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ABSTRACT

Various properties of multivariable root loci are analyzee from a
frequency-domain point of view by using the technique of Newton polygons,
and some generalizations of the SISO root locus rules to the multivariable
case are pointed out. The behavior of the angles of arrival and departure
is related to the Smith-MacMillan form of G(s), and explicit equations for
these angles are obtained. After specializing to first-order and a restricted
class of higher-order poles and zeros, some simple equations for these angles
that are direct generalizations of the SISO equations are found.

The unusual behavior of root loci on the real axis at branch points is
studied. The SISO root locus rules for break-in and break-out points are
shown to generalize directly to the multivariable case. Some methods for
computing both types of points are presented.

An equation for the number of loci on the real axis at any point is
derived. The special cases of 2x2 G(s) and symmetric G(s) are investigated
separately. Finally, for high gains, equations for the first-order asymptotes
and pivots are derived, and previous results on higher-order asymptotes are
reviewed.

Thesis Supervisor: Bernard C. Levy
Title: Assistant Professor of Electrical Engineering

E

f
i

t



3

ACKNOWLEDGMENT'S

I would like to express my gratitude and appreciation to my thesis

supervisor, Bernard Levy, whose guidance and ideas were invaluable to the

production of this thesis. Without his advice and support, this work

would not have been possible.

I would also like to thank Hatsy Thompson for the outstanding job she

did in typing this thesis.

Finally, I would like to thank my parents, also without whom this work

would not have been possible. To them I dedicate this thesis.

i



4

TABLE OF CONTENTS

Pxge

CHAPTER I	 Introduction
	

7

1.1 Motivation and Summary of Results
	

7

1.2 Notation
	

10

12

12

12

is

is

17

20

25

CHAPTER II

2.1

2.2

2.3

2.4

2.5

Background

Introduction

The Basic Problem

The Characteristic Equation

2.3.1 Definitions

2.3.2 Poles, Zeros, Branch and Break Points

The Newton Polygon Technique

The SISO Root Locus

CHAPTER III Angles of Arrival and Departure
	

27

3.1 Introduction
	

27

3.2 Review of State-Space Results
	

28

3.3 Results from the Smith-MacMillan Form
	

30

3.3.1 First-Order Poles and Zeros
	

31

3.3.2 Multiple Poles and Zeros
	

39

3.4 Results from Laurent Series
	

50

3.5 Results from Toeplitz Matrices
	

60

CHAPTER IV Branch Points and Break Points
	

68

4.1 Introduction
	

68



Page

4.2 Branch Points 69

4.2.1	 Computation of Branch Points 69	 4

4.2.2	 Effects of Branch Points on Root Loci
I

70

4.3 Break Points 74

4.3.1	 Computation of Break Points 74

4.3.2	 Breakin and Breakout Angles 7S

CHAPTER V Root Loci on the Real Axis 78

S.1 Introduction 78

5.2 The Case of Two-Input-Two-Output Systems 79

5.3 The General Case 84

5.4 The Case of Symmetric G(s) 90

1

CHAPTER VI Asymptotic Behavior of Root Loci 97

6.1 Introduction 97

6.2 First-Order Asymptotes and Pivots 98

6.3 An Illustrative Example 103	 i

6.4 Higher-Order Asymptotes 105	 w

CHAPTER VII Other Results 110

7.1 Introduction 110

°

7.2 Results 110

CHAPTER VIII Conclusion

a

117

References	 121

Appendix	 The Resultant	
123



6

LIST OF FIGURES

files

13

18

24

2.1 The Basic Problem

2.2 Definition of Angles

2.3 Newton Polygon for Example 2.1

3.1 Newton Polygon for the Generic Case

of First-Order Angles of Departure

3.2 Newton Polygon for the Generic Case

of First-Order Angles of Approach

3.3 Newton Polygon for the Generic Case

of Higher-Order Angles of Departure

3.4 Newton Polygon for the Case of TR G -1 = 0,

for First-Order Angles of Departure

3.5 Newton Polygon for the Generic Case

of a Simple Higher-Order Pole

5.1	 Root Loci. for Example 5.1

5.2 Root Locus for Example S.2

6.1 Newton Polygon for First-Order Asymptotes

6.2 Root Locus for Example 6.1

ri

32

37

44

S3

S6

80

85

100

106

n



CHAPTER I

Introduction

1.1 Motivation and Summary of Results

The main aspect of the problem of designing a feedback compensator

for a linear system is that one seeks to characterize the effect of

feedback on the closed-loop behavior of the system. A balance must be

struck between a characterization so simple that no real insight into

the closed-loop system behavior is gained, and one so complex that

interpretation of it is too difficult to be useful.

The root locus does a reasonable job of striking such a balance. The

root locus technique consists of plotting the paths of the movements of

the closed-loop poles in the complex plane as a single feedback parameter

is varied. This has two advantages: the locations of the closed-loop

poles furnish considerable information on the response of the system,

particularly the transient response; and variation of a single parameter

gives crude, but simple, notions of the options in pole assignment and

the identities of specific poles that must be shifted.

Thd major disadvantage of the root locus is that little information

is furnished on robustness of the closed-loop system. Thus the root locus

method nicely complements stability tests such as the Nyquist stability

criterion, which give information on system robustness (e.g. phase and

gain margins) but only "yes-or-no" information on stability and no infor-

mation at all on the form of system responses. It should also be noted

that by suitable reformulation the effect of variation of an uncertain

isystem parameter can be studied using the root locus.

s
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Tha root locus for single-input-single-output (SIS0) systems was

first studied by Evans in 1948 [14] and is treated in detail in any

decent elementary control theory text (e.g. (7], (81); a set of rules
	 i

for plotting it is given in Chapter II. Investigation of the root locus

for multivariable systems began in earnest in the mid-1970s, and is far

from being concluded. Research has proceeded along two main lines: the

state-space approach used by Shaked, Kouvaritakis, and Owens (e.g. [9],

[1S], 116]) and the frequency-domain approach used by Postlethwaite and

MacFarlane (e.g. [1], (2), [3]).

The state-space approach seems to have been better suited for inves-

tigating the behavior of root loci that approach infinity for high feed-

back gains, and a considerable body of knowledge has been amassed on this

subject. however, less information is available on the angles of arrival

and departure of loci at zeros and poles, and almost none on breakin and

breakout points and the presence of loci on portions of the real axis.

The pioneering work of Postlethwaite and MacFarlane suggests that their

frequency-domain methods may be better suited for investigating these

issues.

The aims of this thesis are threefold: first, to develop and extend

the frequency-domain methods of Postlethwaite and MacFarlane into explicit

results and equations for the angles of arrival and departure and for the

locations of loci on the real axis; second, to show how the well-known

SISO root locus rules do or do not generalize to the multivariable case;

and third, to serve as a compendium of rules for plotting the multivariable
r-.

root locus.

We start off by laying in Chapter II the groundwork for the material
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to follow. The basic problem is presented, and basic equations obtained

from it. Various features of the root locus. such as poles, zeros,

angles, and Butterworth patterns, are defined, and the SISO root locus

rules are reviewed.

We will obtain results on angles of loci by finding series approxi-

mations for the loci near the point of interest. These will be obtained

by using the Newton polygon technique, an ingenious graphical device

presented and demonstrated in Chapter II.

Results for angles of arrival and departure are presented in Chapter

III. After quickly reviewing the state-space results on this subject, new

results and explicit equations for the cases of both first-order and

higher-order poles and zeros are obtained. In particular, the case of

higher-order poles and zeros turns out to be vastly more complex than

might be expected from the SISO rules.

After considering the general case, we specialize to first-order

and a certain "simple" class of higher-order poles and zeros. Using an

approach based on constructing a Laurent series of the system transfer

function, simpler equations are obtained that turn out to be nice

generalizations of the SISO equations. These results have not, to our

knowledge, appeared in the literature.

Unusual behavior of the root locus, such as a locus on the real axis

suddenly turning around, are associated with entities called branch

points. We discuss these briefly in Chapter IV, and present some equations

describing their effects on root loci. Also in Chapter IV, breakin and

breakout points of multivariable root loci are investigated for the

first time. Equations are obtained for computing them, and the angles of
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loci breaking in or out are shown to be the same as in the SISO case.

In Chapter V, we address the previously uninvestigated problem of

determining the location of root loci on the real axis. This turns out

to be vastly more complex than the SISO case, since more than one branch

can lie on the real axis at a given point. An equation is obtained for

the general case, and other results presented. The case of two inputs

and two outputs is investigated separately, and is shown to be considerably

simpler than the general case.

In Chapter VI the asymptotic behavior of root loci is considered.

For the generic case of first-order asymptotes and pivots, simple

equations are given for angles and pivots. For higher-order asymptotes,

the results of Kouvaritakis and Shaked [1S) and Sastry and Desoer [17)

are reviewed.

Finally, in Chapter VII we include, for the sake of completeness,

some miscellaneous results on the multivariable root locus. These

include methods for computing graphical bounds on the loci, intersections

with the imaginary axis, and other items that might be helpful in plotting

the multivariable root locus.

1.2 Notation

Ai (s) represents a scalar polynomial in s. Otherwise, matrices are

indicated by capital letters, and scalars and vectors are indicated by

small letters. No underlines are used; whether a quantity is a scalar or

a vector is clear from the context. AT is the transpose of A, DEf A the

determinant of A, TR A the trace of A, ;M DIAG [a l .. .an) the nxn matrix

with elements & I ... an along the main diagonal and zeros elsewhere. ARG z

is the principal argument of complex variable z, 0(f(x)) the exponent of

4
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the lowest power of x in a power series expansion of the function f(x),

and SGN [xj the sign function 4f x (one if x is positive, minus one if

X is negative).

t.yuations, examples, figures, lemmas, and theorem are numbered by

chapter and position within the chapter; equation (3.17) is the seventeenth

equation in Chapter III.

All root locus diagrams are in the complex s plane, imaginary part

plotted against real part. Open-loop poles are represented by x's, ope»-

loop finite zeros by o's, and branch points by triangles.



CHAPTER II

Background

2.1 Introduction

In this chapter, we lay the groundwork for the results and analyses

to follow. First, the basic problem from which the multivariable root

loci ara obtained is described. The characteristic equation is defined

.	
from tie loop transfer-function matrix, and other equations are defined

in terns of this equation. These equations are the starting point for

most of the derivations to follow. The unusual behavior of multivariable

root loci is accounted for by noting that the root loci are branches of

an algebraic function. We briefly discuss poles, zeros, branch points,

break points, and single-point loci, and define these points from the

characteristic equation. We also define Butterworth patterns and angles

of root loci. The Newton polygon technique, which gives a series approxi-

mation to a-function of two variables near a zero of the function, is

described. We will use this technique to obtain results on the angles of

arrival and departure at zeros and poles. Finally, the SISO (single-input-

single-output) root locus rules are quickly reviewed for comparison to

their multivariable generalizations.

2.2 The Basic Problem

Consider the feedback configuration shown in Fig. 2.1. S 1 and S2

are linear multivariable dynamicai systems and k is a positive real

number. It may be shown [2] that the loop transfer-function matrix for

this configuration is the matrix kG(s), where G(s) is the product of the

transfer function matrices of S2 and S1 (in that order). If the feedback

f
k
}
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Figure 2.1

The Basic Problem
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loop were broken between S2 and the summation block and signals injected

at the break, the returned signals at the break would be related to the

injected signals by minus the loop transfer-function matrix. G(s) is an

mxm rational matrix function of the complex variable s, and is assigned

to have full rank and be strictly proper.

The return-difference matrix for this configuration is I + kG(s),

and the closed-loop poles are given by the solutions of

DET [I + kG(s)] = 0. 	 (2.1)

As k is varied from zero to infinity, the closed-loop poles will vary. The

plot in the complex plane of .the paths swept out by the closed-loop poles

is the root locus.

For some results a state-space formulation will be appropriate. The

system considered is given by

x=Ax+Bu

y = Cx

u = -kKy
	

(2.2)

where x E R  and y, u E Rm. B and C are assumed to havf full rank. Now

the root locus is the paths swept out by the eigenvalues of the closed-loop

system matrix

Acl = A - kBKC	 (2.3)

as k varies from zero to infinity.

,
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2.3 The Characteristic Equation

2.3.1 Definitions

Following the notation of Postlethwaite and MacFarlane [1, 2, 31, we

define the characteristic equation

o(g,$) i DET [gI - G(s)] = 0.
	

(2.4)

From (2.4) we may define two multi-valued functions g(s) and s(g).

However, these are not ordinary functions of a complex variable, but are

instead algebraic functions [4]. The values of an algebraic function differ

from those of an ordinary function of a complex variable in that the latter

form a single analytic function, while the former form a set of analytic

functions. Each individual function in this set is called a branch of the

algebraic function.

The root loci are solutions to

g(s) _ R
1
 , k real and positive
	

(2.5)

and are thus branches of the algebraic function s(g) - s(- k) for all
positive real k (2]. (Single-point loci, to be discussed shortly, are

omitted.) It is important to note that the multivariable root loci are

branches of an algebraic function, since this means that their behavior

can be much more complicated than that of single-input-single-output (SISO)

root loci. This follows because an algebraic function has as its domain

a Riemann surface, which consists of several copies, or "sheets," of the

complex plane that have been "cut" and "stitched together" in such a way

as to make the function continuous on the surface. A technique for doing

this is described in MacFarlane and Postlethwaite [1, 21 for A(g,$). 	
t

i
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As k varies, the argument of the algebraic function s(-k) that

describes the multivariable root loci may pass through a branch point and

"Jump" from one sheet to another. When this happens, the behavior of the

root loci may change abruptly -- a locus may swerve, loop around, or act

in an even more exotic manner (see [S], p. 64). A not uncommon occurrence

is for a locus on the real axis to abruptly turn around; this behavior is

discussed in Chapter IV.

If A(g,$) is reducible (i.e. can be factored over the field of

rational functions), there will be several sets of root loci corresponding

to the several algebraic functions each defined on a different Rieman

surface. In the extreme case (e.g. G(s) diagonal) where d(g,$) can be

completely factored into terms of the form (g - g i (s)), gi (s) a

rational function of s, the multivariable root locus becomes a super-

position of m SISO root loci. Reducibility of 0(g,$) will not affect any

of the results of this thesis.

The following expansion (2] will be used extensively in this thesis:

a(g,$) - DET (gI - G(S)] - gm - (TR G(s))gm-1

.	 + (principal minors of G(s) of order 2)gm-2
r

e	
+ (-1) m DET G(s) = 0

	
(2.6)

Multiplying through by Am(s), the least common denominator of the nonzero

principal minors of all orders of G(s), we obtain

ID (g,$) An Am(s)gm + %-l(s)gm-1 + ... + Al(s)g + ao(s) - 0 	 (2.7)

where the Ai (s) are all polynomials. We can quickly rewrite ti:is as

^.	 l'(s,g) = Bn(g)sn + Bn-1(g)sn-1 + ... + Bo(g) - 0(g,$) - 0	 (2.8)
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where the Bi (g) are all polynomials and n is the largest degree of the

Ai(s).

The angle of a root locus s i (k) is the angle a tangent to the locus

makes with the positive real axis. From Fig. 2.2,

$	 LI 
+ ARG [s i (k + 6k) - si(k)]
6 

LIM ARG [ dk 6k] - ARG [ S i
 ].

6k-r0 

+ (2.9)

Note that

e = ARG [ dk ] = ARG [ dg ] + ARG [J

= ARG [—dg ] + ARG [ 2 J =
k

ARG [ dg ] .	 (2.10)

A set of loci (s i (k),	 i =	 1	 ... rl form an rth-order Butterworth

pattern if their asymptotic behavior (as k-)-0 or k-o--) is such that

1

s i (k) _ (crk)r + pr (2.11)

where cr and pr are constants (pr is called the pivot in the case s-^-), and

9(s i) = T (e r + 360°i), i = 1 ... T. 	 (2.12)

Note that this is different from the Butterworth patterns associated with

optimal root loci, which are the left half-plane portions of larger Butter-

worth patterns associated with the root square locus.

2.3.2 Poles, Zeros, Branch and Break Points

Consider the equation

@ (g ,$) a Am (S ) gm + ... + A0 (s) - 0.	 (2.13)

i
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As k 1-, or g*0, we would expect the root loci to either go to infinity or

approach finite zeros. In fact, setting g = 0 in equation (2.13) gives

the solutions to

Ao (s) = 0	 (2.14)

as the points approached by the root loci that stay finite. Similarly,

making the substitution g = - k, multiplying by (-k) m, and setting k = 0
in equation (2.13) gives the solutions to

Am (s) = 0
	

(2.15)

as the points from which the root loci depart. The question naturally

arises whether the solutions to equations (2.14) and (2.15) are in fact

the zeros and poles of G(s). The answer to this question reveals a pro-

perty unique to the multivariable root locus -- the existence of degen-

erate, single-point loci.

It is well-known that the pole polynomial p(s) of G(s) is the least

common denominator of all non-zero minors of all orders of G(s). However,

Am (s) is the led of all non-zero principal minors of all orders of G(s).

