 10
G	 .4754963 .0006800 -.0034576 13
R	 .4759637 .0004033 -.0039250 13
D	 .4827731 .0006635 -.0107344 10
M	 .4772016 .0003850 -.0051629 11
A	 .4757041 .0004880 -.0036655 12
P	 .4759760 .0004263 -.0039373 12
0	 .4758769 .0009777 -.0O38382 12
F	 .4795544 .0003982 -.0075157 10

Tab le 59

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821) , Orientation 3,
Matrix 2, n - 25

Number of Times

	

. Mean	 Improvement Over	 PMC is Lover
Estimator PMC Variance Estimator S than That of

Estimator S
(max - 30)

k	 S .4642913 .0008576 +^
E .4687696 .0010418 -.0044783 9
G .4746042 .0009332 -.0103129 4

E	 R .4769748 .0009503 -.0126835 7
D .4802647 .0010.02 -.0159734 4
M .4781760 .0009360 -.0138847 8
A .4785895 .0010921 .0142982 6
P .4772830 .0009977 -.0129917 4
0 .4758248 .0009466 -.0115335 4
F .4784990 .0008167 -.0142077 8
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Tab le 60

_Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - . 3085), Orientation 3,
Matrix 1, n - 10

Number of Times

Mean	 Improvement Over	
PMC is Lower

Estimate PMC Variance Estimator S than That of
Estimator S
(max - 30)

S .4338931 .0019116 * *
K .4460395 .0190767 •-.0121464 14

•	 C .4424260 .0013891 -.0085330 14
R .4454960 .0011540 -.0116029 13
D .4513071 .0013319 -.0174140 12

•M .4474095 .0011760 -.0135164 11
A .4416195 .0011068 -.0077264 13
P .4422021 .0010307 -.0083090 13
0 .4483870 .0020470 -.0144939 12
F .4489143 .0009267 -.0150213 10

Table 61

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - .3085), Orientation 3,
Matrix 1, n - 25

Number of Times
PMC is LowerMean

Estimator Improvement Over
Variance than That ofPMC Estimator S

Estimator S

C
(max -•30)

S .4049063 .0015699
K .4135915 .0031345 -.0086851 12
C .4385528 .0024528 -.0336465 3
R .4356605 .0023311 -.0307541 7
D .4394411 .0024522 -.0345348 3I	 M .4325702 .0020114 -.0276639 9
A .4358236 .0024450 -.0309173 8
P .4370903 .0024253 -.0321839 6
0 .4367075 .0023890 -.0318012 5
F .4336094 .0018005 -.0287031 a
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Table 62

Comparison c.f Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - .3085) 0 Orientation 3,
Matrix 2, n - 10

Number of Times

Estimator
Mean

Variance Improvement Over
PMC is Lover
than That ofPMC Estimator S
Estimator S
(max	 30)

S .4334909 .0017418
K .4246007 .0204109 .0088902 15
G .4383295 .0014730 -.0048386 13
R .4422662 .0008799 -.0087753 14
D .4558897 .0016159 -.0223988 9
M .4445498 .0008670 -.0110589 14
A .4380882 .0010576 -.0045973 12
P .4389660 .0009383 -.0054751 13
0 .4418492 .0021301 -.0083583 12
F .4470639 .0009323 -.0135730 10

l .

Table 63

Comparison of Probabilities of Misclassification for
E Several Discriminant Functions, 30 Replications,

when D - 1.0 (OPT - .3085), Orientation 3,
Matrix 2, n - 25

Humber of Times

Mean
Estimator Improvement Over

Variance
PMC is Lower
than That ofPMC Estimator S
Estimator S
(max - 30)

S .4048470 .0015816
K .4057734 .0020781	 -.0009264 15
G .4241128 .0018660	 -.0192658 2
R .4283507 .0018206	 -.0235037 6
D .4396899 .0023539	 -.0348429 3
M .4323980 .0016739	 -.0275510 8
A .4313968 .0021571	 -.0265498 6

'	 P .4293107 .0019954	 -.0244637 4
1	 0 .4262551 .0018580	 -.0214081 3

F .4335959 .0015499	 -.0287489 7
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Table 64

