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ABSTRACT

We present approximate analytic expressions for evaluation of the

frequency and angular depende -ce of synchrotron emissivity from mildly

relativistic particles with ar =bitrary energy spectrum and pitch angle distri-

bution in a given magnetic field. Eqs. (11) to (14) dive our result in its

most general form. We show that eq. (14) can be simplified considerably as

in eq. (22) and that for most practical cases eq. (11) accepts simpler forms

(eqs. 29 or 35). These results are valid for particle distribution which are

not extremely anisotropic.

Our result Agrees with previous expressions for a non-relativistic Max-

we'llian particle distribution, and when extrapolated to non-relativistic and

extreme relativistic regimes, it agrees with the previous expressions obtained

under those limiting conditions.

We compare the result from our analytic expression with results from

detailed numerical evaluations. We find excellent agreement not only at fre-

quencies large compared to the gyro-Frequency but also at lower frequencies,

in fact, all the way down to the gyro-frequency, where the analytic approximations

are expected to be less accurate.

Subject headings: Synchrotron Radiation; Sun: Flares, Radio Radiation;

Stars: Accretion, White Dwarfs; Plasmas

i.



2

I. INTRODUCTION

Synchrotron radiation from highly relativistic particles is an old hat worn

by astrophysicists successfully for many decades. At extreme non-relativistic

energies the primary contribution to emissivity is the well known cyclotron radia-

tion at the first and perhaps few low harmonics. In the intermediate range

there dues not exist a simple formula for evaluaiton of the emissivity (or

absorption coefficient.) from particles with an arbitrary energy spectrum and pitch

angle distribution. The usual practice is to use lengthy numerical methods for

evaluation of these quantities at mildly relativistic energies (cf.e.g.,Ramaty 1969

and Takakura 1972, in connection with solar flare problems and Lamb and Master 1979,

in connection with accreting white dwarfs). Earlier, in connection with fusion

plasma, Trubnikov (1958) and Drummond and Rosenbluth (1963) derived equations

for emissivity (or absorption coefficient) of synchrotron radiation from a

thermal plasma (cf., e.g., Bekefi 1966, ch. 6, and references cited there).

In most astrophysical problems the low harmonics of cyclotron radiation

will be either self-absorbed, or absorbed by surrounding plasma, or suppressed

by Razin-Tsytovich effect. Consequently, only radiation at high harmonics

where optical depth Tv s. 1 is of interest. We find that at such high harmonics

there exists a simple approximate method for evaluaiton of the spectrum and

directivity of the synchrotron radiation from an ensemble of electrons in a

given magnetic field. In this paper we present the results of this method for

the total emissivity at high harmonics. In §II we present the general formula

and the details of the derivation of the emissivity for an arbitrary energy

spectrum and pitch angle distribution of particles. The emissivity for some

commonly encountered particle distributions are presented in §III where we also

give some emperical relation vcilid for a large range of the parameters and
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compare the results from these analytic expressions with those obtained by

detailed numerical calculations. A brief summary of the result is presented in

§IV, Polarization and intensity of radiation in optically thick regions and at

lower harmonics will be discussed in a future paper.
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II. ANALYSIS AND GENERAL RESULTS

Consider particles with charge e, mass m and distribution f(ps y) where

fdudy is the number density of particles in the energy, (in units of mc 2 ) interval

y to y + dy and with pitch angle cosine between p to p + du. The specific

emissivity Jv (e) of the synchrotron radiation at frequency v and at an

angle a with respect to the magnetic field of strength B is given by

(cf. Beiefi 1966)

zne2vb	
v	

1

Jv(e) : c"_'..^'_ 	 dY	 dvf (Y.u)vn v Osys' )9	 (7)
vbsin e 

0	
_1

where

nv	 (Cose-002Jm(x) + (1- Wose) 2 [xJm(x)/ml 2 } a(y ),	 (2)

and	 y = mv b/y _ v(1-sucose),	 x = vyssine(l-u 2 ) "vb '

(3)

vb = 2emc = 2.8 
x 106(6/gauss)Hz.

Here Jm(x) is the Bessel function of ord:dr m	 and s2 = 1 - Y - 2.