Let e(s) be the led of all non-zero n3n-principal minors, with all factors

common to Am(s) removed. Then

p (s) - AM (s) e(s) .
	 (2.16)

Since G(s) has full rank, its zero polynomial z(s) is its pole polynomial

multiplied by the only mxm minor, DET G(s). Then we have

z(s) = p(s) DET G(s) = e(s) Am(s) DET G(s)

(-1)aAo (s) e(s).	 (2.17)



i
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Thus the loci that vary with k do in fact depart from the poles of G(s)

and arrive at the finite zeros of G(s) (or at infinity). However, other

loci start at poles of G(s), remain where they are, and "become" zeros of

G(s)! It is important to note that these "single-point loci," given by

solutions to

e(s) a 0
	

(2.18)

are not uncontrollable or unobservable modes of a state-space realization

of G(s) (decoupling zeros), nor are they p ,)les cancelled when G(s) is formed

from the transfer function matrices of two separate systems S 1 and S2

(recall Fig. 2.1). They are a phenomenon not found in the SISO case -- they

appear only in the multivariable case.

However, it is the usual case that e(s) a 1, i.e.. there are no single-

point loci. And since there is nothing to state about their behavior, they

will not be considered further.

Branch points are points where O(g,$) a 0 has a multiple root 
go .0

They are associated with unusual behavior of the root locus, since the cuts

from which a Riemann surface is formed out of several copies of the complex

plane are made between branch points, or between a branch point and infinity.

Hence loci can "jump" from one Riemann surface sheet to another, and behave

strangely, at branch points.

Break point.n, short for break-in and break-out points, are points where

O(g,$) has a multiple root s o . They have the same meaning they do in the

SISO case. Break points and branch points will be discussed in Chapter IV.

2.4 The Newton Polygon Technique

The Newton polygon technique is a graphical device that can be used to

find a series representation of a function f(x,y) in the vicinity of a



zero of the function. It plays a central role in this thesis, and under-

standing it is essential for reading Chapter III. The simple treatment of

it given here will be sufficient for the purposes of this thesis; for more

details, see Walker [6]. A theoretical treatment "deriving" the Newton

polygon is given first, followed by a step-by -step procedure and an example.

Consider a function of two variables

f(x,y) = Ao + Aly + A2y' +	 + Anyn	(2.19)	 I
1

with n > 0, An # 0, and A i C K ( x), where K(x) is the field of all functions

of x that can be written as a fractional power series in x.

Puiseux's Theorem [4] states that K ( x} is algebraically closed. This

means that if y is a zero of f(x,y) then y can be written as a fractional

po!.. ; series in x

z l 	(z1 *z2)	 (^1+^^+z3)
p = c l x	 + c,x	 + cox	 + ...	 (2.20)

with c  # 0, z  >_ 0, z  > 0 for i > 1 (we discard the case y = 0, which

occurs if and only if Ao = 0). Puiseux ' s Theorem is analogous to stating

that since the field of complex numbers is algebraically closed, any poly-

nomial with complex coefficients has a complex zero.

We wish to find possible values of z  and the values of c l associated

with them, i.e. obtain a lowest-order approximation to y. Substituting

(2.20) in (2.19), we obtain

Y

	

f(x,y) = Ao + c,Alxzl + c
2
A2x 1 + 
	

+ Cl nzlAnx

(zl+z2)	 2	 (2z1+2z2)
* [c2Alx	 + c2A2x

(2z 1 +Z 2)
+ 2c 1c2A2x	 + ... 1	 (2.21)



Since z2 > 0, each of the bracketed terms has order strictly greater than

the order of some unbracketed term. Considering the case of small x, a

necessary condition for f(x,F) = 0 is that the term of lowest order have

coefficient zero. Since c  f 0, at least two different terms must have

the same (lowest) order, and the sum of the coefficients of these terms

must be zero. Thus there are at least two (and possibly more) indices j

and k such that

jz l	 k	 kzl	 i	 izl
0(ciAj x ) = 0(c lAkx	 S 0(c lAix ), i = 0 ... n	 (2.22)

where 0(f(x)) is the exponent of the lowest power of x appearing in a

series expansion of f(x). We may write

a
Ai = b 

i 
x i + (higher order terms) 	 (2.23)

where a  = 0(Ai) (recall Ai E K{x)). Then (2.22) becomes

aj + jz i = ak + kz l <_ ai + izi , i = 0 ... n	 (2.24)

and the sum of the coefficients of the terms of lowest order must be zero:

EC ib i= 0
	

(2.25)
i

summed over the points of the segment giving that value of zi.

The Newton polygon is a graphical device that yields possible values

of 
Z  

satisfying (2.24). The polygon for the example to follow is given

in Fig. 2.3. It is constructed as follows:

1. Set up a cartesian coordinate system, with u and v axes, and
plot the n + 1 points P i = (u,v) _ (i,ai), i = 0 ... n, where
a  = 0(Ai) and the Ai are from (2.19).

i
	

i
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2. Join Po to P  with a convex polygonal are each of whose vertices

is a P i and such that no P i lies below the arc. This may be done

quickly by inspection.
Each segment of the arc defines a line v + ou = M, where -n

is the slope and M is the v-intercept. This line has the property 	 {

v + ou 1 a  + oi, i = 0 ... n. 	 (2.26)

Let P  and Pk be the endpoints of a segment. Then

aj *oj =ak +ok=v+ou<ai +oi, i a 0 ... n. (2.27)

Clearly z  = o will satisfy (2.24), so that possible values of z I

are minus the slopes of the segments of the Newton_ polygon.

3. Use (2.2S) to find the c  associated with each z I . For the z 

determined by the .egment with endpoints P and P, we have, for
the b  defined in 12.23),	

k
j

cibj + cibk = 0 0	(2.28)

If there is another point Ph on this segment, we have

cibh + cibj + ckbk = 0.	 (2.29)

This technique may be extended to compute all of the possible z  and

ci ; see [6]. However, we will not require this extension.

Example 2.1 We wish to find series approximations to

f (x ,y) _ (7x2 + Sx + 2)y4 + (8x3 - 6x)y3 + 4x2y2

+ (37x7 - llxS)Y + (x
10 

+ 4x8 - x6) = 0

in the vicinity of the zero f(0,0) = 0. We identify

a4 = 0, b4 = 2; a3 = 1, b 3 = -6; a2 = 2, b2 = 4;

a 	 S, b  = -11; ao = 6, b
o = -1.

The Newton polygon is shown in Fig. 2.3. We see that possible values
for z  are

z  = 1, 2

and the values of c  associated with them are the solutions to
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Newton Polygon for Example 2.1
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n	 n

p a
Ep, E :i

n - m (2.31)

-1 + 4c i = 0 for : 1 = 2

4c1 6c 3 +2c1=0 for z1=1

which are c = 3, -3 for zi = 2 and c l a 1, : for zl
series approximations are

y - Ix2 , y - • 1x2 , y - X. v a 2x.

2.5 The SISO Root Locus

.

	

	 We quickly review the SISO root locus rules, for comparison with the

multivariable root locus rules to be given in this thesis. It will be

seen that some of the SISO rules generalize directly, others less directly,

and still others not at all. Proofs may be found in any decent elementary

control theor! text (e.g. [7], [8], etc.).

1. The root locus has n branches, where n is the degree of the
denominator polynomial of the open-loop transfer function.

4.. All branches of the root locus begin at the open-loop poles.
m branches terminate at the finite open-loot zeros, where m is
the degree of the numerator polynomial of the open-loop transfer
function. The other n - m branches approach infinity along
asymptotes described in Rule 3.

S. The branches that approach infinity do so along asymptotes
with angles

e a (2k + 1)180' # 
k = 0, 1, ... n - m - ik	 n - m	 (2.34)

and which intercept the real axis at

where the : i are the open-loop zeros and the p i are the open.
loop poles.

4. A branch of the root locus will lie on the real axis for those
portions of the real axis that have an odd number of poles and
zeros to the right.

S. The root locus is symmetric with respect to the real axis.
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6. The angle of departure from a pole is the sum of the angles of
all vectors from the zeros to the pole in question, minus the
sum of the angles of all vectors from the other poles to the
pole in question, plus 180°. Note that this is

depart : 1 ARG [-(s - pi ) kg(s)I S = 
p ]i

+ n3̂ — , n = 0, 1, ... k - 1	 (2.32)

for the angle of departure from a kth-order pole p i of the scalar
transfer function g(s).

7. The angle of approach to or arrival at a finite zero is the sum
of the angles of all vectors from the poles to the zero in
question, minus the sum of the angles o f ali vectors from the
other zeros to the zero in question ( important: recall the
definition of "angle" given in Section 2.3.1). Note that this is

arrival = k ARG [ (s - zi) k
g- 1M l = `1]

+ 
n3600, 

n = 0, 1, ... k - 1 	 (2.33)
k

for the angle of arrival at a kth-order zero zi.

8. The break-in and break-away points on the real axis may be found
by solving

Ts = 0.	 (2.34)

If several branches are approaching and leaving a break point,
their angles are evenly distributed over 3600.

9. If m <. n - 2, the sum of the closed-loop poles is constant as k
is varied [8].

4

i

V
J



CHAPTER III

Angles of Arrival and Departure

3.1 Introduction

In this chapter we derive some equations for obtaining the a

arrival (at finite zeros) and the angles of departure (from poles)

multivariable root loci. First, the state-space based results of Shaked

(9) and Thompson [S] are reviewed. Shaked's results employ a spectral

decomposition; Thompson's results rely on a generalized eigenvalue problem.

Thus both are computationally arduous.

Following this, new results are obtained by applying the frequency-

domain techniques of Postlethwaite (3]. Postlethwaite's approach is to

obtain a series approximation to the root locus in the vicinity of a

pole or zero, and then obtain the angles of arrival or departure from this

series. By investigating how this series is obtained, we derive more

general results. First, the Smith-61acMillan form is used to show that

loci generically depart from multiple poles, and arrive at multiple zeros,

in Butterworth patterns whose orders come from the structure indices (12]

of G(s) at the pole or zero in question. Some equations for the angles of

arrival and departure are also obtained.

Next, we use Laurent series expansions of G(s) to derive some simpler

equations for the angles of arrival and departure. These equations turn out

to be simple generalizations of the SIS4 equations.

Finally, we arrange the coefficients of the Laurent series expansions

of G(s) mentioned above into Toeplit: matrices, and show how the angles of

arrival and departure may be obtained from these. We also recall that the

V
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i

ranks of these Toeplitz matrices are related to the MacMillan orders of

G(s) at the pole or zero in question, and in this way all the results of

this chapter are tied together.

3.2 Review of State-Space Results

The results described in this section were first derived by Shaked [9]

and Thompson [S]. They are included here for comparison to the frequency

domain results of the following sections. Also, when a system is speci-

fied by its (A,B,C) matrices these equations ma y be simpler, since compu-

tation of G(s) = C(sI - A) -1B may be very difficult.

Theorem 3.1 The angles of departure are given by

Odepart = ARG [-vTBKCu i ]	 (3.1)

where ui and vi are the right and left eigenvectors associated with
the open-loop pole (an eigenvalue of A) considered, and u i and vi
have been normalized so that vTui = 1.

The angles of arrival are givenby

	

_	 T -1
earrival ARG [w

IK xi ]	 (3.2)

where wi and xi solve, for some y i and qi,

A - z 
i I	 B	 yi	= 0	 (3.3)

-C	 0	 X.
i

Cqi	
wi
J	

A - zi I	 B	 = 0	 (3.4)

J	 -C	 0

where zi is the finite zero considered, and xi and wi have been nor-
malized so that wix i = 1.

Following Shaked [9], one may prove (3.1) by recalling that the closed-

K R'

loop system matrix is

Act - A - kBKC
	

(3.5)
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and by letting its spectral decomposition be

vi

Acl =	 DIAG (si] [ul ,.. un]	 (3.6)

V 

where the 
x  are the closed- loop eigenvalues with eigenvectors u  and left

eigenvectors vi, all of which are functions of k. We have

Aclui 
= s iui	 (3.7)

and differentiating with respect to k and multiplying by vi , one gets

	

T 
dA

cl	 T	
dui ds i	T dui

VT _^ 
u  + vi acl _j k— - d  +s iui dk	 (3.8)

so that

-dT = vi = ui - vi BKCui .	 (3.9)

Letting k = 0 and using equation (2.9), (3.1) is proved. Thompson [S]

derives this same result from a generalized eigenvalue problem, and his

method is preferable for proving (3.2). Indeed, in [S] Thompson points

out several errors in Shaked's paper.

It should be evident that s i , ui , and J solve the generalized

eigenvalue problem

A - s i I	
B	 ui	 = 0	 (3.10)

.,	 -C	 - k K-1	 Xi

r	 y



dk = 2 wi K-1 Xi'k
(3.13)

_.. _ ..	 ._.	 -	 _

30

VTi	 w^ 1 A - siI

!	 -C

B	 0	 (3.11)

_ K-1

for some wT and x.*
i	 i

Differentiating (3.10) with respect to k and multiplying by [v i wiJ

gives, using (3.11),

ds.
vi	 wi	 - W I	 0	 ui	 = 0	 (3.12)

0	
k' K-1

	
xi

which can be rearranged into

Letting k-► -, using equation (2.9), and noting that ARG [-L]
] 

= 0 proves
k

(3.2).. ;Vote that Rosenbrock ' s [101 definition of finite zeros guarantees

a non-zero solution to (3.3) and (3.4). This concludes the proof of

Theorem 3.1.

3.3 Results from the Smith-MacMillan Form

We use the Smith -MacMillan form of G(s) to obtain equations for the

angles of departure and arrival using the polynomials Ai (s) of the charac-

teristic equation, and to characterize the loci departing from and arriving

at multiple poles and zeros. For simplicity and clarity we consider first

the case of first -order poles and zeros, exhibiting the methodology, and

'then proceed to the far more complex case of multiple poles and zeros. In

both cases we consider angles of departure first, and then the angles of
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y

arrival.

3.3.1 First-Order Poles and Zeros

We start with

0(9,$) - Am(s) gm + m-1 (
s)gm-1 + ... + Ao (s) a 0. (3.14)

Since we are first interested in angles of departure, i.e, the behavior of

the root loci as k -* 0 and g -► - ^ we make the substitution g = - and

multiply by (-k)m, yielding

Ao ( s)(-1 )
mkm 

+ A1(s)(-1)m-lkm-1 + ... - Am-1(s)k 	 (3.15)

+ Am (s) = 0.

Let pi be a first-order pole, and define the following:

s = s - p i 	(3.16)

Am(s) = Am ( s̀ + pi) - a l s̀ + a2s2 + ...	 (3.17)

-Am-1(s) 
_ -

Am_ 1 (`s + pi ) - bo + b ls + b2s2 + ...	 (3.18)

where the right sides of (3.17) and (3 . 18) are finite polynomials. Note

that the constant term of (3.17) is zero, since %(p i) - 0.

By applying the Newton polygon technique to (3.17) and (3 . 18), we may

obtain a series approximation to the locus in the vicinity of the pole p.,
i

and obtain the angle of departure at once. In particular, if b  and al are

both non-zero, the Newton polygon will be as in Fig. 3.1. We then have

k a c3 as (1,k) -► (0,0)
	

(3.19)

4

where c solves
	 R

AL
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Figure 3.1

Newton Polygon for the Generic Case

of First-Order angles of Departure

a

r



33

^I

^e

(3.20)

(3.21)

(3.22)

a  + cbo a 0.

This gives

--
b

s̀ =	 ° k as (s,k) -► (0,0)a 
1

and, using the definition of angle,

b

6 depart = 
ARG [ a101.

We will refer to the case where a l and b0 are both non-zero as the

generic case. The word "generic" is used to describe a property of a

finite set of parameters which holds for all values of these parameters

except those satisfying a finite number of polynomial equations [211. Thus

a generic property "almost always holds." The property that a l and b  are

both non-zero is indeed generic, since it will be shown shortly that al

is always non-zero if p i is a first-order pole, and that bo is zero only if

Pi is a root of both Am (s) and Am-1 (s). This can occur only if the coeffi-

cients of Am(s) and Am-1 (s) satisfy a polynomial equation obtained'by

setting the resultant (see Appendix) of m(s) and Am-1 (s) wqual to zero.

Now write G(s) in the Smith-MacMillan form

n l (s)	 nm(s)
G(s) a U(s) DIAG ^^^, ... , d^ (s) V(s)

	 (3.23)
1	 I

where U(s) and V (s) are unimodular (have constant determinants) and where

ni (s) J nj ( s) and d j (s) I di (s) for 1 S i <_ j < m. (Recall that G(s) is

mxm and has full rank.) Also, let

V(s)U(s) = W(s) _ ( wij (s)1 .

We may write

(3.24)

I

{
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ni(s)
DET [gI - G(s)] = DET [gI - U(s) DIAG a (s) V(s)I

n.(s)
= DET [gI - DIAG	 V(s)U(s)]	 (3.2S)

and we may obtain 4^(9,3) from the right side of (3.2S).

We now state and prove the following theorem:

Theorem 3.2 If and only if w11(pi) # 0, then we have

	

bo 	 Am-1(s)

ade art ' ARG - a = ARG -- Is p. .	 (3.26)
p	

1	 7S- Am(s)	
i

(Note that this corresponds to the "generic case" discussed earlier.)

We prove 'Theorem 3.2 by showing that a  and b  are non-zero if and

only if 
w11(pi) 

is non-zero. Then the theorem follows immediately from

(3.22), while the expressions for a 1 and b  follow immediately from (3.17)

and (3.18).

We observe first that; since pi is a single pole,

Am(s) - (s - p i)Am (s) _ IAm (s) - a ll + a2 `s 2 + ...	 ( 3.27)

where Am(pi) # 0. Dividing by 's and setting s = p i immediately gives

a1 - Am(pi) # 0.
	