L'	
C	 rison of Probabilities of Misclassification^ 	si ication for

Several Discriminant Functions, 30 Replications,
fwhen D - 3.0 (OPT - .0668), Orientation 3,

Matrix 1, n - 10

Number of Times
PKC

	

Estimator	 Mean	 Variance	 Improvement Over 	
tha is Lover

PMC	 Estimator S	 than That of
Estimator S
(max - 30)

S	 .2333699 .0047396
K	 .1291883 .0092560 .1041816 28
C	 .2123422 .0019660 .0210277 16
R	 .2232617 .0022461 .0101082 13
D	 .2628658 .0035742 -.0294959 12
M	 .2252484 .0021650 .0081215 14
A	 .2059766 .0018948 .0273933 18
P	 .2073982 .0019220 .0259717 18
O	 .2322150 .0025430 .0011549 11
F	 .2126169 .0020385 .0207530 18

Table 65

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 3.0 (OPT - .0668), Orientation 3,
Matrix 1, n - 25

H

Number of Times

Mean	 Improvement Over	 PMC is LowerEstimator	
PMC	 Variance	 Estimator S	 than That of

Estimator S
(max - 30)

S .1315218 .0018469
H .1219341 .0014079 .0095876 19
C .1817822 .0015730 -.0502604 1
R .1673601 .0006437 -.0358384 3
D .1869159 .0018902 -.0553941 1
M .1621310 .0003605 -.0306092 3
A .1597117 .0004277 -.0281900 3
P .1709309 .0008129 -.0394091 3
0 .1740671 .0010193 -.0425453 3
F .1620265 .0004422 -.0305047 6

r:
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Table 66

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 3.0 (OPT - X0660 9 Orientation 3.
Matrix 2. a • 10

Number of Time

Estimator
Mean

Variance Improvement Over
PMC is Lower
than That ofPMG Estimator S
Estimator S
(sax • 30)

S .2243574 .0036016 * •
[ .1037136 .0030641 .1206438 30
G .1986870 .0020313 .0236704 21
R .2187200 .0018344 .0056374 16
D .2570681 .0046414 -.0327107 11
M .2216029 .0018980 .0027544 16
A .1950727 .0018596 .0292847 21
P .1976837 .0016971 .0266737 20
0 .2131977 .0025543 .0111597 16
7 .2052253 .0022348 .0191321. 20

Table 67

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - 3.0 (OPT - .0668), Orientation 3,
Matrix 2. n - 25

Number of Times

Mean	 PMC is Lover
Estimator	 Variance	

Estimator S
 Over
	 than That ofPHC	

Estimator S
(sax - 30)

S	 .1319591 .0021237 * +►
X	 .1194863 .0018197 .0124728 22
G	 .1545014 .0017565 -.0225423 2
R	 .1493955 .0006182 -.0174364 6
D	 .1871879 .0015492 -.0552288 2
M	 .1579318 .0005546 -.0259727 5
A	 .1515277 .0003614 -.0195686 6
P	 .1536625 .0007857 -.0217034 4
0	 .1516813 .0010668 -.0197222 4
F	 .1585516 .0004067 -.0265925 6
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Table 68

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications.

when D .6 (OPT - . 3821). Orientation 3.
Matrix 3, a • 10

Number of Times

Mean	 Improvement Omer	 PW is tower
Estimator Variances Estimator 8 than That of

Estimator S
(max - 30)

8 .4717440 .0011812 •
K .5126235 .0091900 -.0408795 9
G .4714682 .0007407 .0002758 11
R .4720959 .0007014 -.0003519 13
D .4769108 .0008939 -.0051668 12
M .4736923 .0007007 -.0019483 13

.4716619 .0006418 .0000821 13
P .4724154 .0006048 -.0006714 13
0 .4727913 .0009229 -.0010473 14

r	 F .4763422 .0005204 -.0045982 14

Table 69

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 39
Matrix 3. a - 25

Number of Time

Estimator mean
variance e

Estimator S

PMC is Lower
than That of
Estimator S
(max • 30)

