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SUMMARY 

N e w e r  gene ra t ions  of a i rcraf t  w i l l  u t i l i z e  advanced d i sp lays ,  better auto- 
mation systems, and better e l e c t r o n i c s .  These advances coupled wi th  similar 
advances i n  ground naviga t ion  a i d s  should allow pi lots  t o  perform p r e c i s i o n  
advanced f l i g h t  maneuvers, such as curved instrument  landing  approaches, which 
are not c u r r e n t l y  p o s s i b l e  wi th  a convent iona l ly  equipped a i r c r a f t .  To assess 
t h e  effect on pi lot  scan behavior of both advanced cockpit and advanced maneu- 
vers ,  a series of s t r a i g h t - i n  and curved landing  approaches were performed i n  
t h e  Terminal Configured Vehic le  (TCV) simulator a t  t h e  Langley Research Center .  
Two comparisons of p i lot  scan  behavior were made. F i r s t ,  scan behavior du r ing  
s t r a i g h t - i n  approaches i n  t h e  TCV s imula tor  w a s  compared wi th  scan behavior 
p rev ious ly  obta ined  i n  a convent iona l ly  equipped s imula tor .  Second, p i lot  scan  
behavior i n  t h e  TCV simulator dur ing  s t r a i g h t - i n  approaches was compared w i t h  
scan  behavior during curved approaches.  The resul ts  i n d i c a t e  t h a t  t h e  p i l o t s  
used very similar scanning p a t t e r n s  dur ing  t h e  s t r a i g h t - i n  approaches i n  t h e  
convent ional  and advanced cockpits. However, €or t h e  curved approaches, p i l o t  
a t t e n t i o n  was s h i f t e d  t o  t h e  e l e c t r o n i c  h o r i z o n t a l  s i t u a t i o n  d i s p l a y  (moving 
map), and a new eye  scan  pa th  appeared between t h e  map and t h e  a i r speed  indica-  
tor. Because the  p i l o t s  spen t  less t i m e  looking a t  t h e  electromechanical  
instruments ,  t he  graphic  d i s p l a y s  should be made very  re l iable  and accu ra t e .  
The very high dwell  percentage and dwell  times dur ing  t h e  f i n a l  po r t ions  of t h e  
approaches on t h e  e l e c t r o n i c  d i s p l a y s  i n  t h e  TCV simulator were taken t o  indi -  
cate t h a t  t h e  e l e c t r o n i c  a t t i t u d e  d i r e c t i o n  i n d i c a t o r  w a s  w e l l  designed f o r  
t h e s e  landing  approaches. 

b 

INTRODUCTION 

I n i t i a l  research  i n t o  p i lo t  scan  behavior conducted a t  t h e  Langley 
Research Center has g e n e r a l l y  been d i r e c t e d  a t  quan t i fy ing  p i l o t  scanning 
behavior i n  commercial t r a n s p o r t  a i r c r a f t  equipped with convent ional  i n s t ru -  
ment panels .  
in-house s imula to r s  ( r e f s .  1 to 3 ) .  S p e c i f i c a l l y ,  t h e  instrument  approach 
phase of f l i g h t  w a s  s t u d i e d  because of  i ts t r a d i t i o n a l l y  higher  r i s k  f a c t o r .  I n  
t h e  a n a l y s i s  of these  data, it was recognized t h a t  d i f f e r e n t  segments of t h e  
landing  approach involved d i f f e r e n t  p i l o t i n g  t a s k s  such as maintaining l e v e l  
f l i g h t ,  i n t e r c e p t i n g  g l i d e  slope, maintaining cons t an t  rate of descent  on g l i d e  
slope, and f l a r i n g .  I t  was hypothesized t h a t  t h e s e  d i f f e r e n t  p i l o t i n g  tasks 
would a f f e c t  t h e  r e s u l t i n g  pilot  scan  behavior as ind ica t ed  by t h e  percentage 
of dwell t i m e s  spent  on t h e  i n d i v i d u a l  instruments .  The data d i d  show t h a t  
indeed t h e r e  were very s l i g h t  s h i f t s  i n  pi lot  a t t e n t i o n  dur ing  these  d i f f e r e n t  
segments. 

These tests were c a r r i e d  o u t  wi th  a i r l i n e  t r a n s p o r t  t ra iners  and 

N e w e r  genera t ions  of a i r c r a f t  w i l l  have d i f f e r e n t  instrument  pane ls  wi th  
cathode-ray tubes (CRT's) i n s t e a d  of t h e  convent ional  e lectromechanical  d i a l  
i n d i c a t o r s .  These new CRT d i s p l a y s  w i l l  allow €or new formats  such as p i c t o r i a l  
r ep resen ta t ions  of t h e  runway. Reference 4 p r e s e n t s  t h e  r e s u l t s  of a s imula tor  



s tudy  conducted wi th  an e l e c t r o n i c  a t t i t u d e  d i s p l a y  i n d i c a t o r  (EADI) to  eva l -  
uate var ious  d i s p l a y  formats for u s e  i n  t h e  Terminal Configured Vehicle  Program 
( r e f .  5). I n i t i a l  p i l o t  scanning a n a l y s i s  of t h e  combination of t h e  EADI and 
ho r i zon ta l  s i t u a t i o n  i n d i c a t o r  (HSI) d i s p l a y  ( r e f .  6) indicated t h a t  f o r  i n s t r u -  
ment landing  approaches,  t h e  percent  of usage w a s  about  t h e  same as t h a t  f o r  
t h e  convent ional  e lectromechanical  f l i g h t  director which t h e  EADI replaced.  

