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1.0 INTRODUCTION

In many problems of quantum chemistry, nuclear and plasma physics, and
economics, one may encounter a random process in which the variables are not
independent and which can have a discrete, continuous, or mixed spectrum. In
this paper, an algorithm is presented which allows a computer simulation of
any such random process X], ..., Xx Of real random variables if their joint
distribution is known. Examples are presented to illustrate the theory.

Mathematical tools used in developing the theory are based on Kolmogorov's
fundamental paper on probability theory (ref. 9) and some results of Halmos
{ref. 8), Neveu (ref. 10), and Bogdanowicz (refs. 2 through 6) on measure and
integration theory.

Readers who are interested in applications only should concentrate on
sections 1 through 4 and 8 through 13 and read the remaining sections as
needed to understand the principles. Knowledge of the Lebesgue integral with
respect to an abstract measure is essential to understanding the proofs. The
use of Dirac's delta function is helpful in applications.

The theoretical results are formulated in terms of Borel functions; that
is, functions measurable with respect to the smallest sigma ring containing
all cubes. As established by Halmos (ref. 8), this class of functions coin-
cides for RKX spaces with the class of Baire functions; that is, the small-
est class which is closed under the sequential limit and contains all continu-
ous functions. The importance of Baire functions in the general theory of
random processes is presented in reference 1.

2.0 COMPUTERIZATION OPERATOR

Let F be the probability distribution of a real random variable x3

i.e., F(a) = P{x < a} for all a e R. Such a function has the following
properties:

a., F 1is nondecreasing on R.

b. F 1is left side continuous on R.

c. F(-») =0 and F(xo) =1,

These properties characterize distributions of real random variables
according to Kolmogorov's theorem; i.e., if F has properties a, b, and c,

then there exists a probability space and a random variable x over it such
that F 1is its probability distribution.



If a distribution F 1is absolutely continuous in the Lebesgue sense,
then there exists a Lebesgue summable function £ on R such that

a
F(a) = [ £(t)dt for all a € R. Such a function f is called the density
-

of the distribution F.

In many applications, one encounters distributions that do not have
Lebesgue summable densities. For example, for x € R, let

f(x) = p18(x = x1) + paS(x - x9) + ... + ppd(x - xy) (2-1)
where

0 <pj

PL * -+ +Pp =1

8(x) denotes Dirac's delta function; i.e., the formal density of the
distribution h given by the formula
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Then the distribution F corresponding to the function f 1is given by the
formula

F(a) = pth(a - x1) + ... + pyh(a - xp) (2-2)

for all a € R. Such a distribution has jumps at the points =xj, ..., Xp
and is constant between them. Hence, F 1is not an absolutely continuous
function. A random variable x corresponding to such a distribution has

only discrete states X}, ..., Xp-

However, in some applications, one encounters random variables with
discrete and continuous states. For example, consider a random variable

with a density

g(x) = p18(x - x7) + poh(x)e™X (2-3)



where
0 <pi
p1 +pz2 =1

h 1is the distribution of §

Such a density could appear in a steady state process x representing the
energy level of a particle if the source emits particles having the specific
energy level x = x] with probability p; and having other energy levels

x # x; with joint probability pj.

To simulate random variables with mixed states, it is convenient to in-
troduce the computerization operator c¢ mapping a distribution F into a
function G over the open unit interval (0,1). This function G 1is de-
fined by the formula G(u) = inf{x € R: u < F(x)} for all u € (0,1)..

2.1 THEOREM

The computerization operator ¢ is well defined for every function F
that is a distribution; i.e., that has properties a, b, and c¢. If the vari-
able u has a uniform distribution on the open interval (0,1), then the
variable x = G(u) has a probability distribution equal to the function F.

Proof. Take any u € (0,1). It follows from property c that there are
two points xj, and xp, such that F(x]) < u < F(x2). This implies that the
set A(u) = {x € Rt u < F(x)} is nonempty. It follows from property a
that the number xj 1is a lower bound of the set A(u). From the axiom of
continuity, it follows that the function G(u) = inf A(u) 1is well defined.
To compute the distribution of the variable x = G(u), consider the set
H(a) = {u € (0,1): G(u) < a} for a fixed a € R.

It follows from the property of infimum that u € H(a) if and only if
there exists an x € R such that x < a and u < F(x). Thus, introducing
the set 1{u € (0,1): u < F(x)} = (0,F(x)), we get H(a) = Uy<,(0,F(x)).
Since the function F is continuous from the left, the union of the inter-
vals (0,F(x)) over all x < a 1is equal to the interval (O0,F(a)). Thus,
H(a) = (0,F(a)) for all a € R. Since the probability that a uniformly dis-
tributed variable on the interval (0,1) falls into an interval I being
a subinterval of (0,1) is equal to the length of that interval, we get
P {x < a} = P(H(a)) = P((0,F(a))) = F(a) for all a €R.



2.2 REMARK

For every distribution ¥, the function G = c¢(F) has the following
properties:

1. G is nondecreasing on (0,1).
2. G 1is right side continuous on (0,1).
3. If u g (F(x), F(x+)), when F has a jump at x, then G(u) = F(X+).

4. If F 1is strictly increasing and continuous on a closed interval
<c,d>, then G(u) = x for u € <G(ec), G(d)> if and only if u = F(x).

These properties of the function G allow one to find the graph of the
function G from the graph of the distribution function F by the following

steps:

1. Fill all vertical jumps in the graph of the function u = F(x) with
linear segments.

2. Treat the u—axis as the axis of the independent variable and the
x—axis as that of the dependent variable.

3. At points u where there are several values of x such that
u = F(x), define G so that G(u) = G(u+).

3.0 SIMULATION OF A SINGLE RANDOM VARIABLE

Since random number generators available on computers simulate a random
variable u with uniform distribution on the interval (0,1), one may simu-
late with good accuracy the distribution F of a random variable whose com-
puterization G is a piecewise continuous function. Many distributions

appearing in applied problems fall into this category.

3.1 EXAMPLE

Assume that each call to the Fortran function RAN(0) gives a different
random number u 1in the interval (0,1). Write a segment of a Fortran pro-
gram to gemerate N = 31 random values of a variable with the density
g(x) = 0.56(x + 1) + 0.5h(x)e™*, x ¢ R, where § and h are defined as

before.



Solution. Computing the distribution function from the density g by
x
the formula F(x) = J g(t)dt for all x € R, we get F(x) = 0.5h(x + 1)
00
+ 0.5h(x)(1 - e"¥). The graph of the function F 1is given in the following
diagram.

AU
1 —
X

1 1 1 1 -

-1 0 1 2 3
From this diagram, we get the formula for the computerization G
of distribution F using remark 2.2. This yields
G(u) = -1 if 0 < w< 0.5
(3-1)

G(u) = -log(2 - 2u) if 0.5<u<11

Thus, the segment of the program to simulate the distribution ¥ may look
as follows:

DIMENSION X(100)

N = 31

DO5 I =1, N

X(1) = G(RAN(0))
5 CONTINUE

FUNCTION G(U)

IF (0.0.LT.U.AND.U.LT.0.5) G = -1.