S .4652408 .0009935 +► e
K .4761O15 .0019887 -.0108607 5
G .4726285 .0012053 -.0013877 8
A .4708577 .0012061 -.0056170 13
D .4729653 .0011982 -.0077246 8
M .4685765 .0011787 -.0033357 14
Aif	 P .4713554

.4719655
.0012452
.0012121

-.0061146
-.0067248

12
11

0 .4718916 .0011963 -.0066568 11
7 .4708172 .0010039 -.0055765 12
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Table 70

of, Comparison Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • .6 (OPT - .3821), Orientation 3,
Matrix 4, a - 10

Number of Times

' Estimator VarianceVariance Improvasent Over
HC Is That. P!!C Estimator S
Rstimator S
(max • 30)

8 .4720831 .0012788 • e
K .5031372 .0127667 -.0310541 9
C .4700337 .0007420 .0020494 16
R .4694506 .0005764 .0026324 16
D .4772137 .+3009871 -.0051306 11
M .4705986 .0005446 .0014845 15
A .4701214 .0006098 .0019627 14
P .4707832 .0005577 .0012999 14
0 .4708626 .0010057 .0012205 17
7

f^

.4752869 .0005162 -.0032038 13

Table 71

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D - .6 (OPT - .3821), Orientation 3,
Matrix 4, n - 25

Number of Times
Mean
	

Improvesent Over	 PMC is Lower
Estimator PPM Variance Estimstor S than That of

Pstimator S
^sax - 30)

8 .4651296 .0009 87 3
X .4671420 .0012007 -.0020124 9
C .4673454 .0010232 -.0022158 9
R .4674717 .0010639 -.0023421 13
D .4728941 .0011811 -.0077645 9
K .4674353 .0010331 -.0023057 12
A .4697105 .0011609 -.0045809 13
P .4641317 .0010917 -.0040021 9
O .4679627 .0010369 -.0028331 11
F .4710952 .0008720 -.0059656 12
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Table 72

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications.

} when D 1.0 (Q^T • .3085), Orientation 3,
Matrix 3, a • 10

Number of Times

Improvement
RC Is Lower

Estimator Variance Sys than That of
Estimator S
(wc • 30)

S .4353038 .0021210
[ .4361354 .0139366 -.0008317 15
G .4290625 .0014621 .0062413 16
R .4304059 .0015238 .0048978 16
D .4418043 .0016709 -.0065006 13

•M .4331626 .0015629 .0021412 15
A .4286235 .0013581 .0066803 15

I P .4301593 .0013361 .0051445 15
0 .4338156 .0018453 .0014882 16
F .4384861 .0011986 -.0031823 13

Table 73

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

t when D • 1.0 (OPT - .3085), Orientation 3,
Matrix 3, n - 25

fNumberof Times

Mean
Estimator Variance

Improvement Over
PMC is Lower
than That of

PMC Estimator S
Estimator S
(sax • 30)

S .4055966 .0018138 * •
° 1 .4148539 .0031281 -.0092573 9

C .4220622 .0024874 -.0164655 7
R .4156192 .0021668 -.0100226 10

! D .4241355 .0024947 -.0185389 6
M .4110012 .0017447 -.0054046 14
A .4144310 .0021750 -.0088343 10
P .4187178 .0023542 -.0131212 9
0 .4193926 .0023535 -.0137960 9
F .4145477 .0015400 -.0089510 11
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s ' Table 74
f

f	 j • Comparison of Probabilities of Misclassification for
Several Disariminant Functions, 30 Replioations,

slan D 1.0 (OPT - .3085) 9 Orientation 3.
Matrix 4, n • 10

Number of Tics

Estimator ^n variance	 I01Prowant Overri
Re is Lower
than That ofHC Estimator 8
Estimator 8

^.. (	 10)

8 .4342608 .0019456	 * . +e	 '
t .4233397 .0179305	 .0109212 is
0 .424SS97 .0013671	 .0097011 16
R .4270403. .0012926	 .0072205 15
D .4426120 .0021714	 -.0083512 11
li 04290106 .0012626	 .0032502 1s
A .4245191 .0012159	 .0097417 17

