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ABSTRACT

Various properties of multivariable root loci are analyzed from a
frequency-domain point of view by using the technique of Newton polygons,
and some generalizations of the SISO root locus rules to the multivariable
case are pointed out. The behavior of the angles of arrival and departure
is related to the Smith-MacMillan form of G(s), and explicit equations for
these angles are obtained. After specializing to first-order and a restricted
class of higher-order poles and zeros, some simple equations for these angles
that are direct generalizations of the SISO equations are found.

The unusual behavior of root loci on the real axis at branch points is
studied. The SISO root locus rules for break-in and break-out points are
shown to generalize directly to the multivariable case. Some methods for
computing both types of points are presented.

An equation for the number of loci on the real axis at any point is
derived. The special cases of 2x2 G(s) and symmetric G(s) are investigated
. separately. Finally, for high gains, equations for the first-order asymptotes
t and pivots are derived, and previous results on higher-order asymptotes are
reviewed.
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CHAPTER I

Introduction

1.1 Motivation and Summary of Results

The main aspect of the problem of designing a feedback compensator
for a linear system is that one seeks to characterize the effect of
feedback on the closed-loop behavior of the system. A balance must be
struck between a characterization so simple that no real insight into
the closed-loop system behavior is gained, and one so complex that
interpretation of it is too difficult to be useful.

The root locus does a reasonable job of striking such a balance. The
root locus technique consists of plotting the paths of the movements of
the closed-loop poles in the complex plane as a single feedback parameter
is varied. This has two advantages: the locations of the closed-loop
poles furnish considerable information on the response of the system,
particularly the transient response; and variation of a single parameter
gives crude, but simple, notions of the options in pole assignment and
the identities of specific poles that must be shifted.

The major disadvantage of tne root locus is that little information
is furnished on robustness of the closed-loop system. Thus the root locus
method nicely complements stability tests such as the Nyquist stability
criterion, which give information on system robustness (e.g. phase and
gain margins) but only "yes-or-no" information on stability and no infor-
mation at all on the form of system responses. It should also be noted
that by suitable reformulation the effect of variation of an uncertain

system parameter can be studied using the root locus.

At . 4



The root locus for single-input-single-output (SISQ) systems was
first studied by Evans in 1948 [14] and is treated in detail in any
decent elementary control theory text (e.g. (7], (8]); a set of rules
for plotting it is given in Chapter II. Investigation of the root locus
for multivariable systems began in earnest in the mid-1970s, and is far
from being concluded. Research has proceeded along two main lines: the
state-space approach used by Shaked, Kouvaritakis, and Owens (e.g. [9],
f15]), [16]) and the frequency-domain approach used by Postlethwaite and
MacFarlane (e.g. [1], [2], [3]).

The state-space approach seems to have been better suited for inves-
tigating the behavior of root loci that approach infinity for high feed-
back gains, and a considerable body of knowledge has been amassed on this
subject. Hlowever, less information is available on the angles of arrival
and departure of loci at zeros and poles, and almost none on breakin and
breakout points and the presence of loci on portions of the real axis.
The pioneering work of Postlethwaite and MacFarlane suggests that their
frequency-domain methods may be better suited for investigating these
issues.

The aims of this thesis are threefold: first, to develop and extend
the frequency-domain methods of Postlethwaite and MacFarlane into explicit
results and equations for the angles of arrival and departure and for the
locations of loci on the real axis; second, to show how the well-known
SISO root locus rules do or do not generalize to the multivariable case;
and third, to serve as a compendium of rules for plotting the multivariable
root locus.

We start off by laying in Chapter Il the groundwork for the material




to follow. The basic problem is presented, and basic equations obtained

from it. Various features of the root locus, such as poles, zeros,
angles, and Butterworth patterns, are defined, and the SISO root locus
rules are reviewed.

We will obtain results on angles of loci by finding series approxi-

mations for the loci near the point of interest. These will be obtained

by using the Newton polygon technique, an ingenious graphical device
presented and demonstrated in Chapter 1I.
Results for angles of arrival and departure are presented in Chapter

III. After quickly reviewing the state-space results on this subject, new q

results and explicit equations for the cases of both first-order and

higher-order poles and zeros are obtained. In particular, the case of
. ' higher-order poles and zeros turns out to be vastly more complex than
| might be expected from the SISO rules.

After considering the general case, we specialize to first-order
and a certain "simple'" class of higher-order poles and zeros. Using an
approach based on constructing a Laurent series of the system transfer
function, simpler equations are obtained that turn out to be nice
generalizations of the SISO equations. These results have not, to our
knowledge, appeared in the literature. f

Unusual behavior cf the root locus, such as a locus on the real axis
suddenly turning around, are associated with entities called branch
points. We discuss these briefly in Chapter IV, and present some equations
describing their effects on root loci. Also in Chapter IV, breakin and
breakout points of multivariable root loci are investigated for the

first time. Equations are obtained for computing them, and the angles of
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loci breaking in or out are shown to be the same as in the SISO case.
In Chapter V, we address the previously uninvestigated problem of
determining the location of root loci on the real axis. This turns out P
to be vastly more complex than the SISO case, since more than one branch
can lie on the real axis at a given point. An equati~n is obtained for

the general case, and other results presented. The case of two inputs

and two outputs is investigated separately, and is shown to be considerably
simpler than the general case.

In Chapter VI the asymptotic behavior of root loci is considered.
For the generic case of first-order asymptotes and pivots, simple
equations are given for angles and pivots. For higher-order asymptotes,
the results of Kouvaritakis and Shaked [15]) and Sastry and Desoer [17)
are reviewed.

Finally, in Chapter VII we include, for the sake of conpleteness,
some miscellaneous results on the multivariable root locus. These
include methods for computing graphical bounds on the loci, intersections
with tne imaginary axis, and other items that might be helpful in plotting

the multivariable root locus.

1.2 Notation

A;(s) represonts a scalar polynomial in s. Otherwise, matrices are
indicated by capital letters, and scalars and vectors are indicated by
small letters. No underlines are used; whether a quantity is a scalar or
a vector is clear from the context. AT is the transpose of A, DET A the
determinant of A, TR A the trace of A, ind DIAG [al...an] the nxn matrix

with elements a...8, along the main diagonal and zeros elsewhere. ARG 2z

At DR S 1)
. i M

is the principal argument of complex variable z, 0(f(x)) the exponent of

W s o
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the lowest power of x in a power series expansion of the function f(x),
and SGN [x] the sign function .f x (one if x is positive, minus one if
X is negative).

tyuations, examples, figures, lemmas, and theorem: are numbered by
chapter and position within the chapter; equation (3.17) is the seventeenth
equation ir Chapter III.

All root locus diagrams are in the complex s plane, imaginary part
plotted against real part. Open-loop poles are represented by x's, open-

loop finite zeros by o's, and branch points by triangles.

»e
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CHAPTER 11

Background

2.1 Introduction

In this chapter, we lay the groundwork for the results and analyses
to follow. First, the basic problem from which the multivariable root

loci ar: obtained is described. The characteristic equation is defined

from tae loop transfer-function matrix, and other equations are defined
in terns of this equation. These equations are the starting point for
most ~f the derivations to follow. The unusual behavior of multivariable
root loci is accounted for by noting that the root loci are branches of g
an algebraic function. We briefly discuss poles, zeros, branch points, ‘
break points, and single-point loci, and define these points from the
characteristic equation. We also define Butterworth patterns and angles

of root loci. The Newton polygon technique, which gives a series approxi-
mation to a function of two variables near a zero of the function, is
described. We will usethistechniqhe to obtain results on the angles of
arrival and departure at zeros and poles. Finally, the SISO (single-input-
single-output) root locus rules are quickly reviewed for comparison to

their multivariable generalizations.

2.2 The Basic Problem

Consider the feedback configuration shown in Fig. 2.1. S1 and S2
are linear multivariable dynamical systems and k is a positive real

number. It may be shown [2] that the loop transfer-function matrix for

aoos

this configuration is the matrix kG(s), where G(s) is the product of the

v transfer function matrices of S2 and 51 (in that order). If the feedback

'Yl

B




Figure 2.1

The Basic Problem
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loop were broken between SZ and the summation block and signals injected
at the break, the returned signals at the break would be related to the
injected signals by minus the loop transfer-function matrix. G(s) is an
mxm rational matrix function of the complex variable s, and is asswmed
to have full rank and be strictly proper.

The return-difference matrix for this configuration is I + kG(s),

and the closed-loop poles are given by the solutions of

DET [I + kG(s)] = O. 2.1)

As k is varied from zero to infinity, the closed-loop poles will vary. The
plot in the complex plane of the paths swept out by the closed-loop poles
is the root locus.

For some results a State-space formulation will be appropriate. The

system considered is given by

X = Ax + Bu
y = Cx
u = -kKy (2.2)

where x€ R" and y, u € R™. B and C are assumed to have full rank. Now
the root locus is the paths swept out by the eigenvalues of the closed-loop

system matrix

A

o1 = A - kBKC (2.3)

as k varies from zero to infinity.

TP T s Y g P T O
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2.3 The Characteristic Equation

2.3.1 Definitions
Following the notation of Postlethwaite and MacFarlane [1, 2, 3], we

define the characteristic equation

a(g,s) 2 DET [gI - G(s)] = 0. (2.4)

From (2.4) we may define two multi-valued functions g(s) and s(g).
However, these are not ordinary functions of a complex variable, but are

instead algebraic functions [4]. The values of an algebraic function differ

from those of an ordinary function of a complex variable in that the latter
form a single analytic function, while the former form a set of analytic
functions. Each individual function in this set is called a branch of the
algebraic function.

The root loci are solutions to
g(s) = - % » k real and positive (2.5)

and are thus branches of the algebraic function s(g) = s(-%) for all
positive real k [2]. (Single-point loci, to be discussed shortly, are
omitted.) It is important to note that the multivariable root loci are
branches of an algebraic function, since this means that their behavior
can be much more complicated than that of single-input-single-output (SISO)
root loci. This follows because an algebraic function has as its domain

a Riemann surface, which consists of several copies, or 'sheets," of the

complex plane that have been "cut' and "stitched together' in such a way
as to make the function continuous on the surface. A technique for doing

this is described in MacFarlane and Postlethwaite [1, 2] for 4(g,s).
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As k varies, the argument of the algebraic function s(-%ﬂ that

describes the multivariable root loci may pass through a branch point and

“jump'" from one sheet to another. When this happens, the behavior of the

root loci may change abruptly -- a locus may swerve, loop around, or act

in an even more exotic manner (see [5], p. 64). A not uncommon occurrence

is for a locus on the real axis to abruptly turn around; this behavior is
discussed in Chapter IV.

1f A(g,s) is reducible (i.e. can be factored over the field of
rational functions), there will be several sets of root loci corresponding
to the several algebraic functions each defined on a different Riemann

surface. In the extreme case (e.g. G(s) diagonal) where 4(g,s) can be

completely factored into terms of the form (g - gi(s)), gi(s) a
rational function of s, the multivariable root locus becomes a super-

position of m SISO root loci. Reducibility of 4(g,s) will not affect any

of the results of this thesis.

The following expansion [2] will be used extensively in this thesis:

5(g,s) = DET (gl - G(s)] = g" - (TR G(s))g™!
+ E(principal minors of G(s) of order Z)gm"2 - e

+ (-1)™ DET G(s) = 0. (2.6) ’

Multiplying through by Am(s), the least common denominator of the nonzero

principal minors of all orders of G(s), we obtain

o(g,8) 2A(N® + A (8 ¢ L 4 A ()8 ¢ A () =0 (2.7)
where the Ai(sj are all polynomials. We can quickly rewrite tiis as

v(s,8) 2 B (@)s" + B (@)s"T 4+ B(g) = 0(5,8) =0 (2.8)
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where the Bi(g) are all polynomials and n is the largest degree of the
Ai(s).
The angle of a root locus Si(k) is the angle a tangent to the locus

makes with the positive real axis. From Fig. 2.2,

8 = LIM ARG [s.(k + k) - s,(K)]
sk>0* i i
dsi dsi
= LIM ARG [—r 6k] = ARG [=). (2.9)
Gk-ro* dk dk
Note that
ds. ds.
d
8 = ARG [1ﬁ51 = ARG [1ﬁ%] + ARG [3%]
dsi 1 dsi
= ARG [FE] + ARG [-;'2-] = ARG [-d-?]' (2.10)

A set of loci {si(k), i=1...r} form an rth-order Butterworth

pattern if their asymptotic behavior (as k+0 or k»=) is such that
1

s, (k) = (¢ k)" +p, (2.11)
where c. and p, are constants (pr is called the pivot in the case s+=), and
1 . .
e(Si) = 'i.- (er + 360°1), 1 = 1 eee Lo (2;12)

Note that this is different from the Butterworth patterns associated with
optimal root loci, which are the left half-plane portions of larger Butter-

worth patterns associated with the root square locus.

2.3.2 Poles, Zeros, Branch and Break Points

Consider the equation

¢(g,s) = Am(s)gm + .o+ A(s) = 0. (2.13)
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S;(k+3k)

\ﬁ *Re[s]

Figure 2.2

Definition of Angles




As k=, or g*0, we would expect the root loci to either go to infinity or
approach finite zeros. In fact, setting g = 0 in equation (2.13) gives

the solutions to
Ay (s) =0 (2.14)

as the points approached by the root loci that stay finite. Similarly,
making the substitution g = -%, multiplying by (-k)m, and setting k = O

in equation (2.13) gives the solutions to

Ap(s) = 0 (2.15)

as the points from which the root loci depart. The question naturally
arises whether the solutions to equations (2.14) and (2.15) are in fact
the zeros and poles of G(s). The answer to this question reveals a pro-
perty unique to the multivariable root locus -- the existence of degen-
erate, single-point loci.

It is well-known that the pole polynomial p(s) of G(s) is the least
common denominator of all non-zero minors of all orders of G(s). However,
Am(s) is the lcd of all non-zero principal minors of all orders of G(s).

Let e(s) be the 1lcd of all non-zero non-principal minors, with all factors

common to Am(s) removed. Then

P(s) = A (s) e(s). (2.16)

Since G(s) has full rank, its zero polynomial z(s) is its pole polynomial

multiplied by the only mxm minor, DET G(s). Then we have

z(s) = p(s) DET G(s) = e(s) Am(s) DET G(s)
= (-1D)"A(s) e(s) . (2.17)

PRy A
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Thus the loci that vary with k do in fact depart from the poles of G(s)
and arrive at the finite zeros of G(s) (or at infinity). However, other

loci start at poles of G(s), remain where they are, and "become' zeros of

G(s)! It is important to note that these "single-pcint loci," given by

solutions to

e(s) = 0 (2.18)

are not uncontrollable or unobservable modes of a state-space realization
of G(s) (decoupling zeros), nor are they pnlecs cancelled when G(s) is formed

from the transfer function matrices of two separate systems S, and S

1

appear only in the multivariable case.
However, it is the usual case that e(s) = 1, i.e.. there are no single-
point loci. And since there is nothing to state about their behavior, they

will not be considered further.

Branch points are points where ¢(g,s) = 0 has a multiple root 8y
They are associated with unusual behavior of the root locus, since the cuts
from which a Riemann surface is formed out of several copies of the complex
plane are made between branch points, or between a branch point and infinity.
Hence loci can "jump" from one Riemann surface sheet to another, and behave
strangely, at branch points.

Break points, short for break-in and break-out points, are points where

¢(g,s) has a multiple root S5o° They have the same meaning they do in the

SISO case. Break points and branch pointswill be discussed in Chapter IV.

2.4 The Newton Polygon Technique

The Newton polygon technique is a graphical device that can be used to 4

find a series representation of a function f(x,y) in the vicinity of a

2 i

(recall Fig. 2.1). They are a phenomenon not found in the SISO case -- they [

L as .



zero of the function, It plavs a central role in this thesis, and under-
standing it is essential for reading Chapter I[II. The simple treatment of
it given here will be sufficient for the purposes of this thesis; for more
details,‘see Walker [6]. A theoretical treatment ''deriving" the Newton
polygon is given first, followed by a step-by-step procedure and an example.

Consider a function of two variables

T R P | e v e <

£(x,y) = Ay + Ay + Ayl + ool ¢ A" (2.19)

withn >0, A # 0, and A, € K{x}, where K{x} is the field of all functions
of x that can be written as a fractional power series in x.