IF (0.5.LE.U.AND.U.LT.1.) G = -ALOG(2.-2.%*0)
RETURN

END



The array X(I) for I =1 to 31 will contain a random sample of a variable
whose distribution is given by the function F.

3.2 EXAMPLE

Find the computerization G for a random variable whose density func-
tion is

£(x) = (1/2) cos x if -W/2 < x < W/2
(3-2)

0 it |x| > /2

f(x)

Solution. The distribution F of the function £ 1is given by the
formula

F(x) = (1/2) (sin x + 1) if x| < m/2
F(x) =0 if x < -T/2 (3-3)
F(x) =1 if x > 7/2

Since the function F 1is continuous on the closed interval <-m/2, m/2>
and maps it onto the interval <0,1>, we can use the equivalence of x = G(u)
with u = F(x); i.e., u = (1/2)(sin x + 1). Solving this equation for x,
we get x = arc sin (2u - 1). Thus, the computerization G is given by
G(u) = arc sin (2u - 1) for u € (0,1).

4.0 SIMULATION OF INDEPENDENT RANDOM VARIABLES

In many applications, one has to investigate processes consisting of
several random variables £, f7, ..., fix. Such variables are called
independent if their joint distribution function F defined by

F(al, a2, ..., ag) = P{fl < aj, +esy £ < ak} (4-1)
for all (aj, ..., ag) € RK, can be represented in the form
F(al, a2, «.., ag) = F1(a1p)Fa(ag)...Frlay) (4-2)

for all (ap, ..., ag) € RK,




Thus, to simulate such a process it is enough to find the computeriza-
tions G; = c(F;) for i=1, ..., k. Then, if wuj, ..., uy are k in-
dependent random variables each having uniform distribution on the interval
(0,1), the variables x| = Gj(uy), x9 = Gy(ug), ..., x = Gy(uy) will have
the distribution given by the function F.

4.1 PROBLEM
Let p = (A, ¢) be a random point on the sphere
s = {(x, vy, z): x2 +y2 + 22 = 1} (4-3)
where A and ¢ are its spherical coordinates. Simulate the uniform dis-

tribution on the sphere S.

Solution. The probability density f at the point p € S 1is given by
the formula

1
f(p) =— for p e S (4-4)
4

Using spherical coordinates, we can write a representation of the set
S as

K m
s=1{p=0@O, ¢): 0 <A < 2m, ——2-<¢< ?} (4-5)

where we have neglected sets of measure zero; i.e., the poles and one merid-
ian. The density function in these coordinates will have the form

where
£1(0) = 1/(2m) for all X e (0,2w)
£(8) =— for all -5
2($) = ) cos ¢ or a ¢ € el



Thus, the joint distribution F of the variables A, ¢ is given by

al az
Flay, ap) = | £,(0dx [ “£0(9)dd = Fi(a))Falay) (4-7)

-00 -

for all (aj, aj) € R2, where Fj is the distribution of A and Fy the
distribution of ¢. Since the joint distribution is a product of the two
distributions, the random variables A, ¢ are independent. Moreover,

1
F = — if 0 < < 2m
1lap) =——a i S <
. (4-8)
Fi(a;) =0 if a1 <0
Fi(ay) =1 if aj; > 2m

The distribution F9 was discussed in example 3.2. Thus, computeriza-
tions of the distributions F; and Fj are given by

2Ty, (4-9)

Gy(uy)

Go(up) = arc sin (2uy - 1) (4-10)

Hence, the variables A = 2Tu; and ¢ = arc sin (2up - 1), where uj, uj are
independent uniform random variables on the interval (0,1), will simulate a
uniform distribution of points on the sphere S.

5.0 INTEGRAL PROPERTY OF THE COMPUTERIZATION OPERATOR

Let F be the distribution of a real random variable; i.e., F satis-
fies conditions a, b, ¢ of section 2. Let G = c¢(F) be the computerization
of the distribution F. Denote by V the prering (see ref. 2) consisting
of all intervals I of the form <a,b), (-*®,a), <a,®), where a and b
are real numbers. Define a set function v on V by the formula

v<a,b) = F(b) - F(a)
v(-®,b) = F(b) - F(-*) = F(b) (5-1)
v<a,®) = F(®) - F(a) =1 - F(a)

8



We can prove that the set function v 1is countably additive on V
and thus forms a volume in the sense of Bogdanowicz (ref. 2). Following
the development of paper 2, denote by S(V, R) the collection of simple
functions; i.e., functions of the form

s(x) = rchl(x) + oo+ riep (x) for all x € R (5-2)

where Ay}, ..., Ax are disjoint sets from the prering V; r], ..., rx are
real numbers; and cp denotes the characteristic function of the set A. The
set of simple functions is linear and the following functionals are well
defined on it:

[sav riv(A]) + ... + rv(Ag) (5-3)

leylv(ap) + ovn + lrelvia (5-4)

s

The first functional is linear and the second forms a seminorm on S(V, R).
Moreover, Ifsdv| < ||s|| for all simple functionms.

Denote by N the collection of all sets A of R such that for every
€ > 0 there exists a countable family Ay € V (t € T) such that the set
A 1is contained in the union UpAy and Zpv(Ag) < €. Sets of this collec-
tion N will be called v-null sets.

A sequence sp € S(V, R) 1is called basic if there exists a sequence kg,
of simple functions and a constant M ’‘such that sp =k} + kg + ... + kg,

Ilknll < M4™m for all n. Denote by L(v, R) the set of all functions f
for which there exists a basic sequence s; and a null set A € N such
that the sequence of values sj(x) converges to the value f£f(x) if x £ A.

Define ||f|| = lim ||sn|], Ifdv = lim fsndv. According to paper 2, these
are well~defined functionals on L(v, R); and the space L(v, R) coincides
with the space of Lebesgue summable functions with respect to the Lebesgue

measure p, which is the smallest complete measure extending the volume v

(see ref. 5). Moreover, the two integrals, ffdv and ffdp, coincide.

b
In the sequel, we shall write J E(x)dF(x) to denote the integral
a
Ic<a,b)fdv.

Notice that the classical Lebesgue integral is generated by the function
g(u) =u for all u € R, which corresponds to the volume v (<a,b)) =b - a
on the prering W of all bounded right side open intervals.



We shall say that a function f 1is v-summable on a set A, or equiva-
lently that the integral Jp fdv exists, if and only if cpf € L(v, R).

5.1 THEOREM

Let F be a probability distribution over R and G its computeriza-
tion. Then, if the right-hand integral in the following formula exists in
Lebesgue's sense, so does the other and they are equal

1
Jr £x)aF) = [ £(6(u))du (5-5)
0

5.2 REMARK

The theorem is valid for the Riemann-Stieltjes integral when the func-
tion F 1is continuous and invertible. Notice that in theorem 5.1 each func-
tion, F and G, may have an infinite number of discontinuities and neither
has to be invertible.