Advanced ground equipment for a i r  t r a f f i c  c o n t r o l  such as t h e  microwave 
landing  system (MLS) and t h e  discrete address beacon system (DABS) w i l l  o f f e r  
t he  p i l o t  instrument  landing  approach information of higher  accuracy and i n  
greater q u a n t i t y  than has been a v a i l a b l e  a t  any previous  t i m e .  These t w o  
systems as w e l l  as new d i s p l a y s  and c o n t r o l  systems such as those  used i n  
t h e  TCV Program should allow p i l o t s  t o  t a k e  on ins t rument  f l i g h t  t a s k s ,  such 
as p r e c i s e  curved descending approaches,  t h a t  were almost impossible wi th  c u r -  
r e n t  a i r c r a f t .  

M u l t i p l e  curved descending approaches o f f e r  s i g n i f i c a n t  possibilities f o r  
no ise  c o n t r o l ,  t r a f f i c  s epa ra t ion ,  t r a i l i n g  vo r t ex  avoidance, and o the r  prob- 
l e m s  c u r r e n t l y  encountered i n  t h e  p re sen t  a i r  t r a f f i c  c o n t r o l  system. The 
newer aircraft  which have no t  o n l y  CRT d i s p l a y s  of a t t i t u d e ,  b u t  also moving 
map d i s p l a y s  r ep lac ing  t h e  heading i n d i c a t o r ,  should g ive  t h e  pi lots  p r e c i s e  
c o n t r o l  of t h e  a i r p l a n e  on t h e s e  more complicated approach pa ths  ( r e f .  7). 
These developments raised t h e  ques t ions :  How w i l l  t h e  pi lot  v i sua l  workload 
be a f f e c t e d  by these  new approach pa ths  and d i s p l a y s  compared with c u r r e n t  
approach pa ths  and d i sp lays?  W i l l  t he  d i s p l a y s  be adequate  f o r  t h e  new tasks? 

To address  these  ques t ions ,  a series of instrument  approaches have been con- 
ducted i n  t h e  Terminal Configured Vehic le  (TCV) Af t  F l i g h t  D e c k  s imula tor  a t  t h e  
Langley Research Center .  These tests were designed to compare the  pilot  scan  
p a t t e r n s  i n  s t r a i g h t - i n  landing  approaches f o r  convent ional  and advanced cock- 
p i t s  and t h e  p i l o t  scan  p a t t e r n s  for s t r a i g h t - i n  and curved instrument  landing  
approaches i n  advanced cockpits. The data analyzed were instrument  dwell  per- 
centages,  dwell  times, and t r a n s i t i o n  percentages.  Addi t iona l  data analyzed 
f o r  t h e  approach-path comparison were t h e  dwell  percentages and d w e l l  t i m e s  on 
t h e  symbols within each of t h e  e l e c t r o n i c  d isp lays .  

ABBREVIATIONS 

AD1 a t t i t u d e  d i r e c t i o n  i n d i c a t o r  

CRT cathode-ray tube  

DABS discrete address beacon system 

EADI e l e c t r o n i c  a t t i t u d e  d i s p l a y  i n d i c a t o r  

EHSI e l e c t r o n i c  h o r i z o n t a l  s i t u a t i o n  i n d i c a t o r  

ar hor i zon ta l  s i t u a t i o n  i n d i c a t o r  

IIS instrument  landing  system 

2 



MLS microwave landing  system 

NCDU naviga t ion  computer d i s p l a y  u n i t  

TCV Terminal Configured Veh ic l e  

vcws v e l o c i t y  c o n t r o l  wheel s t e e r i n g  mode 

VSI v e r t i c a l  speed i n d i c a t o r  

EQUIPMENT AND TESTS 

Simulator 

These experiments were conducted i n  a fixed-base s imulator  designed t o  
match the  a f t  f l i g h t  deck i n  t h e  TCV a i rp l ane .  The i n t e r i o r  of t h e  simulator 
is shown i n  f i g u r e  1 and is descr ibed  i n  de ta i l  i n  r e fe rences  4 to 7. The cock- 
p i t  is rep resen ta t ive  of  an advanced t r a n s p o r t  a i r c r a f t  wi th  a computerized 
f l i g h t  c o n t r o l  system involv ing  a fly-by-wire concept.  The c o n t r o l  handles  
( b r o l l y )  have been redesigned so t h a t  t h e  CRT d i s p l a y s  can be located d i r e c t l y  
i n  f r o n t  of t h e  p i l o t  without any v i s u a l  or phys ica l  obs t ruc t ions .  