Puiseux's Theorem [4] states that K{x} is algebraically closed. This
means that if ¥ is a zero of f(x,y) then ¥ can be written as a fractional
po. v series in x

: (z,+2,) (2,*2,%2.)
1 172 +cux 1°2°°3

Y = ¢yx + C,X * .. (2.20)

with < £ 0, Z 20, z; 0 for i > 1 (we discard the case ¥ = 0, which
occurs if and only if Ao = 0). Puiseux's Theorem is analogous to stating
that since the field of complex numbers is algebraically closed, any poly-
nomial with complex coefficients has a complex zero.

We wish to find possible values of 3 and the values of < associated
with them, i.e. obtain a lowest-order approximation to Y. Substituting
(2.20) in (2.19), we obtain

z 22 nz
£(x,7) = A, + c(AX 1., ciAzx L s c?Anx 1
(zy*2,) (22,+22,)
+ [°2A1x 1772, chzx 1772
(2z1 ’22)
* chczAzx + .ee ] (2.21)
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Since 2, > 0, each of the bracketed terms has order strictly greater than
the order of some unbracketed term. Considering the case of small x, a
necessary condition for £(x,¥) = 0 is that the term of lowest order have
coefficient zero. Since < # 0, at least two different terms must have
the same (lowest) order, and the sum of the coefficients of these terms
must be zero. Thus there are at least two (and possibly more) indices j
and k such that

. jz k2
0(c}A;x 1y -O(c‘l‘Akx !

121

) ;O(c{Aix ), 120 ...n (2.22)

where 0(f(x)) is the exponent of the lowest power of x appearing in a
series expansion of f(x). We may write

a.

A, = bix 1. (higher order terms) (2.23)

i

where a; = O(Ai) (recall A € k{x}). Then (2.22) becomes

aj *jzy =a - kz, < a; +iz,, i=0...n | (2.24)

and the sum of the coefficients of the terms of lowest order must be zero:
Yeib. =0 (2.25)
i 171 ¢

summed over the points of the segment giving that value of Z.

The Newton polygon is a graphical device that yjields possible values
of Z, satisfying (2.24). The polygon for the example to follow is given
in Fig. 2.3. It is constructed as follows:

1. Set up a cartesian codrdinate system, with u and v axes, and

plot the n + 1 points Pi s (u,v) = (i.ai). i=0...n, where
a = O(Ai) and the Ai are from (2.19).

- ma———

Ml
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2. Join Po to Pn with a convex polygonal arc each of whose vertices
is a P1 and such that no Pi lies below the arc. This may be done

quickly by inspection.
Each segment of the arc defines a line v ¢ ou = M, where -¢
is the slope and M is the v-intercept. This line has the property

el e

vV +oucg a, oi, 1 =0 ... n, (2.26)

Let Pj and Py be the endpoints of a segment. Then 1

aj +g) = a + ok = v + ou g a, * oi, i=20...n. (2.27)

Clearly 2, =0 will satisfy (2.24), so that possible values of z
are minus the slopes of the segments of the Newton polygon.

3. Use (2.25) to find the < associated with each 2 For the ) ‘

determined by the .egment with endpoints Pj and Pk' we have, for
the bi defined in .2.23),

J .
efb + cfb, = 0, (2.28)
If there is another point Py on this segment, we have

j -
c?bh +clby v cfbk 0. (2.29)

This technique may be extended to compute all of the possible Y and S

Cys see [(6]. However, we will not require this extension.

Example 2.1 We wish to find series approximations to

f(x,y) = (7x2 + 5x ¢ Z)y4 + (8x3 - 6x)y3 + 4x2y2

5 8 .48 « 0

+ (377 - 1xD)y o 10 4x

in the vicinity of the zero £(0,0) = 0. We identify
84'0,04‘2;33'1,b3‘°6332'2,b2'4;
al's. bl .-11; 30'6’ bo"lo

The Newton polygon is shown in Fig. 2.3. We see that possible values
for z, are

2z
1
and the values of cl associated with them are the solutions to : {
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Figure 2.3
Newton Polygon for Example 2.1
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] o 4ci a 0 for 3 2

4c§ - ocf * Zc: = 0 for 2, = 1

which are ¢, = }, -1 for z, = 2 and ¢ =1, 2 for 2y = 1. So the
series appr&ximations are

y = ix%, y = -ix%, Yy - X. v s 2x.

2.5 The SIS0 Root Locus

We quickly review the SISO root locus rules, for comparison with the

multivariable root locus rules to be given in this thesis. 1t wiil be

seen that some of the SISO rules generalize directly, others less directly,

and still others not at all. Proofs may be found in any decent elementary

control

1.

3.

4.

S.

theory text (e.g. [7]), [8], etc.).

The root locus has n branches, where n is the degree of the
denominator polynomial of the open-loop transfer function.

All branches of the root locus begin at the open-loop poles.

m branches terminate at the finite open-loo» :zeros, where m is
the degree of the numerator polynomial of the open-loop transfer
function. The other n - m branches approach infinity along
asymptotes described in Rule 3.

The branches that approach infinity do so along asymptotes
with angles

o o 2k ¢ 1)180°
"k ne-n

and which intercept the real axis at

.k'o.l.ooon'm'l (2030)

n n
&
p o (2.31)

where the z; are the open-loop zeros and the Py are the open-
loop poles.

A branch of the root locus will lie on the real axis for those
portions of the real axis that have an odd number of poles and
2eros to the right.

The root locus is symmetric with respect to the real axis.
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- o

6. The angle of departure from a pole is the sum of the angles of
all vectors from the zeros to the pole in question, minus the
sum of the angles of all vectors from the other poles to the
pole in question, plus 180°. Note that this is

8depart % ARG [-(s - pi)ks(s)ls = pi]
+L‘ég‘£, n=0,1, ... k-1 (2.32)

for the angle of departure from a kth-order pole pilOfthe scalar
transfer function g(s).

7. The angle of approach to or arrival at a finite zero is the sum
of the angles of all vectors from the poles to the zero in
question, minus the sum of the angles of ali vectors from the
other zeros to the zero in question (important: recall the
definition of "angle' given in Section 2.3.1). Note that this is

1 k -1
Sarrival - k ARG [(s - z)) 78 (s)ls = ;i]

[}
+§-¥1’(—0-,n=0, 1, ... k-1 (2.33)

for the angle of arrival at a kth-order zero z,.
8. The break-in and break-away points on the real axis may oe found
by solving

dk -
- 0. (2.34)

If several branches are approaching and leaving a break point,
their angles are evenly distributed over 360°.

9. If m<n -2, the sum of the closed-loop poles is constant as k
is varied [8].

Y
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CHAPTER IIl

Angles of Arrival and Departure

3.1 Introduction

In this chapter we derive some equations for obtaining the angles of

arrival (at finite zeros) and the angles of departure (from poles) of

multivariable root loci. First, the state-space based results of Shaked

[9] and Thompson [S] are reviewed. Shaked's results employ a spectral
decomposition; Thompson's results rely on a generalized eigenvalue problem.
Thus both are computationally arduous.

Following this, new results are obtained by applying the frequency-
domain techniques of Postlethwaite [3]. Postlethwaite's approach is to
obtain a series approximation to the root locus in the vicinity of a
pole or zero, and then obtain the angles of arrival or departure from this
series. By investigating how this series is obtained, we derive more
general results. First, the Smith-MacMillan form is used to show that
loci genefically depart from multipié poles, and arrive at multiple zeros,

in Butterworth patterns whose orders come from the structure indices [12]

of G(s) at the pole or zero in question. Some equations for the angles of
arrival and departure are also obtained.

Next, we use Laurent series expansions of G(s) to derive some simpler
equations for the angles of arrival and departure. These equations turn out
to be simple generalizations of the SISO equations.

Finally, we arrange the coefficients of the Laurent series expansions
of G(s) mentioned above into Toeplit: matrices, and show how the angles of

arrival and departure may be obtained from these. We also recall that the
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ranks of these Toeplitz matrices are related to the MacMillan orders of
G(s) at the pole or zero in question, and in this way all the results of

this chapter are tied together.

3.2 Review of State-Space Results

The results described in this section were first derived by Shaked [9]
and Thompson [S]. They are included here ror comparison to the frequency
domain results of the following sections. Also, when a system is speci-
fied by its (A,B,C) matrices these equations may be simpler, since compu-

tation of G(s) = C(sI - A)'IB may be very difficult.

Theorem 3.1 The angles or departure are given by

T
edepart = ARG [-viBKCui] (3.1)
where u; and v{ are the right and left eigenvectors associated wjith
the open-loop pole (an eigenvalue of A) considered, and u; and v}
have been normalized so that viu; = 1.
The angles of arrival are given by

1

earrival= ARG [WEK- xi] (3.2)
where wz and x; solve, for some Y and qI,
TA - 2,1 B ;| =0 (3.3)
i -C 0 X
qul w{] A-z1 B =0 (3.4)
-C 0

where zj is the finite zero considered, and x; and w{ have been nor-

malized so that w{xi =1,

Following Shaked [9], one may prove (3.1) by recalling that the closed-

loop system matrix is

A, A - kBKC (3.5)

e e o N . P e e e e e

e
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and by letting its spectral decomposition be
T
1
Acl = 3 DIAG [si] [u1 vee un] (3.6)
T
\ vn

where the 3; are the closed-loop eigenvalues with eigenvectors u; and left

eigenvectors vi, all of which are functions of k. We have

Ac u, = s;u; 3.7)

1 11

and differentiating with respect to k and multiplying by VI, one gets

dA du. ds. du.
T ¢l T i i T i
ViIo W tVidg dx S 9 CSiVi I (3.8)
so that
ds. dA
1
- - "I Yt - v BKCu;. (3.9)

Letting k = 0 and using equation (2.9), (3.1) iS proved. Thompson [S]
derives this same result from a generalized eigenvalue problem, and his
method is preferable for proving (3.2). Indeed, in [5] Thompson points
out several ;rrors in Shaked's paper.

It should be evident that Sis Ugs and v{ solve the generalized

eigenvalue problem

A - siI B ul = 0 (3.10)
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y
T T
-C -%(-K‘l
T
for some wi and X,
\ Differentiating (3.10) with respect to k and multiplying by [VI wT]

i
gives, using (3.11),

ds.
T T i
[vi Wi ] g% ! 0 u; =0 (3.12)
1 -1
0 —K X.
kz i
which can be rearranged into
ds.
i_ 1 T -1
Ik = wi K xi. (3.13)

Letting k+=, using equation (2.9), and noting that ARG LJEJ = 0 proves

k
(3.2). Note that Rosenbrock's [10] definition of finite zeros guarantees
a non-zero solution to (3.3) and (3.4). This concludes the proof of

Theorem 3.1.

3.3 Results from the Smith-MacMillan Form

We use the Smith-MacMillan form of G(s) to obtain equations for the
angles of departure and arrival using the polynomials Ai(s) of the charac-
teristic equation, and to characterize the loci departing from and arriving
at multiple poles and zeros. For simplicity and clarity we consider first
the case of first-order poles and zeros, exhibiting the methodology, and
‘then proceed to the far more complex case of multiple poles and zeros. In

both cases we consider angles of departure first, and then the angles of

A e T deia £
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arrival.
3.3.1 First-Order Poles and Zeros
We start with
0(g,) = A ($)g" + A ()81 + ... + A (s) 2 0. (3.14)
! m m-1 *et o .

Since we are first interested in angles of departure, i.e. the behavior of
the root loci as k+ 0 and g+ -, we make the substitution g = --i- and

multiply by (-k)®, yielding

A DK ¢ A ) DM e sk (3.15)

+ Am(s) =0,

Let 5 be a first-order pole, and define the following:

$=s-p (3.16)
Am(s) = Am(§ + pi) = a1§ + azsz L P (3.17)
Age1(5) = A (5 By) = by ¢ bjE e bEl e (3.18)

where the right sides of (3.17) and (3.18) are finite polynomials. Note
that the constant term of (3.17) is zero, since Am(pi) = (,

By applying the Newton polygon technique to (3.17) and (3.18), we may
obtain a series approximation to the locus in the vicinity of the pole Pi»
and obtain the angle of departure at once. In particular, if b° and a, are

both non-zero, the Newton polygon will be as in Fig. 3.1. We then have
k = ¢3 as (8,k)~(0,0) (3.19)

where ¢ solves

P

§ R
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a + cbo =0, (3.20)
This gives
bo .
s s iy k as (s,k)=* (0,0) (3.21)
1
and, using the definition of angle,
bo

edepart = ARG [-;I]. (3.22)

We will refer to the case where a, and b0 are both non-zero as the
generic case. The word ''generic" is used to describe a property of a
finite set of parameters which holds for all values of these parameters
except those satisfying a finite number of polynomial equations {21}. Thus
a generic property 'almost always holds." The property that a, and b° are
both non-zero is indeed generic, since it will be shown shortly that a,
is always non-zero if 1 is a first-order pole, and that b° is zero only if
Py is a root of both Am(s) and Am-l(s)‘ This can occur only if the coeffi-

cients of Am(s) and Am_l(s) satisfy a polynomial equation obtained by

setting the resultant (see Appendix) of Am(s) and Am-l(s) ¢qual to zero.

Now write G(s) in the Smith-MacMillan form

nl(s) nm(s)
G(s) = U(s) DIAG [3';_('5_)" oo d—(_sT] V(s) (3.23)
n

where U(s) and V(s) are unimodular (have constant determinants) and where
n, (s) ! ns(s) and d, (s) | d;(s) for 1 £ i <j <m. (Recall that G(s) is

mxm and has full rank.) Also, let
Vis)u(s) 2 W(s) = [wy;(s)] - (3.24)

We may write

e e T e e et e

e e o

VR it Al et
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n,(s) b
A(g,s) = DET [gI - G(s)] = DET [gI - U(s) DIAG [3-*-(?)-] v(s)]
i

n.(s)

= DET [gI - DIAG [alm] V(s)U(s)] (3.25)
1

and we may obtain ¢(g,s) from the right side of (3.25).

We now state and prove the following theorem:

Theorem 3.2 If and only if “ll(pi) # 0, then we have

8 bo Am-l(s)
depart © ARG '3'1' = ARG IA—(;) s = P | (3.26)
ds'm

(Note that this corresponds to the "generic case" discussed earlier.)

We prove ‘Theorem 3.2 by showing that a, and b, are non-zero if and
only if wll(pi) is non-zero. Then the theorem follows immediately from
(3.22), while the expressions for a, and bo follow immediately from (3.17)
and (3.18).

We observe first that, since Py is a single pole,
Ag(s) = (s - pOR(s) = BA (s) = a3 + T LR (3.27)
where im(pi) # 0. Dividing by § and setting s = P4 immediately gives
a = A(py) # 0. (3.28)
As for b, note that

m ni(s)

-A_1(8) = A (s) TR G(s) = Am(s)i;l ENO) wyy(s) (3.29)

and since P; is a single pole, we may write




dy(s) = (s = p;)d(s)

L -

}

! so that (3.29) becomes

!‘\

t n (3) mn (S)

Apq(8) = A (s) = T A,,,(s)Z a'{f’_ y wyy(s)e

1(s

Since “1(’) and dl(s) are relatively prime, "l(pi) is non-zero.
by combining (3.18), (3.30b), and (3.31), we find that
ny(py)
b 1(9 ) = Am(Pi) < 11(91)
d, (py

m n.(p;)

+ A (Pi)JZ'zngp—)' T (py)-

_—

(3.30a)

(3.30b)

(3.31)

Therefore,

(3.32)

Since the second term vanishes, b° is non-zero if and only if Wll(pi) is

non-zero. This proves Theorem 3.2.

Let us now consider the angle of arrival at a finite zero z,. Since

we are interested in the behavior of loci as k+«, or g+ 0, we may work with

9(g,8) = A (s)E" *+ ... *+ A[(S)8 + A(s) = O
We now make new definitions

$=5s - 2

AJ(S) = A3 +2,) =ad+ azsz ‘s

AJ(8) = Aj(3 +2) =b +b3 bzsz .o

(3.33)

(3.34)

(3.35)

(3.36)

Nl e, et sty e
[ S ..



As before, we consider the generic case when bo and a, are non-zero, for
which the Newton polygon is illustrated in Fig. 3.2. The resulting cal-
culations parallel (3.19)-(3.22) (using g instead of k), and the following

theorem should not be surprising:

Theorem 3.3 The angle of arrival at a first-order zero 2 i is given

by
6 ARG[ —b°] ARG M) | (3.372)
= - = - = . /8
arrival al [ as Ao (s) S Pl]

if and only if

“'11(21) cer Wy m-l(zi)
DET . . £ O. (3.37)

“m-1 l(zi) cer VWl m-l(zi)

However, the proof of Theorem 3.5 is more difficult than the proof of
Theoren 3.2. It requires the following lemma, which will be used exten-
sively in the next section.