5.3 REMARK

Let v be the volume generated by the distribution ¥ and U the
classical Lebesgue measure over the interval (0,1). The above theorem is
equivalent to the following. The map £ > foG imbeds isometrically the
Lebesgue space L(v, R) into the space L(H, R).

Proof of the theorem. Let f = c(_w’a). Then foG = C(O, 7(0))* In-

deed foG(u) =1 if and only if G(u) € (-,a); i.e., G(u) < a, which is
equivalent, as proved in section 2, to u € (0, F(a)); i.e., to

c(o, F(a))(u) = 1. Thus, the characteristic function of an interval <a,b)
is mapped into the characteristic function of the interval <F(a), F(b)).

Indeed,

<a,b)06 = (c(wo,p) = c(=0,4))0G = c(=0,3)0G = c(-o,b)0G

c(0, F(b)) ~ (0, F(a)) = <F(a), F(b)) (5-6)

Similarly, the characteristic function of (-°,b) 1is mapped into the char-
acteristic function of (0, F(b)) and the characteristic function of <a,®)
into the characteristic function of <F(a), 1). By the definition of the
volume v on the prering V and of the Lebesgue measure W, we get

10



v(1) = u(G'l(I)) for every I € V, since cyoG = cp 1is equivalent to

A = G~1(I). These observations yield the equality
_ [lslav = J| soG|au for all s e S(V, R) (5-7)

Let W be the collection of all left side closed subintervals of the
interval (0,1). It follows from the definition of a v-null set that if
A is a v-null set then the | measure of the set B = G-l(A) is zero. No-
tice that if s, € S(V, R) is a basic sequence convergent for all x ¢ A
to the function £ then the sequence s,0G belongs to the set S(W, R)
and converges for all points u ¢ B to the function £foG. Thus, from
the Bogdanowicz definition of the spaces L(v, R) and L(u, R), we get

J1£]av = 1im flsnldv = lim [|sy0G|du = [| £0G| du (5-8)
for all functions f € L(v, R). This proves the theorem.
5.4 COROLLARY

For every bounded Borel function f and every a € R the following
equality holds:

a F(a)
[ f(x)aF(x) = [ £(G(u))du (5-9)
—c0 0

Proof. It follows from the properties of v-measurable functions (ref. 3)
that every Borel measurable function is v-measurable. Since ¢ -0, 3) is a
Borel function, the product g = C(—o a)f also is a Borel function. Being

v-measurable and bounded by the simple function Mcgp = MC(dm,a) + Mc<a,w) for
some M, the function g is v-summable. Since goG = c(0, F(a))foG, we get
from theorem 5.1 the equality ’

a F(a)
J )P (x) = [ £(6(u))du (5-9)
—co 0

11



6.0 EXISTENCE OF TRANSITION PROBABILITIES

Let £y, f9, ..., fi be real random variables over a probability space.
We shall prove that the following conditional distribution

P{f; <aj|fy = ay, £3 = a3, ..., fx = ay} (6-1)

can be well defined as a Borel function of the vector a = (aj, aj, ..., ayg)

over the space Rk,

Let F, denote the joint distribution of the variables fy, f,, ..., f,.
Each distribution function F obtained in this way is nondecreasing with
respect to the relation a < b on R® defined to mean a; < b; for all
i=1, ..., m. This means that if a <b then F(a) < F(b). Moreover,
the distribution function is continuous with respect to increasing conver-
gence; i.e., the condition a? 4 aj for 3 =1, ..., m implies that

F(a?, ag, ey ag) > Flay, ag, ..., ag).

Finally, the function F 1is normalized; i.e., F(-o, ..., -®) = 0,
F(o, ..., ® =1,

According to Kolmogorov's theorem, these properties characterize a joint
distribution function F; i.e., for every such function there exists a unique

Borel probability measure P over R® such that
Flag, ..., ap) = Pley < ay, ..., e < ag) (6-2)

for all (aj, ..., ap) € R®, where e  are projection functions defined by
J

ej(al, vy ay) = aj for all (ap, ..., ay) € R®

To make the presentation more general, it will be convenient to intro-
duce the following notation. If M and K are subsets of the set
[1, ..., k} and K 1is a proper subject of M, then we will write K < M.
Subsets of this form will be called indexes. The symbol |K| will denote
the number of elements of the set K.

We will denote by RK the space of all vectors x = (x¢)teg, where
Xy € R denotes the component of the vector x with index t. If M and K
are two disjoint index sets and their union is S =M U K, then the space RS
can be identified with the product space RM x RK and every vector x € RS
can be written in the form x = (xg, xy), where =xg € RK and xyM € RM,

12



If a e RT, we shall denote by I(a) the Cartesian product
xg er(—o ag), where a = (ag)igr. Sets of this form will be called in the
sequel basic cones.

Now if Fp 1is a probability distribution on RT and p. is the cor-
responding Borel probability over RT obtained from Kolmogorov's theorem
(i.e., Fq(a) = pT(I(a)) for all a € RT), for disjoint decomposition of

the index set T “into nonempty sets S and U the Borel probability Pg
is well defined by the formula

pS(A) = pT(RU x A) . (6-3)

for all Borel subsets A of the space RS.
This probability in turn generates a probability distribution Fg. A

function ps will be called a transition probability from probability pg to

probability pp if its value pi(A, x) 1is defined for every Borel set A
being a subset of the space RU and every x ¢ RS. Moreover, the value
pﬁ(A, x) as a function of set A 1is a probability measure for every x g RS,

and as a function of point x is Borel for every fixed Borel set A.
Furthermore,

(A x B) = [p pp(A, x)pg(dx) (6-4)

for every Borel subset A of RU and every Borel subset B of RS (see
ref. 10, p. 73).

6.1 THEOREM

For every Borel probability p,, over RT, where T 1is finite, and every
generated Borel probability Pg» where S 1is a subset of T and the differ-

ence set U = {x eT: x £ S} is nonempty, there exists a transition

probability pg from the measure pg to the measure pr.

13



Proof. For every fixed Borel set A contained in RY, let qy denote
the measure defined by the formula

qA(B) = pT(A x B) (6-5)

for all Borel sets B contained in RS.

Since
qa(B) < pp(RU x B) = pg(B) (6-6)

for all Borel sets B 1in the space RS, we get from the Radon-Nikodym
theorem (see refs. 6 and 10) that there exists a Borel function fy
sumable with respect to the measure Pg- After a modification on a Borel

set of pg-measure zero, we get

0 < fA(x) <1 for all x € RS (6-7)

and
qp(B) = fB fA(x)pS(dx) (6-8)

for all Borel sets B contained in the space RS,
If b e RU, let I(b) denote the Cartesian product X ey(—®,b.). Every
such set I(b) is a Borel set. A vector b e RU will be called rational if

all its components by are rational. We shall write a < b for two such
vectors if and only if a; < by for all t € U.