(3.28)

As for bo , note that

cm^ 
ni(s)

-Am-1(s) - Am(s) TR G(s) - Am(s) ` di (s) wii (s)	
(3.29)

and since pi is a single pole, we may write

t



AO (s) - Ao (I + zi) - all + a232 + ...

Al (s) - Al (3 + zi) - bo + bl3 + b212 + .t.

(3.35)

3S

i

^t

dl(s) - ( s - Pi)dl( s )
	

(3.30a)

dl (P i) , d2 (Pi ) , ... dm(Pi ) # 0	 (3.30b)

so that (3.29) becomes

^t

nl (s)	 m ni( s)

	

Am-1(3) = Am(s) ---- w ll(s) + Am(s) 	 (s) wii(s)•	 (3.31)
dl (s)	 i=2 i

Since nl (s) and dl (s) are relatively prime, nl (pi ) is non-zero. Therefore,

by combining (3.18), (3.30b), and (3 . 31), we find that

n l (Pi)
bo - -Am-1(Pi) - An ► (pi)	 -11(Pi)

dl(Pi)

m 
.
n • (Pi)

+
Am (pFa lP 1 wii (Pi)

(3.32)

Since the second term vanishes, b o is non-zero if and only if wil(pi) is

non-zero. This proves Theorem 3.2.

Let us now consider the angle of arrival at a finite zero z i . Since

we are interested in the behavior of loci as k-+-, or g ♦ 0, we may work with

O (g , $ ) - Am ( s)? + ... + Al (s ) g + A0 (s ) - 0•
	

(3.33)

We now make new definitions

I - s - zi	 (3.34)

Y
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As before, we consider the generic case when bo and a l are non-zero, for

which the Newton polygon is illustrated in Fig. 3.2. The resulting cal-

z::lations parallel (3.19)-(3 . 22) (using g instead of k), and the following

theorem should not be surprising:

Theorem 3.3 The angle of arrival at a first-order zero z  is given
by

	

s	 bo	 Al(s)

earrival ARC ' a	 '^G " d	 Is s Pi	 (3.37a)1	 Ts- %(s)

if and only if

w 11 ( z i) "' wl m-1(zi)
DET	 A 0.	 (3.37b)

(z.) ... w	 (z )

	

wm-1 l i	 m-1 m-1 i

However, the proof of Theorem 3.3 is more difficult than the proof of

Theorem 3.2. It requires the following lemma, which will be used exten-

sively in the next section.

Lemma 3.1 (Binet-Cauchy Theorem) Define the following notation for
pxp minors of an nxn matrix A:

	

i I ... i	 o	 ai	 ... ai
A	 p = DET	 l j l	 ljp , 1 <_i 1 < i2 < ... < ip <_n

jp

aipj 
1	 aipjP 	

lsjl<j2 <... <jpLn•

i... i	 r	 i ... i	 k ... k
Then if C s AB, C 

jl ... jp	
^.rA kl ... kp B j l ... 

jP

1	 p	 1	 p	 1	 p

summed over all possible 1 <kI < k2 < ... < k  <_n•	 (3.38)

This standard result is given and proved in Gantmacher [11).

To show that a l 0 0, write

I
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Figure 3.2

Newton Polygon for the Generic Case

of First-Order Angles of approach
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A0 (s) a Am(s)(-1)m(DET G(s))

= Am(s)(4)a(DET U(s))(DET V(s))r 
n	

(3.39)
i=1 i

and note that since z  is a single zero we may write

%(s) _ (s - zi)nm(s)	 (3.40a)

n l (z i ), ... nm- 1(zi), %(z i) # 0.	 (3.40b)

Also note that, excluding single-point loci,

m
Am (s) = n di (s )	 (3.41)

i=i

and recall that U(s) and V(s) are unimodular, so their determinaats are

non-zero,constants. Then we have

a.-1
AO (s) _ ( - 1) m(DET U (s))(DET V(s))( n ni(s))%(s)§	 (3.42)

i=1

and by comparing this to (3.3S), dividing by I,-setting s = z i , and using

(3.40b), we see that a l is non-zero. As for bo , using Lemma 3.1 on (3.2S)

gives

Al(s) • Am(s)(-1)m-1	 (principal minors order m-1 of G(s))

	

n.(s)	 corresponding

	

= Am(s)(-1)m-1E^--	 principal

	

1 " 'im-1 1 (s)	 minor of W(s)	 (3.43)

since all the non-principal minors of the Smith-MacMillan form are zero.

However, since %(z i) = Of



k

r;

b  a Al (zi)

	

M-1 m-1 n ( z i )	 wll(zi) ... w l m- 1(zi)

Am(z i)(- 1 )	 r	 OET
Jul	

( i)	 M-1.1(=i) ... 
w
m-1 m--1(zi)

and recalling ( 3.40D) and (3.41) shows that bo is non-zero :f and onl, ..

(3.37b) holds. This proves Theorem 3.3.

In Section 3.4, we will obtain some alternative equations for the

angles directly in terms of G(s) and G-1(s).

3.3.2 Multiple Poles and Zeros

Before we investigate the angles of arrival and departure for multiple

poles and zeros, some discussion will be necessary on exactly what is meant

by a multiple pole or zero. This is not a trivial matter; in the multi-

variable case, it is possible for G(s) to have a pole and a zero at the

same location, or several poles and zeros of various orders all at the same

location. he now make several definitions that will clarify matters and

make the analyses to follow as straightforward as possible.

Definition The pole p is a kth-order pole if the exponent of
(s	 the pole polynomial of G(s) is k.

ni(s)
Definition Let the Smith-MacMillan form of G(s) be D:AG [^)],

and let pi be a kth-order pole. Let k  be the largest integer such
that

(s - pi ) ^, I d  (s), j a 1 ... m,	 (3.45)

Then the ikj } are the structure indices (12] associated with the pole
Pi.

Analogous definitions are made for k
th

-order zeros and structure

indices of zeros. Note that pi may be a kth-order pole and also a zero.

Also note that pi may have one set of structure radices as a pole and
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ianother set of structure indices as a zero.

m
Remarks (1) F k. a k

J .1 J

(2) For a p--le, k  _ k 2 >_ k3 ? ... Z. km

For zero, the ordering is opposite

(3) For a first-order pole, the structure indices are
[1 1 0, ... 0].

Example 3.: Suppose that G(s) has as its Smith-MacMillan form

DIAG	
1	 s-1	 s

(s + 2 ) 3 (s + 1 ) 2! (s + 2)(s + 1 ) 2 ^ s + 1

Then the structure indices are

Pole at -2: [3, 1, 0]

Pole at -1: [ 2, 2, 11
Zero at '1: [0, 1, 2].

It should be noted that this definition of 'structure indices" is not

the sane as the definition given by Verghese and Kailath in [12], although

the definitions are closely related. The difference may be illustrated as

follows. Let q be both a pole and a zero of G(s), with Verghese-Kailath

structure indices [al, a2 , ... c i s 0 ... 0 9 -aj , ... -as ]. What we shall

do here is separate the polar structure of q from its zero structure. From

this point of view, the structure indices of G(s) at the pole of q are

given by 
[a l' a2' ... Q i , 0 ... O] and the structure indices of G(s) at the

zero q are given by [0 ... 0, a 	 m].

The motivation for doing this is that the polar nature of q has no

effect on the angles of arrival at q, and the zero nature of q has no

effect on the angles of departure at q. So we may consider q as consisting

of a pole and a zero which just happen to be at the same location, but may

40
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be treated separately.

Having defined terms and notations, we proceed now to investigate the

angles of arrival and departure for multiple poles and zeros. The metho-

dology and results employed in this section will be the same as those of

the last section, to which extensive reference will be made. Once again,

the angles of departure are treated first, and the angles of arrival

later.

Let pi be a kth-order pole with structure indices (k l , k2 , ... km].

We require series approximations for all of the loci departing from pi,

and thus we must determine the form of the Newton polygon from the structure

indices. As before, define

9 = s - pi	 (3.46)

Am (s) = Am(s + pi) = ao + a l t + a2 `s 2 + ...	 (3.47)

-Am-1(s) _ -Am-1 (s + p i) = bo + bl s + b2 s2 +	 (3.48)

Am-2 (s)	 Am-2(s + p i ) - co + c l s + c21 +	 (3.49)

Am(s) _ (s - pi ) kAm( s), Am (pi) # 0.	 (3.50)

{

From (3.S0) and the same argument as used on (3.27),
s

ao = al = ... = ak-1	 0, ak # 0.	
(3.51)	 f

I
E

We define

k
dj (s) _ (s - pi) J dj (s), dj (pi ) # 0, j = 1 ... m	 (3.52)

i

	

and recall (3.29) to write (corresponding to (3.31))	 i
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(k-k l ).	 nl(s)

-Am-1(s) = ( s - Pi)	 Am ( s)	 wll(s)
d l (s)

	

m	 (k-k.)_	 n.(s)
+ F (s - p i )	 J Am(s)	 jj (s) .	 (3.53)

	

j=2	 d  (s)

Comparing (3.S3) to (3.48), dividing by increasing powers of 3 and setting

s = pi (a familiar procedure by now), we get

b  = b  = ... = bk-k 
1- 

1  = 0, bk-k 1 # 0
	 (3.54)

where we have assumed ( 1) w11 (p i) 
# 0, (2) k1 # k2 - If k l = k2 , we require

instead the assumption

n 1 (Pi )	 n2(Pi)	
1

bk-k l = Am(Pi) al(Pi) 11(pi)	
d'^(Pi) 

22 i

which we would still expect to be true in general.

Now we must consider Am-2 (s). Again using Lemma 3.1, we may gener-

alize (3.43) to

Ap (s) - Am(s)(-1)m-p E (principal minors order m-p of G(s)I

n.(s)	 corresponding

= Am(s)( -l),-p	 II	 a	 principal

i I ... im-p	 ( minor of W(s)

p1 ... m .	 (3.56)

Taking p = m - 2 and some reflection leads to

(k-kl-k2)A 
(

s) nl(s )n2(s) DET w ll (p i ) w12(Pi)

Am-2(s) _ ( s - Pi)	 m
dl(s)d2(s)	 W21(pi) "22(Pi)

II ^

j
((—Sjl
(s) corresponding 2 x 2

+ Am(s)^ il'i2 	 principal minor of W(s) (3.S7)
 ) (
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(recall k l >_ k2 2 k3 >_ ... L km). Since n 1 (s) and d l (s) are relatively

prime, and d l (p i) is zero, n l (pi ) is non-zero. A similar argument applies

for n2 (pi ) if k., is non-zero.

Comparing (3.57) to (3.49) and once again dividing by increasing

powers of  and setting s = p i , we get

co = c  = ...

where we have assumed k

Ill l (P i 3DET 

w21(Pi)

= ck-kl-k2-1 = 0, ck-k l -k2 # 0
	 (3.58)

` # k3 and

W12(Pi)
# Q.	 (3.59)

w22 (Pi)

If k2 = k3 we must satisfy instead an equation analogous to (3.55).

We may repeat this argument for p = m-3, m-4, ... and obtain more

equations analogous to (3.51), (3.54), and (3.53), with analogous assump-

tions. The Newton polygon will take the form given in Fig. 3.3, and we

can now prove the following theorem:

Theorem 3.4 The loci departing from a kth-order pole depart gener-
ically in Butterworth patterns whose orders are the non-zero structure
indices of G(s) at the pole. For a pole p i with non-zero structure

indices [k l , k2 , ... k r ] the angles of departure are:

d 
(k-kl)

(k-kl)'4m-1(s)

8	 = 1 ARG ds
depart, 1	 k 
	 d(k)	 IS ° pi

ds(k) Am(s)

0+ n360 - 	 n	 0, 1, ... k l - 1
1

(3.60a)

f
;i
t
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t

(k-kl-k2)
d

1 
ARG 

ds

Am,( s )

(k-k1-k2)
_

_	 ^
edepart, 2 T7-	 (k_kI)	 s = Pi.

d

L
(k-k l ) Am-1(s)

ds

+ n- 6, 	 n=0, 1, ... k2 - 1	 (3.60b)
2	 .

= I ARG	
m-r (s)

edepart, r ^	 ( 

A

r ) 	'	 Pi
d

ds

n360*
+ --T-- , n 	 0, 1, ... k r -1	 (3.60c)

r

if the following assumptions are met:

(1) k  # k 2 # ... # k 	 (3.61a)

w11 (p i ) ... 'I j (pi)

(2) DET

	

	 # 0, j = 1 ... r .	 (3.61b)

wj l (pi) ... wi J (pi)

We prove Theorem 3.4 by applying the Newton polygon technique. Since

the k  are ordered, the polygonal arc drawn in Fig. 3.3 is convex, and is

indeed the Newton polygon. If the k  are unequal, we may write

k.
k a c i3 1 , i = 1 ... r, as (3,k) - (0,0)	 (3.62)

where the c. solve
1

c i-Ia
i-1 + cis i	0	 (:.63)

r

t



where d i is defined as

(k-kl-...-ki)
Am-i(s) = a i `s	 + ... , i	 1 ... r	 (3.64)

(note do = ak , sl = bk-kl 
and 

S2 = c
k-kl-k2). From (3.62) and (3.63), we

get

1/k.
8 = x 

i 
k	 1 , i	 1	 r	 (3.65)

where xi solves

ki	 a  
x i = - S
	

, i = 1 ... r.	 (3.66)
i-1

The ki solutions to (3.66) are equally spaced in the complex plane by

angles of (360/k i)°; hence their angles are those of a Butterworth pattern.

This fact with (3.65) proves that the departing loci form Butterworth

patterns. Applying the definition of angle of a locus to (3.65) and noting

that

(k - k l - ... - ki)

d (k - k l - ... - ki) Am-i(s) is = pi
(k - ki - ... - k i)! ds

(3.67)

yields (3.60a, b, c) and concludes the proof of Theorem 3.4.

Note that if any two non-zero k i are equal then three points in Fig.

3.3 will be collinear, and (3.63) will be replaced by an equation of the

form

cl-1 
a i-1 + cia

i + ci +l s i+ l 	 0	 (3.68)

which is now quadratic in c i . In this case, we get two Butterworth patterns

of order ki with different principal angles, whose computation from the

I.	 .
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t

Ai (s) is now much more difficult.

As for the angles of arrival at a multiple finite zero, we may use a

procedure analogous to that used for the angles of departure to obtain an

analogous result. The groundwork was laid in the last section for first-

order zeros; the only difference is that we now use p = 1, 2, ... r in

(3.56) rather than p = m - 1, m - 2, ... m - r. The result is

Theorem 3.S The loci arriving at a kth-order zero arrive generically
in Butterworth patterns whose orders are the non-zero structure
indices of G(s) at the zero. For a zero z  with non - zero structure

indices [km , km_ 1 , ... km_r] the angles of arrival are:

(k-km)
d
(k-km) 1 (s)

8arrival , 1 = m ARG - 
dsd	

A

(k)	 s = z 1

ds(k) A°(s)

+
 n F

0

n	 0, 1, ... km - 1	 (3.69a)
M

arrival, r + 1 a m r	 (km_r)	 Is = zi
d

Tm-r) 
Ar(s)

ds

	+ n-- , n = 0, 1, ... k
m_r - 1
	 (3.69b)

if the following assumptions are met:

(1) km km-1 0 ... # km-r	
(3.70)

W11 (pi ) .... wlj(pi)
(2) DET	 00, j=m-1,m-2....m-r-1.

jl (pi) •.. W. (P)(3.71)

i
t

f	 ^
ti	 s
^	 P



(For notational convenience, we let r be one less , than the number of non-

zero indices.)

It is unfortunate that the assumptions (3.dlb) and (3.71) are so

difficult to verify, depending as they do on the unimodular matrices

U(s) and V(s) that bring G(s) to the Smith-Ma-Millan form. Except for one

note in the next section, it has not been possible to interpret these

conditions or come up with easier ways to determine whether or not they

are fulfilled. In any case, it is felt that the results of this section

cast considerable light on the angles of root loci departing from or

arriving at multiple poles or zeros.

We end this section with an illustrative example:

Example 3.2 We wish to find the Engles of arrival and departure for
t e root locus of

G(s) =	 l
s'1+4s'+Ss2+8s+4

s2 + Ss + 17	 s3 + los2 + 33s +'34
x

s 3 + 93 2 + 25s + 17	 2s4 + 21s 3 + 78s 2 + 117s + 68

We have

a(g,$) - g2 - TR G(s) * DET G(s) = 0

and it is straightforward to compute ,6(g,$) and multiply through by
the least common denominator to get

0(g,3) _ ( s 6 + 6s5 + 1854 + 32s3 + 36s2 + 24s + 8)g2

- Us  + 25se ' + 125s4 + 32Ss 3 + 493s 2 + 420s + 170)g

+ (s4 + 16f; 3 + 983 2 + 272s + 289) - 0•

The open-loop poles are found by solving

A2 (s) = s6 + 6f; 5 + 1834 + 32s 3 + 36s 2 + 24s + 8 = 0
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f

which yields the third-order poles -1 + j and -1 - J. The finite
zeros are found by solving

A0 (s) = s4 + 163 3 + 9832 + 272s + 289 = 0
t

which yields the second-order zeros -4 + j and -4 - J. The structure
indices may be four y construct ng the Smith -MacMillan form of G(s)
(another method will be described later): 	 I

G(s) a	 1	 0	 s2 + as + 17	 0

s+1 1	 34+4s3+8s2+8s +4

0	 s2 + as + 17

s2+2s+2

x 1 s + 2

0	 1

from which we see that the structure indices for the poles -1 t j are
(2, 1), and those for the zeros -4 t j are 1, 1). Since we have
U(s) and V(s), we may quickly confirm that the W(s) assumptions are
upheld.