As mentioned above, we are interested in emission at frequencies v such

that optical depth Tv < 1. Under most astrophysical circumstances this occurs

at frequencies much higher than the gyro frequency v b . We, therefore, seek

solution to eq. (1) for (v/v b ) » 1. In this case the delta function

indicates that m is large and that the relevant harmonics are closely

spaced so that the summation can be replaced by an integration. This integral

can be carried out easily with the help of the delta function. This step then

eliminates the summation, introduces a multiplying factor of y/vb and replaces

m by yv(1-11gcose) /vb.
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•	 Furthermore, since m is large and we are not in the extreme relativistic

regime, the Bessel function and its deviation can be approximated as follows

(cf. e.g., Abramowitz and Stegum 1970)

,lm (x) _ (21Tm) -^( 1 -Z2 ) -hSm 	 xjm(x) /m = (1-z 2 ) Jm(mz),

	

2 
1-	 (4)

3 = ze (̂ x = $sine (1-u2)

	

1+(1-z2 ) )' 	z	
m	

1-00cose

This approximation is valid if m(1-z 2 ) 
3/2

>> 1. Note that z s 1 and that it

	

has its largest value when e =	 and u = 1.0, i.e., z s $ or 1-z2 > Y'2 so that

the above approximation is valid for Yz « v/v b • At higher energies

Y >> 1 and v/v b » 1, one is in the ultrarelativistic regime where the

spectral and angular distribution of the synchrotron radiation are well known

(cf. t_..g. Bekefi 1961, Ginzberg and Syrovatskii 1964). With the above approxi-

mations eq. (1) becomes

2

^'v (s) = 

ecvb 
—v ,^—	 dY	 ld uf (wy) Y(e,Y,u)z2m(e,Y,u)

(v sin 8)b	 1	 -1
(5)

Y(u ' Y ' e) = c
ose-u$) '2 + (1-z2)(1-uecose 

2	
v

^
(1-z 2 ) (1 - u$cose)	

vb

1) Integration Over Pitch Angle. In general, Y is a slowly varying

function of a while, because of the large exponent, Z 2 varies rapidly
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from its maximum value at u = umax to zero at u = tl. We, therefore, use

the method of steepest descent to evaluate the integral over u. This gives

M _ (vY/vb)(1-umaxOcose) and

(6)

2	

Y
00 

dY f(u3^(e) ^b Y----^
OJ,"

	

x,Y) (e^Y•u	 )^2m ( e^x^Y^µmax)^

	

sin	
2..n
^i,....'" 2'^

^v 	 d ln(^ f) /du

where umax is the solution to the transcendental equation,

	

z	 v
u = acose(1-E 1 ) + E 

_

1	
1-z2	

11 n - 22vyvcose 
dduf ] -
	

(7)

For slowly varying pitch angle distributions dlnf(u,y)/du « v/v b (see below

for a more precise limit), the last term in the square brackets can be ignored.

Then as we shall see below, el is of the order of vb/v « 1 so that

umax = 
ocose and eq. (6) becomes

2

j v ( e ) = ecvb ("\,), m dYf(umax'Y)Y
-1
 C(1+2 cot 2e/Y2 )(i-s2cos2e) -4, 

2 max	
(8)

	b 	
l	

.

where

Amax -	 ^ , m - Yv	
(1+t 	 t _ ^YStne	 (9)

1 + (1+t2)	
b

n	 __ vb dlnf	 0},the expression in the square bracket isFor e - 2 ^umax 2v du	 p

equal to unity and

2m	
2v/vb (^ 1 Yv'19b

	Amax (n/2.Yo umax) - e	 1Y+1^	 (10)

in agreement with the result obtained by Trubnikov (1958).

t	 ^;«
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2) Integration Over the Energy. In general, the expression in the square

bracket of eq. (8) varies slowly with Y > However,Z2m increases rapidly with

particle kinetic energy (as (y - 1)2m) when 
Y -1 « 1 and approaches unity

as Y -	 , while f(umax ,y)	 decreases rapidly (as a power law, fa(Y-1)-^

or exponentially, f = e_Y/kT) with particle energy. Most of the contribution

to the integral comes from the vicinity of the maximum of fS 2m/ y. Again,

a good approximation to the integral is obtained by using the method of

steepest descent which gives

v W s (ne2vb/c)(.4/v0 0+2 cot2e/Ya)( 1-s 2̂cos2e)hf($^cos6,Ya ) -m ( t
0 )XI^ l )

where m = ( v/Yovb )(1+tot )	 and Y0 (or to 
20OYo 

sine) is the solution of

the equation

t-2(1+t2)-^ + 0 -0 2cos2 e/ t2)Infi r , _ -(dln ( f/Y)/dYl(v /2vsin ze)	 (12)n, ' x	 b	 ' n2a
sin e