Let h be a function given by the formula
h(a, x) = supfo, frp)(x): b <a; b is rationall (6-9)

for all ae€ RV and all x € R5. The set following the supremum operation
is nonempty since it contains zero and is bounded. Thus, the function h by
the axiom of continuity is well defined and is a Borel function in variable =x.

Since both the measure and the integral are continuous under increasing
sequential convergence, we get from (6-8) and (6-5) the relation

pT(I(a) x B) = IB h(a, x)pS(dx) (6-10)

14



for all a e RU and all Borel sets B of RU. Moreover, from the defi-
nition of function h we get that, for every fixed x, it is nondecreas-
ing; i.e., if for two vectors a, c ¢ RU we have a< ¢, then

h(a, x) < h(e¢, x). It is also left side continuous; i.e., if al' < a

for all n and the vectors al converge to the vector a, then the se-

quence of values h(a®, x) converges to the value h(a, x).

Now from relation (6-10), using the monotone convergence theorem, we
get the following relations:

pS(B) = [g h(», x)pg(dx) (6-11)
0 = [ h(~=, x)pg (dx) (6-12)

for all Borel sets B in RS, where h(®, x) denotes the limit in the .vari-
able a all of whose coordinates tend to . The value h(-», x) is under-
stood similarly. Since

h(wo, x) = lim h(an, x) for all x g RS (6-13)

where a'! is an increasing sequence of vectors such that each component a%
tends to infinity, we get that h(®, x) as a function of x is Borel meas-—

urable on the space RS.

Thus, from Radon-Nikodym theorem there exists a set C of pg-measure
zero such that h(we, x) =1 and h(-o, x) =0 if x ¢ C.

Modifying h on this set by putting h(a, x) = g(a) for all x e C,
where g 1is any probability distribution on RU, we get that the value
h(a, x) as a function of =x 1is a Borel function for every a and h(a, x)
as a function of a is a probability distribution for every fixed x. Thus,
by Kolmogorov's theorem h generates a unique probability measure pS(A, x)

defined on all Borel sets A of RU for every fixed point x € RS,

Let us prove that for every fixed Borel set A of RU the following
two properties hold:

A. The function pS(A, x) as a function of x 1is Borel measurable
over the space RS,

B. For every Borel set B of RS, we have PT(A x B) =g p%(A, x) pgldx).

15



To this end, denote by M the collection of all Borel sets A of
RU for which properties A and B hold.

Observe that the sets 1(a) belong to M. Since M is closed under
disjoint finite union, it is also closed under proper differences; i.e., if
Ay 1is a subset of A, and both sets A;, Ap are in M, then also the dif-
ference set A = {x € Az x ¢ Az} is in M. Thus, if V denotes the
prering consisting of all intervals of the form (-~,a), and <b,a), where
a and b are real numbers, and VU denotes the prering consisting of all
Cartesian products of the form A = x.cqy Ay, vwhere A, € V for every
t € U, we can prove by induction with respect to the number of bounded in-
tervals Ag appearing in the representation of the set A that the prering
W = VU is contained in the collection M. Finite disjoint unions of sets
from the prering W form the smallest ring containing W.

Observe that M 1is closed under monotone convergence of sets. Accord-
ing to a theorem of Halmos (ref. 8), this implies that M contains the small-
est sigma ring generated by W. We can prove that this sigma ring coincides

with the sigma ring of all Borel sets of the space RU. This concludes the
proof of the theorem.

6.2 THEOREM

Let T, S8, U be as before and qg, pg be two transition probabili-

ties from probability pg to probability pqp.

There exists a Borel set C of pg-measure zero such that
po(A, x) = q (A, x) (6-14)
v’ v’

for all Borel sets A of RU and all x ¢ C.

Proof. It follows from the definition of a transition probability and
from the Radon-Nikodym theorem that for every Borel set A of RU there
exists a Borel set C(A) of ps—measure zero such that

pg(A, x) = qg<A, %) (6-15)

for all x ¢ C(A). Let D denote the set of all rational points b of the
space RU and let C be the union of the sets C(I(b)) over all b e D.

Clearly, C 1is a Borel set of pg-measure zero.

16



Denote by M the collection of all Borel sets A of RU  such that
pg(A, x) = qg(A, x) "if =x € C. This collection contains basic comes 1I(b),
where b is a rational vector. It follows from the monotone continuity of
a measure that M contains every set 1I(a) for any a € RU. The rest of
the argument is the same as in theorem 6.1. This concludes the proof.

]
Let a function Fy be defined on the product RU x RS such that for
]
every fixed x € RS the value Fyla, x) considered as a function of the

variable a 1is a probability distribution and for every fixed a e RU

Fg(a, x) considered as a function of x 1is a Borel function. Such

a function Fg will be called in the sequel a transition distribution.
6.3 THEOREM

There is a one—to-one correspondence between transition probabilities
qg and transition distributions FS. This correspondence is given by the

relation

qg(l(a), x) = Fola, %) (6-16)

for all ae RV and x ¢ RS.

Proof. It is clear that every transition probability generates a tran-
sition distribution by means of formula (6-16). To prove that every tran-—
sition distribution generates a unique transition probability, take an

arbitrary fixed point x € RS and denote by qg(A, x) the value of the

S

probability measure defined for a Borel set A of RU and generated

from the probability distribution Fg(a, x) by means of Kolmogorov's

construction.

To prove that qg is a transition probability, it is sufficient to
prove that for every fixed Borel set A the value qg(A, x) as a function of
x € RS is Borel measurable. To this end, denote by M the collection of

17



all Borel sets A having that property. Notice that all basic cones I(a)
belong to M. Notice that M 1is closed under disjoint finite union and under
the monotone convergence of sets. Thus, as in the proof of theorem 6.1, we
conclude that M coincides with the sigma ring of all Borel sets of ﬁ.

This concludes the proof of the theorem.

7.0 RESOLUTION OF BOREL PROBABILITIES

Let T be a finite index set and U, S its disjoint decomposition
into nonempty sets. Let P be a Borel probability over RT and Pg the

corresponding probability generated over RS,
The theorems of the previous section show that the measure pp gener-

ates almost unique representation of Pp by means of qg and Pg through
the formula

pr(A x B) = [3 a7 (4, x)pg(dx) (7-1)

for all Borel sets A of RV and B of RS. Conversely, any pair qﬁ, Pg

consisting of a transition probability and a probability on Borel sets gener-
ates a unique Borel probability over the space RT (ref. 10, p. 74).

It follows from Kolmogorov's theorem that condition (7-1) is equiva-
lent to

pp(I(a) x 1(6)) = [1 pyab(I(a), x)pg(dx) (7-2)

for all a € RU and all b € RS,

The necessity of condition (7-2) is obvious. To prove its sufficiency,
fix the point a € RU  and consider two measures

]

r1(B) = py(I(a) x B) (7-3)

r(8) = [ q5(1(a), x)pg(dx) (7-4)
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for all Borel sets B of RS. Since these measures coincide for every basic
cone according to relation (7-2), they must coincide for B = RS, If
rl(RS) = 0, then both measures are identically zero on all Borel sets B

of RS. If r = ri(RS) > 0, then dividing the measures r; and r, by the
value r we get two probability measures that coincide on all basic cones
I(b). Thus, these two probability measures have the same distribution func-
tion. By Kolmogorov's uniqueness theorem, this implies

r1(B)/r = ry(B)/x (7-5)

for all Borel sets B of RU. Hence,

pp(I(a) x B) =[5 qf(I(a), x)pglax) (7-6)

for all Borel sets B of RU and all basic cones 1I(a), a € RU.