Thus loci depart from the pole -1 + j in some second-order and
first-order Butterworth patterns with angles

d A (s)

ade art, 1 
z 3 ARG 

dd3) 
1	 I3 s pl 

+ n180°, n = 0, 1
p	

A
d3(3) 

2(s)

1	 12s5 + 12554 + S003 3 + 97Ss 2 + 986s + 420
= —ARG I :_12	 12033 + 3603 2 + 4323 + 192	

Is	 + j

= 61.8° 1 241.80

and angle

Ao

e depart , 
2= ARG -dAO W IS s Pi

ARG -	 s4 + 16s 3 + 983 2 + 2723 + 289
_	 j

12s5 + 125s4 + 500s 3 + 975s 2 + 986s + 420 
s	

l +

= 33.7°.



By symmetry, the anglesof departure from the pole -1 - j will be
-61.8 0 , 118.2 0 , and -33.70.

We know that the loci will arrive at the finite zero -4 + j in
two first-order Butterworth patterns, but since the structure
indices are equal, the computation of the angles of arrival would be
much more difficult, and is not attempted here.

3.4 Results from Laurent Series

We now use a different methodology to come up with much simpler

equations for the case of first-order and certain higher-order poles and

zeros. These turn out to be nice generalizations of the SISO equations.

Let p i be a first-order pole of G(s), and let the Laurent expansion

of G(s) at p i be

G(s) 
s 

s 1
i

p G-1 + Go + (s - p i )G I + (s - pi ) 2G, + ...	 (3.72)

Then taking the trace of both sides, we have

TR G(s) = s 1p TR G_ 1 + TR Go + (s - p i) TR G 1 + ...	 (3.73)
i

Recall (3.16-18):

B=s - Pi
	 (3.74)

Am(s) = Am (3 + p i) = a ll + a23 2 + ...	 (3.75)

-Am-1(s) _ -AM-1(3 + p i ) = bo + b ls + b28 2 + ...	 (3.76)

Now multiply (3.75) and (3.73):

-Am_ 1 (s) = AM(s) TR G(s)

s (al TR G_ 1) + 3(a, TR Go + a2 TR G-1 ) + ...	 (3.77)

Equate coefficients of (3.76) and (3.77):



b  . al TR G_ l .	 (3.78)

We know from ( 3.28) that a l is non-zero, and recalling (3.22),

b

e depart ` ARG [- S ]	 ( 3.79)1
we rave proved Theorem 3.6:

Theorem 3.6 Let the Laurent expansion of G(s) at a first-order pole
pi a (3.72). 'Then, if TR G_ 1 0 0, the angle of departure from p i is

e depart ` ARG [-TR G_ 1 ] a ARG [- (s - pi) TR G(s)1 s = pi ]• (3.80)

Simple as this result is, it is a striking generalization of the SISO

root locus equation (2.32) for computing the angle of departure. The only

difference is that in (3.80) the trace of the transfer function matrix is

used, whereas in (2.32) the ( scalar) transfer function itself is used.

The condition TR G -1 # 0 will hold in general; in fact, it is easy to

show that TR G_ 1 0 0 if and only if wll (p i) 0 0 • which is the condition

that is needed in Theorem 3.2 in order to use ( 3.26) to compute the angle

of departure from the Ai (s). Recall the Smith-MacMillan form of G(s)
i

n (s)	 n (s)
G(s) = U(s) DIAG ^(s) ••• a (s) V( s )	 (3.81)

and use (3.30b) (properties of the di (s)) to show that

G-1 : (s - 
Pi)G(s)Is

Pi

nt(pi)
U(pi) DIAL	 , 0 ... 0 1V(p i).	 (3.82)

dl(Pi)

Then using the commutative property of the trace, one has



TR G-1 = TR DIAG nl(Pi) 0 ... 0 V(Pi)U(pi)

dI(Pi)

nl(Pi)

'	 wll(pi)	 (3.83)

d1(pi)

and the result follows.

In the unusual case where TR G-1 is zero, something rather interesting

happens. We now state and prove

Theorem 3.7 Let the Laurent expansion of G(s) at a first-order pole

Pi be	 2). Then if

(1) TR G
-1 s 

0	 (3.84)

(2) TR [G
-1 G

o] # 0	 (3.85)

the angle of departure from p i is

edepart ' 
ARG ITR (G

-1 G
o j	 (3.86)

and the locus departs as k 2 (a f-order departure).

If TR G-1 is zero, b  is zero, and the Newton polygon for this situa-

tion, given in Fig. 3.4, shows that we must consider

principal minors

(s) ' V s) E	 1
Am-2 	 ` order 2 of G(s) 

J' (3.87)

Recalling the Laurent expansion of G(s), we see that

principal minors s	 1	 principal minors
G(s) ,	 Corder 2 of G(order 2 of	 -1

(	 pi)

1
s	

17;/principal minors with one column 1	
(3.88)

`	 pi	 from G-1 and one column from Go J "

and the first term must be zero, or p i would be a second-order pole.

Denote the elements of G-1 and Go as
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S4

G_1 = [gib]. G
o - [g0^]
	

(3.89)

and observe that

principal minors with one column)
from G-1 and one column from Go J

m m	
0	 -1 0	 m-1 m0	

m	
m -10

 (g- 1 g	 g g	 = ^9 ^ g	 4 8
i=1 =1	 li J1	 Ji i	 i=1 li =1 JJ	 =1 i=1 J l l^/J	 J	 J

(TR G_ 1)(TR Go ) - TR [G-1 Go] = -TR [G_ 1 Go].	 (3.90)

Multiplying (3.88) by the polynomial for Am(s) (3.75) and using (3.87)

and (3.90), we get

'm-2 (s) = -a1 TR [G_ 1 Go ] + s(-a2 TR [G-1 Go ] + ... )	 ( 3.91)

so that if TR [G-1 Go ] is non-zero, the Newton polygon will be as in Fig.

3.4. We then have

k = cA l	(3.92)

where c solves

a 1 - a 1 
c 2 TR [G_ 1 Go ] = 0.	 (3.93)

Since al is known to be non-zero from (3.28), we have

8 = TR [G
- 1 

Go ]k2	(3.94)

and the theorem follows.

Unfortunately, the Laurent series methodology does not lend itself

well to the case of multiple poles. In general, the results from the

Smith-MacMillan form must be used. However, for a certain class of



multiple poles, the following result applies:

Definition A k th-order pole is said to be simple if its structure
in iiccessare (k, 0 ... 01.

Theorem 3.8 Let the Laurent expansion of G(s) at a k th-order pole

Pi be

G(s) a	 1	 G	 + ... +	 1	 G	 + G + ...	 (3.95)

(s - 
pl) k -k	 (s - pi) -1

	 0

Then if TR G-k 0, the pole is simple and the angles of departure
from p i are

0
6 depart = ^ ARG -TR G_ k)+ n3--6,^0	 n 0, 1, ... k - 1

_	 ARG (-(s - pi ) k TR G(s) I s = 
pi.

+ n '— b n=0, 1, ... k-1.	 (3.96)

The proof of Theorem 3.3 follows that of Theorem 3.6. Recalling

(3.S1) for a kth-order pole we have that

a0 = a l = ... = ak- 1 = 0, ak # 0.	 (3.97)

Taking the trace of (3.9S) and multiplying by A,m(s), we get

-1 (s) s Am (s) TR G(s)

_ (ak TR G -k ) + 9(ak+l TR G-k + a  TR G
-k+l

) + ...

(3.98)

Equating coefficients with (3.76) gives

bo = a  TR G_ k*
	

(3.99)

Now, if TR G
-
k is non-zero, b  is non-zero, and the Newton polygon will

look like Fig. 3.5. Comparing Fig. 3.S with Fig. 3.3 shows that p i must be

SS
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G-1 (s) - ADJ G(s)
DET G(s) (3.102)

57

simple. We have

6 depart = ARG [x]	 (3.100)

where x solves

b
xk = - ak = -TR G-k	 (3.101)

as before (see (3.64-66)). (3.100) and the k solutions to (3.101) yield

(3.96), and the theorem is proved.

If TR G-k is zero, p i is not a simple pole and we must go back to the

Smith-MacMillan form results. The reason that the SISO angle of departure

equation (2.32) does-not always generalize to (3.96) is that in the SISO

case all higher-order poles are necessarily simple, while in the multi-

variable case only some are.

The Laurent series methodology might at first seem inapplicable to

the computation of angles of arrival, since these depend on the sum of

principal minors of order m - 1 of G(s), which, unlike the trace, is not a

linear function. However, recall that

where ADJ G(s) is the transpose of the matrix of cofactors of G(s). So the

main diagonal elements of G -1 (s) are principal minors of order m - 1 of

G(s) divided by DET G(s), and we have

A (s) = Am (s) E 
(order
principal minors of 1(-1)m-1

1  	 m- 1 of G(s) I
= Am(s) DET G(s) E main diagonal elements of G 1(s))(-1)m-1

-A0 (s) TR G-1(s).
	 (3.103)

i

3

r

)



58'

lie once again define, for a kth-order finite zero zi,

(3.104)g =s - z.
i

A0 (s) = Ao (A + z i )	 ao + al b + a2 d - + ...

r	 Al(s) = Al ( g + z i ) = bo + b l 3 + bl 8- + ...

where we know (see (3.39-42))

(3.105)

(3.106)

a  = a l = ... = ak-1 = 0, ak # 0.	 (3.107)

Since z i is a kth-order zero of G(s), it is a kth-order pole of G -1 
(s).

and we may write a Laurent expansion

G-1 (s) =	 1	 l• 
H-k + ... +	 1	 H-1 + Ho + ...	 (3.108)

(s - z i )'	 (s - zi)

Taking the trace of (3.108), multiplying by (3.105), using (3.107), and

equating coefficients with (3.106), we get

bo = -ak TR H-k	 (3.109)

and following (3.99-101), we have proved

Theorem 3.9 Let z  be a kth-order zero of G(s). Then if TR H-k A 0,

where H-k is defined by (3.108), the angles of arrival at z  are

d arrival = k 
ARG [ (s - zi) 

k TR G-1 (s) I 
s = zi ] + n360*

n = 0, 1, ... k - 1.	 (3.110)

As with the angles of departure, TR H -k being non-zero corresponds to z 

being a simple zero. If z  is non-simple, the Smith-DfacMillan form results

must be used.
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We can simplify (3.110) for the case of 2 x 2 G(s), by noting that in

this case we have

TR G -1 (s) - ET 
G s

so that (3.110) becomes

6	 = 1 ARG 
(s - zi ) k TR G (s)	

+ n360°

arrival IDET G (s)	 s z i	 _T_

n =0, 1, ...k-1•

(3.111)

(3.112)

We conclude this section with a simple example:

Example 3.3 (31 We wish to find the angles of arrival and departure
for

G(s) =	 1
s4 + Ss  - 2s2 - 44s + 40

	

3s 3 + 4s 2 - 1S6s + 464	 8s2x 	 - 24s + 16

	

s 3 + 79s 2 + 44s - 868	 -4s3 - 4s 2 + 40s - 32

From the characteristic equation (or other means), it is ascertained
that G(s) has first-order poles at 1, 2, -4 + 2j, and -4 - 2j, and
first-order finite zeros at 1 + j and 1 - j. Using Theorem 3.6, we
have

Pole ats =1

9 depart - ARG [ - (s - 1) TR G(s) 'Is = 1^

_ ARG	
s3 + 116s - 432	 00

s-2)(s+4+2j (s+4-2j)^s=1

` Pole ats2

`	 s3 + 116s - 432
d depart	 ARG [ (s - 1) s + 4 * 1 s + 4 - 2j 	 Is - 2

`k
	 180°

t

r
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Pole ats-4+2j

s 3 + 116s - 332
depart = ' G (s -	 s - _ (s 7-4 + 2j) ^s = -4 + 2j

= 110.9°

Pole at s - -4 - 2j

6depart 
= -110.9° by symmetry.

Using Theorem 3.9 and (3.112), we have

Zero at s =1 +j

8	 = ARG s- 1
	 TR G(s)  i

arrival	 s	 s - 1 + j

= ARG (s - 1 - j) s3 + 116s - 432 I	 = 69.60
[	 s = 1 + j

12 s - 2s + 2

^e ro at s

° arrival = -69.6 0 by symmetry.

These results agree with those of Postlethwaite [3], from which this

example is taken.

3.5 Results from Toeplit: Matrices

We now take the Laurent series coefficients from the last section and

arrange them into Toeplitz matrices from which the angles of arrival and

departure can be obtained. We also relate these results to the preceding

results, showing how all of these results relate to each other. The

results that follow are due to Sastry and Desoer [17] and Levy [19].

Definition A matrix A has simpl e null structure if, in the Jordan
fobA, the zero eigenvalues are all contained in Jordan blocks
of order one.

Note that if a matrix has simple null structure, then its rank



,-,	 rte^"..

is equal to the number of non-zero eigenvalues.

Theorem 3.10 Let the Laurent series expansion of G(s) at xn nth-order
pole pi be

G(s)	
I	

G	 + ... +	 1	 G	 + G + ...	 (3.113)	 i(s - pi) n -n	 (s - pi) -1	 0

Then the angles of departure are given by

6 
depart

: 
a

ARG (-a a]+ 
3j a0

,7 = 0, 1, ... a-1

a = 1, 2, ... n
	

(3.114)

where a is a non-zero solution to
a

G-n	 0	 0

DET	
G_ (a+2)
	 0	 = 0

G-(a+l)
	 G_ (a+2)
	 ...	 0

(G-a	
XaI)	 G-(a+l)
	

G_ 
(a+2)
	 ...	

G-n ^	 (3.115)

provided this is an equation in '. a , and certain matrices G  obtained

from the G  by a procedure given in (17] have simple null structure.

Theorem 3.10 is proved as follows. By making the substitution

g -k in the characteristic equation, we have the following equation

describing the root locus:

DET [I + kG(s)] = 0.
	

(3.116)

This is equivalent to stating that there exists a non-zero m-vector v(s)

such that

(I + kG(s))v(s) = 0.	 (3.117)

E

R



Ss - pi

1
s = xak /a

a = 1 ... n (3.120)

(3.119)

62

In the vicinity of a pole, where s - p i is near zero, we may expand v(s) in

a power series

V (s) = o + v l (s - pi ) + v` (s - pi ) 2 + ...	 (3.118)

with v non-zero.
0

We now make use of the fact that if the Gi all have simple null struc-

ture, all loci departing from p i depart in integer orders, i.e. as kl/a

where a is a positive integer. This is proved in Sastry and Desoer (17]

for the case of asymptotes of root loci, and a similar argument applies for

the angles of departure. So we may write

for some constants xa.

First, let a = n. Substituting (3.113), (3.118), (3.119), and (3.120)

in (3.117), we get

n
(v+vy+...) +5 (1 G	 + 1 G	 +...)(v +v	 +...)0	 1	 n Sn -n Sn-1 -n+10 	 1x

n

= 0.	 (3.121)

Letting s-+0 for the angles of departure, we require the constant term of

(3.121) to be zero:

o + n 
G
-n vo

 (I + n G-n ) o = 0.	 (3.122)

x 
	

x 

Now let a = n - 1. This gives

U
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f
t
r

Mn-1

(vo + v
l + ...) + sn 1 (1 G	 + 1 G	 * ... )(v + v s + ... )

,.nn n^ -n+1	 o	 1
xn-1 s

It 0	 (3.123)

and we require both the constant term to be zero

vo + 
Xn 1 

G
-n+lvo + x

n-1
n 1 G-nv1 ' (1 

+ 'n
-1 G-n+l)vo + n-1 G-nvl

n-1	 n-1	 xn-1

= 0	 (3.124)

and the term of order 3 -1 to be zero

1

x 1 G-n o= 0. 	 (3.125)

n-1

We may combine (3.124) and (3 . 125) into

G	 0	 v
-n	 o

n-1	
0.	 (3.126)

(G
-n+l + xn-11)
	 G_	

0.

vl

But 
c 

must be non-zero, which can only happen if xn_1 is such that

0
DET	

G_ 
n	 = 0.	 (3.127)

n-1
(G-n+l + xn-1 1)	 G-n

There are two possibilities. Either there is no such x n_ 1 , in which case

there can be no loci departing as 
kl/(n-1), or there are n - 1 such xn-1'

specifically the n - 1 solutions to

xn-1 s - 1
n-1

where A solves
A
P

{

i

t

(3.128)

i



DET	
G	 0
-n	 0.	 (3.129)

(G-n+l ' XI)
	

G-n

It is immediately evident that the solutions to (3.128), when sub-

stituted back in (3.120), will give rise to an (r, - 1) th-order Butter-

worth pattern. Continuing the argument for a - n - 2, ... 2, .l, it is

clear that the pattern of (3.122) and (3.127) will continue, giving rise

to (3.115). This concludes the proof.

For the angles of arrival, we have

'theorem 3.11 Let the Laurent series expansion of G(s) at an n
th-

or er zero z. be1

G(s) - Go + (s - z i ) G 1 + (s - z i ) 2G2 + ...	 (3.130)

and let the G  (again, see [17]) all have simple null structure. Then

the angles of arrival are given by

e
a arrival = - a aRG [-Xa] + 360 , j= 	 0, 1 0 ... a - 1

a = 1, 2, ... n

where Xa is a non-zero solution to

(3.131)

G 1	0

G	 0
a-2	 : 

DET

Ga-1	
Ga	 ...