The d i s p l a y  formats  of t he  t w o  main CRT ' s  ( f i g s .  2 and 3) combined conven- 
t i o n a l  needle  po in t e r  and newer p i c t o r i a l  elements as w e l l  as d i g i t a l  d i s p l a y  
f e a t u r e s .  The EADI ( f i g .  2) presented  l a t e ra l  and v e r t i c a l  displacement errors, 
r e l a t i v e  ground track, and l o n g i t u d i n a l  a c c e l e r a t i o n  as i n d i c a t o r  displacements;  
p i t c h  and rol l  a t t i t u d e ,  runway, and f l i g h t - p a t h  ang le  as p i c t o r i a l  elements;  
and d i g i t a l  a l t i t ude  below 762 m. The EHSI ( f i g .  3) presented  planned ground 
track and predicted ground track f o r  t h e  next  90 seconds i n  a map format. Digi- 
t a l  ground speed, map scale, and magnetic track were also presented.  The EHSI 
was flown i n  t h e  mode. The rest  of t h e  d i s p l a y s  were convent ional  needle  p o i n t  
ins t ruments  located i n  t h e i r  t r a d i t i o n a l  p o s i t i o n s  around t h e s e  e l e c t r o n i c  d i s -  
p l ays  and are l i s t ed  wi th  t h e  EHSI and EADI as follows: 

EHS I 
EADI 
Airspeed i n d i c a t o r  
A l t i t u d e  ind ica to r  
A l t i t u d e  ra te  i n d i c a t o r  

Marker beacon 
Engine instruments  
S e l e c t  pane l  
Mode c o n t r o l  panel  

A h ighly  modified commercial o c u l m e t e r  was used i n  t h i s  s tudy  t o  measure 
t h e  p i l o t ' s  eye p o i n t  of regard.  The modi f ica t ions  cons i s t ed  of a redesigned 
electro-optic head r e s u l t i n g  i n  a u n i t  about one-third t h e  o r i g i n a l  s i z e .  
Software changes r e s u l t e d  i n  a simpler ope ra t ing  system, and an  on-l ine video- 
recorded pi lot  scanning a c t i v i t y  which allowed t h e  operator to  observe i n  real 
t i m e  t h e  system performance. The e l c t r o - o p t i c  u n i t  and a camera which monitored 
the  p i lo t  were mounted on t h e  g l a r e  s h i e l d  and were p a r t i a l l y  hidden by a b lack  
f e l t  c l o t h  ( f i g .  1 ) .  Appendix A of reference  3 g ives  a more detailed descr ip-  
t i o n  of t h e  o c u l m e t e r  hardware. 
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Pilots and P i l o t i n g  T a s k s  

Three NASA tes t  pi lots  who were very  f a m i l i a r  wi th  t h e  TCV a i r p l a n e  and 
s imulator  participated i n  t h e s e  tests. Each pi lot  f lew both pa ths  t h r e e  times 
r e s u l t i n g  i n  a total  of 1 8  l anding  approaches. 

The p i l o t s  made simulated instrument  approaches on e i t h e r  t h e  s t r a i g h t - i n  
approach pa th  or t h e  curved descending approach path,  as shown i n  f i g u r e  4. The 
s t r a i g h t - i n  approach pa th  s t a r t e d  approximately 13 kilometers from t h e  runway a t  
an a l t i t u d e  of 460 meters. The p i lo t ' s  t a s k  was t o  main ta in  cons t an t  a l t i t u d e  
and ground t rack on segment I ,  i n t e r c e p t  t h e  3O glide slope on segment 2, follow 
it down to  t h e  runway on segments 3 and 4, and l and  on segment 5. The curved 
descending approach pa th  started a t  an a l t i t u d e  of 1500 meters a t  a p o i n t  oppo- 
si te t h e  runway. The p i l o t ' s  t a s k  was to immediately e s t a b l i s h  a 3O descending 
f l i g h t  pa th  wh i l e  meeting a l t i t u d e  and speed requirements  a t  each of t h r e e  way- 
po in t s .  The f i n a l  t u r n  (segment 3)  ended a t  a po in t  on ly  1700 meters from t h e  
end of the  runway: consequently,  t he  p i l o t  did n o t  have much t i m e  l e f t  to cor- 
rect f o r  any misalignment which might have occurred.  

A l l  approaches were made i n  t h e  v e l o c i t y  c o n t r o l  wheel s t e e r i n g  mode (VCWS) 
described i n  r e fe rence  5. I n  t h i s  mode t h e  p i l o t  used t h e  c o n t r o l  handles  to 
e s t a b l i s h  t h e  bank ang le  and f l i g h t - p a t h  angle.  The VCWS system then maintained 
t h e  a i r c ra f t  a t  those  condi t ions  without  f u r t h e r  need for pilot  input .  The air- 
speed was set by t h e  p i lo t  on a c e n t e r  instrument  panel ,  and t h e  t h r o t t l e s  were 
au tomat i ca l ly  actuated to  e s t a b l i s h  and main ta in  t h e  s e l e c t e d  airspeed. 

One of the  experimenters  func t ioned  as c o p i l o t  i n  a l l  t h e  tests. H i s  
d u t i e s  were to  perform conf igu ra t ion  and d i s p l a y  mode changes i n  response t o  
the  p i l o t  ' s call-outs. 

DATA ACQUIS ITION AND ANALYSIS 

The oculane ter  data were recorded by t h e  s imula t ion  computer 32 times per 
second along with appropr i a t e  veh ic l e  and d i s p l a y  parameters so t h a t  o f f - l i n e  
data a n a l y s i s  could be performed. The fol lowing parameters  were recorded: 

Time 
Lookpoint, X-coordinate 
Lookpoint, Y-coordinate 
Pup i l  diameter 
Track/no track 
Trim s e t t i n g  
Fore-af t  b r o l l y  handle p o s i t i o n  
Rotary b r o l l y  handle  p o s i t i o n  
T h r o t t l e  p o s i t i o n  
Rudder pedal p o s i t i o n  
A 1  ti tude  
Airspeed 

A l t i t u d e  ra te  
Discrete code 
L a t i t u d e  
Longitude 
P i t c h  a t t i t u d e  
R o l l  a t t i  tude 
Yaw a t t i t u d e  
P i t c h  rate 
R o l l  rate 
Yaw ra te  
Commanded airspeed 
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This  data a n a l y s i s  cons i s t ed  of ob ta in ing  a f i r s t - o r d e r  Markov t r a n s i t i o n  
ma t r ix  of t h e  instruments  scanned. The a n a l y s i s  also included determining t h e  
mean and s tandard  dev ia t ion  of t he  dwell  times. The data were analyzed sepa- 
r a t e l y  f o r  each of t h e  f i v e  segments of t h e  approach ( f i g .  4 ) .  Data frm cor- 
responding segments were then compared. 