Lemma 3.1 (Binet-Cauchy Theorem) Define the following notation for
Pxp minors of an nxn matrix A:
11 [N ] i A ai j s 09 ai j
A P12 per|] M1 Ppl, 1eij iy <ioxn
3y e 3 : :

a a. . 1£jy<€jy<cea<jsn.
1

i L X ] 1 i L ) i k L ] k
Then ianAB,C(jl j ) ZA( 1 k)ta(j1 ;P

1 ¢ s 0 p 1 L N ] p 1 LR ] p
summed over all possible 1_<.k1 <k2 < aue <kp_<.no (3.38)

This standard result is given and proved in Gantmacher [11].

To show that a, g 0, write
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B
Ay(s) = Aj(8)(-1)"[DET G(s)]
m ni(s)
= n .
AL(s)(-1) ™[DET u(s)]{DET V(s)]i.l d:-(s_) (3.39)
and note that since 3 is a single zero we may write
k nm(s) a (s - zi)ﬁm(’) (3.40a)
| “1(21)’ ces “m-lczi)’ ﬁn(zi) £ 0. (3.40b)
f Also note that, excluding single-point loci,
r
‘ A(®) = 1 4 (8) (3.41)

| i=]
and recall that U(s) and V(s) are unimodular, so their determinaats are
non-zero constants. Then we have

j =1

| A,(s) = (-1) M(DET u(s)]{DET V(s)ll n niQS)]nm(sls (3.42)
and by comparing this to (3.35), dividing by 3, setting s = 2 and using
(3.40b), we see that al is non-zero. As for bo’ using Lemma 3.1 on (3.25)

gives

Al(,) s An(’)('l)m-l 2:[principal minors order m-l of G(s)]

n.(s) corresponding
e A ()(-1™L 2= ( principal
*a (A j(’)) ( (3.43)

1...1 minor of W(s)

since all the non-principal minors of the Smith-MacMillan form are zero.

However, since “n(zi) =0,

Mo e ot o .




b° ] Al(zi)
m-1 n,(z,) wW11(24) oo Wy g (29)
. Am(zi)(-l)m'l n 31-(?‘-7 OET : .
L3 St A ool 1) pey pa1(34)]  (3.44)

and recalling (3.40b) and (3.41) shows that b° is non-zero if and only if
(3.37b) holds. This proves Theorem 3.3.

In Section 3.4, we will obtain some alternative equations for the

angles directly in terms of G(s) and G'l(s).

3.3.2 Multiple Poles and Zeros

Before we investigate the angles of arrival and departure for multiple
poles and zeros, some discussion will be necessary on exactly what is meant
by a multiple pole or zero. This is not a trivial matter; in the multi-

) variable case, it is possible for G(s) to have a pole and a zero at the

? same location, or several poles and zeros of various orders all at the same

location. We now make several definitions that will clarify matters and

| make the analyses to follow as straightforward as possible.

] Definition The pole p, is a kth-order pole if the exponent of
(s - p;) in the pole pdlynomial of G(s) 1s k.
n,(s)
Definition Let the Smith-MacMillan form of G(s) be DIAG [z'r:y)
i
and let Py be a kth-order pole. Let kj be the largest integer such
that

'
(s -p) 7| dy(s), § =1 ...m, (3.45)

| Then the {kj} are the structure indices [12] associated with the pole
Pi-

Analogous definitions are made for kth-order zeros and structure

indices of zeros. Note that py may be a kth-order pole and also a zero.

Also note that p; may have one set of structure .adices as a pole and

-
.l
> - ————— et . e —————— e —— -
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another set of structure indices as a zero.

I
Remarks (1) 2 k. =k
e p | J
j
> >

(2) For a pole, klz.kzz kS‘ R N
Fer zero, the ordering is opposite

m

(3) For a first-order pole, the structure indices are
{1, o0, ... 0].

Example 3.° OCuppose that G(s) has as its Smith-MacMillan form

,
1 s - 1 s - 1°

DIAG » » 4

[(s + 235+ ¥ s+ + P s e ]

Then the structure indices are

Pole at -2: [3, 1, 0]
Pole at -1: ({2, 2, 1]
Zero at ‘1: [0, 1, 2].

It should be noted that this definition of '"structure indices" is not
the same as the definition given by Verghese and Kailath in [12], althousgh
the definitions are closely related. The difference may be illustrated as
follows. Let q be both a pole and a zero of G(s), with Verghese-Kailath
structure indices [01, Tos ees 04y 0...0, '°j’ ces -ﬂn]' What we shall
do here is separate the polar structure of q from its zero structure. From
this point of view, the structure indices of G(s) at the pole of q are
given by [cl, Ogs eee Oy, 0 ... 0] and the structure indices of G(s) at the
zero q are given by (0 ... 0, cj, cee in].

The motivation for doing this is that the polar nature of q has no
effect on the angles of arrival at q, and the zero nature of q has no

effect on the angles of departure at q. So we may consider q as consisting

of a pole and a zero which just happen to be at the same location, but may

ORI
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be treated separately.

Having defined terms and notations, we proceed now to investigate the
angles of arrival and departure for multiple poles and zeros. The metho-
dology and results employed in this section will be the same as those of
the last section, to which extensive reference will be made. Once again,

\ the angles of departure are treated first, and the angles of arrival
later.

Let p, be a kth-order pole with structure indices [kl’ ky, «.e km].
We require series approximations for all of the loci departing from P>
and thus we must determine the form of the Newton polygon from the structure
indices. As before, define

$=s5-p; (3.46)
_ _ . 22
Am(s) = Am(B + pi) =a  +a;3+ad o+ ... (3.47)
2
-Am_l(s) = -Am_1(§ +p;) = bo + b1§ + b2§ L AN (3.48)
- =2
Am_z(s) = Am_z(s + pi) TC,+ S +c5T e (3.49)
k= -
Ap(s) = (s - p;) A (s), Ap(py) # 0. (3.50)
From (3.50) and the same argument as used on (3.27),
a,=a) = ...=23 = 0, a, £0. (3.51)
! We define
Lf kj . .
Z dj(S) =(s - p;) dJ-(S), dj(pi) £0,j=1...m (3.52)

B S

and recall (3.29) to write (corresponding to (3.31))

Ll W
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(k=k;). n, (s)
“Ap1(8) = (s - py) Ap(s) ) wi1(8)
1

m (k=k.). n,(s)
e (s-pp A (s, (3.53)

j=2 dj(s)

Comparing (3.53) to (3.48), dividing by increasing powers of 3 and setting

s 2p; (a familiar procedure by now), we get

bo = by = ees mby Ly =0 By A0 (3.54)

1
where we have assumed (1) w11 (pi) £ 0, (2) k1 $ kz. 1f k1 = kz, we require
instead the assumption
. n, (p;) n,(p;) : )
bk, = AP T v (Py) t T valpy)) £O0 (5.59)
1 d, (p;) d,(p;)
which we would still expect to be true in general.

Now we must consider Am_z(s). Again using Lemma 3.1, we may gener-

alize (3.43) to

Ap(s) = Am(s) (-l)m'pZ[principal minors order m-p of G(s)]

n. (s)\ 7corresponding
= Am(s) (_l)m-pz it HJ(_s)_ principal
il“'im-p j minor of W(s) /,

psl LI N m. (3.56)
Taking p = m - 2 and some reflection leads to

(k-k,-k,)_ n, (s)n,(s) Woa (p:) Wya(ps)
177275 1 222 DT 11\Pi) ¥12(P5

A,(s) = (s - p;) (s)

d, (s)d,(s) War(Py) Waa(py)
n.(s)

n corresponding 2 x 2
* Am(:")Z (il,iz a’j (s))(principal minor of W(s)) (3.57)




(recall kl 2 kz.z ks.z cee 2 km). Since nl(s) and dl(s) are relatively
prime, and dl(pi) is zero, nl(pi) is non-zero. A similar argument applies
for nz(pi) if k2 is non-zero.

Comparing (3.57) to (3.49) and once again dividing by increasing
powers of § and setting s = P;, we get

co = c1 = ,,, = ck-k kol z (, ck-k

G FO (3.58)
17%2 1752

where we have assumed k, # ks and
w1 (P:)  wys(ps)
peT | 11T 12T 4 (3.59)
“21(pi) "zz(pi)
If k2 = k3 we must‘satisfy instead an equation analogous to (3.55).

We may repeat this argument for p = m-3, m-4, ... , and obtain more
equations analogous to (3.51), (3.54), and (3.58), with analogous assump-
tions. The Newton polygon will take the form given in Fig. 3.3, and we
can now prove the following theorem:

Theorem 3.4 The loci departing from a kth-order pole depart gener-

ically in Butterworth patterns whose orders are the non-zero structure
indices of G(s) at the pole. For a pole Py with non-zero structure

indices [kl’ ky, ... k.] the angles of departure are:

(k-ky)
4 (s)

(kK “ne1
o <L ARG ds {
depart, 1 ~ k; 4(k) 's = p;

— A (s)

ds(k) n

[
*9-3‘f—°-,n=o, 1, vor ky = 1 (3.60a)

1
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" (kek,<k.) ]
PR W
Am-z(s)
6 = AR | 98 .
depart, 2 K; d(k-kl) S =P
(koK) fme1(S)
. ds -
» (-} »
) . l’%’— yn=0, 1, cou Ky - 1 ) (3.60b)
— a
1 ARG Am-r(s) |
8 s ls =
depart, r K_ d(kr) s =p;
k) Mmerel (8)
ds
+9-"’E°1- ,n=0, 1, . kel (3.60¢)
r

if the following assumptions are met:

(1N k1 # k2 F oo # kr (3.61a)
wll(pi) ses le(Pi)

(2) DET . : £0,j=1...r1r. (3.61b)
wjl(Pi) .o wsj(pi)

We prove Theorem 3.4 by applying the Newton polygon technique. Since
the ki are ordered, the polygonal arc drawn in Fig. 3.3 is convex, and is
indeed the Newton polygon. If the ki are unequal, we may write

ki
k = cis » i=1 ... 1, as (3,k)~(0,0) (3.62)

where the ci solve

-1 * c;Bi =0 (2.63)




where Bi is defined as

(k'kl'o ) o'ki)

Am-i(s) a éié * 00, i=1..01 (3.64)

(note Bo *a, B1 = bk-kl' and 62 = C k. -k ). From (3.62) and (3.63), we

1 72
get
1/ki

3 s xik ,i=1...r (3.65)
where xi solves

k B.

x;' = egam,ial..T. (3.66)

i-1

The ki solutions to (3.66) are equally spaced in the complex plane by
angles of (360/ki)°; hence their angles are those of a Butterworth pattern.
This fact with (3.65) proves that the departing loci form Butterworth
patterns. Applying the definition of angle of a locus to (3.65) and noting
that
1 d(k - ky- - ki)

i k -k
(k-kl- see -ki)! ds

A i(s) |
1- PR "ki) m-l S‘pi
(3.67)
vields (3.60a, b, ¢) and concludes the proof of Theorem 3.4.
Note that if any two non-zero ki are equal then three points in Fig.

3.3 will be collinear, and (3.63) will be replaced by an equation of the

form

i i+l
+ cisi +cy Si+1 =0 (3.68)

i-1
¢ fia

which is now quadratic in ;e In this case, we get two Butterworth patterns

of order k. with different principal angles, whose computation from the

el s
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Ai(s) is now much more difficult.

As for the angles of arrival at a multiple finite zero, we may use a
procedure analogous to that used for the angles of departure to obtain an

analogous result. The groundwork was laid in the last section for first-

order zeros; the only difference is that we now use p =1, 2, ... r in

(3.56) rather thanp=m -1, m - 2, ... m - r. The result is

Theorem 3.5 The loci arriving at a kth-order zero arrive generically
In Butterworth patterns whose orders are the non-zero structure

indices of G(s) at the zero. For a zero 2 with non-zero structure

indices [km, km-l’ cos km-r] the angles of arrival are:

(k-ky) ]
—-(k ) A, (s)
1 ds
8arrival 1 5% ARG | - (X) ls =z,
m da i
— 9 A, (s)
» ds
o
. + 5%29— ,n=0,1, ... km -1 . (3.69a)
m
o, . o L ang [ =z @ |
arrival, r + 1 km-r (km r) s = zi
A
ST M
-]
f 58 na0,1, k-1 (3.68b)
m-r
if the following assumptions are met:
(1) km # km-l ! ST km-r (3.70)
wll(pl) XX le(Pi)
(2) DET : : #o’ j'm-l,M°2. ...lll-r-l-

1Py cee ¥5(py) (3.71)

Re o i T PPN TR e S
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(For notational convenience, we let r be one less than the number of non-
zero indices.)

It is unfortunate that the assumptions (3.31b) and (3.71) are so
difficult to verify, depending as they do on taie unimodular matrices
U(s) and V(s) that bring G(s) to the Smith-MacMillan form. Except for one
note in the next section, it has not been possible to interpret these
conditions or come up with easier ways to dctermine whether or not they
are fulfilled. In any case, it is felt that the results of this section
cast considerable light on the angles of root loci departing from or
arriving at multiple poles or zeros.

We end this section with an illustrative example:

Example 3.2 We wish to find the zngles of arrival and departure for

the root locus of

1

54 + 453 + Ss2 + 8s + 4
s+ 85 ¢ 17 s¥ 41082 + 335 + 34
1.3 2 4 3 2 .
s + 98 + 255 + 17 28 + 218 + 785 + 117s + 68

We have

2(g,s) = g* - TR G(s) + DET G(s) = 0

and it is straightforward to compute 4(g,s) and multiply through by
the least common denominator to get

5 2

¢(g,s) = (56 + 68 +'1854 . 3253 + 368° + 24s + a)g2

- (258 + 25¢% + 1258% + 32583 + 49352 + 420s + 170)g

o (%« 1655 + 98s% « 2725 + 289) = 0.
The open-loop poles are found by solving

5 2

Az(s) = 56 + 65" + 1834 + 3253 + 368 + 245 + 8§ = 0
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zeros are found by solving

3

which yields the third-order poles -1 + j and -1 - j. The finite
2

Aj(s) = st + 165% + 988 4 2725 + 289 = 0

which yields the second-order zeros -4 + j and -4 - j. The structure ?
indices may be found by constructing the Smith-MacMillan form of G(s) ;
(another method will be described later): |

2 |
G(s) = 1 0 : s” ¢+ 85: 17 0
s+1 1 s + 8s + 4

3 2
Cx 1 s +2
0 1

+ 438" + 8s
from which we see that the structure indices for the poles -1 % j are
{2, 1], and those for the zeros -4 * j are [1, 1]. Since we have
U(s) and V(s), we may quickly confirm that the W(s) assumptions are
upheld.
Thus loci depart from the pole -1 + j in some second-order and
first-order Butterworth patterns with angles

0 s2 4 85 + 17
32 + 28 + 2

d
a‘s' Al (3)

3 1 e
edepart, 1 =7 ARG 'dT"—""-;) ls =p, +nl180°, n=0,1
(3j Az(s)
ds

3
2

2

= 1 ARG

[ 1235 + 12534 + S500s
3 -

+ 9758° + 986s + 420 ! )
1208 + 360s s=-l+3

+ 4328 + 192

= 61.8°, 241.8°
and angle

ARG A, (s) |
° TARG g s«
depart, 2 a_s_ Al(s) pi
. ARG [_ s* + 165° + 9852 + 2725 + 289 ]
1235 + IZSs4 + 50053 + 97Ss2 + 986s + 420 s=-l+j

S = 33.7° ;




By symmetry, the angles of departure from the pole -1 - j will be
-61.8°, 118.2°, and -33.7°,

We know that the loci will arrive at the finite zero -4 + j in
two first-order Butterworth patterns, but since the structure
indices are equal, the computation of the angles of arrival would be
much more difficult, and is not attempted here.

3.4 Results from Laurent Series

We now use a different methodology to come up with much simpler
equations for the case of first-order and certain higher-order poles and
zeros. These turn out to be nice generalizations of the SISO equations.