(Ga - XaI)	 Ga-1	 Ga-2

provided this is an equation in Xa.

0

=0
	

(3.132)
0

.•	 G1

The proof of Theorem 3.11 follows closely the proof of Theorem 3.10,

and should be quite apparent.

a
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Solving the generalized eigenvalue problems (3.115) and (3.132) is by

no means trivial. and from a computational standpoint our earlier results

will often be preferable. The importance of Theorems 3.10 and 3.11 is

the linkage they provide between all the results of this chapter. We now

give an algorithm which shows dramatically the link between Theorems 3.10

and 3.11 and Theorems 3.4 and 3.5.

Lemma 3.1 Let the Laurent expansion of G(s) at a pole or zero q be

G(s) =	
1 

c Go +	 1	 G1 + ... + Ge
( s	 q)	 (s•q)--i

	

+ (s • q)Gc+l + ...	 (3.133)

and define the set of Toeplitz matrices

Go 	0	 0

G
Ti 	i	 i = 0, i t ...	 (3.134)

0

Gi 	G1 Go

Now define the sequence

ki = RANK Ti - RANK Ti-1 , i = 0, 1, ...	 (3.13S)

with RANK T-1 = 0. Then the structure indices of q as a pole are

(ki , i = 0, 1, ... c - It and the structure indices of q as a zero

are (ki , i = c + 1, c + 2, ... 2c le

This result is due to Verghese (121 and Van Dooren et al. (13), and it

can be used to compute the structure indices of G(s) without putting G(s)

in Smith-MacMillan form.

Now compare the matrices in (3.115) and (3.134). Except for the aaI

in (3.115), they are the same: Comparing Theorem 3.10 and Lemma 3.1 shows

t
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that Theorems 3.4 and 3.10 are predicting the same orders for the Butter-

worth patterns for the angles of departure. Similarly, Theorems 3.5 and

3.11 predict the same orders for the angles of arrival.

This agreement seems to indicate that the simple null structure

assumptions in Theorems 3.10 and 3.11 and the assumptions involving the

principal minors of K(s) in Theorems 3.4 and 3.5 are equivalent. This

would be a nice result, since it would confirm that the assumptions of

Theorems 3.4 and 3.5 are indeed generic. Unfortunately, we have not been

able to show this equivalence, although we suspect strongli • that it exists.

Theorems 3.10 and 3.11 can also be related to the L-turent series

results of Section 3.4. If p i is a first-order pole, only one branch may

depart from it, and hence there can only be one non-:ero solution to

(3.115). For a first-order pole (3.115) becomes

DET jG
- I 

- a 1 I] = 0
	

(3.136)

and so 'X1 
is the single non-zero eigenvalue of G - I . But TR G-I is the sum

of the eigenvalues of G-I , and if all of them except 
X  

are zero, then

(3.114) yields

6 depart ' ARG [-X I ] ` ARG [-'rR G-1 1 	(3.13')

which agrees with Theorem 3.6.

If pi is a simple nth-order pole, (3.115) becomes

DET [G-n - an I] = 0
	

(3.138)

and again there can only be one non-zero solution. This will again be the

single non-:ero eigenvalue of G-n, and (3.114) now yields



e

depart ' a ARG (-^j * 
'n0 

, j ' 0, 1, ... n - 1

= n ARG ( -TR G-nj * 3600 . j * 0, 1. ... n - 1 (3.139)

which agrees with Theorem 3.3.

As this thesis was being written. we were made aware of concurrent

and independent research into the natures of the angles of arrival and

departure by Byrnes and Stevens (201. In 1 201, Byrnes and Stevens derive

the main result of Section 3.3.2, i.e. that loci depart from poles and

arrive at zeros in Butterworth patterns whose orders are the MacMillan

indices of G(s) at the pole or zero in question. They also show that the

assumptions of Theorems 3.4 and 3.5 are in fact equivalent to simple null

structure assumptions on the matrices obtained when G(s) is block-

diagonalized, and hence are generic. However, they derive no explicit

equations for the angles of arrival and departure, and they do not consider

the approaches taken in Sections 3.4 and 3.5.



CHAPTER IV

Branch Points and Break Points

4.1 Introduction

In this chapter we consider the other two types of i •oints, besides

poles and zeros, that are significant to the !^ehavior of the multivariable

root locus. These are branch points, which are associated with unusual

behavior of the multivariable root locus and are not present in the SISO

case, and break points, short for breakin points and breakout points, where

a branch on the real axis suddenly breaks out into the complex portion of

the s-plane, or the reverse.

Branch points are perhaps the most startling new phenomenon encountered

in generalizing the root locus from the SISO case to the multivariable case.

They are associated with the unusual loops and swerves sometimes seen in

multivariable root loci (see [S]). In particular, the branch points on the

real axis are associated with the "turnaround" of root loci on the real

axis depicted in Example 4.1 below. It will be shown in this chapter how

branch points may be computed and how the "turnaround" behavior may be

predicted.

Break points are well known from the SISO root locus, but they have

not been considered in the multivariable context. We show in this chapter

how break points may be computed, and that the angles at which branches

break into and out of the real axis are evenly spaced over 360°, as in the

SISO case.
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04.2 Branch Points

4.2.1 Computation of Branch Points

Before the effects of branch points on the root loci can be ascer-

tained, the branch points themselves must be computed. We now give two

procedures for computing the branch points: one for the case of a two-

input -two-output system (m a 2), and one for systems with three or more

inputs and outputs.

Theorem 4.1 If m = 2, the branch points are given by the solutions to

A(s)	 (TR G(s)) 2 - 4 DET G(s) = 0	 (4.1)

and the gain go at a branch point s o is given by

go = }TR G(s 0).	 (4.2)

Theorem 4.1 follows immediately from the characteristic equation of a

system with m = 2, which is

g` - JR G.(s))g + DET G(s) = 0.	 (4.3)

Solving this, we have

g = I TR G(s) +- ^(TR G(s)) - - 4 DET G(s))	 (4.4)

and recalling (from Chapter II) that branch points are by definition points

where the characteristic equation has a multiple root g o , the result follows.

Theorem 4.2 The branch points of a root locus described by (^(g,$) = 0
are given by the solutions to the simultaneous equations

'A(g,$) a 0	 (4.5a)

8 '^(g,$) = 0.	 (4.Sb)

Remark The resultant (see Appendix) may be used to solve (4.5).

V
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We prove Theorem 4 . 2 by noting that if go is a multiple root of

s(g,$) a 0, we may write, for some so,

s (g , so ) _ U - go) `i(g,s0)
	

(4.6)

and we have

3g(g ,so) a 2 (g - go ) ^( g , so ) + (S - go) Y^(g,so).	 (4.7)

Setting g = go makes both (4.6) and (4.7) zero.

It should be noted that higher-order poles and zeros may be branch

points (with go - 0 or --). We exempt this case from the results to
follow.

4.2.2 Effects of Branch Points on Root Loci

The effect that a branch point can have on the form of the root locus

is best illustrated by an example.

Example 4.1 Plot the root locus for

s - l	 s
G(s)

is + 

1 

S + ^) -6	 s-2

It is shown in Chapter V (and also in [1], from which this example is
taken) that the root locus is as drawn in Fig. 5.2. Note that the
branch departing from the pole at -1 moves in the positive real
direction, then abruptly turns 180° at the branch point at 1/24.
Certainly this type of behavior is not characteristic of SISO root
loci!

As explained in Chapter II, this unusual behavior is observed at branch

points because it is at these points that the root locus "jumps" from one
sheet of its Riemann surface to another, which maintains continuity but

allows for a sudden change in direction. This is discussed in more detail

in [1] using the 180 ° phase contours of the algebraic function g(s); here



we are more interested in describing this behavior than in accounting for 	 a

it.

It should also be noted that the root locus can "jump" from one

Riemann surface to another at places where it crosses a branch cut. Branch

cuts are the "seams" where different copies of the complex plane have been

"stitched together" to form the Riemann surface. They are made between two

branch points, or between a branch point and infinity, by a procedure

described in [1]. The very unusual behavior of some of the root loci in

[S] may be associated with branch cuts, but a detailed explanation of this

behavior will require more research.

The following argument, due to Postlethwaite [ IS], may be helpful in

understanding why branch points produce the "turnaround" effect on root

loci. Since ^(g,$) = 0 for all (g,$) on the root locus, we have

^(g,$) = 3g ^(g,$) + s{g,$)	 = 0	 (4.8)

and at a branch point (g0 ,so) using Theorem 4.2, we have

as ^(go ,so) = 0 or	 (4.9a)

ds is ,g = 0.	 (4.9b)

0 0

But (4 . 9b) implies that s o is a stationary point of the root locus -- a

point where a branch turns around and doubles back on itself.

We now show that it is possible to determine on which "side" of a branch

point a branch of the root locus will approach, reach the branch point,

turn around, and depart. This result is quite important since without it

we can say little about the locations of loci on the real axis. The

i



following theorem will be used in Chapter V:

Theorem 4 . 3 Given a branch point s o on the real axis, the root locus

will approach it, turn around, and depart from it on the left side
(respectively on the right side) if

2

SGN 
8 
	
at 

I s = s	 ` 1 (respectively 
- 1).	 (4.10)

13g2 as	 o

Remark Recall that we have go = }TR G(so) at a branch point.

We prove Theorem 4 . 3 as follows. In the vicinity of the branch point

so , define

os a s - so	 (4.11)

and for a small perturbation 39 in g write the Taylor series

os	
ds	 6g +	 d s +	 ( So + ...	 (4.12)
dg so	dg  so

The first term is zero. Neglecting higher-order terms, one has

SGN [bsJ	 SGN [ d—s	 j.	 (4.13)a	 dg  
s 

This illustrates the "turnaround" behavior -- regardless of the sign of dg,

which differentiates "approaching" and "departing," the sign of 6s does not

change. Thus s is always on the same side of so.

From (4.8) we may write

3m
dS a$
ag _ - a^	

(4.14)

as

and taking the derivative with respect to g, we get
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d es = _ Cis \ R 3g^ - og \ g as,]
(4.15)

g`	
2

d	 / ;^ m 1	 i

as 1
and evaluating this expression at the branch point s o , we have

32^

d2 ^ ^ , _ 3g

3s

2

dg` s 	
3^	 s = sG .	 (4.16)

Using (4.13) and (4.16), we finally obtain

[

L21

SGN [ds] _ -SGN 
	 a0 j s - s	 (4.17)

3g as	 o	 J

and the theorem follows.

There is an interesting corollary to this theorem in the special case

m = 2:

Corollary 4.1 if m = 2, (4.10) simplifies to

SGN [
3s 

A(so)] = 1 (respectively - 1)	 (4.18)

if the loci are on the right side (respectively left side) of so.

This is not difficult to show. For m = 2 the characteristic equation

is (4.3), and (4 . 10) becomes

SGN
3"t 30
 ag2 as (s = so = 

SGN 2 as (-TR G(s)g

+DETG (s)) is=s

0

But recalling (4.2) from Theorem 4.1, this becomes

(4.19)
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ds 0 (g , $ ) = 0 (4.22)

n •

SGN r3

2 a am	 - SGN _2 ( 8 TR G(s)) (ITR G(s))
L.Ov- as s s SO 	 \ as

3s DET G(s) )^s
	 s	 = SGN -	 as ((TR G(s))2

0

- 4 DET GIs)^^ s = s
	

-SGN [as ^(so)]	 (4.20)
0

and the result follows. Thus t he loci will be on the side of the branch

point for which A(s) is positive -- a fact that we will interpret in

Chapter V.

4.3 Break Points

4.3.1 Computation of Break Points

We now give a procedure for computing the break points. Recall (again

from Chapter II) that break points are by definition points where the

characteristic equation has a multiple root so.

Theorem 4 . 4 The break points are given by the solutions to the simul-
taneous equations

O(g,$) = 0	 (4.21)

Remark Again, we may use the resultant (see Appendix) to solve (4.21)
and (4 . 22) by rewriting 4^(g,$) as

a (g ,$) _ T (s, g) An Bn (g) sn + Bn-1 (g)sn-1 + ... + B0 (g) =0. (4.23)

Now the resultant yields an equation in g. We may then obtain the
break point so by solving (4.22).

Theorem 4 . 4 can be proved by repeating the proof of Theorem 4.2 with g

and s interchanged, but the following proof is more insightful. Define

i

M
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6'^(g
0
,s
0
) _ O (g ,$) - O(go ,s0 )	 (4.24)

for (g ,$) near (go ,so). Since ^(g,$) = 0 for all (g,$) of the root locus,

we have

64^(g
0
,s0) = as ( g0' s0 ) 6s + a^ (go ,so)6g = 0	 (4.25)

where we have taken

ds=s - so 	 (4.26a)

6g = g - go	 (4.26b)

sufficiently small to neglect higher -order terms. If we now consider a

locus point on the real axis, all quantities in (4.25) will be real except

6s = RE [6s] + j ILM [6s] .	 (4.27)

Substituting (4.27) in (4.25) and equating real and imaginary parts to zero,

we get

IM [6s] as (go'so) : 0	
(4.28)

RE [6s] as (go' so) + 6g at (go , so) = 0.	 (4.29)

If we now make so a break point, one has IM [6s] # 0 for the branch

breaking in or out. This and (4.28) prove the theorem.

4.3.2 Breakin and Breakout Angles

We now show that the angles of loci breaking in or out are the same as

in the SISO case.

Theorem 4.5 If several branches of the root locus are approaching and

W.
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leaving a point on the real axis, their angles are evenly distributed
over 360 0 , and branches approaching and leaving the break point are
interleaved ( i.e. they alternate).

Remark Note that branches on the real axis must be included -- not
just the branches breaking in or out.

To prove Theorem 4.S, we first show that if k branches are approaching

a point so and k branches are leaving so , then the first k - 1 derivatives

of the algebraic function g(s) are zero at s o . We have

dO

ds (go' so) = 3s (go' so ) + ag (go' so) s I so = 0.	 (4.30)

If so is a break point, as (go
,
so) is zero and 3g (g0 s

o) is non-zero, so

that

dIs = 0.
	 (4.31)

0

If k different loci are all passing through s o , s0 is a root of multipli-

city k of the characteristic equation. This means that we have

(i)
a	

^(g,$)=0, i=0,1,...k-1.	 (4.32)

os(1)	
o o 

By repeatedly taking derivatives with respect to s of (4.30) and using

(4.31) and (4.32), it can be shown that

d—^=0 i1, 2,...k-1.	 (4.33)
ds(i)

Now, in the vicinity of the break point s o define

Ss=s-s0	 (4.34)

and for a small perturbation dg in g write the Taylor series
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2
6 g_d ^ s os+ ^i s (6 3) 2 +...	 (4.35)

o	 ds	 o

Of course the first k - 1 terms of (4.35) are zero, from (4.33). Taking

the first non-zero term and neglecting the higher -order terms, we have

(k)
6g = k! 

ds (k) 
Iso (6s) k . 1(4.36)

Also, by repeatedly taking derivatives of (4.30) we may obtain an expres-

d(k)
sion for 

d9 
1 in terms of various partial derivatives of 0(g,$)

ds O s,3
evaluated at (go , so), and these will all be real for so on the real axis.

(k)
Hence ds(kj Aso is a real number, and from (4.36)

(k)
k ARG [6s] = ARG [6g] - ARGd (k) 

(so - 
00 or 180°. 	 (4.37)

We may now write

ARG [6s] 
= - 

(6 + n360 0 ), n = 0, 1, ... k - 1
	

(4.38)

where 6 is 0 ° or 180 6 , depending on the sign of 6g. To find the angles for

branches departing from so , take 6g > 0, and to find the angles for branches

arriving at so , take 6g < 0. These form two kth-order Butterworth patterns,

with principal angles of 0° and 180°. This proves the theorem.

V,
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CHAPTER V

Root Loci on the Real Axis

S.1 Introduction

It is generally very difficult to plot the root locus precisely for

finite gains. Exact analytical expressions for.the various branches are

usually difficult or impossible to obtain, and attempts to discern the

locus by actually plotting the closed-loop poles for various values of k

tend to be onerous at best. These difficulties hold even in the SISO case;

they are considerably greater in the multivariable case.

There is, however, one part of the root locus that can be plotted

exactly with relative ease -- the portion that lies on the real axis. The

form of the locus on the real axis is of course known exactly, and, in

addition, the number of branches of the rout locus on the real axis can

change only at a finite number of points. Thus a relatively small amount

of work may yield an exact plot of a sizable portion of the root locus;

indeed in some cases all of it (see Example 5.2). Knowledge of asymptotes

and angles of arrival and departure is often sufficient to sketch the rest

of it .

In the SISO case the rule for the location of root loci on the real

axis is very simple (see Chapter II). This is because only one branch of

the root locus can lie on the real axis at any given point. However, in

the multivariable case as many as m branches can lie on the real axis at

a given point. Thus the problem is not one of determining whether a branch

is present, but one of determining how many branches are present. The

"turn-around" behavior associated with branch points (not present in the

i
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SISO case) makes things even more complex.