I n  a d d i t i o n  to ana lyz ing  t h e  between-instrument t r a n s i t i o n s ,  t h e  EADI and 
EHSI were d iv ided  i n t o  symbol areas, and pi lot  scanning behavior wi th  t h e s e  
instruments  was analyzed. 
are l i s ted  as follows: 

The names of t h e  symbols considered f o r  each d i sp lay  

EADI  - 
Airplane symbol 
R o l l  a l t i t u d e  
Glide slope 
Local izer  
A 1  t i t ude 
F 1 i g h t- pa th  wedges 
P i t ch  re ference  
Horizon 
Accelera t ion  
Runway 

EHS I - 
Magnetic track 
Own s h i p  
F l i g h t  pa th  
D i g i t a l  speed 

For data a n a l y s i s  t hese  symbols were broken down i n t o  r ec t angu la r  areas, l i n e s ,  
or dots. F igures  5 and 6 show these  areas f o r  t h e  EADI and t h e  EHSI. I f  t h e  
p i l o t ' s  lookpoint  was wi th in  or close to  any symbol (wi th in  0.75 v i s u a l  deg rees ) ,  
t h e  p i lo t  w a s  considered to  be looking a t  it. The r e s u l t i n g  symbol boundaries 
are shown i n  these  f i g u r e s .  

Some of t h e  symbols ( 6  to  1 0  of t h e  EADI) moved on t h e  CRT i n  response t o  
a i r c r a f t  s t a t e  and p i l o t  i npu t s  making it possible f o r  t w o  or more areas to 
overlap.  Curren t ly ,  it is impossible  to determine which symbol t h e  p i lo t  was 
r e a l l y  a t t end ing  to. However, i n  t h e s e  tests only  t w o  symbols presented  any 
real problem, t h e  f l i gh t -pa th  wedges i n  t h e  E A D I  and t h e  own s h i p  symbol i n  t h e  
EHSI. I n  both cases it was decided t h a t  when ove r l aps  involv ing  t h e s e  symbols 
and any o the r  symbol occurred and t h e  p i l o t  was detected looking a t  t h a t  over lap ,  
then  the  a n a l y s i s  program would assume t h a t  t h e  pi lot  w a s  looking a t  t h e  f l i g h t -  
pa th  wedges or t h e  a i r p l a n e  symbol. Based on p i l o t s '  comments t h e s e  were t h e  
important pieces of information needed t o  c o n t r o l  t h e  a i r p l a n e .  

RFSULTS 

Conventional Versus Advanced C o c k p i t  

Scan behavior of a i r l i n e  pi lots  performing ILS approaches i n  a t r a i n i n g  
simulator have been documented i n  r e fe rence  3. Data taken from t h a t  report on 
manually con t ro l l ed ,  no-turbulence approaches are compared with data from t h e  
s t r a i g h t - i n  ILS approaches of t h e  c u r r e n t  s tudy.  The dwell percentage and aver- 
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age dwell  t i m e s  of f i v e  ins t ruments  common t o  both s t u d i e s  f o r  t h e  f i r s t  four  
segments of t h e  approach are l i s ted  i n  t a b l e  I. 
those r epor t ed  i n  r e fe rence  3 .  

These segments corresponded to 

Simulator d i f fe rences . -  The t w o  s imula t ions  compared he re in  d i f f e r  i n  t w o  
ways: type of d i s p l a y s  and type of  v e h i c l e  a t t i t u d e  c o n t r o l  system. The s tudy  
repor ted  i n  r e fe rence  3 used a l l  e lectromechanical  d i s p l a y s  ( f i g .  7 ) .  The cur- 
r e n t  s tudy  had t w o  CRT d i s p l a y s  (EADI and EHSI; see f i g s .  2 and 3 ) .  The c o n t r o l  
system of re ference  3 was a convent ional  a t t i t u d e  c o n t r o l  system with a manually 
c o n t r o l l e d  t h r o t t l e .  The c u r r e n t  s tudy  incorpora ted  an  advanced fly-by-wire 
c o n t r o l  system i n  which the  p i l o t  commanded f l i g h t - p a t h  angle  changes with fore-  
and-af t  c o n t r o l l e r  movements and t h e  automatic  c o n t r o l  system modulated t h e  ele- 
vator  to e s t a b l i s h  t h e  command f l i gh t -pa th  angle .  The rol l  a t t i t u d e  responses  
were similar i n  both s t u d i e s  except  t h a t  i n  t h e  p re sen t  s tudy  t h e  c o n t r o l  system 
maintained t h e  c u r r e n t  r o l l  a t t i t u d e  i f  t h e  r o l l  c o n t r o l s  were centered .  I n  
add i t ion ,  a i r speed  was maintained au tomat i ca l ly  by t h e  c o n t r o l  system to t h e  a i r -  
speed which the  pilot had set on t h e  c o n t r o l  mode panel.  