In eq. (11)

X-2	 y2dln19F2m ( f/Y)	 Y2d2ln(f/Y) 	-	 dln(f/Y) 	
eW t 	 13(	 ^)f(	 )

2d ,V	 2d 2	 nY	 o

	

Y=YQ	 Y	 Y=Yo	 Y=Yo

where

(to+to (3/2+sin ge/2)+sin 2e1to4 0 +to) _3/2 - (cot2e/y 22 )ln Z max

W s	 _	 (14)

	

tot ( 1 +to)	 + (1-soco s2e/to)ln Z 
max



8
3) Asympthotic Limits ,,, These equations describe the synchrotron

emissivity for a general electron spectrum and pitch angle distribution.

Before we can express v(e) explicitly in terms of v and a we must	 i

specify the distribution function f(u,y). Below we shall consider three

kinds of distribution. Before doing so we first describe some general

features and comment on the accuracy of these expressions by considering some

asympthotic limits. This will allow us to simplify these complicated expres-

sions considerably.

(a) High frequency, high energy limit. At high frequencies, at angles e

such that sine is not negligible, and for distributions so that

E	
vbdln(f/y) 	

1, the right side of eq. (12) is much smaller than unity.
2vdlny

This means that t 2 >> 1. In this Limit the left hand side is approximately
2

equal to - 3 1+	 2-5— s-2n_e	 so that to the first order in a the solution
3t	 lot

of eqs. (12) and (14) becomes

to /sin 3 e s 
Boyo 

3e r19 >> 1, W = 3	 (15)

Note that, in general, a may be a function of y (see examples given below),

and that as a decreases yo increases, which means that the largest contri-

bution to the integral comes from higher energy particles. Eq. (15) is valid for

1 z sine >> sine  x	 e^ ,	 (16)

however, even for e = ac (i.e. to ti1 ) it is accurate to better than 20

percent.
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(b) Small angle regime. For e < ec she right hand side of eq. (12)

becomes larger than one so that t o becomes less than unity, but YO is still

much larger than one. In the extreme limit of a << s c , we have c/sin2e >> l

and t2 -;< 1. In this case the left hand side of eq. (12) is approximately

equal to IT In 
t 

so that for a 44 ec we have

to/sin 2e = eQY2 n c-i ln(sine c/sinb), W 0 1
	

(17)

Note that this equation will not be of much practical use since for c << I

eq. (15) is valid at all angles except for emission along the field line,

where the emissivity is negligible (emissivity is zero at e a 0 except at

the gyro-frequency). Thus, r.;;cept for the unrealistic (i.e. not attainable

in astrophysical situation) case of uniform magnetic field within the observed

beam, we can ignore emission at angles e s ac and use eq. (15) (cf. Epstein 1973).

(c) Non-relativistic limit and low harmonics. At lower harmonics

and/or for very steep electron spectra (which means primarily non-relativistic

particles) dln f/
	

may exceed v/vb and the right side of eq. (12) becomes

greater than one even at sine - 1	 In the extreme case of c >> 1, it is easy

to see that, independent of e, the largest contribution to the emissivity

comes from particles with non-relativistic energies. Thus, eqs. (14) and (12)

reduce to

e2Yo = 1/W = 1/e	 e » 1.	 (18)

(d) Test of the accuracy of approximations used in previous section.

In the next section we will discuss the accuracy of the above approximate

expression for three different kinds of distribution f(p,Y). Before doing so
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let us first examine the accuracy of the approximations used in the derivation

of egs.(Il) to (14).	 in eq. (7) we assumed c l to be much less than unity.

Clearly this will not be the case at all energies and angles. Our results

would, however, be valid so long as this inequality is satisfied for the

pitch angles and energies of particles which have the largest contribution

to the integral, namely, u . scose and y = Yo . For e « 1 and y0
given by egs.(15) and (17), the expression (1-u2)lnzmax / (I-z 2 )	 in eq. (7)

is equal to esin/2 and t e2 , respectively. Ignoring this term then the

approximation 
umax ' Ocos8 is justified l as long as

dinf/du < 2vcose/v bsin39 .
	

(19)

1-
	

gib 
n	 u

Note that at e = w/2 eq. (7) indicates that umax ^ w 0 as long

as dlnf/du « v/vb . As a decreases the inequality in (19) becomes less

restrictive.