The first observation is that, unlike in the SISO case, knowledge of

pole and zero locations alone is not sufficient for determining the number

of loci on the real axis. The following example makes this clear:

Example S.1 Plot the root loci for

s• 1	 0	 s	 2	 0
ss +f	 s:^f

G1(s)'	 s - 2 and G
2 (s)	 s + I

0 s-7	 0 s — -^

Since each of these represents two decoupled SISO systems, we may
immediately plot the root loci, which are given in Fig. S.I. Note
that although G l (s) and G2 (s) have their poles and zeros at the same

locations, the number of loci on the real axis between - 1 and 1 are
different.

Despite this difficulty, some equations for the number of branches of

the root locus on the real axis at a given point may be found. Also, these

equations are not too complicated to be useful. we consider first the case

m - 2, then the general case, and finally the case when G(s) is symmetric.

S.2 The Case of Two-Input-Two-Output Systems

The following theorem provides a step-by-step procedure for deter-

mining the niiber of root loci on the real axis by solving three simple

inequalities for bounds on s.

Theorem 5.1 For a system with m = 2, let s be any point on the real
axis. Deilne

A(s) i (TR G (s)) 2 - 4 DET G(s).	 (S.1)

Then we have:

(i) If DET G(s) < 0, exactly one branch lies on the real axis at s;
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(ii) If DET G(s) > 0, two or zero branches lie on the real rxis at s:

(a) If a(s)  < 0, zero branches lie on the real axis at s;

(b) If 4 s > 0 and TR G(s) > 0, zero branches lie on the real
axis at s;

(c) If a(s)  > 0 and TR G(s) < 0, exactly two branches lie on
the rea axis at s.

	

To prove Theorem S.1, we will follow the order in which it is stated.	
i

4

This will minimize confusion and also minimize the amount of work needed,

since DET G(s) > 0 is necessary to have A(s) < 0, and since TR G(s) is

sometimes not needed.

We start by observing that the characteristic equation with m = 2 is

L (S. $) - 8- - (TR G(s))g + DET G(s) = 0.
	 (S.2)

Now let s be real and vary over the entire real axis. For a given s o, the

number of branches on the real axis at s o is equal to the number of negative

real roots of (S.2) with s = s o (recall that a negative real g corresponds

to a positive real gain k). Since the roots of (5.2) are given by

g = } (TR G(s) s G s )
	

(S.3)

we merely investigate how many negative real values of g we get for various

values of a(s), TR G(s), and DET G(s). Thus if A(s) is negative the two

values of g will be complex, and there will be zero branches on the real

axis at s. But 4(s) can only be negative if DET G(s) is positive. If

DVr G(s) is negative, then

ITR G(s)I < (TR G(s)) Z - 4 DET G(s)
	

(5.4)

and the two values of g are real and of opposite sign. Hence there is
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exactly one branch on the real axis at s. The other rules follow similarly.

We now make some remarks that will hopefully aid in understanding some

of the features of this theorem:

1. Note that the number of loci an the real axis changes by one

whenever DET G(s) changes sign. This makes sense, since loci

start at poles and end at zeros and since DET G(s) changes sign

at a (first-order) pole or zero.

2. The number of loci on the real axis may change by two whenever

A(s) changes sign. But the points at which n(s) will change

sign are the branch points (recall from Theorem 4.1 that o(s) is

zero at a branch point), and the "turn-around" behavior of a

root locus branch at a branch point would indeed make the

number of loci change by two. In fact, Corollary 4.1 correctly

predicted that the "side" of a branch point from which a branch

would approach, turn aroumd, and depart is the side for which

A(s) is positive!

3. The number of loci on the real axis will occasionally change by

two at points where TR G(s) changes sign. This happens when

there is a double pole or zero with both branches departing or

arriving on the same side. For example, consider

s-1:	
0

G(s) : s •.

0	
s - 2
s+1

Clearly there will be two branches both departing the pole at -1

in the positive direction. We have
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TR G(s) r 2s-3

which does indeed change sign at -1.

Note that if

1	 nll (s) n12(s)

	

G(s) _ 

U(s) 
n, 21 n22 (s)	

(5.5)

we have

TR G(s) - 1(n
T(s)	 11 (s) + n22 (s) ) (5.6a)

DET G(s) _	 1
d(s) 2 (nl l ( s ) n,2 (s) - n 12 (s ) n2 1 (s))	 (5.6b)

A(s)-

	 1	 1

	

d(s) 2 {(nll(s) - nL2 (s)) 2 + 
4n12 (s)n21 (s)	 (5.6c)

and since d(s) 2
 is always positive (except at poles) we may neglect it in

solving the inequalities for bounds on s.

We end this section with an example (taken from [1]) to illustrate how

Theorem S.1 may be implemented.

Example S.2 Plot the root locus for

G(s) =	 1	 s- 1	 s
(s + 1)(s + 2)

-6	 s-2

By computing ;(g,$), or by some other procedure, it can be verified
that G(s) has some first-order poles at -1 and -2, and no finite
zeros. Using (5.6b) one has

DET G(s) s	 s2 + 3s + 2

((s+1)(s+2))2

so that DET G(s) < 0 for -2 < s < -1 and consequently there is one
branch on the real axis for -2 < s < -1.
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Using (5.6c) we have

(s)	 1 - 24s

(( s + 1)(s + 2))2

so that 1^(s) < 0 for s > 1/24 and therefore there are no branches on
the real axis for s > 1/24.

Finally, using (5.6a) we have

G(s) _	 2s - 3
(s + 1) (s + 2)

and restricting ourselves to the range of s not already considered we
hive TR G(s) < 0 for s > -1 or s < -2, and this implies that there are
two branches on the real axis everywhere else.

The root locus branches on the real axis are plotted in Fig. 5.2. But
since we have two poles, no finite zeros, and two asymptotes, this is
the complete root locus!

5.3 The General Case

The general case when m > 2 is much more complicated than the case

when m = 2. However, after evaluating a few quantities, we may use the

following theorem to determine immediately the exact number of loci every-

where on the real axis.

Theorem 5.2 Assume that all higher -order poles and zeros on the real
axis are "simple" ( "simple" poles and zeros were defined in Chapter
III). Then the exact number N of loci on the real axis at a point so
is given by

,``

	

k.	 1	 number of
N	 SGN (s - zi) 1 iR G- (S)  = z. + asymptotes

zeros z • of	 J	 a 1	 1	 t
odd order to
right of so

k.
+	 SGN I (s - pi) 1 TR G(s) i s	 1

oles • of	 l	 pi JP	 P1
odd order to
right of so

r	 2
+ 2	 !a	 SGNa 

g 
1 a@ 1b.1	

(5.7)

branch oints	 to	 Is	 1JP 
bi to right

of so

3
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where the k  are the orders of the poles and zeros, and where tt

summations are taken over zeros and poles of odd order and bran
points on the real axis and to the right of so.

It should be noted that (5.7) is not nearly as complex as it mij

appear at first glance. In order to apply Theorem 5.2, we need only

evaluate the sib of a quantity at each pole, zero, or branch point.

Once this has been done, we simply add up the different contributing _.__

of (S.7) for each stretch of the real axis between any two of the three

types of points to determine the number of loci-on that stretch of the

real axis.

4e prove Theorem 5.2 by a "conservation of loci" argument: each locus

must start somewhere, end somewhere, and be continuous in between. We start

with just poles and zeros, and then consider break points, asymptotes on

the real axis and branch points, adding them in as we proceed.

We claim first that if there are only first-order poles and zeros on

the real axis, the number of loci N on the real axis at a point s o is

given by

number of poles to right of soN	
(with a branch departing at 180°)

(number of zeros to right of so)
with a branch arriving at 1800

+ (number of zeros to right of°SO)
with a branch arriving at 0

number of poles to right of so
- (with a branch departing at 0° )' (5.8)

This is easy to see, since the first two terms give the number of

branches moving in the negative real direction and the last two terms give

the number of loci moving in the positive real direction at s o . (Recall that



the angle of arrival is the direction in which the locus is moving when

it reaches a zero.)

We now extend this to higher-order poles and zeros that are simple.

Recall that a simple pole or zero will have loci departing from it or

arriving at it in a single Butterworth pattern. By symmetry, we see

immediately that a simple pole or zero of even order can have no effect

,	 on the number of loci on the real axis, since such a pole or zero will

either have loci departing or arriving at 0° and 180 0 , or no loci departing

at either 0° or 180°. Either way, there can be no contribution to (5.8).

On the other hand, a simple pole or zero of odd order must have exactly

one locus departing or arriving at either 0° or 180°. The simplest way

to determine the angle is to use The orems 3.8 and 3.9, and upon substitution

in (5.8) these yield the first and third terms of (5.7). Note that since we

are only considering points on the real axis, all quantities will be real,

and in (5.7) we may use the SGN function instead of the ARG function.

Next, we introduce break points and asymptotes on the real axis. It

is easy to see that break points have no effect on the number of loci on

the real axis, since breakin points act like double poles with loci

departing at 0° and 180° and breakout points act like double zeros with loci

arriving at 0° and 180% and neither of these makes any contribution to

(5.8). However, asymptotes on the real axis are zeros at infinity with

branches arriving at 0% so according to (5.8) we must add them in. This

yields the second term in (5.7).

Finally, we must introduce branch points. Here we must use Theorem

4.3, which stated that the "side" from which a branch will approach a

branch point bi , turn around, and depart from it is given by

F

{
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SGN° 2 a ^ b 	 1 (respectively -1)	 (S.9)

ag as
4

depending on whether the locus is on the left side (respectively the right

side) of b i . If the locus is on the left side of b i , then b  is acting like

a combination of a zero with a branch arriving at 0° and a pole with a branch

departing at 180 % In that case, according to (S.8), we should add two to

the number of loci on the real axis if b i is to the right. On the other 	 y

hand, if the loci are on the positive side of b i everything is reversed 	 1

and, according to (5.8), we should subtract two from the number of loci.

We use Theorem 4.3, and this yields the final term in (S.?). We have now

considered all possibilities, and Theorem 5.2 is proved.

The following corollary is interesting, primarily because it is the

closest we can come to generalizing the SISO rule for loci on the real axis

to the multivariable case. It may also be used as a check when applying

Theorem 5.2, and may even provide sufficient information by itself for

some applications.

Corollary S.1 Assume that all higher-order poles and zeros on the real
axis are simple, and that there are no asymptotes on the real axis at
+-. Then, counting multiplicities, at least one branch ( in fact, an
odd number of branches) of the root locus lies on the real axis at
a given point so if there is an odd number of poles and zeros to the

right of so.

Remarks (1) There is an odd number of poles and zeros to the right
of s  if and only if DET G(s o) < 0 (this is proved below);

(2) If there is an even number of poles and zeros to the
right of so , then there is an even number of branches on

the real axis at so . Unfortunately, zero is an even

number.

Corollary S.1 follows almost immediately from (5.8). Making the
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obvious substitutions, write (5.8) as (x 1 - x2 + x3 - x4). The total

number of poles and zeros to the right of s o , counting multiplicities, is

(xl + x2 + x3 + x4), and it is clear that (5.8) will be odd if and only if

this quantity is odd, guaranteeing at least one branch on the real axis at

so . Recalling that break points have no effect on the number of loci on

the real axis, and that branch points can only change the number of loci

by an even number completes the proof.

The first remark follows from the fact that DET G(s) changes sign at

the poles and zeros of G(s) (counting multiplicities), and from the following

argument which proves that DET G(s) is positive at infinity if there are no

asymptotes there. Suppose that DET G(s) is negative at infinity. Then the

product of the eigenvalues of G(s) at infinity is ne;ative, and G(s) must

have at least one negative real eigenvalue at infinity. But the charac-

teristic equation for the root locus is

6 (g,$) - DET (gI - G(s) ) = 0
	

(5.10)

so if G(s) has a negative real eigenvalue at infinity there must be a

branch of the root locus at infinity, contradicting the assumption that

there are no asymptotes on the real axis at +m.

There is another way of showing that if DET G(so) is negative there

is at least one branch of the root locus on the real axis at s o . Consider

n(g,s0) to be a polynomial in g of degree m with constant term

(-1) m DET G(s o). If m is odd and DET C(s o) is negative, then the constant

term is positive. But for large, negative values of g, o(g,s0) will be

negative. Since D(g,s 0) is continuous, it must cross the negative g-axis

somewhere, and hence o(g,s0) must have at least one negative root, which
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implies that a branch of the root locus lies on the real axis at s o . If

m is even the same argument applies, with the signs of (-1) m DET G(s 
0)

and o(--,so) reversed.

Considering 0(g,so) in this fashion also gives us an upper bound on

the number of loci that may lie on the real axis at s o. Since A(g,s0) has

degree m, it can have at most m negative real roots. Hence there can be

at most m loci on the real axis at so.

5.4 The Case of Symmetric G(s)

In this section we specialize to the case when G(s) is symmetric.

Since G(s) is symmetric for reciprocal networks, this case does have some

practical applications. Our final result depends on matrices obtained from

G(s) by several transformations, so for clarity we will proceed with its

derivation and then, having derived it, state the result as a theorem at

the end of this section. This result is due to Levy (27].

The characteristic equation of the root locus is

A (g , $ ) = DET (gI - G(s)] = 0
	

(5.11)

so the number of branches of the root locus at a point s on the real axis is

the number of negative real eigenvalues of G(s). However, if G(s) is

symmetric then all of its eigenvalues are real, and we need only to

determine how many of them are positive and how many of them are negative.

In order to keep track of the number of negative eigenvalues of G(s),

we will use the signature of G(s), which we now define.

Definition Let M be a n,n-singular real symmetric matrix, and define

M* = the number of positive eigenvalues of M	 (5.12a)
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m_ = the number of negative eigenvalues of M. 	 (5.12b)

Then the signature c(M) of M is defined as

C(M) = m+ - m_.	 (S.13)

Remark Since Ni is non-singular, we have

M+ + m_ = m	 15.14)

where m is the size of M. Therefore we may determine m+ and m from
ON.	 -

The signature of a matrix is a useful concept in the present context

because it is invariant under congruency transformations. Thus if L is a

non-singular real matrix and we have

P = LMLT

	
(5.15)

then o(P) = o(M). We will use this property several times in this section.

Now write the left matrix fraction description of G(s)

G(s) 
a D-1(3)N(s)	

(5.16)

where D(s) and N(s) are left coprime polynomial matrices. The poles of G(s)

are the zeros of DET D(s), and the zeros of G(s) are the zeros of DET N(s).

Since the product of the eigenvalues g i (s) of G (s) is given by

M	
DET N s

^l=lgi(s) 
= DET G(s) a DET D(s) (S.17)

the eigenvalues g i (s) can only change sign at the real poles and zeros of

G(s) .

For all points on the real axis that are not poles and zeros of G(s),

we have

D (s ) G (s ) DT (s ) = N ( s)DT (3) An P(s)	 (5.18)

s

i

r
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is a congruency transformation of G(s), and hence

a(G(s)) = a(N(s)DT(s)) = a (P (s))
	

(5.19)

Since: (1) the number of loci on the real axis at s is the number of

f

	

	 negative real eigenvalues of G(s); (2) the number of negative ro l eigen-

values of G(s) may be determined from a(G(s)) = Q(P(s)); and (3) a(P(s))

a(G(s)) can only change at a pole or zero s o of G(s), we now investigate

how a(P(s)) changes near a pole or zero so , A procedure for doing this

follows.

We may write

P(s) = Po + P l (s - so) + ... + Pd (s - so ) d	(S.20)

where the P i are real and symmetric and where P o is singular. Hence there

exists a real non-singular matrix T o such that

T	 Go 0

T° °T° = 0 0	
(5.21)

where Go is real, symmetric, and non-singular. We may then define

G 0	 d A. B
Q(s) = T0P(s)T0 = 0 

0 
+E	

B T Ci	
(s - so)

i
	(5.22)

i	 i

and Q(s) is congruent to P(s).

We now zero out B l by using another congruency transformation. Define

Vl = Go l Bl	(S.23)

I = s - so	(5.24)

s
tx

s

r
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I 0	 I -V ^
R(s) =	 Q(s)	 1	 (S.25)

-Via I	 0	 I

and note that we m;,y write

G 0	 A 0
R(s) _	 °	 +	 1	 3 + ...	 (S.26)

0 0	 0 C1

where 
C1 is real and symmetric. If 1 also has full rank we may halt this

procedure, since in this case (5.26) has the desired form given in (S.31)

below.

If 
C1 does not have full rank, this procedure must be repeated

starting with (S.21), and with C 1 taking the place of Po . That is, we

write

G 0
T 1C 1T1 =	

1	
(5.27)

0 0

where T 1 is a real nor.-singular matrix and where G 1 is real, symmetric, and

non-singular. Now define the congruency transformation

I 0	 I 0
S(s)	 T R(s)

0 T1	0 TI

and write

(S.28)

G 0	 A	 0	 d	 A(2) B!2)
S(s) _ °	 + 	 a +

0 0	
0	

G1 
0	

i=2 B (2) T C(2)

0 0	 i	 i

Next, zero out B (2
2 ) using a congruency transformation of the form

(5.29)
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T(s) a 	I
	

0 S(s) I (42s2 dl's)	
(S.30)

I	 0	 I

and if the resulting C;2) does not have full rank, run through the entire

procedure yet another time. The procedure will terminate when we have

obtained a polynomial matrix of the form

Go 0	
A11 0 _	 A22)1 

0	
2

Z^s)	 0 0 +	 I G1 0 's +	 I ^2	 `s + ...

01	 0 1
1 0	 0	 1 0 0

Akk)I 0	 k	
Akk+ll)	 0	 k+l

f — — 1 — — —s +	 s	 (5.31)

0 G
k 0	 0	 Gk+l

1 0 0

(i+1)	
(i)where Ai+1 = DIAG [Ai , G i ], and the Gi all have full rank.