Holding the Borel set B fixed, by a similar argument to the preceding
one, we get relation (7-1) for all Borel sets A of RU and all Borel sets

B of RS. Now let us introduce the following notations for points in the
spaces RT and RS. If ac€ RT, then by ag, where S is a subset of T,

we shall denote a point in the space RS such that its component having in-
dex t € 8 coincides with the component ag of a. Thus, we have a = ar.
When § = {t}, we shall write a; instead of a{t}. If U and S are dis-
joint nonempty sets whose union is the set T, then the vector ar can be
identified with the pair (ay, ag). Notice also that I(agp) = I(ay) x I(ag).
Using this convention, we can write relation (7-2) in the equivalent form

- 5 -
py(I(ar)) = II(aS)qU<1(aU), xg )pg (dxg) (7-7)
for all a € RT,
It is convenient to introduce a shorthand notation and convention simi-

lar to Einstein's convention in tensorial calculus. Namely, the relation
given by formula (7-1) we shall write as

- .S -
Pr = 9Pg (7-8)
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This will mean that whenever in such a formula a superscript index set
S coincides with the subscript index set, we have an integration over a
Borel set with respect to the variable xg.

Notice that the operator E mapping a pair (qg, ps) into the element

qus preserves convex combinations in both variables qg and Pg- Thus,
it is natural to extend it by homogeneity and linearity onto the space BS
of all Borel transition measures (since we will not use this space in the
sequel, we leave it to the reader to give precise definition to this space)
and onto the space Bg of all finite Borel measures over the space RS.

Now let us extend the definition of the transition measure to in-

S
Py
clude the case when either S or U 1is empty. It is clear that when

U = 0 the transition measure is only a point function and the relation

Py
pg is the Radon-Nikodym derivative of the measure

qg Wwith respect to the measure Pge When S = 0, the transition measure

_ .S
g PyPs means that

pS does not depend on the point and thus is a probability measure. Thus,
0 _
we assume Py = Py
Finally, let Py = 1. Then the relation 4 = ngs defines uniquely
the element a4p for any disjoint decomposition S, U of the index set T,
If the index set S consists of a single point t, we shall write qg

instead of LS} and similarly for the set U. Let T = {1, 2, ..., n}.

The notation T(j) = {k: k < j} will be used for j =1, 2, ..., n+l.
Notice that T(l1) denotes the empty set. A sequence of transition
probabilities

qg(J) for j=1, 2, ..., n

will be called a resolution of the probability Pr if and only if

T(j)

Preien) = 9 Po(j) for j=1, 2, ..., n (7-9)



I

It follows from the theorems in the previous section that such transition

probabilities exist and are almost unique; i.e., q§(J) is unique up to a

set of . -measure zero.
pT(J)

Notice that the value of the transition probability q?(J)(A, x) gives
precise meaning to the conditional probability ]

pT{fj eAlf, = ap for k=1, 2, ..., j-1} (7-10)
if the probability measure p, is generated by joint distribution of the
functions f; (t € T). Since by theorem 6.1 there exists a transition proba-

bility pé(j) from the measure Py to measure pT(j)’ we can write

- 1 _
Pr¢s) = Ps(i)P1 (7-11)

for j =1, ..., n, where S(j) = {2, 3, ..., j-1}.

If the sequence q§(J)(j =1, ..., n) represents a resolution of the
probability P then there exists a Borel set C of pj—measure zero such

that for every fixed value x; £ C the sequence

TDw, xg(), =)

for j =2, ..., n, as a function of A and the remaining variables
x¢ (t # 1), represents a resolution of the Borel probability pg defined
by the formula

p. (&) = pl(a, xp) (7-12)
] S
for all Borel sets A of RS, where 8§ = {2, 3, cee, n}.
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Proof. From the definition of the resolution of the probability pp,
we have

= T -
Preie1) T 43 Pr(j) for j =1, 2, «v.y n (7-13)

It follows from the reduction formula for integrals with respect to
a probability measure generated by a transition probability (see Neveu,
ref. 10, p. 74) that

Pr(i+1) (I(aT(j+1)))

T(j)
= II(aT('))qj (1(aj), xp(j)) Pr(j)(dxr(j))
)
T(j) .
= f ))qj (1(aj), x3(j)s X1)

(
I(ap) J'I(as(j

Pé(j)(dxs(j),xl))pl(dxl)

- II(al) ré(j+1)(1(aS(j+l))y Xl) Pl(dxl) (7-14)

where ré(j+l) denotes the transition probability satisfying the condition

fé(j+1)(1(as(j+l))’ x1)

J

This expression as a function of =x; (according to ref. 10, p. 74)
represents a Borel measurable function and as a function of the variable
ag(j+1) represents a probability distribution for every fixed xj. Hence,

by theorem 6.3, it determines a unique transition probability ré(j+1). In
this way from formula (7-14) we obtain the representation

1

Pr(j+1) T TS(j+1) P1 (7-16)
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It follows from the uniqueness of transition probability from PT(j+1)
to py, theorem 6.2, that for some Borel set C of pj-measure zero we
have

(1(a )5 x1) (7-17)

1 _1
Ps(i+1) Tlas¢541)7 ¥1) = Tg(541) TBg(501

S(j+1)

for all € R and all x; £C and j =2, ..., n.

45(3+1)
Equalities (7-15) and (7-17) yield

1
PS(j+1)(I(aS(j+1))’ x1)

] 1
= J1tag(s)) q§(3)<1<aj>, xs(j)s ¥1) Pg(j)(dxg(3), x1) (7-18)

For a fixed x; £ C, define the sequence of probabilities by

= pl -

for all Borel sets A of RS(I) and j=2, ..., n, and define a sequence
of transition probabilities by the formula

s(3) T(3)
Q. (A, xg(j)) = q. (A, xg(j) x1) (7-20)
3 J
for all Borel sets A and j =2, ..., n.

We can prove from relation (7-18) that

for all Borel sets A of RS(i) and j=2,3 ..., n. Relations (7-18),

s(3)
(7-19), (7-20), and (7-21) prove that the sequence Q: J represents a reso-
lution of the probability Pg(n+l) = Pg- This comple%es the proof of the

theorem.
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8.0 EXISTENCE OF CONDITIONAL DISTRIBUTIONS

T(j)
Let qj ] (3 =1, ..., n) be a resolution of the probability pT as

defined before. Let q% denote one of the transition probabilities from
. . . 5
this sequence. Define the function Fy by the formula
S - S
Fe(ag, ag) = q¢(I(ag), ag) (8-1)

for all ae€ RU, where U 1is the union of the sets S and {t}.