For e >> 1 and Yo given by eq. (1C) e l is no longer negligible,
v

but in this case umax	 $cosec l X c
	 insine

 - 2v dlnf/du w 0 as long

as dlnf/du « 2v/vb . Thus, for particles with slowly varying pitch angle

distribution, the relation umax * s
cose is a good approximation throughout.

In connection with eq. (4) it was mentioned that the approximation used

for the Bessell function and their derivatives isvalid if m(1 -
z2 3/2

)	 _

.I
(1 +t2 	» I. for e » 1 from eq. (18) we have Yo s 1, to << 1

so that this condition is valid if v/v b •> 1, which is our basic assumption.
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For c « 1 and sine sinc c from eq. (15), we find that the above

inequality reduces to

(csine) 

^dj

YOY
O

Yo

which is satisfied for most practical spectra.

In the extreme limit of small angles a <s e c the approximation for Bessell

function may not be valid since in this case the right side of the inequality

(19) is replaced by ln(sine c/sine).	 However, this will happen at very small

angles which, as mentioned in connection with eq. (17), is of no consequence

except at ultrarelativistic energies (see Epstein 1973, and references cited

therein).

Having Justified all of our approximations, we can now substitute Yo

from eqs. (15) or (18) in eq. (11) to obtain to first order in c or 1/c

sinheexp(dln(f/y)/dlny 2 j },c«l

jv (ej	 (ne2vb/c)(v/vb)hf(0pcose,Yo)X 1+
	 2e	 2v/v Y°	 . (21)

p-' T- (es 0sine/2)	 b , c»1
sin e

As evident from expressions (13) and (14), the quantity X is a compli-

cated function of Yo and sine. However, as we have seen above, W(to,e)

has a very simple form in the two limits. It turns out that, except for

6<<e 
c

o  eq. (14) can be simplified considerably. Combining the two asymthotic

forms of W given in eqs. (18) and (15), we find that we can replace eq. (14) by

W - 3/2 + 1/(y2 - 1)
	

(22)

without loss of much accuracy. On Figure 1 we show the variation of the ratio
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of the actual value of W (from eq. 14) to its approximate value given by

eq. (22) with y
o
 and	 sine. This shows that, except for the uninteresting

case of sine << 1, the above expression is an excellent approximation.
	 i

We shall use eq. (22) instead of eq. (14) in the following section.
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III. SOME SPECIAL EXAMPLES

In this section we derive tie emissivity for three special particle

distributions using the general eqs. (11), (12) and (21). Whenever possible

we give a simple approximation to eq. (12).

1) Thermal spectrum. We first consider the emissivity of ther^rial, non-

degenerate gas which was first investigated by Trubnikov (1961) and

Drummond and Rosenbluth ( 1963) 2 and which - has found application in fusion

2There was some disagreement initially between Trubnikov and Drummond and
Rosenbluth (1960) which was settled in favor of Trubnikov. Our results

confirm this.

plasma and in many astrophysical conditions such as solar flares, stellar

coronae and accretion on white dwarfs (see e . g. Lamb and Masters 1979; Ramaty

and Lingenfelter 1967; Ramaty and Petrosian 1972; Petrosian 1981).

If the particle distribution is isotropic and Maxwellian with temperature

kT On units of mc 2 ), then, in general
X_

f ( ji sy )/y ' Ce kT (Y 2 -1)- 	 (23a)

where for kT S 1

C= n	 3 -^ k^	 _ UT
2^r(kT) 1 	 e	 (l	 16 ... )	 (23b)2 1 

and n is the number density of the particles. From this we find that

dln(f/Y) /dy	1 [l - kTy	 d2 In f	 _ - 22 + 1	 (24)

	

Y2-1	 dye	 (Y2-1)
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Our detailed calculation with eq. (12) (described below) shows that the

second term in the square brackets is always less than v b/2v « 1 unless

V ? 1. However, if kT >> 1, then the method of steepest descent used in the

derivation of eq. (11) does not give a good approximation to the integral over

particle enemies. This is not of much concern because in most astrophyscial

conditions (except in the early phase of the universe) such high temperatures

are not encountered. Even when such temperatures are encountered, other high

energy processes involving the numerous electron-positron pairs become more

important than synchritron radiation. Thus, we shall restrict ourselves to

kT s 1, and in what follows immediately we ignore the square brackets in

eq. (24).