Now we may investigate how c(P(s)) changes near s o . Since Z(s) was

obtained from P(s) by a series of congruency transformations, we have

c(Z(s)) = a(P(s)). In the vicinity of s o Z(s) may be approximated by

Z(s) a DIAL [Go, G13, G232, .., Gk+13k+11 for s 	 so	 (S.32)

and the eigenvalues of Z(s) are the eigenvalues of G o , GI i s ... and

Gk+lik+l,

Now consider what happens to the signs of the eigenvalues of 
Gist if

3 changes sign from positive to negative. If i is even there will be no

changes in the signs, but if i is odd all of the positive eigenvalues will

become negative, and vice-versa. Then c(GiI i) will change sign, and so

the change in c(Gi3 1) will be - 2o(Gi). (Note that if "s is positive,

o(G iI i) = o(Gi).) It follows immediately that the change in Q(Z(s)) will
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be

oa(Z(s)) _ -2 Fa a(Gi).	 (S.33)
i odd

From (5.13) and (S.14) we may write

m- (Z(s)) _ }
(I 

- a( Z (s)))	 (S.34)

where m- (Z(s)) is the number of negative eigenvalues of :(s) and m is the

size of Z(s). This implies that the change in the number of negative real

eigenvalues will be

4m- (Z(s)) _ -14a(Z(si) _ 2: a(G i).	 (S.35)
i odd

Now let s vary along the real axis from +- to - -, and assume G(-) is

positive definite (this is equivalent to assuming that there are no

asymptotes on the real axis at +-). For each pole or zero s  on the real

axis, we may compute a set of matrices G (i) by using the above procedure.

Then, recalling that a(Z(s)) = a(P(s)) _ t1(G(s)) and that the number of

branches on the real axis at s is the number of negative real eigenvalues

of G(s), we have proven

Theorem 5.3 assume that there are no asymptotes on the rea? axis at
+-, an tat G(s) is symmetric. For each pole or zero s  on the real

axis compute the matrices G (
i
i) , using the procedure described above.

Then the number of branches N on the real axis at s is given by

N a	 E	 E a(G (i) ).	 (5.36)
all poles an j odd	 j
zeros si to
right of s

There is an interesting observation that may be made on the procedure
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for generating the G i . Consider the set of Tooplitz matrices

	

T(i) = Po 0	 0	 i - 0, 1, ... d.	 (S.37)

P1

. \ 0
Pi .. P1 Po

Recall from Lemma 3.1 that the structure indices of P(s) at s o are given by

ki - RANK T(i) - RANK T(i - 1), i = 0, 1, ... d. 	 (S.38)

However, it may also be shown that the congruency transformations used

to generate the G i may be applied to the T (i), yielding matrices of the form

	

i	 1
G°	

0	
0	 ...

0	 0

A 1	 0	 1 G 1	 0	 1

i G 1	 01	 1	 I •••
0

1 0— 0 1 0 1 	0 I

A (2) I 	 0 1 Al i	 0	 I

I G	 01	 1 G	 0 1 ...
0 1 2 	 0 1 1	 '

i

:	 1	 ^

	

1	 1

so that we have

RANK G  a RANK TM - RANK T(i - 1), i - 0, 1, ... d. 	 (S.39)

Therefore the pole-zero structure at so is determined by the ranks of

the Gi , while the number of branches of the root locus at so is determined

by the signatures of the Gi.

4^ - -Z

V
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CHAPTER VI

AsMtotic Behavior of Root Loci

6.1 Introduction

In this chapter we discuss the behavior of the branches of multi-
r

variable root loci that tend to infinity as the feedback gain k approaches

infinity. We have already examined the behavior of the branches that

approach the finite zeros of G(s) as k- ►- (i.e. the angles of arrival), and

we now examine the behavior of the branches that do not approach finite

zeros. These branches approach asymptotes as k-i, and it should be evident

that knowledge of these asymptotes would be a considerable aid in plotting

the root locus.

An asymptote is characterized by its angle and by its order, which

gives the "velocity" at which the locus tends to infinity. Asymptotes

start at points called pivots, and unlike the SISO case, pivots for multi-

variable root loci may be complex (see Example 6.1).

We consider first the case where all asymptotes are of first order,

since this case holds in general. The Newton polygon technique is used

to show how the first-order asymptotes may be obtained from the eigenvalues

of the first Markov parameter of G(s). We then give equations for the

first-order asymptotes and pivots based on the characteristic equation,

and give an example with first-order asymptotes, complex pivots, and

t

branch points, breakpoints, and loci on the real axis. 	 i

The Newton polygon technique on which this thesis is based seems to
r

be somewhat inapplicable to the case of higher-order asymptotes. Also, a

considerable amount of work has already been done on this subject, using

r

r

F



98

other approaches. For the sake of completeness, we conclude this chapter

with a summary of the results of Shaked and Kouvaritakis (1S) and Sastry

and Desoer [17] on this subject, and we also note some other results.

6.2 First-Order Asymptotes and Pivots

In this section we examine the case in which all asymptotes are of

first order. Since this is true in general, the results of this section

are usually sufficient for computing all asymptotes and pivots. We show

first how the asymptotes may be obtained from the first Markov parameter,

and then how both the asymptotes and their pivots may be obtained from the

characteristic equation.
3

Theorem 6.1 Let the Laurent series expansion of G(s) at infinity be

G(s) a $Gl + 
s 

G2 + ...	 (6.1)

Then, if and only if G 1 is non-singular, all asymptotes are of first

order with angles

6asymptote s ARG [-A i], i - 1 ... m	 (6.2)

where the A i are the eigenvalues of G1.

Remark If the system is described by state-space matrices (A,B,C), we
have Gl = CB.

Theorem 6.1 is not a new result, but the following proof which is

based on the Newton polygon technique gives an interesting picture of what

is happening. Since we are interested in the behavior of s as 3-+0 , sub-

stitute s a 1/z in (6.1). This gives

G(s) a zGI + z2G2 + ... = z(G 1 + zG2 + ... ) = zG(z) 	 (6.3)

where d(z) is a matrix power series in z. Substituting (6.3) in the
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1

!	 characteristic equation, we have

o(g,$) - DET (gI - G(s)]

- m - z TR G z m-1 + 
z2	 principal minors 	 m-2

g	 () g	 of order 2 of d(z) g

- ... + zm(-1) m DET d(z) - 0.	 (6.4)

Since G(z) is a matrix power series, all of the coefficients in (6.4) are

power series in z. The Newton polygon for (6.4) is drawn in Fig. 6.1, and

it is clear that all of the points will lie on or above the line extending

from the point (O,m) to the point (m,0). Since the coefficient of a is one,

the point (m,0) is definitely part of the polygon, and if and only if the

constant term of DET G(z) is non - zero, the point (O,m) will also be part

of the polygon. In this case, the Nekton polygon will be the single line

drawn in Fig. 6.1.

Now note that the constant terms of DET G(z), TR G (z), etc. are just

DET G I , TR G I , etc., since d(0) - G I and since the constant terms are

obtained by setting z equal to zero. Thus the Newton polygon will be as

in Fig. 6.1 if and only if DET G 1 is non-zero, i.e. iff G l is non-singular.

We then have

	

g a cz for (g ,z)-►(0,0)
	

(6.5)

or equivalently,

s	 -ck for (s,k)-►(W,-)
	

(6.6)

t
	 where c solves

V

f
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1

1

Y

1	
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Figure 6.1

Newton Polygon for First-Order Asymptotes
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m	 m-1	 /principal minors) m-2	 m
c	 TR G1 	 +``of order 2 of G1 c	 - ... + (-1) DET G1

+	 DET (CI - G 1 1 = 0.

This shows that c is an eigenvalue of G 1 . Applying the definition of angle

to (6.6) concludes the proof.

We now show how the first-order asymptotes and pivots may be obtained

directly from the coefficients Ai (s) of the characteristic equation

0.

Theorem 6.2 Given the equation

{g , $ )	 m(s) gm + Am-1(s)g •1 + ... + Ao (s) : 0	 (6.8)

we can write Ai (s) as

a 
	 (ai-1)

Ai (s) - a is + Yis	 + lower-order terms),

i = 0, 1, ... m	 (6.9)

and define

M	 {i: a 	 >_ aj - j, j = 0 0 1, ... m}	 (6.10a)

N $ {i: i + 1 E M).	 (6.10b)

Then Oe first-order asymptotes are given by

3  
a pi + cik, i = 1 ... m	 (6.11)

where the ci solve

„r (aj (-1) jd) - 0	 (6.12)

t	
j

and the pivots pi are given by

0'

y

hr 1

(6.7)

'	 _,..__	 t
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E (YJ(-I)ici^)+ jE ( sj(-1)jci)
6. 3i=

r I
Pi	

E (aj( -I) j (m - 
Dci^ jC M

Remark The angles of the asymptotes are given by ARG (ci).

The proof of Theorem 6.2 is straightforward. The first step is to

assume that

s s p + ck, (s,k)-►(-.-)	 (6.14)

since this is the behavior of interest. Solving for k, we get

k 2 s --'P) 	 (6.1S)

Now substitute g = -1/k in (6.8) and multiply by km . This gives

Ao(s)km - A1(s)km-1 
+ ... + (-1) mAm(s) = 0.	 (6.16)

Substituting (6.1S) in (6.16) and multiplying by c m gives

%(s) (s - p)m - A l (s ) ( s - p) m-Ic + ... + ( - 1) mAs (s)cm a 0.	 (6.17)

The degree of the ith term on the left side of (6.17) is (ai + m - i), where

the exponents ai are defined in (6.9). The terms of highest degree are

the j th terms, where j E M and where M is defined in (6.10a). Since the

left side of (6.17) is asymptotically equal to zero, the sum of the

coefficients of these ; th terms must be zero. This yields (6.12). The sum

of the coefficients of the terms of degree one less than the highest degree

must also be zero. This gives

1---I	 jE (Yj(- 1)jci+aj(- 1)j (m - j)(-p)ci)+ j^N (sj(- l)jci) =o

r	 (6.18)

r
k

i6''•
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and solving for p yields (6.13). Ihis concludes the proof.

6.3 An Illustrative Example

In this section we give an example that illustrates the computation

of several features of the multivariable root locus.

Example 6.1 Draw the root locus of

G(s) 	 1
s	 2s + 6

(s + 2) 2 - (s + 2) s + 2

Poles and Zeros

We have

m (g ,$) - (s2 + 4s + 4)g 2 - (2s + 2) g + 3 = 0

so there is a double pole at -2 and no finite zeros. Hence there are
two asymptotes.

Asymptotes

(i) By inspection, we have

1 2
G1 -

-1

which has full rank and eigenvalues 1 t 	 J. Hence, from Theorem
6.1 there are two first-order asymptotes with angles

ARG [-1± 37 j] - 125.30 , 234.70.

(ii) By examining the coefficients of O(g,$), we have

M - {0, 1, 2), N - 4.

Using Theorem 6.2, (6.12) becomes

c2+2c+3-0
4	

which has the solutions -l- 3Y J. Therefore the angles of the
asymptotes are

ARG [-1 t df j] - 125.30 , 234.70.
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Pivots

Again using Theorem 6.2, the pivot for the asymptote with c = -1 + OT j
is, from (6.13) ,

p = 4(-1 + r j) 2 + 2(-1 + 3f J) _ - 2 r j .
2(2 - 1) (-1 + VT j) + 3(2 - 0)

Note that this number is complex. By symmetry, the other pivot is

-2 + -^ j .

Real Axis

Since m = 2, we may use Theorem S . 1. We have

DET G (s) =	
3	 > 0 for all s

(s + 2) 2

8s 2 + 40s 4'44 , 
0 for -3.37 < s < -1.63

(s + 2)

TR G(s) = 2s+22 < 0 for s < -1.
(s+2)

Hence there are two loci on the real axis for -3.37 < s < -1.63, and
no loci on the real axis elsewhere. .

Branch Points

Since m = 2, by using Theorem 4 . 1, the branch points are solutions of

Qs  
+ 40s + 44 = 0

(s + 2) 4

which has the solutions -3.37 and -1.63.

Hence there are branch points at those locations.

Break Points

Theorem 4.4 gives the break points as solutions to the simultaneous
equations

(s2 + 4s + 4)g 2 - (23 + 2) & + 3 = 0

(2s + 4)g2 - 2g = 0

11
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which have the solution (go ,so) _ (-1,4).

Since go is real and negative, -3 is a break point. We know from

Theorem 43 that the angle of the branch breaking in or out will be
goo.

We now have enough information to plot the entire root locus. The
root locus plot is given in Fig. 6.2.

6.4 Higher-Order Asymptotes

We now review briefly the results of Sastry and Desoer [17] and Shaked

and Kouvaritakis [15] on the subject of higher-order asymptotes. Proofs are

omitted, since they do not employ the main methodology of this thesis.

In Section 3.5 we adapted the procedure used by Sastry and Desoer in [17],

and obtained equations for the angles of arrival and departure which involved

solving a generalized eigenvalue problem in a Toeplitz matrix. We now state

Sastry and Desoer's original result, which dealt with asymptotes of root

loc i :

Theorem 6.3 Let the Laurent series expansion of G(s) at infinity be

G(s)	 1 Gl +	 G2 + ...	 (6.19)
s	 s

(i) Then the angles of the nth-order asymptotes (if any) are

1	 360°
easymptote, n = n ARG [-an] + n

(6.20)J= 0, 1, ... n - 1; n = 1, 2, ...

where an solves the generalized eigenvalue problem

G1 0	 0

DET	 G2	 0	 = 0

Gn-1	 Gn-2 ... 0

(Gn - xn1) 
Gn-1 ... Gl

(6.21)



Figure 6.2

Root Locus for Example 6.1
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s

provided this is a polynomial equation in In.

(ii) If certain matrices di obtained from the G i and defined below in

(6.26) have simple null structure, then all of the asymptotes
are integer-ordered, and hence are given-ry (6.20) and (6.21).
If this assumption does not hold, then it is possible to have
fractional-ordered asymptotes.

(iii)The pivots c  for the nth-order asymptotes may be found by
solving

r	G1	 0	 0

.DET	
(Gn - 1 , I)	 Gn-1	

... 0	
0.	 (6.22)

(Gn+1 cnGn) (Gn - Y) ... G1

These results are of course proved in (17), although since virtually

the same procedure was used to prove Theorem 3.10, it should not be diffi-

cult to see where these results come from.

In (171, Sastry and Oesoer interpret these generalized eigenvalue

problems as finding the eigenvalues of restricted linear maps. They also

consider some ways of simplifying these problems, based on the Toeplitz

structure, to facilitate their solution. The interested reader is referred

to (171.

Comparing Theorems 6.3 and 3.10, and recalling how Lemma 3.1 linked

Theorem 3.10 to the Smith-MacMillan form of G(s), the question arises as

to whether there is any relation between t.'u orders of asymptotes and the

Smith-MacMillan form. Verghese and Kailath (22) have pointed out that

there is indeed a relation: the ordei-a of the asymptotes are the orders of

N

the Smith-MacMillan zeros of G(s) at infinity. The importance of this

result is that the asymptotes may be regarded as branches arriving at

infinite zeros, so that the angles of the asymptotes are merely the ";angles

y

1 `.
F -r
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of arrival" at infinite zeros. In earlier literature on the root locus

(e.g. [1S]), infinite zeros were considered to be fictitious objects. But

they are in fact perfectly well defined from ter. Smith-MacMillan form at

infinity. (For a discussion of the Smith-MacMillan form at infinity, see

(23), p. 449.)

The approach taken by Shaked and Kouvaritakis [1S] is completely

different, and while their results are more thorough, they are also more

arduous computationally. In (1S) Shaked and Kouvaritakis approach the

itroblem from a state-space perspective, and interpret their results in terms

of mappir 'between spaces defined by the ranks and nullspaces of the Markov

parameters bi. We summarize their main results in the following theorem:

Theorem 6.4 Let the'Laurent series expansion of G(s) at infinity be

G(s) 
I 

G1 + - f G2 + ...	 (6.23)

and define the eroiected Markov parameters Gi , i 1 ... v using the
following sequence:

G1 n G1	(6.24

	

i a b Mil Ai 0	 Vi	 (6.2S)
``	

J 0 0	 Ni

Gi+l ` NiNi-1 ... 
N 1Gi+lM1M2 ... Mi 	(6.26)

where (6.2S) is the spectral decomposition of G i , exhibiting its Jordan

form; (6.26) is the projection of Gi+1 onto the nullspaces of a l ••• a 0
and we have assumed that all of the G i have simple null structure. The

sequence terminates at i = v when G v has full rank.

The angles of the i th-order asymptotes are then given by

asymptote, i ' T ARG (^ i . j ] + ^— , n = 0, 1, ... i - 1;
1

j = 1, 2 1 ... di-1 - di; i = 1, 2, ... v 	(6.27)

t

16^
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where ai is the j th^j 	 non-zero eigenvalue of G  and di is the rank

deficiency of di (do = m).

Shaked and Kouvaritakis also give an alternative approach that can be

used when the simple null structure assumption on the d  
does not hold.