These functions will be called the conditional distributions and the

T(j)
sequence Fj (j =1, ..., n) a resolution of the distribution Fr.

The conditional distribution Fi gives a precise meaning to the con-
ditional probability

pU{ft < at fj = aj for j€ S} = F%(at, aS) (8—2)

for all a e RU, where is the probability generated by the process

Py
fe (t € T) over RU,

8.1 THEOREM

Every conditional distribution F%, where t ¢ S, is a Borel func-
tion over the space rU.

Proof. Let Z = {bl, bo, ...} be the set of all rational points and
Z, = {bl, ey bn}. For every fixed b € Z, the value Fi(b, ag) as a func-
tion of ag on RS is Borel, as follows from its definition. Define the
function H, by the formula

Hp(ay, ag) = sup{ 0, F%(b, ag): b€ Z,, b< at} (8-3)

for all ar € R and ag € RS,
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These functions are well defined and the domain of the variable a, € R
can be split into a finite number of disjoint intervals I: (j =0, 1, ..., n)
by means of the points of the set Z, so that for each of these intervals
the function H,(ag, ag) does not depend on a; and is Borel in the vari-

able ag € RS. This follows from the fact that Borel functions are closed

under the finite supremum operatiom, and that on the interval I only a

finite number of elements of the set Z, 1is smaller than a;. Thus, every
function H, can be represented in the form

Hy(ap, ag) = Ij e1; (ag) Gjplag) (8-4)

where Gjn are Borel functions on RS and cy 1is the characteristic func-

tion of the interval 1I. Since the characteristic function of an interval is
a Borel function and the composition of a Borel function with a continuous
function is a Borel function, we may consider the value cq(ag) = cp o ep(ap)
as a function of ay, where e, 1is the projection function defined by

eg(ay) = ap for all ag e RU, as a Borel function over RU. Similarly, we
may consider the function Gjn(as) =Gjp © eg(ay) as a Borel function over

rU.

Since Borel functions are closed under multiplication and addition, the
functions H, are Borel over RU. Now notice that

Fg(at, ag) = lim Hy(ag, ag) for all ae RU (8-5)

Thus, the function F% is a Borel function over the space RU. This com-
pletes the proof.

Notice that every probability distribution Fg on RS generates a

unique volume v on the product prering VS consisting of all sets of the
form A = x i og Ag, where A € V for all t e S, and V consists of all
intervals of the form (-«,a) and <a,b) (see ref. 5). The Bogdanowicz
integral with respect to the volume v coincides with the Lebesgue integral
generated by the probability measure pg.
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Thus, the integral ff(xs)v(dxs) is uniquely determined if the distri-
bution function Fg is known. By an integral with respect to the distribu-
tion Fg, we shall understand

Je(xg)Pglaxy) = Je(x)v(ax) (8-6)
. T(j) .
Consequently, each function Fj from the sequence representing the resolu-

tion of the distribution Fp 1is uniquely determined almost everywhere with
respect to the measure generated by the distribution Fr(j) and we have

F (a_  )= Fi 3, x  OF  (ax ) (8-7)
T(j+1) T(j+1) I(aT(j)) ] 17 T1(3) T(3) T(3)
€ T( '+].) ] = R .
for all aT(j+1) RIV] s ] ly, «.., n. These formulas can be used
to find the resolution. Again we may write for the sake of brevity
T(3)

Fr(j+1) = Fj “"Fp(j) as in the case of transition probabilities.

9.0 SIMULATION THEOREM

Let N= {1, 2, ...} and N(j) = {k e N: k < j}. Let Fy(ps1) be a
N(j)
probability distribution over R and let Fj (j =1, ..., n) be a reso-

lution of the distribution Fy(p+1). If £1, f9, ..., £, are random vari-
ables over some probability space whose joint distribution is Fy(p+]), then

F?(J) is a Borel function making meaningful the conditional distribution

) N(j)
P{fj < ajlfk = a for all k € N(J)} = F;j (a1, eony aj) (9-1)

for all (aj, ..., aj) €ERI, j=1, «v., n.
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If G 1is a function of j wvariables aj, ..., aj being a probability
distribution with respect to the variable ay, denote by ci the computeriza-

tion operator acting on the k-th variable; i.e., H = ci(G) is defined by

H(a1y oeey Ugy oeey aj) = inf{ak: ug < G(ag, veey gy seey aj)} (9-2)
for all ajy; «esy @g-1s ak+ls ==o3 aj € R and ug € (O,l).

N(j)
The sequence H;j (i =1, «.., n) of functions defined by Hj = Cj(Fj )

for j =1, ..., n will be called a computerization of the distribution
FN(n+1) -

9.1 LEMMA

Each function Hj for j =1, 2, 3, ..., n 1s a Borel function.

Proof. For j =1, the proof is obvious since H: is monotone. Take
any j > 1. First, let us prove that Hj is Borel in variables

a1y seey @j=]- To this end take any number a € R. Let G denote the
function defined by

N(j)
G(ag, «..y aj-1) =F; (a1, «.., aj-1, 2) (9-3)

for all aj, ..., aj-1 € R. From the equality of the sets

{(al, eeey aj-1): Hjlal, ..., aj-1, w) < al

= {(al, ceey aj-1): u < Glag, ..., aj—l)} (9-4)

and the fact that the function G 1is Borel measurable, it follows that the
function Hj; is Borel measurable in the first j-1 wvariables when the jth
variable u is fixed.
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Since in the variable u the function Hj is monotone and right side
continuous, we may conclude that Hy is Borel with respect to all its vari-

ables jointly, as we concluded in the proof of Borel measurability of a condi-
tional distribution in theorem 8.1.

9.2 THEOREM

Let Hj (j =1, ..., n) be a computerization of the distribution :
FN(n+1)- Define recursively the variables

x) = Hyup)

xg = Ha(xp, ug)

x3 = H3(x1, x3, u3)

Xy = Ha(X1, «oey Xp-15 Up) (9-5)

where wuj, ug, ..., up are independent random variables with uniform distri-
bution over the open interval (0,1). Then the joint probability distribu-
tion of the variables xj, ..., X; coincides with the distribution Fy(p+i)-

Proof. Since each function Hj 1is Borel, we can prove by induction
that each variable x3; as a function of the variables uj 1is also Borel.
Thus, x; as functions of variables uj, up, ..., u, are Lebesgue measur-—
able. To find their joint distribution, we have to compute the Lebesgue
measure of the set

D(a) = {(ul, ceey up) € I x3< a; for j=1, ..., n} (9-6)

where I = (0,1). From the definition of the variables xj and the proper-
ties of the computerization operator, we get the identity

) N{j) .
p(a) ={ue 1m: uj < Fjy (X715 oees Xj-1» aj) for 3 = 1, couy n} (9-7)
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We will prove the theorem by induction with respect to n. For
n = 1, we have

p@ =luen wu< B P@l =0, B @) (9-8)