D w e l l  percentage and average dwell  time.- I n  t h i s  comparison of conven- 
t i o n a l  versus  advanced equipped a i r c r a f t ,  t he  d i scuss ion  is l i m i t e d  to  gene ra l  
t rends  ev ident  i n  t h e  data .  For t h e  fo l lowing  d i scuss ion  t h e  dwell  percentages 
and dwel l  times c o n s i s t  of t h e  averages of a l l  t h e  runs.  The dwell  percentage 
was der ived  by d i v i d i n g  t h e  amount of t i m e  spen t  by t h e  p i l o t  looking a t  a par- 
t i cu la r  d i s p l a y  by t h e  t o t a l  t i m e  t h e  oculometer was t r ack ing  the  p i l o t .  Th i s  
f i g u r e  was then m u l t i p l i e d  by 100.  The dwell  t i m e  i s  t h e  t o t a l  t i m e  spen t  by 
the  p i l o t  looking a t  a p a r t i c u l a r  d i s p l a y  d iv ided  by t h e  number of times t h e  
p i l o t  looked a t  t h a t  d i sp lay .  

A s  t a b l e  I shows, t h e  dwell  percentage on t h e  EHSI, except  f o r  segment 1 ,  
is less than t h a t  f o r  t he  e lec t romechanica l  heading d i sp lay .  The dwell  t i m e ,  
however, is roughly 3 t i m e s  g r e a t e r  f o r  t h e  EHSI. The dwell  percentages f o r  
t he  EADI  and i ts  electromechanical  coun te rpa r t  are roughly t h e  same except  f o r  
segment 4, i n  which it is 1 5  percent  g r e a t e r .  The dwell  time is g r e a t e r  f o r  t h e  
EADI i n  a l l  segments, and t h i s  d i f f e r e n c e  inc reases  as the  a i r p l a n e  approaches 
t h e  runway. For t h e  res t  of t h e  instruments ,  e lectromechanical  i n  both s t u d i e s ,  
the  dwell  percentages were lower i n  t h e  advanced cockpi t .  The dwell  times, how- 
ever ,  were about  t h e  same f o r  both a i r c r a f t  cockpi t s .  I n  add i t ion ,  t h e  to ta l  
dwell percentages of t hese  f i v e  instruments  is less i n  t h e  advanced cockpit than 
i n  the  convent ional  cockpi t  except  f o r  segment 4,  where they  are t h e  same. 

S t r a i g h t -  i n  Versus Curved Approaches 

P i l o t  scanning behavior f o r  t h e  TCV s imula tor  w a s  compared f o r  t h e  
s t r a i g h t - i n  landing approach and t h e  curved descending approach whi le  using 
t h e  same d i s p l a y s  and f l i g h t  c o n t r o l  system. The approaches were d iv ided  i n t o  
f i v e  segments f o r  d a t a  a n a l y s i s .  These curved pa th  segments were designed t o  
correspond t o  t h e  previous s t r a i g h t - i n  pa th  segments ( f i g .  4 ) .  The las t  t w o  
segments of t he  curved approach corresponded e x a c t l y  to  t h e  l a s t  t w o  segments 
of t h e  s t r a i g h t - i n  approach. 
s e c t i o n s .  

The d a t a  are d iscussed  i n  t h e  fo l lowing  t w o  
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Between-instruments scans.- The instrument  dwell percentages and dwell  
times are summarized i n  table I1 f o r  corresponding segments of t h e  curved and 
s t r a i g h t  approaches. For t h e  e lec t romechanica l  d i s p l a y s  o u t s i d e  t h e  CRT's ,  t h e  
dwell  percentages are gene ra l ly  g r e a t e r  dur ing  t h e  s t r a i g h t - i n  approach than  
dur ing  t h e  curved approach. For t h e  s t r a i g h t - i n  approaches t h e  dwell  percentage 
on  t h e  E A D I  slowly increased  from 63 percen t  i n  segment 1 to 98 pe rcen t  i n  seg- 
ment 5. The EHSI dwell percentage decreased from 7 pe rcen t  i n  segmen t1  to  
0 percent  i n  segment 5. I n  t h e  curved approaches,  on t h e  o the r  hand, t h e  EADI 
dwell percentage decreased from 57 pe rcen t  i n  segment 1 to  44 percen t  i n  seg- 
ment 2 before  inc reas ing  to 98 pe rcen t  i n  segment 5. The EHSI dwell percentage 
increased  from 23 percen t  i n  segment 1 to 40 p e r c e n t  i n  segment 2 befo re  decreas-  
i ng  to  0 pe rcen t  i n  segment 5. The sum of t h e  dwell  percentages  f o r  t h e  EADI 
and t h e  EHSI for t h e  f i r s t  t h r e e  segments is a b o u t  10  pe rcen t  g r e a t e r  i n  t h e  
curved approaches than  i n  t h e  s t r a i g h t - i n  approaches. 