Let P; be a first-order pole of G(s), and let the Laurent expansion

of G(s) at Py be

G(s) = G, +Gy * (s-p)G +(s-p %y s .. (3.72)

1
s-p;

Then taking the trace of both sides, we have

TR G(s) = 5 ).Pi TRG,, +TRGy + (s = ;) TRG; + ..o (3.73)
Recall (3.16-18):

1ss-p (3.74)

AL(s) = A3 +p) = a3+ a8t el (3.75)

A y(8) = <A (B ep) =b +b3 b3l . (3.76)

Now multiply (3.75) and (3.73):

'Am-l(’) s Am(s) TR G(s)

= (a1 TR G-l) + 3(31 TR G° +a, TR G-l) + .. (3.77)

Equate coefficients of (3.76) and (3.77):




b, *a, TRG_;. (3.78)

We know from (3.28) that a, is non-z2ero, and recalling (3.22),
bo
9 depart = ARG [w;;] (3.79)
we have proved Theorem 3.6:

Theorem 3.6 Let the Laurent expansion of G(s) at a first-order pole
Py be (3.72). Then, if TR G_, # 0, the angle of departure from P; is

]. (3.80)

S depart = ARG [-TR G_;] = ARG [-(s - p;) TR G(s) |

s-pi

3imple as this result is, ig is a striking generalization of the SISO
root locus equation (2.32) for computing the angle of departufe. The only
difference is that in (3.80) the trace of the transfer function matrix is
used, whereas in (2.32) the (scalar) transfer function itself is used.

The condition TR G.1 # 0 will hold in general; in fact, it is easy to
show that TR G_l # 0 if and only if wll(pi) # 0, which is the condition
that is needed in Theorem 3.2 in order to use (3.26) to compute the angle

of departure from the Ai(s). Recall the Smith-MacMillan form of G(s)

nl(s) nm(s)
G(s) = U(s) DIAG ai(’) oo dﬁ(s) V(s) (3.81)
and use (3.30b) (properties of the di(s)) to show that

R NCES NEOT,

“1(?1)
= U(P1) DIAG| = »y 0 ... 0 V(pi). (3.82)
dl(pi)

Then using the commutative property of the trace, one has




!
E‘
i
b
f
¥
13
¥

"I(Pi)
DIAG| = SAURTY 0] Vip)u(py) 't
{

TR G-l s TR
dl(pi)
"

(Pi)
Wy, (py) (3.83)

d, (py)

and the result follows.

In the unusual case where TR G_l is zero, something rather interesting

happens. We now state and prove

Theorem 3.7 Let the Laurent expansion of G(s) at a first-order pole
Py be (3.72). Then if

(1) ]RG_, =0 (3.84)
(2 TR [G_1 Gol #0 (3.85)

the angle of departure from P; is
(3.86)

edepart = ARG [TR [G-l Go]]

and the locus departs as kz (a i-order departure).

I1f TR (i.1 is zevo, bo is zero, and the Newton polygon for this situa-

tion, given in Fig. 3.4, shows that we must consider

rincipal minors
Ap-2(8) = Ay(s) z (grder g of G(s) )' (3.87)

Recalling the Laurent expansion of G(s), we see that

principal minors) 1 (principal ninors)

2: (order 2 of G(s) * (s 2 order 2 0of G
- pi) -l

1 principal minors with one column
G P; z (froﬂ G_, and onc column from G, MR (3.88)

and the first term must be zero, or P; would be a second-order pole.

Denote the elements of G.1 and Go as




=
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Figure 3.4

Newton Polygon for the Case of TR G_1 =0

for First-Order Angles of Departure




harted il " "(V‘W'"" Ll - Ll
o 754
= [g ] G, = g0 (3.89)
1)
and observe that
2: principal minors with one column
from G_1 and one column from Go
m m m m m
_ -1 0 -1 0 1 0 -1 0
E A - gied)- Zoi 5 - £(Sst )
= (TR G_l)(TR Go) - TR [G_ ] = -TR {G -1 °] (3.90)

Multiplying (3.88) by the polynomial for Am(s) (3.75) and using (3.87)

and (3.90), we get
Am_z(s) = -3, TR [G_1 Go] * §(-a2 TR [G_1 Go] + ... ) (3.91)

so that if TR [G_1 Go] is non-zero, the Newton polygon will be as in Fig.

3.4. We then have
k = cSi (3.92)

where ¢ solves

a - alcz TR [G_, G,] = 0. (3.93)

Since a, is known to be non-zero from (3.28), we have

2

$ s TR [G_) G Ik (3.94)

and the theorem follows.
Unfortunately, the Laurent series methodology does not lend itself
well to the case of multiple poles. In general, the results from the

Smith-MacMillan form must be used. However, for a certain class of

T
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multiple poles, the following result applies: #

Definition A kth-order pole is said to be simple if its structure
indices are [k, 0 ... 0].

Theorem 3.8 Let the Laurent expansion of G(s) at a kth-order pole

Py be
G(s) '——L—-Ec-k * Lee Q_—l"'-""‘c-l *G°+ s (3.95)
(s - py) (s = py)

:hen if TR G_k £ 0, the pole is simple and the angles of departure
rom p, are

1 . . n360° . ;
O depart = K WG [FTRG ]+ ==, n=0, 1, «o. k-1 |
= L ARG [=(s - p)¥ TR G(s) | l |
13 pi S ‘pi‘
n360° , N i
N NPT R TR G (3.96)

The proof of Theorem 3.8 follows that of Theorem 3.6. Recalling

{3.51) for a kth-order pole we have that

a,=a;= e 2a 0 0, ay £ 0. (3.97)

Taking the trace of (3.95) and multiplying by Am(s), we get
-Am_l(s) = Am(s) TR G(s)
= (ak TR G_k] +* s(a!“1 TR G-k * ak TR G-k*l) * e

(3.98)

Equating coefficients with (3.76) gives
(3.99)

Now, if TR G-k is non-zero, bo is non-zero, and the Newton polygon will

look like Fig. 3.5. Comparing Fig. 3.5 with Fig. 3.3 shows that p; must be

4
<
i

. ———————




ORDER OF Am.i(s)
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Figure 3.5

Newton Polygon for the Generic Case

of a Simple Higher-Order Pole
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i simple. We have
J depart ARG [x] (3.100)
where x solves
3 \
' x* = - ;% = TR G_, (3.101)

as before (see (3.64-66)). (3.100) and the k solutions to (3.101) yield

(3.96) , and the theorem is proved.

If TR G-k is zero, P; is not a simple pole and we must go back to the
Smith-MacMillan form results. The reason that the SISO angle of departure
equation {2.32) does not always generalize to (3.96) is that in the SISO
case all higher-order poles are necessarily simple, while in the multi-
variable case only some are.

The Laurent series methodology might at first seem inapplicable to
the computation of angles of arrival, since these depend on the sum of
principal minors of order m - 1 of G(s), which, unlike the trace, is not a

linear function. However, recall that

¢ l(s) = %g%-gég} (3.102)

where ADJ G(s) is the transpose of the matrix of cofactors of G(s). So the
main diagonal elements of G'l(s) are principal minors of order m - 1 of

G(s) divided by DET G(s), and we have

; . principal minors of | =, m-1
3 Al(s) Am(‘e‘)z(ordm‘ m - 1 of G(s) )( 1)

= A_(s) DET G(s) 2 | main diagonal elements of G‘lcs))(-n""1

= -A(s) TR 6 1(s). » (3.103)

Ca
e TN I b s 2
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We once again define, for a kth-order finite zero z;,
$=5-12; (3.104)
AL(S) =A (3 +2) =a +a;s+as ... (3.105)
Ay(s) = A (3 +z,) ab + b3 «b,a e .., (3.106)
where we know (see (3.39-42))
a, =2 = .2 a = 0, a, £0. (3.107)

Since 2 is a kth-order zero of G(s), it is a kth-order pole of G'l(s),

and we may write a Laurent expansion

Pl v e —=— L +H o+ (3.108)
(s -z (s - z,)

G'I(s) =

Taking the trace of (3.108), multiplying by (3.105), using (3.107), and

equating coefficients with (3.106), we get
and following (3.99-101), we have proved

Theorem 3.9 Let L be a kth'order zero of G(s). Then if TR H_k £ 0,
where H_k is defined by (3.108), the angles of arrival at 2, are

1 K oo ool n360°
S grrival = K ARG [(s - 2))" RRG™(s) [ . zi] M

n=0,1, ... k- 1. (3.110)

As with the angles of departure, TR H-k being non-zero corresponds to 25
being a simple zero. If ; is non-simple, the Smith-MacMillan form results

must be used.
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We can simplify (3.110) for the case of 2 x 2 G(s), by noting that in

this case we have

-1 TR G(s
TR G 1(s) = ET—G%BIY (3.111)

so that (3.110) becomes

k
. 1o | B ) TREG) | . n360°
arrival ~ k DET G(s) s =z k
ns= 0, 1, se e k - 1‘ (3.112)

We conclude this section with a simple example:

Example 3.3 (3] We wish to find the angles of arrival and departure

for
1
G(s) =
s¥ v 553 - 25% - 44s + 40
3 2 2
x 35" + 4s° - 156s + 464 8s” - 24s + 16
s3 + 7952 + 44s - 868 -as% - 4s% + 40s - 32

From the characteristic equation (or other means), it is ascertained
that G(s) has first-order poles at 1, 2, -4 + 2j, and -4 - 2j, and
first-order finite zeros at 1 + j and 1 - j. Using Theorem 3.6, we
have

Pole at s = 1

® gepart = ARG [-(s - 1) TR G(s) |5 -]

- 3 n

. s° + 116s - 432 L ae
ARG | (s - 2)(s + 4+ 23)(s + 4 - 2j) [5 =1 0

-

Pole at s = 2

s + 1165 - 432 |
G -D(E+4+2)(s+4-25) 's=2]

® depart = ARG

= 180°

- ‘m..._d

e mmilae . .
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Pole at s = -4 + 2§

3
s” + 116s - 432
edepart = ARG [(s < 1)(s = (s *+ 3 + 27) |s = 4 4 Zj]

= 110.9°

Pole at s = -4 - 2j

-]
edepart = -110.9° by symmetry.

Using Theorem 3.9 and (3.112), we have

lero at s = 1 + j

s -1 -3) TR G(s
% arrival = ARG [ s | s=1+ j]

\53 + 116s - 432 I
/ o]

12(s - 2s + 2)

ARG[(S‘I"j 5=1+j]'69.6°

lero at s = 1 - j

- = - ° .
S arrival = 69.6° by symmetry . 3

These results agree with those of Postlethwaite [3], from which this

example is taken,

3.5 Results from Toeplit: Matrices

We now take the Laurent series coefficients from the last section and
arrange them into Toeplitz matrices from which the angles of arrival and
departure can be obtained. We also relate these results to the preceding
results, showing how all of these results relate to each other. The
results that follow are due to Sastry and Desoer [17] and Levy [19].

Definition A matrix A has simple null structure if, in the Jordan

form of A, the zero eigenvalues are all contained in Jordan blocks
of order one.

Note that if a matrix has simple null structure, then its rank i

3
.
.
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is equal to the number of non-zero eigenvalues.

Theorem 3.10 Let the Laurent series expansion of G(s) at an nth

-order
pole Py be
1 1
G(S) = n en * s b m— -1 0 +* e (3-113)
(s = p;) (s - py)
Then the angles of departure are given by
1 j360° .
® depart * 3 ARG (2,1 +"J_a"’ j=0,1, ca-1
a=1,2, ...n (3.114)
where Aa is a non-zero solution to
-G 0 0 7
-n
G 0
DET -(a+2) : .
G-(a*l) G-(a+2) ces 0
| G- Claay Caezy oo G (3.115)

P SO FEE

L eaaddiinda o

provided this is an equation in xa, and certain matrices éi obtained

from the Gi by a procedure given in [17] have simple null structure.

Theorem 3.10 is proved as follows. By making the substitution

g = --% in the characteristic equation, we have the following equation

describing the root locus:

DET [I + kG(s)) = 0. (3.116)

This is equivalent to stating that there exists a non-zero m-vector v (s)

such that

(I + kG(s))v(s) = 0. (3.117)

PEFRE

e




.t

B A S A i sthdre.at iR e P A dedt i)

T T e R ¥~ % T e sy o —v—— -

62

In the vicinity of a pole, where s - P; is near zero, we may expand v(s) in

a power series

' )
v(s) = v, * vl(s - pi) + v2(s - pi)' * e (3.118)

with Vo non-zero.

We now make use of the fact that if the Ei all have simple null struc-
ture, all loci departing from P; depart in integer orders, i.e. as klla
where a is a positive integer. This is proved in Sastry and Desoer ([17)

for the case of asymptotes of root loci, and a similar argument applies for

the angles of departure. So we may write

%= - P (3.119)

~

1
s = xak /a’

a=1...n ' (3.120)

for some constants xa.

First, let a = n. Substituting (3.113), (3.118), (3.119), and (3.120)

in (3.117), we get

a1 o

1 1
—_— G +* G +
gn N gn"l -n+1

(v°+ vlg * )+ ( )(Vo + V1§ + e )

=0. (3.121)

Letting S+0 for the angles of departure, we require the constant term of

(3.121) to be zero:

1 1
v, * —F'G-nvb = (I + 'E'G-n)vb = Q, (3.122)
*n *n

Now let a = n - 1. This gives




B T a T T

b )
, !
] ‘ (v. + v, «+ )+—-f§n-1(LG +——rl G + J(v. + v, § +
( ° 1 a0 s n- gn ‘n gn. -n+1 [ N} ° 1 LN
, *n-1
=z 0 (3.123)

and we require both the constant term to be zero

: 1 1 1 1
? Vb * n-1 G-n+1vo * n=1 G-nvl = (1 xn-l G-n*l)vo * n-l G-nvl
=0 ‘ (3.124)

and the term of order 3~! to be zero

1 .
1 G_nvo =0, (3.125)

xn-l
We may combine (3.124) and (3.125) into

G 0 v

-n o
( . xn'll) c v = Q. (3.126)
-n+l n-1 -n 1

But Vb must be non-zero, which can only happen if X1 is such that

G_n 0
DET = 0. (3.127)
n-1

(G + x001) G

-n+l n=-1 -n

There are two possibilities. Either there is no such Xh-1° in which case

1/(n-1)

there can be no loci departing as k , or there are n - 1 such Xq-1?

specifically the n - 1 solutions to

; nel -
) X1 " A (3.128)

where A solves

[

R Y

.
>
Y
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G 0
DET n =0, (3.129)

(G-n¢1 - AlI) G-n
. It is immediatcly evident that the solutions to (3.128), when sub-
stituted back in (3.120), will give rise to an (n - 1)‘h-order Butter-
worth pattern. Continuing the argument for a =n - 2, ... 2, 1, it is
clear that the pattern of (3.122) and (3.127) will continue, giving rise
to (3.115). This concludes the proof.

For the angles of arrival, we have

Theorem 3.11 Let the Laurent series expansion of G(s) at an nth-
order zero 3 be

G(s) = G + (s - 236, + (s - 2%, + ... (3.130)

and let the Ei (again, see [17]) all have simple null structure. Then
the angles of arrival are given by

1 j360° .
® arrival = " 3 ARG [“Aa] rEET ) 0,1, ...a-1

a=l, 2, ...n (3.131)
where Aa is a non-zero solution to

G1 0 0
G‘ 2 . 0
DET a- : = 0 (3.132)
G - LN ) 0
a=1 A=~ a
-(Ga - )\aI) Ga‘l Ga-z sen Gl—

provided this is an equation in Aa'

The proof of Theorem 3.11 follows closely the proof of Theorem 3.10,

and should be quite apparent.

: s e —————————— e
o
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Solving the generalized eigenvalue problems (3.115) and (3.132) is by
no means trivial, and from a computational standpoint our earlier results
will often be preferable. The importance of Theorems 3.10 and 3.11 is
the linkage they provide between all the results of this chapter. We now
give an algorithm which shows dramatically the link between Theorems 3.10

and 3.11 and Theorems 3.4 and 3.5.

Lemma 3.1 Let the Laurent expansion of G(s) at a pole or zero q be

1 1 .
G(s) B e——— - G, *+ ... + G
(s-° ° (s-q°T 1 ¢

+ (s - q)G

el * e (3.133)

and define the set of Toeplitz matrices

G

o 0

G

0
T, = 1\\\\\:::j\\\\\ i=0,1, .. (3.134)
1 .
: 0
e G

;gi Gl 0.

Now define the sequencé

ki = RANK 'I'i = RANK Ti-l’ i=0,1, ... (3.135)

with RANK T—l
{ki' i=s0,1, ... ¢ = 1} and the structure indices of q as a zero

s 0. Then the structure indices of q as a pole are
are {ki’ iscel,c+2, .o 2l

This result is due to Verghese (12] and Van Dooren et al. (13], and it
can be used to compute the structure indices of G(s) without putting G(s)
in Smith-MacMillan form.