N(1)
and the Lebesgue measure of this set is p(D(a)) = F; (a) = Fy(2)(a) for
all a € R. Assume that the theorem holds for n =k - 1. Notice that the

set D(a) can be represented in the form

D(aj, <.« ap)

N(1
={ue m: u< Fl( )(al), (ugy «eey up) € DXl(az, ...,’an)} (9-9)

where

DXl(az, eeey ap)
' N(j)
= {uz, ceey Up) € -1, uj < Fj (x1, %95 «e.y Xj-1s aj)

for 3 =2, 3, ..., n&

Notice that for almost all xj = Hj(aj) with respect to the measure gener-
, N(3)
ated by the distribution Fj the functions Fj as functions of the

remaining variables form a resolution of the distribution Fg(p+)) 1n which

the value of the first variable is fixed to be xj. From Fubini's theorem,
we get

Fi(ay)
p(D(a)) =IO ) dug, dug, ..., dup) duj

Dxl(aZ"“’an)r

F ) 1
=] 1(a1 Fg(a+1) (%1, a2, ..., ap) dug (9-10)
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From corollary 5.4, we get
a; 1
p(D(a)) = [ Fg(ns1) (x1) a5 +-vy 2) Fi(dxp) (9-11)

Finally, from the properties of a conditional distribution, we get
p(dD(a)) = Fy(n+1) (215 ---5 ap) for all a e R%. This proves the theorem.

10.0 EXAMPLES OF SIMULATION

Let p be the Borel measure generated by means of Kolmogorov's con-
struction over RT" from a joint probability distribution F of real random

variables £, fq, ..., fj.

Such a sequence of random variables we shall call a random process, and
the smallest closed set S in RT whose complement has p-measure zero, we
shall call the spectrum of the process. That the spectrum is well defined
follows from the fact that every open set in RT 1is the union of a countable
family of open spheres having rational centers and rationmal radii. Thus, the
union of all open sets of measure zero is a set of measure zero. The comple-
ment of that set is the spectrum. Clearly, to define a random process, it is
sufficient to define the probability measure p over the spectrum of the

process.

10.1 PROBLEM

Given is a steady flow of elementary particles through a region S in
the form of a unit disk as in the following sketch.

L

.
S
r ‘
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The intensity of the current i per unit of area at a point (x, y) 1is
given by the formula

i(x, y) =1 +x (10-1)

Consider as a random process the polar coordinates (A, ¢) of the point at
which a particle arrives. Find a computerization of the process.

Solution. The spectrum of the process is the closed circle S. The
probability density f that a particle arrives at a point with coordinates
(x, y) 1is proportional to the intensity of the current i at the point;
i.e., f(x, y) = ci(x, y) for all (x, y) € S. This yields the equation

1= [g £(x, y)dxdy = ¢ [g i(x, y)dxdy = cmw (10-2)

which yields c¢ = 1/m.

In polar coordinates, the set S has a representation
s ={(r, $): 0<r <1, 0< o <2m} (10-3)

neglecting in S several lines that have measure zero. Since dxdy = rdrdé,
the probability density g in polar coordinates is given by

1
glr, ¢) = 5 r(l + r cos ¢) (10-4)

Thus, computing the distribution on the spectrum 8, we get

1 2 1 3
F(aj, ap) = — ap aj + — aj sin ay (10-5)
2m 3n
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for 0< aj <1 and 0< ap < 2. This yields the distribution
N(1)

F (ay) = (al)2 for all aj € (0,1). To find the conditional distri-

bution Fg, notice that the equation

a 1 N(1)
F(a}, aj) = {ml Fo(r, ap) F;  (dr) (10-6)
is equivalent to
a a a; 1
J 1 f 2g(r, ¢)apdr = [ ! Fo(a1, ap)2ajdaj (10-7)
0 0 0

Differentiating this identity with respect to aj, we get the equation

aj _ 1
I g(al, $)dd = Fz(al, az)Zal

(10-8)
0

Thus,

ajz 1
{) glay, $)dd = —

1
Fp(ay, ap) = po (ag + aj sin ap) (10-9)

aj

To find the computerization of the process

(A, ¢), notice that from
the continuity of the distribution F)

on the interval <0,]”

we get
2 -
u; = aj, or aj = (u1)1/2 (10-10) t
This yields
Hy(up) = (u)l/2 for all wuj e (0,1) (10-11)
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R =i

1
Similarly, by continuity of Fp(aj, ap) in the second variable
ap € <0,2m>, we get the equation

1
ug = (ag + aj sin ap) (10-12)

This equation with respect to the variable aj 1is the Kepler equation., It
can be solved either by iteration or by Newton's method.

Both methods are easily programmable on a computer. Let ap = Hp(aj, uj)
be the solution of the equation as a function of a; € (0,1) and up € (0,1).
The pair (Hj, Hy) represents a computerization of the process; that is, the
pair of variables A = Hj(uj), ¢ = Hyp(A, up), where uj, us are independent
random variables with uniform distribution over the open unit interval (0,1),
will simulate the process.

10.2 PROBLEM

Consider a chemical process generating ions. Assume that the random
process consists of two variables (x, y), where x 1is the energy level of
an ion and y is its life expectancy. Assume that the density of the proba-
bility distribution of the process is given by the formula

£(x, y) = h(y)e=2y 8(x + 2) + E (h(x) - h(x - 1))h(y)eXY  (10-13)

for all (x, y) € R2, Find a computerization of the process. (Notice that
§ and h denote here, respectively, Dirac's delta function with mass cen-
tered at zero and its distribution function over R.)
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Solution. Notice that the spectrum of the process is given by the fol-
lowing diagram.

}
y
4
X
1 .
-2 -1 0 1
It consists of an infinite ray at the position x = -2 and an infinite strip
above the x-axis such that 0 <x < 1.
Computing the distribution function F, we get
\
F(al, a2) = 0 if ay <0 and a; €R
F(aj, ag) =0 if ap >0 and aj < -2
F(ay, ap) = (1 - e—2a2)/2 if ap >0 and -2<a; <0
Flag, ap) = (1/2)(1 - e 232) + (1/2)(a; + ap"1(e™1%2 = 1)) % (10-14)
if ap >0 and 0 < a; <1
= =23y ~1(e 732
F(aj, ag) = (1/2)(Q - e ) + (1/2)(1 + ay™i(e - 1)) Y
if ap >0 and aj > 1 ) )
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This set of equatiomns yields the formulas

N(1)

F1 (a1, ag) =0 if aj < -2 )
v N(1) 1
4 F1 (al, a2) =-§ if -2< a3<0
! L
~ (10-15)
N(1) )
F1 (ap, ap) =-E-(1 + aj) if 0< a; <1
N(1) )
i F; (aj, ap) =1 if a;> 1 }
The spectrum of the variable x consists of the point x = -2 and the
interval <0,1>. At the point x = -2, the measure generated by the distribu-
N(1)
tion Fj has mass 1/2, and on the interval <0,1> it has a linear mass

density equal to 1/2., Using these properties, we get for the conditional dis-

1
tribution Fjp the values

1 - e—2a2

1
Fz(al, az)
(10-16)

1 - e 4192 if 0< aj< 1

[l

1
F2(a1, az)

Since outside the spectrum of the variable x the function Fp may be
defined arbitrarily, let us set

e—2a2

1
Fa(ay, az) =1 -

(10-17)