Let us first consider a Maxwellian gas with semi-relativistic temperature

so that	 vkT/vb » 1.	 In this case E	 in eq.	 (12)	 is small (except for	 the

uninteresting case of sine << vb/vkT) so that from eq. (15) we find

so X 1, Y 3
0
	 4vkT/3v bsine, W = 3/2,	 X	 (2kT/3Yo ^	 (25)

substitution of which in eq. (11) (keeping only the highest order term in Yo),

or in eq. (21) gives

v 1/3

j v (a) ib ( 2 3/2ne2vb/ 3c) C (vkT/
vb)exp _ vb [ ss' a ^vkT\]	 (26)

This is in agreement with results we obtain from Trubnikov's expression in this

limit. In particular, for e = ,r 1/2-a with a << 1, the angular dependence

reduces to j v (e) - exp {- va2 ^'l
I /vbT ,

2 1/3 } 
as given by Trubnikov (see also

b

Hekefi 1966, P. 205).
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For a non-relativistic gas with kT << 1 so that vkT/v b is also much
less than unity, the right hand side of eq. ( 12) is equal to v b/2vkTsine >> 1
so that its solution reduces to the simple expression in eq. (18):

yo • 1, 	5o x2 vkT/vb ,	 X n (2v/vb )	 (27)

Substitution of this in eq. (11) or (21) gives

3V(e) _ (2 3£,re2v /c)C(vkT/v ) 3/2 1 +cos2e exp ( -(v/vb )ln(2vb/evkTsin2e)1.(28)
b	 b	 sign e_`^	 1

We find that the expression given by Trubnikov reduces to eq. (28) in this

limiting case also.

It is interesting that we find this agreement between the result here

and those of Trubnikov even though the method of integration used here is

quite different than that used by him and that eq. (12) bears no resemblance

to his eq °^ation which plays the same role as our eq. ( 12). Presumably this

agreement persists throughout. Note, however, that our result is more general

and is applicable to a variety of spectral and pitch angle distributions

(within the limitation specified in the previous section) while Trubnikov's

result is applicable only to an isotropic Maxwellian gas with kT << 1.

In the intermediate region, vkT/v b = 1, simple approximations such as those
in eqs. ( 25) and (27) are not possible and we must solve eq. ( 12) numerically. In

Figure 2 we show the variation of (y- 1) with vkT/vb for various values of
sine and for the limiting case of kT -. 0 (so that the square brackets in

eq. (24) can be set equal to unity) and for kT = 1 (where we have included the

square bracket in eq. ( 24) in our calculations). For kT -1- 0 these curves

..	 G
......_.__ _.....	 ...,_..._....^.::..^m...,r..rs.....^..^^-_...yam:. 	 ^6

Y
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show a smooth transition between the two limiting expressions (25) and

(27) except for very small value of sine. For kT -= 1, vkT/vb is always

greater than unity and eq. (25; r)pears to be a good approximation throughout.

From Figure 2 and eqs. (22) and (24) we find that the complicated eqs. (12) and be

rcplaced by the following approximate equations without loss of much accuracy:

2	
(2vkT/vb)(1 + 4.5vkTsin2O/vb)-1/3, kT << 1

(Y° - l) _ 1(4vkT/vbsino) 2/3 ,	 kT - 1

(29)

X2	 (2kT/Yo)(Yo- 1 )/(^0 - 1)	 kT S 1

These expressions asympthotically approach the expressions given in eqs. (25)

and (27). In addition, as shown by the inset in Figure 2 where we plot the

ratio of Yz - 1 from (29) to that obtained from exact expression (12),

the above approximation agrees with the exact result to better than few percent

for v/vb » 1 and sine

largest deviation occurs

the appropriate asymthotic

by adding new terms to eq.

sacrifice in the simplicit;

= 1 and to within a factor of 2 throughout. The

at vkT/vb = 1 and sine << 1, where eq. (17) is

limit. Although we can improve on this agreement

(29), the resultant improvement is not worth the

y of eq. (29).