Now compare the matrices in (3.115) and (3.134). Except for the AaI

in (3.115), they are the same! Comparing Theorem 3.10 and Lemma 3.1 shows




that Theorems 3.4 and 3.10 are predicting the same orders for the Butter-
worth patterns for the angles of departure. Similarly, Theorems 3.5 and
3.11 predict the same orders for the angles of arrival.

This agreement seems to indicate that the simple null structure
assumptions in Theorems 3.10 and 3.11 and the assumptions involving the
principal minors of W(s) in Theorems 3.4 and 3.5 are equivalent. This
would be a nice result, since it would confirm that the assumptions of
Theorems 3.4 and 3.5 are indeed generic. Unfortunately, we have not been
able to show this equivalence, although we suspect strongl« that it exists.

Theorems 3.10 and 3.11 can also be related to the lLiurent series
results of Sectien 3.4, If P; is a first-order pole, only one branch may
depart from it, and hence there can only be one non-iere solution to

(3.115). For a first-order pole (3.115) becomes
DET [G_| - A,I] =0 (3.136)

and so Al is the single non-zero eigenvalue of G-l‘ But TR G_l is the sum
of the eigenvalues of G-l' and if all of them except Al are sero, then

(3.114) vyields

edew,t = ARG [-All = ARG [-TR G-ll (3.137)

which agrees with Theorem 3.6.

If Py is a simple nth-order pole, (3.115) becomes

DET [G_, ~ A 1) =0 (3.138)

and again there can only be one non-zero solution. This will again be the

single non-Zero eigenvalue of G-n’ and (3.114) now yields
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1 360°
® depart * a ARG )] ’L'n“" j=0,1, «eon-1i
2,n®
.%,uzc (-TR G_] .ii:_"_, 120, 1, e nn =1 (3.139)

-

which agrees with Theorem 3.8.
As this thesis was being written, we were made aware of ccncurrent

and independent research into the natures of the angles of arrival and

departure by Byrnes and Stevens (20]. In {20}, Byrnes and Stevens derive

the main result of Section 3.3.2, i.e. that loci depart from poles and

arrive at zeros in Butterworth patterns whose orders are the MacMillan
indices of G(s) at the pole or zero in question. They also show that the
assumptions of Theorems 3.4 and 3.5 are in fact equivalent to simple null
structure assumptions on the matrices obtained when G(s) is block-
diagonalized, and hence are generic. However, they derive no exyplicit
equations for the angles of arrival and departure, and they do not consider

the approaches taken in Sections 3.4 and 3.5.
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CHAPTER IV

Branch Poiants and Break Points

4.1 Introduction

In this chapter we consider the other two types of ,.oints, besides
poles and zeros, that are significant to the behavior of the multivariable
root locus. These are branch points, which are associated with unusual
behavior of the multivariable root locus and are not present in the SISO
case, and break points, short for breakin points and breakout points, where
a branch on the real axis suddenly breaks out into the complex portion of
the s-plane, or the reverse.

Branch points are perhaps the most startling new phenomenon encountered
in generalizing the root locus from the SISO case to the multivariable case.
They are associated with the unusual loops and swerves sometimes seen in
multivariable root loci (see [5]). In particular, the branch points on the
real axis are associated with the "turnaround" of root loci on the real
axis depicted in Example 4.1 below. It will be shown in this chapter how
branch points may be computed and how the "turnaround" behavior may be
predicted.

Break points are well known from the SISO root locus, but they have
not been considered in the multivariable context. We show in this chapter
how break points may be computed, and that the angles at which branches

break into and out of the real axis are evenly spaced over 360°, as in the

SISO case.
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4.2 Branch Points

4.2.1 Computation of Branch Points

Before the effects of branch points on the root loci can be ascer-
tained, the branch points themselves must be computed. We now give two
procedures for computing the branch points: one for the case of a two-
input-two-output system (m = 2), and one for systems with three or more

inputs and outputs.

Theorem 4.1 If m = 2, the branch points are given by the solutions to
A(s) & (TR G(s))® - 4 DET G(s) = 0 (4.1)
and the gain g, at a branch point S, is given by

g, = ITR G(s). (4.2)

Theorem 4.1 follows immediately from the characteristic equation of a
system with m = 2, which is

g> - (TR G(s))g + DET G(s) = 0. (4.3)

Solving this, we have

g = l(%R G(s) +N(TR G(s))* - 4 DET G(s)) (4.4)

and recalling (from Chapter II) that branch points are by definition points

where the characteristic equation has a multiple root 8y> the result follows.

Theorem 4.2 The branch points of a root locus described by ¢(g,s) = 0
are given by the solutions to the simultaneous equations

¢(g,s) =0 {4.5a)
3
EE ¢(g,s) = 0. (4.5b)

Remark The resultant (see Appendix) may be used to solve (4.5).

|



We prove Theorem 4.2 by noting that if 8, is a multiple root of

+(8,s) = 0, we may write, for some So°

2(8.8;) = (2 - 8,)°%(8.5,) (4.6)
and we have

Rlgs) =208 - )8@s) + (5 - 88085 (4.7)

38 g'O ~{(8 gO 8:0 4 gO ng: o' .

Setting g = g, makes both (4.6) and (4.7) zero.
It should be noted that higher-order poles and zeros may be branch
points (with 8, = 0 or -=), We exempt this case from the results to

follow.

4.2.2 Effects of Branch Points on Root Loci

The effect that a branch point can have on the form of the root locus

is best illustrated by an example.

Example 4.1 Plot the root locus for

s -1 3

1
) *wEIEED

-6 s =2

It is shown in Chapter V (and also in [1], from which this example is
taken) that the root locus is as drawn in Fig. 5.2. Note that the
branch departing from the pole at -1 moves in the positive real
direction, then abruptly turns 180° at the branch point at 1/24.
Certainly this type of behavior is not characteristic of SISO root
loci!

As explained in Chapter II, this unusual behavior is observed at branch
points because it is at these points that the root locus "jumps' from one

sheet of its Riemann surface to another, which maintains continuity but

allows for a sudden change in direction. This is discussed in more detail

in [1] using the 180° phase contours of the algebraic function g(s); here
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we are more interested in describing this behavior than in accounting for

it.
It should also be noted that the root locus can "jump' from one
Riemann surface to another at places where it crosses a branch cut. Branch

cuts are the "seams' where different copies of the complex plane have been

i vt ————— T

“stitched together" to form the Riemann surface. They are made between two
branch points, or between a branch point and infinity, by a procedure
described in {1}]. The very unusual behavior of some of the root loci in
[S] may be associated with branch cuts, but a detailed explanation of this !{
behavior will require more research.

The following argument, due to Postlethwaite [18], may be helpful in
understanding why branch points produce the '"turnaround'" effect on root

0 for all (g,s) on the root locus, we have

loci. Since ¢(g,s)

£ 008,5) = 5 8(8,3) + 55 H(&,9)S = 0 (4.8)

and at a branch point (go,so) using Theorem 4.2, we have

3
TS @(go,so) = 0 or (4.9a)
ds l

= 0. (4.9b)
dg 's .2,

But (4.9b) implies that Se is a stationary point of the root locus -- a
point where a branch turns around and doubles back on itself.

We now show that it is possible to determine on which '"side' of a branch
point a branch of the root locus will approach, reach the branch peoint,

turn around, and depart. This result is quite important since without it

we can say little about the locations of loci on the real axis. The
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following theorem will be used in Chapter V:

Theorem 4.3 Given a branch point s, on the real axis, the root locus

will approach it, turn around, and depart from it on the left side
(respectively on the right side) if

2
SGN 3—%-23 sas | ® 1 (respectively -1). (4.10)
ag” ds o

Remark Recall that we have & * iTR G(so) at a branch point.

We prove Theorem 4.3 as follows. In the vicinity of the branch point

Sy define
s = s - So (4.11)

and for a small perturbation 38 in g write the Taylor series

oS = ds [s 8g + i-c-l-% l (dg)2 + . (4.12)
dg "o dg So

The first term is zero. Neglecting higher-order terms, one has

soN [6s] = saN [£5 1, 1. (4.13)
dg o

This illustrates the "turnaround" behavior -- regardless of the sign of dg,
which differentiates "“approaching" and '‘departing," the sign of Ss does not
change. Thus s is always on the same side of Sy*

From (4.8) we may write

3¢

ds 58

i =-—-3}§-— (4.14)
3s

and taking the derivative with respect to g, we get




as [m)- ?:(%&Q%B (4.15)
% (2)

and evaluating this expression at the branch point Sy We have

22
2 . a2)

Using (4.13) and (4.16), we finally obtain

2
SGN [8s] = -SGN [3—2-33 ls < s ] (4.17)
g~ 3s o

and the theorem follows.
There is an interesting corollary to this theorem in the special case

m = 2:

Corollary 4.1 Tfm = 2, (4.10) simplifies to

SGN [33; A(s,)] = 1 (respectively -1) (4.18)

if the loci are on the right side (respectively left side) of S,

This is not difficult to show. For m = 2 the characteristic equation

is (4.3), and (4.10) becomes

ol
379 3¢ 3
SGN|{ —= — |_ _ = SGN | 2 == (-TR G(s)g
[agz 3s S ° so] [ 3s

+ DET G(s)) |, . s]. (4.19)
o :

But recalling (4.2) from Theorem 4.1, this becomes




R g dae o0 S A A

2% 3 2
son|i22 ) . scn[-z ((— TR G(s)) (TR G(s))
LJ3" 3s o 3s :

- .33? DET G(s) )[s .s, ] = scu[-i a—as-(('m G(s))?

- 4 DET G(s))ls - ]- -SGN [5= A(s )] (4.20)
(o]

and the result follows. Tﬁus the loci will be on the side of the branch

point for which 4(s) is positive -- a fact that we will interpret in

Chapter V.

4.3 Break Points

4.3.1 Computation of Break Points

We now give a procedure for computing the break points. Recall (again

from Chapter II) that break points are by definition points where the

characteristic equation has a multiple root So°

Theorem 4.4 The break points are given by the solutions to the simul-
taneous equations

°(g,s) =0 (4.21)
3= 0(8,8) = 0 (4.22)

Remark Again, we may use the resultant (see Appendix) to solve (4.21)
and (4.22) by rewriting ¢(g,s) as

2(g,5) = ¥(s,8) 2B ()" + B (@)s" + ... 4 B ()20, (4.23)

Now the resultant yields an equation in g. We may then obtain the
break point S, by solving (4.22).

Theorem 4.4 can be proved by repeating the proof of Theorem 4.2 with g

and s interchanged, but the following proof is more insightful. Define

v i - o O R TR T R T e o
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89(g,:8,) = 2(8,8) = *(g,,5,) (4.24)

for (g,s) near (go,so). Since ¢(g,s) = 0 for all (g,s) of the root locus,

we have
3 3
80(8,,55) = 35 (85:8,)8s + 55 (8,.5,)98 = 0 (4.25)
where we have taken

OS = s - s (40263)

6g = g - g, (4.26b)

sufficiently small to neglect higher-order terms. If we now consider a

locus point on the real axis, all quantities in (4.25) will be real except
8s = RE [ds] + j IM [6s]. 4.27)

Substituting (4.27) in (4.25) and equating real and imaginary parts to zero,

we get
3¢
IM [8s] T (go,so) = 0 (4.28)
3¢ 3¢
RE [8s] 55 (85,5,) *+ 88 57 (8,.5,) = 0. (4.29)

If we now make So 2 break point, one has IM [6s] # 0 for the branch

breaking in or out. This and (4.28) prove the theoren.

4.3.2 Breakin and Breakout Angles

We now show that the angles of loci breaking in or out are the same as

in the SISO case.

Theorem 4.5 If several branches of the root locus are approaching and

P
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leaving a point on the real axis, their angles are evenly distributed
over 360°, and branches approaching and leaving the break point are
interleaved (i.e. they alternate).

Remark Note that branches on the real axis must be included -- not
just the branches breaking in or out.

To prove Theorem 4.5, we first show that if k branches are approaching

a point S, and k branches are leaving Sy then the first k - 1 derivatives

of the algebraic function g(s) are zero at Sg¢ We have

de 3¢ ¢ d -
T (85559 = 37 (8505,) * 735 (808)) T 1 = 0. (4.30)
0
If s_is a break point 3 (g.,s.) is zero and 33-(g s ) is non-zero, so
o P » 35 8259 3g *“o0’%o ’
that
Tl =0 (4.51)
0

If k different loci are all passing through Sgr S is a root of multipli-

)
city k of the characteristic equation. This means that we have
(1)
iﬁ)— ¢(8,,5,) =0, i =0, 1, coo k - L. (4.32)
By repeatedly taking derivatives with respect to s of (4.30) and using
(4.31) and (4.32), it can be shown that

Hed

. ’0,i=1’ 2' o.tk' 1- (4-33)
ds(l)

Now, in the vicinity of the break point So define
s =5 - 8 (4.34)

(]

and for a small perturbation &g in g write the Taylor series

PORUITURRPVNEP Y
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2
53.%130 o-“;ig]so 6s)% + ... (4.35)

Of course the first k - 1 terms of (4.35) are zero, from (4.33). Taking

the first non-zero term and neglecting the higher-order terms, we have

k)
1 a(k)g "
88 = 17 -—-ds(k) ”o (6s) " (4.36)

Also, by repeatedly taking derivatives of (4.30) we may obtain an expres-

. a(k) . . A
sion for ;;TF% Iso in terms of various partial derivatives of ¢(g,s)
evaluated at (go,so), and these will all be real for s, on the real axis.
(k)
Hence 2'_F§ | is a real number, and from (4.36)
ds( ) So

4%

k ARG [6s] = ARG [dg] - ARG

] = 0° or 180°. (4.37)
We may now write

ARG [6s] = ¢ (9 +n360°), n =0, 1, ... k -1 (4.38)

where 8 is 0° or 180°, depending on the sign of ég. To find the angles for
branches departing from Sy take ég > 0, and to find the angles for branches

arriving at So* take §g < 0. These form two k‘h-order Butterworth patterns,

with principal angles of 0° and 180°. This proves the theorem.
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CHAPTER V

Root Loci on the Real Axis

5.1 Introduction

It is generally very difficult to plot the root locus precisely for
finite gains. Exact analytical expressions for .the various branches are
usually difficult or impossible to obtain, and attempts to discern the
locus by actually plotting the closed-loop poles for various values of k

tend to be onerous at best. These difficulties hold even in the SISO case;

they are considerably greater in the multivariable case.

There is, however, one part of the root locus that can be plotted
exactly with relative ease -- the portion that lies on the real axis. The
form of the locus on the real axis is of course known exactly, and, in
addition, the number of branches of the rout locus on the real axis can
change only at a finite number of points. Thus a relatively small amount
of work may yield an exact plot of a sizable portion of the root locus;
indeed in some cases all of it (see Example 5.2). Knowledge of asymptotes
and angles of arrival and departure is often sufficient to sketch the rest
of it,

In the SISO case the rule for the location of root loci on the real
axis is very simple (see Chapter II). This is because only one branch of
the root locus can lie on the real axis at any given point. However, in
the multivariable case as many as m branches can lie on the real axis at
a given point. Thus the problem is not one of determining whether a branch

i is present, but one of determining how many branches are present. The

“turn-around" behavior associated with branch points (not present in the




i

SISO case) makes things even more complex.
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The first observation is that, unlike in the SISO case, knowledge of

pole and zero locations alone is not sufficient for determining the number

of loci on the real axis. The following example makes this clear:

Example 5.1 Plot the root loci for

s + 1 0 S - 2 0
52 s+2
Gl(s) = 0 s -2 and Gz(s) = s+11]°
s -1 s -1

Since each of these represents two decoupled SISO systems, we may
immediately plot the root loci, which are given in Fig. S.1. Note
that although Gl(s) and Gz(s) have their poles and zeros at the same

locations, the number of loci on the real axis between -1 and 1 are

different.

Despite this difficulty, some equations for the number of branches of
the root locus on the real axis at a given point may be found. Also, these
equations are not too complicated to be useful. We consider first the case

m = 2, then the general case, and finally the case when G(s) is symmetric.