1 -
Fo(ay, a3) =1 - e a142 if a;> 0
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From the graph of the function

Hj(ujp) = -2

Hy(uj) = 2u; - 1

N(1)
Fi , we get the formula

if 0 < uj <1/2

if 1/2 <up <1

(10-18)

1
Since the function Fj(aj;, ap) is continuous in the variable aj for

a fixed value of the variable a; and invertible on the interval

get

Hz(al, u2)

Hy(ay, up)

The pair of functions (Hp, Hg)

-(1/2)1log(l - ug) if aj <0

-(1/aj)log(l - ug) if a; >0

<0,%®), we

(10-19)

represents a computerization of the
process X, y. In the above example, we considered for the sake of simplic-
ity a process having only one spectral line and one continuous areal compo-

nent. The method used here can be easily extended to the case where the
spectrum consists of a sequence of spectral lines and several two—dimensional

components.

11.0 EXPECTED VALUE OF A FUNCTION OF A PROCESS

Many applications require computation of some parameters of a process,

such as covariance matrix, moments, and characteristic function.

tations require one to find the expectation

E(f(x], X2, eesy XK))

These compu—~

(11-1)

where f 1is a sufficiently regular Borel function defined on the range (spec-
trum) of the process X], X2, ««+, Xko

Computer simulation allows one to find the approximate values of the ex-
pectation and to establish probabilistic bounds on the error of the expected
value. This can be done by involving the central limit theorem if the func-

tion f has a finite second moment.

y = £(x1, %2, «e.y xK)

Treating the value
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This set of equations yields the formulas

\
| N(1) ) \
, F1 (a1, ag) =0 if a; < -2
!
S
v N(1) 1 .
I Fp (a1, ajz) =-; if -2< a; <0
!
1
” L (10-15)
! N(1) )
L F1 (ap, ag) =— (1 + ay) if 0< a;<1
|
|
’ N(1) )
" Fi (ay, ap) =1 if a; > 1 )
The spectrum of the variable x consists of the point x = -2 and the
interval <0,1>. At the point x = -2, the measure generated by the distribu-
N(1)
tion Fj has mass 1/2, and on the interval <0,1> it has a linear mass

density equal to 1/2. Using these properties, we get for the conditional dis-

1
tribution Fy the values

—282

1
i Fo(ay, ap) =1 - e if a; = -2

(10-16)

1 -
y Fylay, ag) =1 - e 2192 if 0< a;<1

i Since outside the spectrum of the variable x the function Fy may be
defined arbitrarily, let us set

i
5
!
[ 1 -
% Fp(ay, ag) =1 - e 23y if a; <o
i (10-17)
1 -
Fpay, ap) =1 - e 2192 if a;> 0
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N(1)

From the graph of the function Fj y, we get the formula

Hy(up) = -2

Hi(uy) = 2u; - 1

if 0 < up < 1/2

if 1/2 <up <1

(10-18)

1
Since the function Fp(aj, ap) is continuous in the variable ap for

a fixed value of the variable aj and invertible on the interval

get

Hp(aj, up)

[

Hz(al, uz)

The pair of functions (Hjp, Hy)

nent.

-(1/2)1og(1l = ujp) if a; <0

-(1/aj)log(l - ujp) if a; >0

<0,%), we

(10-19)

represents a computerization of the
process X, y. In the above example, we considered for the sake of simplic-—
ity a process having only one spectral line and one continuous areal compo-

The method used here can be easily extended to the case where the
spectrum consists of a sequence of spectral lines and several two-dimensional
components.

11.0 EXPECTED VALUE OF A FUNCTION OF A PROCESS

Many applications require computation of some parameters of a process,

such as covariance matrix, moments, and characteristic function.

tations require one to find the expectation

where

E(£(xX]1, X2y eoey Xk))

These compu-

(11-1)

f 1is a sufficiently regular Borel function defined on the range (spec-
trum) of the process Xj, X2, e..y Xk

Computer simulation allows one to find the approximate values of the ex-
pectation and to establish probabilistic bounds on the error of the expected
This can be done by involving the central limit theorem if the func-

value.
tion

f has a finite second moment.

y = £(x1, X2, +vey Xg)

Treating the value
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as a random variable, one may find by simulation of the process sufficiently
large stochastically independent samples of the variable y. The mean of the
sample will approximate the expectation E(y). Since the mean for large sam-
ples has approximately normal distribution, from the sample of the variable
y one can easily estimate the variance of the mean, and thus get an idea of
the accuracy of the estimate of the expected value.

12.0 INTEGRAL FORMULA FOR EXPECTATION

Let F be a probability distribution over R and H;, Hp, ..., H, its

computerization. Define a map G from the cube 1IN, where I = (0,1), into
R by the formula x = G(u), where

X] Hj(uy)

[}

xy = Ha(x1, up)

x3 = H3(x1, x3, u3)

xn = Hp(x1, ...y Xp-1y up) (12-1)

for all u € IR, Let p be the Borel measure corresponding to the proba-
bility distribution F. Let m be the classical Lebesgue measure over the
cube IR,

12.1 THEOREM

The map K defined by K(f) = foG establishes linear isometric imbed-
ding of the Lebesgue space L(p, R} of summable functions into the Lebesgue
space L(m, R).

The proof of the theorem is similar to the corresponding proof for one
variable presented in section 5.

Corollary. If the right-hand side integral in the following formula
exists, then so does the other and they are equal:

J f&)aF = [ _ £(G(uw))du (12-2)
Rn In

Definitions of the integral are similar to those in section 5.
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13.0 CONCLUSION

The principal result of this paper is the proof of the existence of a
recursive algorithm by means of which one can simulate on the computer any fi-
nite sequence X], X2, ...y Xx of random variables whose joint distribution
F is known. These variables may be dependent and their joint spectrum may

have continuous and discrete components.

This result should be useful in applications requiring the Monte Carlo
method, in particular in problems of quantum chemistry, nuclear and plasma
physics, economics, and stochastic control systems.

A word of caution is appropriate here. Since most computer languages
use words of a fixed number of bits to represent numbers, the set of num-
bers available in such languages is finite. Even if one used some set of
computable real numbers, say all rationals, as one could define, for exam-
ple, by means of the PL-language of Brainerd-Landweber (ref. 7), the set of
all numbers available on the computer would be at most countable and thus of
Lebesgue measure zero. Hence, it is always possible to find a pathological
example of a distribution F whose computerization H cannot be simulated
by a computer. However, in most applications the resulting computerization
H consists of functions that can be well approximated by means of piece-
wise continuous functions whose computational complexity is not too great.
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