F igures  8 to  11 are schematic  r e p r e s e n t a t i o n s  of t h e  instrument  shapes and 
r e l a t i v e  l o c a t i o n s  used to  show t h e  t r a n s i t i o n  percentages between instruments .  
The width of t he  l i n e  connect ing t h e  t w o  instruments  is p ropor t iona l  t o  t h e  num- 
ber of t i m e s  a t r a n s i t i o n  was made between t h e  t w o  instruments ,  r e g a r d l e s s  of 
t h e  d i r e c t i o n  of t he  t r a n s i t i o n ,  d iv ided  by t h e  t o t a l  number of t r a n s i t i o n s .  
This  number expressed as a percentage is ind ica t ed  i n  t h e  break i n  t h e  l i n e .  
The dwell  percentage and dwell t i m e  ( i n  parentheses)  are given i n s i d e  t h e  i n s t r u -  
ment boundary. The s t r a i g h t - i n  approaches involved t r a n s i t i o n s  between t h e  EADI 
and t h r e e  o the r  instruments:  airspeed i n d i c a t o r ,  EHSI, and altimeter wi th  most 
t r a n s i t i o n s  made t o  t h e  a i r speed  i n d i c a t o r .  The t r a n s i t i o n s  t o  t h e s e  ins t ruments  
u sua l ly  r e s u l t e d  i n  a t r a n s i t i o n ,  back t o  t h e  E A D I ,  as evidenced by t h e  l a c k  of 
a s u b s t a n t i a l  percentage of t r a n s i t i o n s  between t h e  o the r  instruments .  I n  t h e  
curved approaches,  m o s t  of t h e  t r a n s i t i o n s  were between t h e  EADI and t w o  o t h e r  
instruments:  a i r speed  i n d i c a t o r  and EHSI with an a d d i t i o n a l  t r a n s i t i o n  pa th  
appearing between t h e  airspeed i n d i c a t o r  and t h e  EHSI. The ma jo r i ty  of  t h e  
t r a n s i t i o n s  occurred between t h e  EADI and t h e  EHSI. A l m o s t  twice as many 
t r a n s i t i o n s  per second were made i n  t h e  curved approach segments 2 and 3 as i n  
t h e  s t r a i g h t  approach; most of t h e s e  were t o  t h e  EHSI and r e s u l t e d  i n  fewer 
t r a n s i t i o n s  between t h e  EADI and t h e  airspeed i n d i c a t o r .  

Within-instruments scans.-  Both t h e  EADI and EHSI were analyzed t o  deter- 
mine t h e  percent  usage of t h e  major symbols of each d i sp lay .  Table I11 shows 
these  data for t h e  EADI.  Ten symbols were analyzed. The f i r s t  group of f i v e  
were b a s i c a l l y  nonmoving symbols (a i rp l ane ,  a l t i t u d e ,  or f i x e d  scales wi th  mov- 
ing  poin ter :  i.e., g l i d e  slope, l o c a l i z e r ,  and rol l  a t t i t u d e ) .  The next  group 
of f i v e  c o n s i s t e d  of more pictorial symbols t h a t  moved around i n  t h e  d i s p l a y  as 
a func t ion  of state v a r i a b l e s  ( f l i g h t - p a t h  wedges, p i t c h  re ference ,  horizon, 
a c c e l e r a t i o n  symbol, and runway). A s  expected, use of t h e  ro l l  a t t i t u d e  ind ica-  
tor was g r e a t e r  i n  t h e  curved approach than  i n  t h e  s t r a i g h t  approach. I n  almost 
a l l  segments t h e  l o c a l i z e r  w a s  used almost twice as much i n  t h e  curved approach 
as i n  t h e  s t r a i g h t - i n  approach. However, t h e r e  w a s  no change i n  l o c a l i z e r  dwell 
times for t h e  t w o  approach paths .  The EADI symbol used t h e  most w a s  t h e  f l i g h t -  
pa th  wedges. The next  most o f t e n  used element was t h e  a i r p l a n e  symbol. These 
t w p  symbols combined accounted for 30 to  40 percen t  of t h e  dwell  t i m e  spen t  i n  
t h e  E A D I .  These t w o  symbols overlapped each  o the r  i n  segments 3 and 4, making it 
almost impossible  t o  d i s t i n g u i s h  which one t h e  pi lot  was looking a t .  To alle- 
v ia te  t h i s  ove r l ap  and c l u t t e r ,  t h e  p i l o t s  have had t h e  a i r c r a f t  symbol biased  
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up 5O i n  t h e  TCV a i rp l ane .  
f l i g h t - p a t h  wedges t h e  least (20 pe rcen t )  i n  segment 2 (where roll a t t i t u d e  and 
l o c a l i z e r  usage w a s  g r e a t e s t ) ,  and t h e  m o s t  (31 p e r c e n t )  i n  segment 5. For 
segment 5 (flare) t h e  ccinbined dwell  percentage of f l i g h t - p a t h  wedges, a i r c r a f t ,  
and runway elements  is almost 50 percent .  I n  a d d i t i o n  t o  t h e  increased dwell 
percentage of t h e s e  t h r e e  symbols i n  segment 5, t h e  dwell  times are almost 
double  t h a t  of t h e  o the r  segments. 

For t h e  curved approach pa th ,  t h e  pilots used t h e  

Table I V  p r e s e n t s  t h e  within-instrument data f o r  t h e  EHSI. 
EHSI dwell percentages of t h e  l a s t  t w o  segments were e s s e n t i a l l y  zero,  o n l y  
d a t a  f o r  t h e  f i r s t  t h r e e  segments are presented.  I n  add i t ion ,  because of t h e  
l o w  percentages f o r  t h e  s t r a i g h t - i n  approaches, no meaningful comparisons can 
be made. 