5.2 The Case of Two-Input-Two-Output Systems

The following theorem provides a step-by-step procedure for deter-

mining the nunber of root loci on the real axis by solving three simple

inequalities for bounds on s. d

Theorem 5.1 For a system with m = 2, let s be any point on the real
axis. Define

aCs) $ (TR G(s))? - 4 DET G(s). (5.1)

Then we have:

(i) 1If DET G(s) < 0, exactly one branch lies on the real axis at s; i
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Root Loci for Example 5.1
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(ii) If DET G(s) > 0, two or zero branches lie on the real ~xis at s:

(a) 1f a(s) < 0, zero branches lie on the real axis at s; !

(b) If a(s) > 0 and TR G(s) > O, zero branches lie on the real |
axis at s, -

(c¢) If a(s) > 0 and TR G(s) < O, exactly two branches lie on }

the real axis at s.

To prove Theorem 5.1, we will follow the order in which it is stated.

st T e .

This will minimize confusion and also minimize the amount of work needed,
since DET G(s) > 0 is necessary to have A(s) < 0, and since TR G(s) is |

sometimes not needed.

We start by observing that the characteristic equation with m = 2 is
5(g,5) = g° - (TR G(s))g + DET G(s) = O. (5.2)

Now let s be real and vary over the entire real axis. For a given S5 the
number of branches on the real axis at o is equal to the number ¢f negative {
real roots of (5.2) with s = s, (recall that a negative real g corresponds

to a positive real gain k). Since the roots oy (5.2) are given by
¢ = i(mc(s) = ViG3)) (.3)

we merely investigate how many negative real values of g we get for various
values of A(s), TR G(s), ard DET G(s). Thus if A(s) is negative thc two
values of g will be complex, and there will be zero branches on the real
axis at s. But 4(s) can only be negative if DET G(s) is positive. If

' DET G(s) is negative, then

‘TR 6(s)| < V(TR G(5))° - 4 DET G(s) (5.4)

and the two values of g are real and of opposite sign. Hence there is
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exactly one branch on the real axis at s. The other rules follow similarly.

We now make some remarks that will hopefully aid in understanding some

of the features of this theorem:

Note that the number of loci on the real axis changes by one
whenever DET G(s) changes sign. This makes sense, since loci
start at poles and end at zeros and since DET G(s) changes §ign

at a (first-order) pole or zero.

The number of loci on the real axis may change by two whenever :
A(s) changes sign. But the points at which A(s) will change

sign are the branch points (recall from Theorem 4.1 that A(s) is

zero at a branch point), and the "turn-around" behavior of a

root locus branch at a braach point would indeed make the

number of loci change by two. In fact, Corollary 4.1 correctly

predicted that the '"side'" of a branch point from which a branch

would approach, turn around, and depgrt is the side for which

A(s) is positive!

The number of loci on the real axis will occasionally change by
two at points where TR G(s) changes sign. This happens when
there is a double pole or zero with both branches departing or
arriving on the same side. For example, consider

s -1
s -~ 1 0

G(s) =

Clearly there will be two branches both departing the pole at -1

in the positive direction. We have

IO “S——

i N
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2s - 3
TR G(S) = —S'T-l—

which does indeed change sign at -1.
Note that if

_ 1 [ M1(8) np,(s) {
G(s) -a—(s—) n.(8) o (s) (5.5) |
21 22

we have
TR G(s) = a-(ls—) (1 (s) + ny,(s)) (5.6a) 1
DET G(s) = d(l)z (nll(s)nzz(s) - "12(5)“21(5)) (5.6b)
S
a(s) = —L ((n),0) = n,5(50)2 + 4n, (s)n () (5.6¢)
sy \ 22 12(s)ny, .

and since d(s)z is always positive (except at poles) we may neglect it in

solving the inequalities for bounds on s.

We end this section with an example (taken from [1]) to illustrate how

Theorem 5.1 may be implemented.

Example 5.2 Plot the root locus for I

1 s -1 s

R B VTG

-6 s -2

By computing ¢(8,s), or by some other procedure
that G(s) has some first-order poles at
Zeros. Using (5.6b) one has

» it can be verified
-1 and -2, and no finite

2
DET G(s) = —S._* 35 + 2 >
((s + 1)(s + 2))

so that DET G(s) < 0 for -2 < $ < -1 and consequently there is one
branch on the real axis for -2 <s <],
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Using (5.6¢c) we have

1 - 24s
((s + 1)(s + 2))°

A(s) =

so that A4(s) < 0 for s > 1/24 and therefore there are no branches on
the real axis for s > 1/24.

Finally, using (5.6a) we have

_ 2s - 3
) T EE DG D

and restricting ourselves to the range of s not already considered we
have TR G(s) < 0 for s > -1 or s < -2, and this implies that there are
two branches on the real axis everywhere else.

The root locus branches on the real axis are plotted in Fig. 5.2. But

since we have two poles, no finite zeros, and two asymptotes, this is
the complete root locus!

The General Case

The general case when m > 2 is much more complicated than the case

when m = 2. However, after evaluating a few quantities, we may use the
following theorem to determine immediately the exact number of loci every-

where on the real axis.

Theorem 5.2 Assume that all higher-order poles and zeros on the real

axis are "simple" (''simple" poles and zeros were defined in Chapter
I1I1I). Then the exact number N of loci on the real axis at a point so

'is given by

Z ki -1 number of
N = SGN | (s - z;) " TRG (s)ls - ] + asymptotes>
zeros zj of i at +o
odd order to
right of s,

k.
+ Z SGN[(s-pi) 1'rRG(s)lss ]
poles pj of Py
odd order to
right of sg

2
D> ssn[é-—gﬁ N ] (5.7)
branch points 3g- s i
bj to right
of s4
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Figure 5.2

Root Locus for Example 5.2
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where the ki are the orders of the poles and zeros, and where the

summations are taken over zeros and poles of odd order and branch

points on the real axis and to the right of So¢

It should be noted that (5.7) is not nearly as complex as it might
appear at first glance. In order to apply Theorem 5.2, we need only
evaluate the sign of a quantity at each pole, zero, or branch point.

Once this has been done, we simply add up the different contributing terms
of (5.7) for each stretch of the real axis between any two of the three
types of points to determine the number of loci -on that stretch of the
real axis.

we prove Theorem 5.2 by a '"conservation of loci" argument: each locus
must start somewhere, end somewhere, and be continuous in between. We start
with just poles and zeros, and then consider break points, asymptotes on
the real axis and branch points, adding them in as we proceed.

We claim first that if there are only first-order poles and zeros on
the real axis, the number of loci N on the real axis at a point So is

given by

N = (number of poles to right of s, )
with a branch departing at 180°

(number of zeros to right of So)
with a branch arriving at 180°

(number of zeros to right of s
with a branch arriving at 0°

%)

- (number of poles to right of $0)

with a branch departing at 0° (5.8)

This is easy to see, since the first two terms give the number of

branches moving in the negative real direction and the last two terms give

the number of loci moving in the positive real direction at s o (Recall that

P
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the angle of arrival is the direction in which the locus is moving when
it reaches a zero.)

We now extend this to higher-order poles and zeros that are simple.
Recall that a simple pole or zero will have loci departing from it or
arriving at it in a single Butterworth pattern. By symmetry, we see
immediately that a simple pole or zero of even order can have no effect
on the number of loci on the real axis, since such a pole or zerc will
either have loci departing or arriving at 0° and 180°, or no loci departing
at either 0° or 180°. Either way, there can be no contribution to (5.8).

On the other hand, a simple pole or zero of odd order must have exactly

one locus departing or arriving at either 0° or 180°. The simplest way

to determine the angle is to use Theorems 3.8 and 3.9, and upon substitution
in (5.8) these yield the first and third terms of (5.7). Note that since we
are only considering points on the real axis, all quantities will be real,
and in (5.7} we may use the SGN function instead of the ARG function.

Next, we introduce break points and asymptotes on the real axis. It
is easy to see that break points have no effect on the number of loci on
the real axis, since breakin points act like double poles with loci
departing at 0° and 180° and breakout points act like double zeros with loci
arriving at 0° and 180°, and neither of these makes any contribution to
(5.8). However, asymptotes on the real axis are zeros at infinity with
branches arriving at 0°, so according to (5.8) we must add them in. This
yields the second term in (5.7).

Finally, we must introduce branch points. Here we must use Theorem
4.3, which stated that the ''side" from which a branch will approach a

branch point bi’ turn around, and depart from it is given by

I T
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SGN 3—;--93 |b = 1 (respectively -1) (5.9)
g” 3s i

depending on whether the locus is on the left side (respectively the right
side) of bi' If the locus is on the left side of bi’ then bi is acting like
a combination of a zero with a branch arriving at 0° and a pole with a branch

departing at 180°. In that case, according to (5.8), we should add two to

the number of loci on the real axis if bi is to the right. On the other
hand, if the loci are on the positive side of bi everything is reversed
and, according to (5.8), we should subtract two from the number of loci.
We use Theorem 4.3, and this yields the final term in (5.7). We have now
considered all possibilities, and Theorem 5.2 is proved.

The following corollary is interesting, primarily because it is the
closest we can come to generalizing the SISO rule for loci on the real axis
to the multivariable case. It may also be used as a check when applying
Theorem 5.2, and may even provide sufficient information by itself for
some applications.

Corollary 5.1 Assume that all higher-order poles and zeros on the real

axis are simple, and that there are no asymptotes on the real axis at

+», Then, counting multiplicities, at least one branch (in fact, an

odd number of branches) of the root locus lies on the real axis at
a given point So if there is an odd number of poles and zeros to the

right of Sy

Remarks (1) There is an odd number of poles and zeros to the right
of £, if and only if DET G(so) < 0 (this is proved below);

(2) 1If there is an even number of poles and zeros to the
right of L then there is an even number of branches on

the real axis at So Unfortunately, zero is an even

number,

Corollary S.1 follows almost immediately from (5.8). Making the
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obvious substitutions, write (5.8) as (x1 - Xy * Xg - x4). The total
number of poles and zeros to the right of L counting multiplicities, is !
(x1 * Xyt Xgo e x4), and it is clear that (5.8) will be odd if and only if
this quaniity is odd, guaranteeing at least one branch on the real axis at
S5 Recalling that break points have no effect on the number of loci on
the real axis, and that branch points can only change the number of loci
by an even number completes the proof.

The first remark follows from the fact that DET G(s) changes sign at
the poles and zeros of G(s) (counting multiplicities), and from the following
argument which proves that DET G(s) is positive at infinity if there are no
asymptotes there. Suppose that DET G(s) is negative at infinity. Then the
product of the eigenvalues of G(s) at infinity is nejative, and G(s) must
have at least one negative real eigenvalue at infinity. But the charac-

teristic equation for the root locus is
A(g,s) = DET (g1 - G(s)) = O (5.10)

so if G(s) has a negative real eigenvalue at infinity there must be a
branchof the root locus at infinity, contradicting the assumption that
there are no asymptotes on the real axis at +=,

There is another way of showing that if DET G(so) is negative there
is at least one branch of the root locus on the real axis at So* Consider
A(g,so) to be a polynomial in g of degree m with constant term
(_1)m DET G(so). If m is odd and DET G(so) is negative, then the constant
term is positive. But for large, negative values of g, A(g,so) will be
negative. Since A(g,so) is continuous, it must cross the negative g-axis

somewhere, and hence A(g,so) must have at least one negative root, which
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implies that a branch of the root locus lies on the real axis at S

m is even the same argument applies, with the signs of (-1)ln DET G(so)
and A(-@,so) reversed.

Considering A(g,so) in this fashion also gives us an upper bound on
the number of loci that may lie on the real axis at Sy Since A(g,sO) has

degree m, it can have at most m negative real roots. Hence there can be

|

at most m loci on the real axis at so.

S.4 The Case of Symmetric G(s)

In this section we specialize to the case when G(s) is symmetric.
Since G(s) is symmetric for reciprocal networks, this case does have some
practical applications. Our final result depends on matrices obtained from
G(s) by several transformations, so for clarity we will proceed with its
derivation and then, having derived it, state the result as a theorem at
the end of this section. This result is due to Levy [27].

The characteristic equation of the root locus is

A(g,s) = DET [gI - G(s)] =0 (5.11)

so the number of branches of the root locus at a point s on the real axis is

the number of negative real eigenvalues of G(s). However, if G(s) is |
symmetric then all of its eigenvalues are real, and we need only to
determine how many of them are positive and how many of them are negative.

In order to keep track of the number of negative eigenvalues of G(s),

we will use the signature of G(s), which we now define.

Definition Let M be a n-n-singular real symmetric matrix, and define

m_ = the number of positive eigenvalues of M (5.12a)

¥y S = et - < o)




m_ = the number of negative eigenvalues of M, (5.12b)
Then the signature o(M) of M is defined as

o) £m, - m_. (5.13)
Remark Since M is non-singular, we have

m +m =m {5.14)

where m is the size of M. Therefore we may determine m, and m_ from
a(M).

The signature of a matrix is a useful concept in the present context

because it is invariant under congruency transformations. Thus if L is a

non-singular real matrix and we have

P = LMLT (5.15)

then o(P) = o(M). We will use this property several times in this section.

Now write the left matrix fraction description of G(s)
6(s) = D"L(s)N(s) (5.16)

where D(s) and N(s) are left coprime polynomial matrices. The poles of G(s) }
are the zeros of DET D(s), and the zeros of G(s) are the zeros of DET N(s).
Since the product of tne eigenvalues gi(s) of G(s) is given by

DET N(s) y/
12181(3) = DET G(s) = DET D(s) (5.17) :

the eigenvalues gi(s) can only change sign at the real poles and zeros of
G(s).
For all points on the real axis that are not poles and zeros of G(s),

we have

D(s)G(s)DT (s) = N(s)D'(s) 2 P(s) (5.18)
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is a congruency transformation of G(s), and hence
d(G(s)) = G(N(s)D"(s)) = G(P(s)) (5.19)

Since: (1) the number of loci on the real axis at s is the number of

-i negative real eigenvalues of G(s); (2) the number of negative real eigen-
values of G(s) may be determined from ¢(G(s)) = o(P(s)); and (3) o(P(s)) =
0(G(s)) can only change at a pole or zero S, of G(s), we now investigate
how o(P(s)) changes near a pole or zero s_. A procedure for doing this

o
follouws.

We may write
P(s) =P_+ P, (s -5) + + P,(s -5 )d (5.20)
o 1 o Lo d o ¢

where the Pi are real and symmetric and where Po is singular. Hence there

exists a real non-singular matrix ‘I‘° such that

G. 0
T (o]
TPT = (5.21)
000 [ 0 0]
where Go is real, symmetric, and non-singular. We may then define

G 0 d [A. B .
Q(s) = TOP(s)T: = [ ° ] + 2: [ ; i] (s - so)1 (5.22)
0 0 i=] Bi Ci
and Q(s) is congruent to P(s).

We now zero out B1 by using another congruency transformation. Define

1

Vi =G, By (5.23)

iss - sy (5.24)
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R(s) =] o Q(s) (5.25)
~V1§ I 0 1

and note that we miy write

G° 0 Al 0
R(s) = + 13+ ... (5.26)
0 o 0 C1

where Cl is real and symmetric. If Cl also has full rank we may halt this
procedure, since in this case {5.26) has the desired form given in (5.31)
below.

If Cl does not have full rank, this procedure must be repeated

starting with (5.21), and with él taking the place of Po. That is, we

[ ] (5.27)
¢ o

where T is a real non-singular matrix and where G1 is real, symmetric, and

write

non-singular. Now define the congruency transformation

1 0
S(s) = T R(s) (5.28)
0 T1 y

and write

o '8 =3 Bgz)T ()
1 1

A, ! d [al® @

S(s).[ J -l-t-G— s t: ]t a9
0 0

0 o0

s
Next, zero out B( %) using a congruency transformation of the form
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1 0 I (-V.3% - V.3)
T(s)s $(s) 2 1 (5.30)
(-';sz . in) 1 0 1

and if the resulting 652) does not have full rank, run through the entire
procedure yet another time. The procedure will terminate when we have

obtained a polynomial matrix of the form

i ' (2N
G O A 0 A 0
) =) ° Y Y G APy (i N R X
0 o0 16, 0 G, 0
- 01 0 |
10 0 {1 0 0O
- (k) | (k+l)
0 0
| H-te g el ! (5.31)
0o * 0 Gy
L 1 0 O
(i+1) (1)
where A,,, = DIAG [A;"),G,], and the G, all have full rank.