Kouvaritakis [24] discusses the use of a constant gain pre-compensator to

make the 
d  

have simple null st,- -tre, which reduces the orders of the

asymptotes and thus improves gain margins. In [2S] Kouvaritakis extends

these results to the case of non-proper systems, and in [26] he applies

these results to the optimal root loci associated with the linear quadratic

regulator problem.

r
4

f`
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CHAPTER VII

Other Results

7.1 Introduction

In this chapter we discuss briefly several other results on multi-

variable root loci that have recently appeared in the literature. Although

these results are rather minor, we feel that they are sufficiently

interesting to be included in this thesis, since one of the objectives of

this thesis is to provide a detailed survey of the properties of multi-

variable root loci.

We will discuss and prove three main results. First, it will be shown

that the SISO root locus rule on the conservation of the sum of the closed-

loop poles as the gain k is varied (see Section 2.5, rule (9)) generalizes

to the multivariable case. This was first pointed out to us by Levy [27],

and proved independently by Byrnes and Stevens [20]. Next, it will be shown

how to compute the values of the gain k for which the root loci intersect

the imaginary axis. This result is due to Shaked [28]. Finally, it will be

shown how graphical bounds on the root loci may be constructed, This

result is due to Owens and Field [29].

7.2 Results

We now show that the SISO r. at locus rule (Section 2.5, rule (9)) on

the conservation of the sum of the closed-loop poles as the gain k is varied

generalizes to the multivariable case.

Theorem 7.1 The sum of the closed-loop poles does not vary with the
ee acc gain k i-f—and only if there are m infinite zeros, each of which
has order not less than two.

``-

.s



Remark . - tis condition will hold if and only if all of the structure
indices of G(s) at infinity are greater than or equal to two.

We prove Theorem 7.1 by writing G(s) as an irreducible right matrix fraction

description

G(s) = N(s)D(s)-1. 	 (7.1)

P	
The open-loop poles are then the solutions to

DET [D(s)] = 0	 (7.2)

(see [23]), and the characteristic equation becomes

A(g,$) = DET [gI - G(s)] = DET [I + kG(s)]

	

= DET [D(s) + M(s)] = 0 	 (7.3)
DET D(s)

which may be written as

m
DET [D(s)] + k E DET [D 1 ... Di_,,, 	 Di+l ... Dm] + ...	 0

i=1
(7.4)

where Di is the ith column of D(s), and similarly for NV

Now, DET [D(s)] is a monic polynomial of degree n, and the sum of its

roots is minus the coefficient of s n-l . If and only if the rest of the

terms of (7.4) are polynomials of degree not greater than n - 2, then the

sum of the closed-loop poles does not vary with k. We now investi,mate the

circumstances under which this is true.

	

Let the column degrees of D(s) be [d 	 dm], where di is the largest

of the degrees of the elements of column D i . If we assume that D(s) is
i

column-reduced (see [12]), then we have
t

f
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i

r

3
c

LIM sG(s) = 0.
	

(7.7)

S'A'W

Not. that the assumption of D(s) being column-reduced is necessary for
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n = DEG [DET D(s)] = d l + d2 + ... + dm .	 (7.S)

Now, suppose that the column degrees of N(s) are [u l , ... nm]. If we have

ft  s di - 2, 1 = 1, ... m	 (7.6)

then the coefficients of all of the powers of k in (7.4) will be of degree

not greater than n - 41 . The condition (7.6) will be satisfied if and only

i

	

	 (7.6) and (7.7) to be equivalent. However, D(s) may always be made column-

reduced by elementary column operations, and these may be included in the

i	 MFD (7.1). Both of these results are shown in [12].

t
t
	

Now let the Laurent series expansion of G(s) at infinity be

G(s) a ; G, +	 G2 + ...
	 (7.8)

i
From Lemma 3.1 (see also [12], [23]), the number of first-order zeros at

infinity is RANK G l . If this is zero, G 1 is zero, (7.7) holds, and the result

b

follows.
9

f

Byrnes and Stevens [20] prove this result by using a different technique.

The importance of this result is that it is a straightforward generalization

of the corresponding SISO root locus rule, and as such it is worth noting.

Let us now investigate the values of k for which the root loci inter-

sect the imaginary axis. The importance of this for stability and gain

margin should be quite apparent.
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0 1 E2 E4

0 0 El E3

0 E1 E3

DET I
En-2 %

En-3 En-1

En-1	 0

Theorem 7.2 Let a closed-loop system be described by the state-space
ormu at on (2.2), and let	 I

o	 principal minors of

	

(order i of kBKC - A)' i 	 1 ... n.	
(7.9)

Then if n is even the gains k at which root loci intersect the imaginary
axis are solutions of the equation

1 E2 E4	En	 0
r

0 1 E2 .	 En-2 En

2

I

i	
= 0.

n
T

L

.	 .	 .	 .	 .	 .	 .	 .	 .	 .

	

E 1 E3 ES	 En-1 0
	

(7.10)

A similar determinantal equation applies if n is odd.

Remark The polynomial equation (7.10) has degree n n Z 1

Theorem 7.2 plays the same role in the multivariable case that the

Routh-Hurwitz criterion does in the SISO case, i.e. it can be used for finding

the gains at which the system becomes unstable. In fact, (7.10) can be

viewed as a multivariable generalization of a Routh-Hurwitz array.

The proof of Theorem 7.2 is simple. We may write the characteristic

equation in s as

n

	

A(k,$) = DET [sI - A ♦ kBKC] = sn +	 Ei (k)s
n-i

 = 0.	 (7.11)
i=1

Letting s = jw and setting both the real and imaginary parts of (7.11) equal

to zero gives

E

s

t

F5

I
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n

w + Fr (-1)iE2i(k)' "-2i = 0
i=1

n

A
(-l)'E

21-
,(k)w

n-2i+l = 0

if n is even and

(n_1)
2

W + F (-1)iE2i(k)wn-2i = 0
ial

(7.12a)

(7.12b)

(7.13x)

n+l

t

	

	 (-1)iE2i- 1(k)wn
-21+1 = 0	 (7.13b)

i=1

if n is odd. Letting  = -w2 and using the resultant see Appendix) to find8	 g	 (	 PP
C

values of k that will allow (7.12a,b) to have a simultaneous solution yields

c	 (7.10).

Of course, we only need to search for positive real roots of (7.10),

which simplifies matters considerably. In [28] Shaked noted that all positive
{

real roots of (7.10) correspond to one of the following: the desired critical

gains; the zeros of (7.10) that are symmetric with respect to the imaginary

axis (a rare occurrence); and the loci passing through the origin.

We now show how graphical bounds for the root loci may be computed.

t These may be useful if we desire only to have an approximate idea of where

i
the loci are located (e.g. left half-plane versus right half -plane, for

stability).

t

Theorem 7.3 Again using the state-space formulation (2.2), suppose
there exists some real constants a, b such that

aBKC bBKC
E(a,b)	 -bBKC a81CC ^' 0.	

(7.14)

4

Mc

v
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Then the root locus lies entirely in the region

R - {s: RE[s(a - jb)] < X(a,b)) 	 (7.15)

where a(a,b) is the largest eigenvalue of the Hermitian matrix

H(a,b) s 1(a - jb)A * 1(a . jb)AT .	 (7.16)

Remark Note that (a,b) _ (1,0) implies that the closed-loop system is
stabli for all gains if all of the eigenvalues of }(A * AT) are
negative.

The following proof of Theorem 7.3 is borrowed from [29]. The charac-

teristic equation (7.11) may be restated as

(sl - A * kBKC)x(k) - 0
	

(7.17)

where x(k) is a non-zero n-vector with Hermitian transpose xH(k), and where

xH(k)x(k) is normalized to unity. Premultiplying (7.17) by xH(k) yields

s(k) - xH(k)Ax(k) _ -kxH(k)BKCx(k)	 (7.18)

and multiplying (7.18) by (a - jb), taking real parts, and writing

x(k) - u * jv	 (7.19)

yields

RE [(a - jb)s(k)] - xH(k)H(a,b)x(k) - -k[uT vT]E(a,bf yl. (7.20)

Since H(a,b) is Hermitian and since E(a,b) 10, we have

RE [(a - jb)s(k)] <_ xH(k)H(a,b)x(k) <_ MA [xHH(a,b)x]

= A (a,b)	 (7.21)

which proves Theorem 7.3. In [29] Owens and Field refine this result further,
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giving simpler conditions for E(a,b) Z.0, and discuss several applications.

Plotting the bounds for several values of a and b can give a considerable

amount of information on the whereabouts of the root loci.

In (30] Brockett and Byrnes discuss the asymptotic behavior of multi-

variable root loci from a geometric perspective. They consider the case where

G(s) is non-square, and the case where the polynomial gain

K(k) - Ko + Klk + ... + Kdkd
	

(7.22)

is applied to the closed-loop system in place of the gain kI. It so happens

that if G(s) is non-degenerate, the asymptotic behavior is determined solely

by the highest-order term Kdkd , even if K  does not have full rank. G(s) is

non-degenerate if and only if at least one closed-loop pole becomes infinite

for jpj K(k) with d non-zero as k-,,-. If G(s) is pxm and has MacMillan degree

n, non-degeneracy is generic if mp <_ n. However, diagonal and block-diagonal

transfer function matrices are degenerate.

Brackett and Byrnes also show that if K  has full rank then the closed-

loop poles that remain finite approach the open-loop finite zeros as k-Oft.

However, both this result and the previous result depend heavily on the non-

degeneracy of G(s). For proofs and more details the reader is referred to

(301

,r



In this thesis the properties of multivariable root loci have been

analyzed from a frequency-domain point of view. The behavior of the angles

of arrival and departure has been studied in considerable detail, and

several methods of computing them have been presented. The problems of

locating the break-in and break-out points and of characterizing the number

of loci on the real axis, previously unexamined in the multivariable case,

have also been addressed. Some methods for computing angles and pivots for

first-order asymptotes have been given, and results for higher-order asymp-

totes have been reviewed. At all times our objective has been to generalize

the SISO root locus rules to the multivariable case, and as often as not

such generalizations were found to exist.

In Chapter III the angles of arrival and departure were analyzed using

several different approaches. First, the state-space results of Shaked and

Thompson were reviewed. Next, the general case of multiple poles and zeros

was analyzed using the Smith-MacMillan form of G(s), and equations for the

angles derived. It was found that the angles are grouped into Butterworth

patterns with orders given by the MacMillan indices of G(s) at the pole or

zero in question, subject to certain conditions. Thus, in the most general

case, the angles of arrival and departure are far more complicated for multi-

variable systems than they are for SISO systems.

We then specialized to the case of "simple" multiple poles and zeros,

and found in this case that the SISO rules do generalize to the multivariable

case. The reason for this is that non-simple poles and zeros have no

P-
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counterparts in the SISO case, so we can hardly expect SISO results to

generalize to them. In fact, throughout this thesis, most of the failures

of SISO root locus rules to generalize to the multivariable case can be

traced to the presence of features not found in SISO systems (e.g. non-
.

	

	 I
simple poles and zeros, branch points, multiple loci on the real axis, etc.).

Finally, the results of Sastry and Desoer on asymptotes, which involve solving I

generalized eigenvalue problems in Toeplitz matrices, were adapted to find

angles of arrival and departure.

The results of Chapter III were all conditioned on several generic

assumptions. However, with the exception of the first-order case, we were

not able to relate th9se assumptions to each other and show that they are

equivalent. More work needs to be done in this area, especially for the

results derived from the Smith-MacMillan form. The cases where the assump-

tions do not hold should also be investigated. Reviewing the non-generic

behavior of asymptotes (e.g. fractional orders; see 1151) should be a

useful guide in this endeavor.

In Chapter IV the effect of branch points on loci on the real axis was

examined. The "turnaround" behavior of loci at a branch point was considered

in some detail. It was also shown that the SISO rules for break-in and

break-out points generalize directly to the multivariable case. Some methods

for computing both types of points, involving the resultant, were also

presented.

One feature of the multivariable root locus that definitely needs

further investigation is the peculiar behavior that seems to be associated

with branch points and branch cuts (see [5), p. 64). In this thesis we

investigated only one small aspect of this issue. A characterization and a
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physical interpretation of this behavior would be of great help for under-

standing and plotting the aultivariable root locus, but achieving this

will apparently be difficult. An interpretation of the branch points in

terms of the state-space matrices (A, B, Q would also be useful. In

contrast, there seems to be little additional work that needs to be done

on break points, except for finding easier ways of computing them.

Multivariable root loci on the real axis were discussed in Chapter

V. It was shown that, unlike in the SISO case, knowledge of poles and

zero locations alone is insufficient for determining how many loci lie on

the real axis at a given point. The reason for this is that in the multi-

variable case several loci can lie on the real axis at a given point,

whereas in the SISO ease only one branch can lie on the real axis at a

given point. An equation for the number of loci on the real axis at any

point was derived. This equation requires only the computation of a few

quantities involving the poles, zeros, and branch points on the real axis.

A simplification of this equation would be helpful, but there are no evident

approaches to take. There remains also the problem of extending this

equation to the case of non-simple higher-order poles and zeros on the real

axis, without bringing in the Saith-MacMillan results which, in our opinion,

i
	 would make the general equation too cumbersome to be useful.

The asymptotic behavior of root loci was the subject of Chapter VI.

Two methods of computing the angles of first-order asymptotes were given,

	

T -	 ?
as well as a method for computing the pivots of such asymptotes. It should

again be noted that pivots in the multivariable case may be complex.

Previous results on higher-order asymptotes were briefly reviewed, mostly

for the sake of completeness. In the context of the methodology of this

a
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i

i

Ithesis, there seems to be little additional work to be done here. However, 	 1

there are many unanswered questions in the subject of higher-order asymptotes,

particularly in cases where generic assumptions do not hold. Even the orders

of the asymptotes are uncertain in sole of these cases.

In the SISO case the root locus is a handy tool for designing lead-lag

compensators. It is well-known, for example, that introducing a zero to the

left of a branch tends to "pull" the branch toward the zero. A study of how

these SISO tendencies generalize to the multivariable case would be very

helpful. Of course, this is a very complex subject, but the results may

prove to be worthwhile. F(w example, it might be possible to introduce

a branch point and "turn around" an unstable asymptote. It is hoped that

the results of this thesis will be helpful in studying the effects on the

root locus of the introduction of poles, zeros, and branch points in various

locations.

z
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APPENDIX

The Resultant

The resultant is a method for determining whether two polynomial

equations have a common zero. It is constructed as follows. Let

,	
a(x) - ao + alx + ... + %xn
	

(A.1)

b(x) = b  + blx + ... + bmxm
	

(A.2)

be two polynomials. Then a(x) and b(x) have a common non-constant factor

if and only if

ao al a2	an	 0 . .	
o-

0 ao al	 an-1 a
n 0 .	 0	 m

rows

DET 0
	 0 ao al	 an-1 an	

: 0.
0	 0	

b 
	 bl	 bm-1 b 

0	 0	
b 	 b 	 b 
	 0

n
rows

b  b  b2	 bm-1 b 	
0	 011 (A.3)

I

This result is proved in Walker [6] as follows. Suppose that a(x) and

b(x) have a common non-constant factor (x - p). Then we may write

a(x) - c(x)(x - p)	 (A.4)

b(x) - d(x)(x - p)	 (A.S)

where

1

l



C (x) = co + c ix + ... + cn -lxn-1
	 (A.6)

d(x) = do + dix + ... + dm-lxm
-1 	(A.7)

have degrees one less than those of a(x) and b(x), respectively. We may

combine (A.4) and (A.S) into

d(x)a(x) - c(x)b(x) = 0 	 (A.8)
t

and substituting (A.1), (A.2), (A.6), and (A.7) into (A.8) and setting the

coefficients equal to zero yields

d
0 a0

- c0 b0 0 	 (A.9a)
k
i

dual + dlao - cobl - c lbo = 0	 (A.9b)

{

dm-la - cn-lbm = 0	 (A.9c)	
i

4

which may be written as

[do , dl , ... d
m-I' 

-'-n-1' -cn•2' ... -co]

ao a l a2	an	 0	 0

0 ao al	 an-1 an	 0

0	 0 ao al	 an-1 an

x 0	 0	 b 	 b1	 bm = 0.	 (A.10)

0	 0 b 	
b 
	 b2	 b 
	 0

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

bo bl b2	bm 0	 0
L.



d
t
c

- YS

(A.14)

12S

Equation (A.10) will have a non-zero solution if and only if (A.3) holds.

This completes the proof.

An important application of the resultant is determining whether a

polynomial equation has a multiple root. This issue arises in Chapter IV,

since branch points and break points are multiple roots of O(g,$) = 0. To

determine whether a(x) = 0 has a multiple root, simply choose: b(x) _ U a(x).

The left side of (A.3) then becomes the discriminant of a(x). For quadratic

a(x) ,

a(x) = ax  + bx + c = 0	 (A.11)

(A.3) becomes

c b a

DET b 2a 0 = -a(b 2 - 4ac) = 0	 (A.12)

0 b 2a

the familiar discriminant for the general quadratic equation. For the

reduced cubic equation,

a(x) =x3+px+q=0
	

(A.13)

(A.3) becomes

g p 0 1 0

0 g p 0 1

DET p 0 3 0 0= 2782 + 4p3 = 0

0 p 0 3 0

0 0 p 0 3

4}
t
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which is also well-known.

To aid in the computation of branch points for three -input -three-

output (m a 3) systems, the resultant for the general cubic equation

x3 + bx2 + cx + d - 0	 (A.1S)

is

A a 18bcd - 03d + b 
2 
c 2 - 4c3 - 21d2 .	 (A.16)

r
i

z
r
i
z
I

r

F

p

i,

v

f '^4
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