I	 P .4260354 .0011725	 .0082254 15
1	 0 .4277009 .0017663	 .0065600 17

F .4361893 .0011949	 -.0019285 15

i	 .
` Table 75

Comparison of Probabilities of Misclassification for
Several DI"riminant Functions, 30 Replications,

when D • 1.0 (OPT - .3085) 9 Orientation 3.
Matrix 4, n - 25

Number of Time
PMC is Lower

Estimator	
^	 Variance
	 Improvement t over 	

than That of
Estimator S
(max - 30)

S .4054626 .0018726 * •
X .4031859 .0021245 .0022766 22
G .4085762 .0018364 -.0031136 11
R .4078334 .0017050 -.0023709 12
D .4238338 .0024232 -.0183711 7
M .4078858 .0014149 -.0024232 12
A .4109159 .0019538 -.0054533 11
P .4114915 .0019335 -.0060289 11
0 .4093732 .0018212 -.0039107 11
F .4149809 .0013582 -.0095183 11
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Table 76

r ' orison of Probabilities of,Misclasaifieation for
$Moral Discris iaent Tunatious. 30 Replications.

when D 3.0 (OPT a .0668)s Orientation 3

i_

' Matrix 3. a - 10

Ember of Time

' Estimator
P^MC Variance Improvement Over is 

L W
Estimator 8
(max	 30)

` 8 .2293197 .0037984 e
K .1122643 .0044695 .1170754 30
G .1767313 .0018391 .0323884 27
R .1777807 .0018805 .0315390 23
D .2333672 .0037738 -.0040475 16
M .1784349 .0018331 .0508848 29
A .1693173 .0017083 .0600024 23
P .1702761 .0018428 .0590436 24
0 .1975539 .0024048 .0317658 24
F .1735133 .0018499 .0558064 23

Table 77

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D 3.0 (OPT - .0668), Orientation 3,
Matrix 3, n - 23

Number of Timms

	

• mean	 Improvement 	 PMC is Lover
Estimator	

PMCC	 Variance	 Es0mar SS
	

than That of
Estimator S
(max - 30)

8 .1304627 .0017817 • •
K .1213906 .0017554 .0090721 14
G .1496848 .0015936 -.0192221 2
R .1308800 .0005221 -.0004173 11
D .1541308 .0019616 -.0236681 2
M .1231524 .0003101 .0053103 12
A .1243820 .0002787 .0060807 13
P .1367060 .0006853 -.0062433 8
0 .1409471. .0009458 -.0104844 3

'	 T .1250879 .0002812 .0053748 14

i^
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(j	 Table 78

.Comparison of Probabilities of Misclassification for

	

1	 Several Discriminant Panctioas, 30 Replications,
when D a 3.0 (OPT a .0666) 9 Orientation 3,

Matrix 4, a • 10
^

i

	

..	 Number of Time

been	 Zmprovemeat Over	 PM is Lover
•	 Estimator	

PMC	 Variants	 Estimator 8	 than That of
astloator 8
(max a 30)

s	 .2330261 .0048248 +^ •
t	 .0973499 .0027006 .1354763 30
0	 .1639241. .0016791 .0691020 29
R	 .1730693 .0017608 .0599568 24
D	 ..2249789 .0035917 .0080473 17
M	 .1760017 .0017952 .0570244 25
A	 .1583676 .0016113 .0744585 2S
P	 .1398363 .0016097 .0731699 24
0	 .1808607 .0023917 .0321654 28
F	 .1669733 .0020316 .0660529 23

Table 79

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,

when D • 3.0 (OPT - .0668), Orientation 3,
Matrix 4, n - 10

Number of Time

p	
PMC is Lower

estimator PMC Variance 
^aatIo^ator Over than That of

estimator S
(max • 30)

S	 .1302982 .0021113
K	 .1147942 .0017454
C	 .1259162 .0013330
R	 .1161704 .0003746
D	 .1509116 .001498+
M	 .1197156 .0002396
A	 1176184 0002667

I	 P	 .1225194	 .00064 ,,0
0	 .1225293	 .0009248
F	 .1223729	 .0002662

96,
1 t-

.0195040 29

.0043820 13

.0141278 18
-.0206134 4
.0105826 13
.0126798 16
.0077788 15
.0077689 13
.0079233 14
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