Nowwe may investigate how o(P(s)) changes near So° Since Z(s) was
obtained from P(s) by a series of congruency transformations, we have

o(Z(s)) = o(P(s)). In the vicinity of S Z(s) may be approximated by

kel

2(s) ® DIAG [G,, G,3, G,3%, ... G, 3"*1) for s ~ 5, (5.32)

and the eigenvalues of Z(s) are the eigenvalues of Go’ 615, veo and
Gk+1;k‘1’

Now consider what happens to the signs of the eigenvalues of Giii if
3 charges sign from positive to negative. 1f i is even there will be no
changes in the signs, but if i is odd all of the positive eigenvalues will
become negative, and vice-versa. Then 0(6131) will change sign, and so
the change in c(G,3") will be -20(G,). (Note that if 3 is positive,
c(Gi!i) = G(Gi)') It follows immediately that the change in 9(Z(s)) will

R, R



be
do(Z(s)) = <2 Z 9(Gy). (5.33)
i odd
From (5.13) and (5.14) we may write
n_(2(s)) = 1(n . o(zm)) (5.34)

where m_(Z(s)) is the number of negative eigenvalues of I(s) and m is the
size of 2(s). This implies that the change in the number of negative real
eigenvalues will be
am_(2(s)) = -1s0(2(s)) = 20(61). (5.35)
i odd

Now let s vary along the reai axis from +» to - ~, and assume G(=) is
positive definite (this is equivalent to assuming that there are no
asymptotes on the real axis at +»). For each pole or zero s; on the real
axis, we may compute a set of matrices Ggi) by using the above procedure.
Then, recalling that o(Z(s)) = o(P(s)) = v(G(s)) and that the number of
branches on the real axis at s is the number of negative real eigenvalues
of G(s), we have proven

Theorem 5.3 Assume that there are no asymptotes on the rsal! axis at
+=, and that G(s) is symmetric. For each pole or zero s; on the real

axis compute the matrices Ggi). using the procedure described above.
Then the number of branches N on the real axis at s is given by

N = Z Z a(c‘”) (5.36)

all poles and j odd
zeros s to
right of s

There is an interesting observation that may be made on the procedure

it St
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| (1) =[P 0 0],1=0,1, ... d (5.37)

R 1 Po]
Recall from Lemma 3.1 that the structure indices of P(s) at s, are given by

ki = RANK T(i) - RANK T(i - 1), 1i=0,1, ... d. (5.38)

However, it may also be shown that the congruency transformations used

to generate the Gi may be applied to the T(i), yielding matrices of the form

G 0 i ]
] ]
o . 0 ' LIS
0 0 [
___,__--+_ -_-+_-
A1 I 0 1 Gol 0 1
i e e
| G1 o1 1 | oo
0| | 1 1

so that we have

RANK G, = RANK T(i) - RANK T(i - 1), i=0,1, ... d. (5.39)

i

Therefore the pole-zero structure at S, is determined by the ranks of

T RO B —m n a

the Gi’ while the number of branches of the root locus at So is determined

by the signatures of the Gi'
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CHAPTER VI
Asymptotic Behavior of Root Loci

6.1 Introduction

In this chapter we discuss the behavior of the branches of multi-
variable root loci that tend to infinity as the feedback gain k approaches
infinity. We have already examined the behavior of the branches that
approach the finite zeros of G(s) as k+» (i.e. the angles of arrival), and
we now examine the behavior of the branches that do not approach finite
zeros. These branches approach asymptotes as k+=, and it should be evident
that knowledge of these asymptotes would be a considerable aid in plotting
the root locus.

An asymptote is characterized by its angle and by its order, which
gives the "velocity" at which the locus tends to infinity. Asymptotes
start at points called pivots, and unlike the SISO case, pivots for multi-
variable root loci may be complex (see Example 6.1).

We consider first tﬁe case where all asymptotes are of first order,
since this case holds in general. The Newton polygon technique is used
to show how the first-order asymptotes may be obtained from the eigenvalues
of the first Markov parameter of G(s). We then give equations for the
first-order asymptotes and pivots based on the characteristic equation,
and give an example with first-order asymptotes, complex pivots, and
branch points, break points, and loci on the real axis.

The Newton polygon technique on which this thesis is based seems to
be somewhat inapplicable to the case of higher-order asymptotes. Also, a

considerable amount of work has already been done on this subject, using

Aamie,
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other approaches. For the sake of completeness, we conclude this chapter
with a summary of the results of Shaked and Kouvaritakis [15] and Sastry

and Desoer [17]) on this subject, and we also note some other results.

6.2 First-Order Asymptotes and Pivots

In this section we examine the case in which all asymptotes are of
first order. Since this is true in general, the results of this section
are usually sufficient for computing all asymptotes and pivots. We show

first how the asymptotes may be cbtained from the first Markov parameter,

and then how both the asymptotes and their pivots may be obtained from the'

characteristic equation.

Theorem 6.1 Let the Laurent series expansion of G(s) at infinity be

G(s) =16, + 556, ... (6.1)
s S

Then, if and only if G1 is non-singular, all asymptotes are of first
order with angles

where the Ai are the eigenvalues of Gl.

Remark If the system is described by state-space matrices (A,B,C), we

have Gl = CB.

Theorem 6.1 is not a new result, but the following proof which is
based on the Newton polygon technique gives an interesting picture of what

is happening. Since we are interested in the behavior of s as s+», sub-

stitute s = 1/z in (6.1). This gives
. G(s) = 2G, + zzc2 ¢ oo =2(G ¢ 26y + ) 2G(2) (6.3)

where G(z) is a matrix power series in z. Substituting (6.3) in the

Lt
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characteristic equation, we have
8(g,s) = DET [gI - G(s)]
- ol . a m-1 2 principal minors m-2
g - 2TRG(2)g" " ¢+ 2 2:(af order 2 of C(z))8
- eee + 2®-1)™ DET G(2) = 0. (6.4)

Since G(z) is a matrix power series, all of the coeificients in (6.4) are
power series in z. The Newton polygon for (6.4) is drawn in Fig. 6.1, and

it is clear that all of the points will iie on or above the line extending
from the point (0,m) to the point (m,0). Since the coefficient of gm is one,
the point (m,0) is definitely part of the polygon, and if and only if the
constant term of DET é(z) is non-zero, the point (0,m) will also be part

of the polygon. In this case, the Newton polygon will be the single line

drawn in Fig. 6.1.

| i Now note that the constant terms of DET G(z), TR G(z), etc. are just

DET G,, TR Gl’ etc., since G(0) = G1 and since the constant terms are

18
obtained by setting z equal to zero. Thus the Newton polygon will be as

in Fig. 6.1 if and only if DET G1 is non-zero, i.e. iff Gj_is non-singular.

i | We then have

g = cz for (g,2)*(0,0) (6.5)
or equivalently,

s ¥ -ck for (s,k)*(=,*®) (6.6)

where ¢ solves
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Newton Polygon for First-Order Asymptotes
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m m-1 principal minors) m-2 _ _1ym
¢ - TRGe +2:(of order 2 of G, ¢ see * (-1)7 DET G,

= DET (eI - Gll = 0, 6.7
This shows that c is an eigenvalue of Gl‘ Applying the definition of angle
to (6.6) concludes the proof.
We now show how the first-order asympistes and pivots may be obtained

directly from the coefficients Ai(s) of the characteristic equation

¢(g,s) = 0.

Theorem 6.2 Given the equation
m m-1
#(g,s) = Am(s)g + Am_l(s)g L B Ao(s) =0 (6.8)

we can write Ai(s) as

a; (a1~1)
Ai(s) = sis + ;s + (lower-order terms),
i=0,1, ... m (6.9)
_ and define
M8 (i:a - i23,-3, =0, 1, ... (6.10a)
N4 {i:i+1€M. (6.10b)

Then ihe first-order asymptotes are given by

si S P; * cik. i=1...m (6.11)

where the ¢, solve
) (5 -1l =0 (6.12)
JEM

and the pivots p; are given by

- an L N
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T (v, T (8, (-1
Py -jSM( j i) LC-N—( ) 1). (6.13)
T (50 m - o)
j€EM

Remark The angles of the asymptotes are given by ARG [ci).

The proof of Theorem 6.2 is straightforward. The first step is to

assume that
s & p +ck, (5,k)+(=,») (6.14)

since this is the behavior of interest. Solving for k, we get

k = ﬁé—ﬂl . (6.15)
Now substitute g = -1/k in (6.8) and multiply by k™. This gives

ALK - A K™ o L (1" (s) = 0. (6.16)
Substituting (6.15) in (6.16) and multiplying by c™ gives

A (s-P) - A () (s - )" e+ un v (1) (s)c" B 0. (6.17)

The degree of the ith

term on the left side of (6.17) is (ai +m - 1), where
the exponents a, are defined in (6.9). The terms of highest degree are
the jth terms, where j € M and where M is defined in (6.10a). Since the
left side of (6.17) is asymptotically equal to zero, the sum of the

th terms must be zero. This yields (6.12). The sum

coefficients of these :
of the coefficients of the terms of degree one less than the highest degree
must also be zero. This gives

3 o5, (-1 @- §) opre yded).
B, (e’ esen’em- 0 pieg) B (80D %) 0(6 N
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and solving for p yields (6.13). This concludes the proof.

6.3 An Illustrative Example
; In this section we give an example that illustrates the computation

of several features of the multivariable root locus.

Example 6.1 Draw the root locus of

1 s 2s + 6

G(s) = 3
(s +2)°|-(s+2) s+2

Poles and Zeros

We have
®(g,s) = (s2 + 4s + 4)g2 - (2s +2)g+ 3 =0

so there is a double pole at -2 and no finite zeros. Hence there are
two asymptotes.

Aszggtotes

(i) By inspection, we have

1 2
G, =
1 -1 1 .

which has full rank and eigenvalues 1 ¢+ /Z j. Hence, from Theorem
6.1 there are two first-order asymptotes with angles

ARG [-1:vZ j] = 125.3°, 234.7°,
(ii) By examining the coefficients of ¢(g,s), we have
M=1{0,1, 2}, N=¢.
Using Theorem 6.2, (6.12) becomes
2

¢ + 2+ 3 =0

which has the solutions -1:vZ j. Therefore the angles of the
asymptotes are

ARG [-1 ¢ V2 j] = 125.3°, 234.7°.
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Pivots

Again using Theorem 6.2, the pivot for the asymptote with ¢ = -1 + /7 j
is, from (6.13),

2

2
4(-1 + /2 ) + 2(-1 + VT §) -2 25,

2(2 - 1)(-1 + V2 ) + 3(2-0)

Note that this number is complex. By symmetry, the other pivot is

-2 ¢ %;j .

Real Axis

Since m = 2, we may use Theorem 5.1. We have

DET G(s) » — 5 >0 for all s
(s +2)
832 + 40s +' 44
A(s) = - 2 > 0 for -3.37 < 8 < =1.63
(s +2)

TR G(s) --233—:;§3 <0 for s < -1,
S +

Hence there are two loci on the real axis for -3.37 < s < -1.63, and
no loci on the real axis elsewvhere.

Branch Points

Since m = 2, by using Theorem 4.1, the branch points are solutions of

992 + 40s + 44

(s + 2)*

A(S) 8 - = 0

which has the solutions -3.37 and -1.63.
Hence there are branch points at those locations.

Break Points

Theorem 4.4 gives the break points as solutions to the simultaneous
equations

(s> +4s +4)g2 - 2s + 2)g + 3 =0

25 + 4)g% - 2= 0

-

-
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which have the solution (go.so) s (-1,-3).

Since 8, is real and negative, -3 is a break point. We know from

Thgorem 4.5 that the angle of the branch breaking in or out will be
m .

We now have enough information to plot the entire root locus. The
root locus plot is given in Fig. 6.2.

6.4 Higher-Order Asymptotes

We now review briefly the results of Sastry and Desoer [17] and Shaked
and Kouvaritakis {15] on the subject of higher-order asymptotes. Proofs are
omitted, since they do not employ the main methodology of this thesis.

In Section 3.5 we adapted the procedure used by Sastry and Desoer in [17],
and obtained equations for the angles of arrival and departure which involved
solving a generalized eigenvalue problem in a Toeplitz matrix. We now state
Sastry and Desoer's original result, which dealt with asymptotes of root

loci:

Theorem 6.3 Let the Laurent series expansion of G(s) at infinity be

1 1
G(s) --;-(i1 4!’762 + .ee (6.19)
(i) Then the angles of the nth-order asymptotes (if any) are
1 1360'
easymptote, n = ARG [-A;] + &2
j s 0, 1, see NN = 1; ns 1’ 2. e (6020)

where An solves the generalized esigenvalue problem

G, 0 0

DET G.z 0 =0 (6.21)
Gy Gy eeo O
b(cn - knl) Gn'l 'X X} Gl
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provided this is a polynomial equation in \n‘

(i1) If certain matrices Gi obtained from the Gi and defined below in

(6.26) have simple null structure, then all of the asymptotes
are integer-ordered, and hence are given by (6.20) and (6.21).
If this assumption does not hold, then it is possible to have
fractional-ordered asymptotes.

(1ii) The pivots <n for the nth-order asymptotes may be found by
tolving
r 6, 0 0~
DET . : - 0. (6.22)
(Gn - Anx) Gl‘l'l ese 0
(Gnol - ann) (Gn - Anl) ces Gl-

‘These results are of course proved in [17], although since virtually
the same procedure was used to prove Theorem 3.10, it should not be diffi-
cult to see where these results come from.

In {17], Sastry and Desoer interpret these generalized eigenvalue
problems as finding the eigenvalues of restricted linear maps. They also
consider some ways of simplifying these problems, based on the Toeplit:z
structure, to facilitate their solution. The interested reader is referred
to {17).

Comparing Theorems 6.3 and 3.10, and recalling how Lemma 3.1 linked
Theorem 3.10 to the Smith-MacMillan form of G(s), the question arises as
to whether there is any relation between the orders of asymptotes and the
Smith-MacMillan form. Verghese and Kailath (22] have pointed out that
there is indeed a relation: the orde:: of the asymptotes are the orders of
the Smith-MacMillan zeros of G(s) at infinity. The importance of this

result is that the asymptotes may be regarded as branches arriving at

infinite zeros, so that the angles of the asymptotes are merely the “angles
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of arrival" at infinite zeros. In earlier literature on the root locus
(e.g. [15)), infinite zeros were considered to be fictitious objects. But
they are in fact perfectly well defined from the Smith-MacMillan form at
infinity. (For a discussion of the Smith-MacMiiian form at infinity, see
(23], p. 449.)

The approach taken by Shaked and Kouvaritakis [15] is completely
different, and while their results are more thorough, they are also more
arduous computationally. In [1S) Shaked and Kouvaritakis approach the
yroblem from a state-space perspective, and interpret their results in terms
of mappir.: detween spaces defined by the ranks and nullspaces of the Markov

parameters G, . We summarize their main results in the following theorenm:

Theorem 6.4 Let the Laurent series expansion of G(s) at infinity be

1 1
G(S) B - G * 7 G * .0 (6023)
t ] 1 2

and define the proiected Markov parameters Ci. i =1 ...v using the
following sequence: -

(6.2¢)
& [P é] [ (6.25)
Giay = NNy _q oee NyGyu My “z e My (6.26)

where (6.25) is the spectral decomposition of éx- exhibiting its Jordan
form; (6.26) is the projection of G, , onto the nullspaces of G, ... 6,:
and we have assumed that all of the Gi have simple null structure. The
sequence terminates at i s v when G has full rank.

th

The angles of the i  -order asymptotes are then given by

n360° .
euyllptote, -{ARG[Ai j]’—T-.nUO. 1, ...1-1,
J=s1l,2, ¢ee di‘l .di; i=s1,2, ...v (6.27)




where Xi j is the jth non-zero eigenvalue of éi and di ls the rank

deficienéy of Ci (d, = m.

Shaked and Kouvaritakis also give an alternative approach that can be
used when the simple null structure assumption on the éi does not hold.
Kouvaritakis [24] discusses the use of a constant gain pre-compensator to
make the éi have simple null st. ‘- .ure, which reduces the orders of the
asymptotes and thus improves gain margins. In [25] Kouvaritakis extends
these results to the case of non-proper systems, and in {26] he applies
these results to the optimal root leci associated with the linear quadratic

regulator problem.
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CHAPTER VI1

Other Results

7.1 Introduction

In this chapter we discuss briefly several other results on multi-
variable root loci that have recently appeared in the literature. Although
these results are rather minor, we feel that they are sufficiently
interesting to be included in this thesis, since one of the objectives of
this thesis is to provide a detailed survey of the properties of multi-
variable root loci.