Because t h e  

Discussion of Law D w e l l  Percentages Within Instruments  

A s  mentioned p rev ious ly  i n  t h e  s e c t i o n  "Data Acquis i t ion  and Analysis ,"  t h e  
method of a n a l y s i s  f o r  dwells upon d i s p l a y  symbols i n s i d e  t h e  graphic  d i s p l a y s  
is more r e s t r i c t i v e .  Because of t h e  proximity of s e v e r a l  symbols, t h e  boundary 
around each symbol was kept as small as possible t o  avoid combinations of dis-  
p l ay  symbols. However, t h e  boundary had to be kept  l a r g e  enough to  t r y  to  
account f o r  t h e  width of t h e  fovea. Consequently, as f i g u r e s  5 and 6 show, 
t h e r e  are areas i n  each d i s p l a y  where t h e  p i lo t  could be looking, bu t  t h e  data 
a n a l y s i s  does not  i n d i c a t e  any d i s p l a y  symbol being scanned. Perhaps improved 
a n a l y s i s  techniques and a better understanding of t h e  ways humans process  v i s u a l  
information w i l l  permit t he  development of models which g ive  p r o b a b i l i t i e s  as 
t o  which elements are being a t tended  to  when t h e  p i lo t s  are n o t  looking d i r e c t l y  
(with f o v e a l  v i s i o n )  a t  any g raph ic  element. 

DISCUSS I ON 

The f a c t  t h a t  no t  a l l  dwel l  t i m e s  i n  t h e  g raph ic  d i s p l a y  could be accounted 
f o r  may be f o r t u i t o u s .  
between-instrument dwell percentage ( t a b l e s  I to IV)  show a c o n s i s t e n t  t r e n d  
with r e spec t  to  experimenters '  and p i lo t s '  s u b j e c t i v e  judgments of workload. 
The amount of unaccounted f o r  dwell  percentage decreases wi th  those  t a s k s  con- 
s ide red  to  involve g r e a t e r  workload. A s  t h e  workload goes up, t he  p i l o t s  t end  
to  look a t  information more c lose ly .  I t  is, t h e r e f o r e ,  tempting t o  s p e c u l a t e  
t h a t  t h e  l a c k  of precise p i l o t  lookpoin t  could be a measure or a t  least an ind i -  
c a t i o n  of decreased p i l o t  workload. 
e s t a b l i s h  t h i s  l i nk .  

Both t h e  within-instrument dwell  percentage and t h e  

Cont ro l led  tests should be performed to  

The inc rease  i n  dwell  percentage and average dwell t i m e  i n  t h e  curved 
approach is very  l i k e l y  due t o  t h e  f a c t  t h a t  t h e  p i l o t  makes  a d d i t i o n a l  c o n t r o l  
inputs .  Reference 8 reported t h a t  t h e  dwells associated w i t h  c o n t r o l  i npu t s  
were longer  than  those  involv ing  j u s t  t h e  monitor ing of a d isp lay .  

One advantage of  t he  advanced d i s p l a y s  is t h a t  more information can be 
located i n  one d i s p l a y  al though t h e  pi lots  do no t  use t h a t  d i s p l a y  any more 
(same dwell percentage)  than  t h e  e lec t romechanica l  a t t i t u d e  d i r e c t i o n  i n d i c a t o r  
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(ADI) .  The EADI as tested i n  t h i s  s tudy  seems to  be w e l l  designed. However, 
s i n c e  the  p i l o t s  tend  to use t h e  secondary ins t ruments  (cross-check ins t ruments  
such as airspeed, a l t i t u d e ,  and rate-of-climb i n d i c a t o r s )  less, the  advanced 
cockpit systems des igner  must provide reliable data, computer, and g raph ics  
systems so t h a t  t h e  d i s p l a y  on t h e  CRT is accura t e  and dependable. I n  add i t ion ,  
t h e  des igner  may wish to  consider  using t h e  E A D I  as a place f o r  t h e  master cau- 
t i o n  and warning messages, s i n c e  t h e  p i l o t s  spend m o s t  of t h e i r  t i m e  looking  a t  
t h a t  d i sp l ay .  Because it is a CRT d i sp lay ,  alphanumeric data could be e a s i l y  
in se r t ed .  
to t h e  secondary ins t ruments  and spend over 80 percent  of t h e i r  time looking 
a t  t h e  EADI and EHSI, a f i n d i n g  t h a t  s t r eng thens  t h e  foregoing  po in t s .  

I n  t h e  curved approach p a t h  t h e  pilots make even fewer cross-checks 

For t h e  curved approaches,  both EADI and EHSI are e q u a l l y  important t o  t h e  
pi lot  (wi th  almost same dwell  percentage) .  The increased  use of  t h e  EHSI caused 
more total  t r a n s i t i o n s  and lowered t h e  average dwell t i m e  on t h e  EADI.  S ince  
airspeed is also important to  t h e  pi lot ,  a new t r a n s i t i o n  l i n k  appears i n  t h e  
curved approaches between t h e  EHSI and t h e  airspeed i n d i c a t o r .  For instrument  
l ayou t  design,  t hese  t h r e e  ins t ruments  should be ad jacen t  to  each o t h e r  w i th  t h e  
r e l a t i v e  l o c a t i o n s  similar t o  those  i n  t h e s e  tests, i.e., t h e  CRT's  should be 
located one over t he  o the r  w i t h  t h e  airspeed i n d i c a t o r  t o  one side (by conven- 
t i o n ,  t h i s  would be t h e  l e f t  s i d e ) .  Locat ing t h e  t w o  CRT's  side by side would  
make  t h e  p i l o t ' s  scanning t a s k  more d i f f i c u l t .  The p i l o t  would be fo rced  t o  
make long t r a n s i t i o n s  from t h e  r i g h t  hand CRT to  t h e  airspeed. Therefore ,  t h a t  
instrument  arrangement would probably not  be advisable .  