We will discuss and pfove three main results. First, it will be shown
that the SISO root locus rule on the conservation of the sum of the closed-
loop poles as the gain k is varied (see Section 2.5, rule (9)) generalizes
to the multivariable case. This was first pointed out to us by Levy [27],
and proved independently by Byrnes and Stevens [20]. Next, it will be shown
how to compute the values of the gain k for which the root loci intersect
the imaginary axis. This result is due to Shaked [28]. Finally, it will be
shown how graphical bounds on the root loci may be constructed. This

result is due to Owens and Field [29].

7.2 Results

We now show that the SISO r.ot locus rule (Section 2.5, rule (9)) on
the conservation of the sum of the closed-loop poles as the gain k is varied
generalizes to the multivariable case.

Theorem 7.1 The sum of the closed-loop poles does not vary with the

Teedback gain k if and only if there are m infinite zeros, each of which
has order not less than two.
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Remark . s condition will hold if and only if all of the structure
Indices of G(s) at infinity are greater than or equal to two.
We prove Theorem 7.1 by writing G(s) as an irreducible right matrix fraction

description

G(s) = N(s)D(s) ™. (7.1)
The open-loop poles are then the solutions to

DET [D(s)] =0 (7.2)
(see [23]), and the characteristic equation becomes

A(g,s) = DET [gI - G(s)] = DET [I + kG(s)]

DET_[D(s) + kN(s)] -
DET D(s) g (7.3)

=2
which may be written as

): }
DET [D(s)] + k 2 DET (9 +«e Dy 45 Nju Dyyq cee Dpl # el = 0
i=1 (7.4)

th

where Di is the i column of D(s), and similarly for Ni‘

Now, DET [D(s)] is a monic poiynomial of degree n, and the sum of its

n-l ' 1f and only if the rest of the

roots is minus the coefficient of s
terms of (7.4) are polynomials of degree not gieater than n - 2, then the
sum of the closed-loop poles does not vary with k. We now investigate the
circumstances under which this is true.

Let the column degrecs of D(s) be [dl’ see dm]’ vwhere di is the largest
of the degrees of the elements of colum Di' If we assume that D(s) is

column-reduced (see [12]), then we have
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n = DEG [DET D(s)] = d1 + dz * L0 ¢ dm‘ (7.5)

Now, suppose that the column degrees of N(s) are [“1’ .o nm]. if we have
n, < di -2,i=1, ... m (7.6)

then the coefficients of all of the powers of k in (7.4) will be of degree
not greater than n - 2, The condition (7.6) will be satisfied if and only
if
LIM sG(s) = 0. (7.7)
S+
Note that the assumption of D(s).being colum-reduced is necessary for
(7.6) and (7;7) to be equivalent. However, D(s) may always be made column-
reduced by elementary column operations, and these may be included in the
MFD (7.1). Both of these results are shown in [12].
Now let the Laurent series expansion of G(s) at infinity be
Gis) =16y s+ 6+ . | (7.8)
s s
From Lemma 3.1 (see also [12], [23]), the number of first-order zeros at
infinity is RANK Gl' If this is zero, G1 is zero, (7.7) holds, and the result
follows.
Byrnes and Stevens [20] prove this result by using a different technique.
The importance of this result is that it is a straightforward generalization
of the corresponding SISO root locus rule, and as such it is worth noting.
Let us now investigate the values of k for which the root loci inter-
sect the imaginary axis. The importance of this for stability and gain

margin should be quite apparent.
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Theorem 7.2 Let a closed-loop system be described by the state-space
formulation (2.2), and let

A principal minors of .
E; (k) z(order i of KBKC - A)’ i=1..m (7.9

Then if n is even the gains k at which root loci intersect the imaginary
axis are solutions of the equation

1 E, E, . . . E 0 . . [
0 1 E . . . E_, E . .
n
. . . . . . . . . . '2' - 1
o . . 1 E, E, . . E E |}
DET 2 4 n-2 n | = 0.
o . . 0 E E; . . Ei_z Ep !
o . . E By . . . E _, 012
B, B3 B¢ . . . E ., 0 . - (7.10)

A similar determinantal equation applies if n is odd.

Remark The polynomial equation (7.10) has degreelﬂggjf—ll.

Theorem 7.2 plays the same role in the multivariable case that the
Routh-Hurwitz criterion does in the SISO case, i.e. it can be used for finding
the gains at which the system becomes unstable. In fact, (7.10) can be
viewed as a multivariable generalization of a Routh-Hurwitz array.

The proof of Theorem 7.2 is simple. We may write the characteristic
equation in s as

A(k,s) = DET [sI - A + kBKC] = s" + :ﬁlsi(k)s"'i = 0. (7.11)
Letting s = ju and setting both the real and imaginary parts of (7.11) equal

to zero gives

"
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n
2
IR }.“.(-1)11521(10«»“'2jL -0 (7.12a)
i=l
n
%(-1)11321_1(1()““‘2"1 =0 (7.12b)
i=]
; if n is even and
. g !l’l;l!
" AR N S Vi IS Pl (7.13a)
i=l
' n+l
) GV NS Tt (7.13b)
i=l .
if n is odd. Letting z = -wz and using the resultant (see Appendix) to find

% values of k that will allow (7.12a,b) to have a simultaneous solution yields
5 (7.10).
Of course, we only need to search for positive real roots of (7.10),
f which simplifies matters considerably. In [28] Shaked noted that all positive
real roots of (7.10) correspond to one of the following: the desired critical
gains; the zeros of (7.10) that are symmetric with respect to the imaginary
axis (a rare occurrence); and the loci passing through the origin.

We now show how graphical bounds for the root loci may be computed.
; These may be useful if we desire only to have an approximate idea of where
f the loci are located (e.g. left half-plane versus right half-plane, for
i stability).

Theorem 7.3 Again using the state-space formulation (2.2), suppose
there exists some real constants a, b such that

aBKC  bBKC
2 0. (7.14)

A
E(a,b) = [-bBKC aBKC
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Then the root locus lies entirely in the region

R = {s: RE[s(a - jb)] < A(a,b)} (7.1%)
where A(a,b) is the largest eigenvalue of the Hermitian matrix

H(a,b) 2 1(a - jb)A + 1(a + jb)AT. (7.16)
Remark Note that (a,b) = (1,0) implies that the closed-loop system is
stable for all gains if all of the eigenvalues of (A + AT) are
negative.
The following proof of Theorem 7.3 is borrowed from [29]. The charac-

teristic equation (7.11) may be restated as |

(sI - A + KBKC)x(k) = 0 (7.17) i

where x(k) is a non-zero n-vector with Heimitian transpose xH(k), and where

xH(k)x(k) is normalized to unity. Premultiplying (7.17) by xH(k) yields

s(k) - xH(k)Ax(k) = -kxtl(k)BKCX(K) (7.18)

R N PR, Ry

and multiplying (7.18) by (a - jb), taking real parts, and writing

x(k) = u + jv (7.19)
yields

RE [(a - J0)s(0)] - XP0HGa,DIx(K) = k(T VTIEGBY 3] (.20
Since H(a,b) is Hermitian and since E(a,b) > 0, we have

RE [(a - $)s(K)] < K(0OHC,b)x(K) < M (xHea,b)x)

= \(a,b) (7.21)

which proves Theorem 7.3. In [29] Owens and Field refine this result further, l {
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giving simpler conditions for E(a,b) 2 0, and discuss several applicationms.
Plotting the bounds for several values of a and b can give a considerable
amount of information on the whereabouts of the root loci.

In ({30] Brockett and Byrnes discuss the asymptotic behavior of multi-
variable root loci from a geometric perspective. They consider the case where

] G(s) is non-square, and the case where the polynomial gain

, K(K) = K+ Kk + oo o Kk (7.22)

) is applied to the closed-loop system in place of the gain kI. It so happens

that if G(s) is non-degenerate, the asymptotic behavior is determined solely

by the highest-order term ded, even if Ky does not have full rank. G(s) is
non-degenerate if and only if at least one closed-loop pole becomes infinite

for any K(k) with d non-zero as k»». If G(s is pxm and has MacMillan degree

E n, non-degeneracy is generic if mp < n. However, diagonal and block-diagonal
§ transfer function matrices are degenerate.

é Brockett and Byrnes also show that if Kd has full rank then the closed-
loop poles that remain finite approach the open-lcop finite zeros as k+.
However, both this result and the previous result depend heavily on the non-
! degeneracy of G(s). For proofs and more details the reader is referred to

{30].
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CHAPTER VI1I1

Conclusion

In this thesis the properties of multivariable root loci have been
analyzed from a frequency-domain point of view. The behavior of the angles
of arrival and departure has been studied in considerable detail, and
several methods of computing them have been presented. The problems of
locating the break-in and break-out points and of characterizing the number
of loci on the real axis, previously unexamined in the multivariable case,

have also been addressed. Some methods for computing angles and pivots for

" first-order asymptotes have been given, an& results for higher-order asymp-

totes have been reviewed. At all times our objective has been to generalize
the SISO root locus rules to the multivariable case, and as often as not
such generalizations were found to exist.

In Chapter III the angles of arrival and departure were analyzed using
several different approaches. First, the state-space results of Shaked and
Thompson were reviewed. Next, the general case of multiple poles and zeros
was analyzed using the Smith-MacMillan form of G(s), and equations for the
angles derived. It was found that the angles are grouped into Butterworth
patterns with orders given by the MacMillan indices of G(s) at the pole or
zero in question, subject to certain conditions. Thus, in the most general
case, the angles of arrival and departure are far more complicated for multi-
variable systems than they are for SISO systems.

We then specialized to the case of "simple" multiple poles and zeros,
and found in this case that the SISO rules do generalize to the multivariable

case. The reason for this is that non-simple poles and zeros have no

L emamdes




counterparts in the SISO case, so we can hardly expect SISO results to
generalize to them. In fact, throughout this thesis, most of the failures

of SISO root locus rules to generalize to the multivariable case can be

traced to the presence of features not found in SISO systums (e.g. non-

simple poles and zeros, branch points, multiple loci on the real axis, etc.).
Finally, the results of Sastry and Desoer on asymptotes, which involve solving
generalized eigenvalue problems in Toeplitz matrices, were adapted to find
angles of ar-ival and departure.

The results of Chapter III were all conditioned on several generic
assumptions. However, with the exception of the first-order case, we were
not able to relate these assumptious to each other and show that they are
equivalent. More work needs to be done in this area, especially for the
results derived from the Smith-MacMillan form. The cases where the assump-
tions do not hold should also be investigated. Reviewing the non-generic
behavior of asymptotes (e.g. fractional orders; see [15]) should be a
useful guide in this endeavor.

In Chapter IV the effect of branch points on loci on the real axis was
examined. The "turnaround" behavior of loci at a branch point was considered
in some detail. It was also shown that the SISO rules for break-in and
break-out points generalize directly to the multivariable case. Some methods
for computing both types of points, involving the resultant, were also
presented.

One feature of the multivariablc root locus that definitely needs
further investigation is the peculiar behavior that seems to de associated
with branch points and branch cuts (see [S], p. 64). In this thesis we

investigated only one small aspest of this issue. A characterization and a
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physical interpretation of this behavior would be of great help for under-
standing and plotting the multivariable root locus, but achieving this
will apparently be difficult. An interprectation of the branch points in
terms of the state-space matrices (A, B, C) would also be useful. In
contrast, there seems to be little additional work that needs to be done
on break points, except for finding easier ways of computing theam.

Multivariable root loci on the real axis were discussed in Chapter
V. It was shown that, unlike in the SISO case, knowledge of poles and
zero locations alone is insufficient for determining how many loci lie on
the real axis at a given point. The reason for this if that in the multi-
variable éase several loci can lie on the real axis at a given point,
whereas in the SISO case only one branch can lie on the real axis at a
given point. An equation for the number of loci on the real axis at any
point was derived. This equation requires only the computation of a few
quantities involving the poles, zeros, and branch points on the real axis.
A simplification of this equation would be helpful, but there are no evident
approaches to take. There remains also the problem of extending this
equation to the case of non-simple higher-order poles and zeros on the real
axis, without bringing in the Smith-MacMillan results which, in our opinion,
would make the general equation too cumbersome to be useful.

The asymptotic behavior of root loci was the subject of Chapter VI.
Two methods of computing the angles of first-order asymptotes were given,
as well as a method for computing the pivots of such asymptotes. It should
again be noted that pivots in the multivariable case may be complex.
Previous results on higher-order asymptotes were briefly reviewed, mostly

for the sake of completeness. In the context of the methodology of this
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thesis, there seems to be little additional work to be done here. However,

there are many unanswered questions in the subject of higher-order asymptotes,

particularly in cases where generic assumptions do not hold. Even the orders
of the asymptotes are uncertain in some of these cases.

In the SISO case the root locus is a handy tool for designing lead-lag
compensators. It is well-known, for example, that introducing a zero to the
left of a branch tends to "pull" the branch toward the zero. A study of how
these SISO tendencies generalize to the multivariable case would be very
helpful. Of course, this is a very complex subject, but the results may
prove to be worthwhile. Fc: example, it might be possible to introduce
a branch point and "turn around" an unstable asymptote. It is hoped that
the results of this thesis will be helpful in studying the effects on the
root locus of the introduction of poles, zeros, and branch points in various

locations.
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APPENDIX
The Resultant
The resultant is a method for determining whether two polynomial
equations have a common zero. It is constructed as follows. Let !
n
a(x) = a 3 +a;x ¢+ ... +ax (A.1)
m
b(x) = bo + blx L bmx (A.2)
be two polynomials. Then a(x) and b(x) have a common non-constant factor {
if and only if
pun - 7 )
a, a, a, . . a 0 . . 0
0 ao al . . an-l an 0 . . 0 m
TOWS
OET o . . 0 a, 3 . - 2y A g . 0.
o . . . . 0 b° b1 .« e bm-l bm }
o . . 0 b° hl o e » bm 0 '
[ ] . > . L 3 . . L ] [ ] - . * rows
L] . 0 L] . . 0
bbo bl b2 bm'l bm — Y (A. 3)

This result is proved in Walker [6] as follows. Suppose that a(x) and

b(x) have a common non-constant factor (x - p). Then we may write

a(x) = c(x)(x - p) (A.4)

b(x) = d(x)(x - p)

(A.5)

where
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n-1
c(x) = Cu *+C1X * sus ¢ cn_lx (A.6)

d) =d, +dx + oo+ a1 (A.7)

have degrees one less than those of a(x) and b(x), respectively. We may

combine (A.4) and (A.S) into
d(x)a(x) - c¢(x)b(x) =0 (A.8)

and substituting (A.1), (A.2), (A.6), and (A.7) into (A.8) and setting the

coefficients equal to zero yields

doao - cobo = 0 (A.9a)
doal + dlao - cob1 - clbo =0 (A.9b)
dm-lan - cn-lbm =0 (A.9%)

which may be written as

[do, d1, sse d -1, ‘cn“l’ ‘cn.z, e e -C°]

ao al az . . . an 0 . 0
0 a, a1 . . . an-l a . . 0
0 . 0 ao a1 . . o e an-l a,
X = 0, (A.10)
0 . . . . 0 bo b1 . . bm
0 . . . ) bo b1 bz . bm 0
Lbo bl bz » . . . bm 0 . 0-

Ry



J
t
b
|
f
%
|

-
R o

e T o et o  THAYIA

< v . - My

v v--'

= gan ey ©

Equation (A.10) will have a non-zero solution if and only if (A.3) holds.
This completes the proof.

An important application of the resultant is determining whether a
polynomial equation has a multiple root. This issue arises in Chapter IV,
since branch points and break points are multiple roots of ¢(g,s) = 0. To
determine whether a(x) = 0 has a multiple root, simply choose b(x) = é% a(x).

The left side of (A.3) then becomes the discriminant of a(x). For quadratic

a(x),
a(x) = ax2 +bx+c¢c=0 . (A.11)
(A.3) becomes
c b a
DET|b 2a 0 |= -a®® - 4ac) = 0 (A.12)
0 b 2a

the familiar discriminant for the general quadratic equation. For the

reduced cubic equation,
a(x) = x3 +px +q=0 (A.13)

(A.3) becomes

qQp 010
0 qp 01
DET|p 0 3 0 o|=27¢> +4p> =0 (A.14)
0opo 30
00po 3
. -

|
1
|
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which is also well-known.
To aid in the computation of branch points for three-input-three-
output (m = 3) systems, the resultant for the general cubic equation
x3 + bxz +cx+d=0 (A.15)
is
A= 18bed - 4b%d + boc? - 4c3 - 2742 (A.16)
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