Airspeed information could be added to both t h e  EADI and EHSI. Airspeed 
error was a v a i l a b l e  as an o p t i o n  i n  t h e  EADI but  t h e  p i l o t s  did not  choose t o  
use  it. Ground speed was d isp layed  i n  t h e  EHSI i n  t h e  lower r i g h t  hand corner ,  
bu t  it was f a i r l y  small and used less than 2 percent  of t he  t i m e  spen t  i n  t h e  
EHSI. Cons idera t ion  should be given to p u t t i n g  abso lu te  airspeed i n  t h e s e  t w o  
d i s p l a y s  because of t he  t r a n s i t i o n s  t o  t h e  airspeed ind ica to r .  Perhaps it could 
be located next  t o  t h e  f l i gh t -pa th  wedges i n  t h e  EADI and next  t o  t h e  own s h i p  
symbol i n  t h e  EHSI. 

CONCLUS IONS 

A series of s t r a i g h t - i n  and curved landing  approaches were performed t o  
assess t h e  e f f e c t  on pi lot  scan  behavior of advanced cockpit and maneuvers. 
On t h e  b a s i s  of t he  r e s u l t s  of t h e s e  tests and comparisons wi th  d a t a  from pre- 
vious p i lo t  scan  research ,  t h e  fol lowing conclus ions  and recommendations can 
be drawn: 

1 .  Although a d d i t i o n a l  information is presented  on t h e  graphic  d i sp l ays ,  
t h e  p i l o t s '  dwell percentages are comparable wi th  those  which occur  w i t h  
electromechanical  d i s p l a y s  i n  accomplishing t h e  same t a s k .  Th i s  s i m i l a r i t y  
i n d i c a t e s  t h a t  t h e s e  g raph ic  d i s p l a y s  are appa ren t ly  w e l l  designed f o r  t h e  
instrument  landing  t a s k .  
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2. Curved f l i g h t  pa ths  s h i f t  t h e  pi lot ' s  a t t e n t i o n  from t h e  EADI to t h e  
combination EADI and EHSI. Because of t h e  increased  importance of t h e  EHSI 
i n  the  curved f l i g h t  path,  a new t r a n s i t i o n  pa th  occurs  between t h e  EHSI and 
t h e  airspeed ind ica to r .  

3.  N e w  t r a n s i t i o n  pa ths  can occur wi th  t h e  increased  complexity of maneu- 
ve r s  allowed by b e t t e r  d i s p l a y  designs.  These new t r a n s i t i o n  l i n k s  may d ic ta te  
a d i f f e r e n t  d i s p l a y  panel  arrangement. Other f l i g h t  t a s k s  should be eva lua ted  
to v e r i f y  whether or not  c u r r e n t  panel  arrangements are s a t i s f a c t o r y .  

4. Because of t h e i r  high dwell percentages,  cons ide ra t ion  should be given t o  
us ing  t h e  EADI and EHSI as p a r t  of t h e  master cau t ion  and warning d isp lay .  

5. F i n a l l y ,  it should be emphasized t h a t  cons ide ra t ion  be given t o  t h e  
l e v e l  of r e l i a b i l i t y  needed i n  t h e s e  advanced d i s p l a y  and c o n t r o l  systems. 
Because t h e  p i l o t s  spend less t i m e  looking a t  each cross-check instrument  wi th  
t h e s e  systems, t h e i r  r e l i a b i l i t y  and accuracy needs to be considered.  

Langley Research Center 
Na t iona l  Aeronaut ics  and Space Adminis t ra t ion 
Hampton, VA 23665 
March 23, 1981 
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S e l e c t  p a n e l  

(a) S t r a i g h t - i n  approach. 

Mode c o n t r o l  

EHS I 

S e l e c t  p a n e l  

(b) Curved approach. 

Figure 8.- D w e l l  times, dwell  percentages,  and t r a n s i t i o n  percentages f o r  curved 
vs  s t r a i g h t - i n  approaches i n  segment 1 .  Absence of data i n d i c a t e s  absence 
of pi lot  scan. 
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(b)  Curved approach. 

Figure 9.- D w e l l  times, dwell percentages,  and t r a n s i t i o n  percentages for 
curved vs  s t r a i g h t - i n  approaches i n  segment 2. Absence of data indi -  
cates absence of pi lot  scan. 
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Figure 10. D w e l l  t i m e s ,  dwell  percentages,  and t r a n s i t i o n  percentages f o r  
curved vs  s t r a i g h t - i n  approaches i n  segment 3. Absence of d a t a  indi-  
cates absence of pi lot  scan. 

25 



Engine 

EHS I 

S e l e c t  pane l  

(a) S t r a igh t - in  approach. 

( 0  3 s )  

( 1 3 .  4 s )  
A l t i t u d e  

Marker 
beacon 

vs I 
Engine 

0 EADI 

( 0 . 8 s )  

EHS I 

S e l e c t  pane l  

(b) Curved approach. 

Figure 11.- D w e l l  t i m e s ,  dwell percentages,  and t r a n s i t i o n  percentages for 
curved v s  s t r a i g h t - i n  approaches i n  segment 4. 
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