To summarize, we can calculate he synchrotron emissivity from an isotropic

Maxwellian gas at any kT s 1 using egs.(11) and	 (29).	 Figures 3

compares the results obtained from these equations with results from detailed

integration of eq. (1). As is evident,these simple analytic expressions give

excellent results not only at v/v b >> 1, but surprisingly at lower harmonics

where the accuracy of the steepest descent method is lower.
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2) Power law energy spectrum. Power law spectra are other commonly

used spectra in astrophysical problems. Usually power law spectra are defined

with a low energy cutoff. To avoid such discontinuities and to simplify our

analysis, we assume a spectrum of the form

a
f(u.Y) - g (P)C(1 + c-1 	(30)

which converges at low energies;

+1

C - n E-1 I	 g(u)du - 1.	 (31)

c	 -1

In eq. (29) c c plays the role of the low energy cutoff. For energies much

greater than cc the spectrum is a power law with index -s but tends to a con-

stant at lower energies. The particles can be classified as ultra-relativistic

or non-relativistic if c c » 1 or c c << 1. We are interested primarily

in cases with c c x 1. For E  >> 1 the maximum in the function (M 2m /Y)

used in derivation of eq. (11) becomes very broad so that the steepest descent

method does not provide a good approximation to the integrals. In this case

one must use the well known ultra-relativistic results.

For distributions which are not highly anisotropic (i.e.,ding(p)/du << v/v b )

we can carry out calculation similar to that for a thermal gas. From eq. (30)

we find

	

dinf	 = 1+	
dy

	d ny	 Y- +sc
y2d2ln(f/y)

dY2
1 +	

6y2	
(32)

(Y-1+cc)

L
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If vb8/v << 1, then y0 » 1 so that eqs. (13), (14), (15) and (22) give

s a 1,	 YZ =	 4v	 X - (1 +a) -"	 (33)0	 0	 vb +6 siw

substitution of which in eqs. (11) or (21) gives

2	 -(d21-) 3cwb ( a+1)sine 2
^ v (^) _ (^e vb/2c) Cecg(socose)sfne e	

v	
}	 (34)

This expression has exactly the same dependence on v, vb and a	 as the ultra-

relativistic form (cf.e.g. Ginzberg and Syrovatskii 1964, p. 67). Even

the numerical coefficients (which depend primarily on d) agree to within a

factor of 2 9 although the particle spectrum used in the ultra-relativistic

calculations is different than that given by eq. (30).

In the other extreme limit, v b (1+Y)/v » 1, which is not of much interest

here (see below) unless cc << 1, from eq. (18) we find that Y0 - 1 and

2vc

80 vbdc	
This is identical to eq. (27) if we identify 

cc
/6 as an equivalent M

for the power law spectrum. In fact, substitution of this in eq. (11) or (21)

gives an emissivity also identical to that in eq. (28) if we replace kT by
-v/vb 	v d

e c/s	 and set terms such as a	 (1 + av) = 1.
b

In the intermediate ranges the expressions for Y0 or s0 are more com-

plicated and depend on the value of c c . Unlike in the case of thermal

spectrum, it is not possible to give a simple expression for Yo - 1 because

here Yo - 1 varies rapidly between its two asympthotic values:



1'9

YZ-1	
4v

°	 3vb(1+6)sine

`

	

	 2vec
Y2 - 1 =
°	 vb(1+6/ec)

vb(1+6) /v « 1	 (35a)

vb (1 +a )/v » 1	 (35b)

in a manner similar to that found in degenerate Fermi distribution.

In Figures 4 and 5 we plot (Yo	
1)3vb/(1+a)sine/4v vs	 v/avb

for various values of ec , sine and a. We have attempted to fit the transi-

tion region with an emperical formula. We have not found a simple expression

which could reproduce the transition region even within a factor of 2 at all

e and v/vb . However, as evident from Figure 4 for ec .. 1, the high frequency

form for Yo - 1 (eq. 35a) provides a good approximation at all frequencies.

On Figure 6 we compare the emissivity obtained using eqs. (11), (12), (22),

(32) and (35a) with results from numerical integration of eqs. (1) and (2)

for an isotropic power law distribution with a - 3, ec = 1 and at e - 45

Just as for the previous case, here again we find excellent agreement between spec-

tra down to the gyro-frequency. Even the absolute value of the emissivities at

high v agree within 30 percent, This slight inaccuracy is because the lefthand

side of expression (20) is equal to 4, making this inequality not a strong one.J

3) Non-isotropic pitch angle distribution. The two examples given above

are valid if the inequality (19) is satisfied. This condition is violated (specially)

at low frequencies) if the particles have a highly anisotropic pitch angle distri-

bution. For example, if f(u,Y) - (P-P o )
n

and if n > 2v/vb , then the method of

steepest descent cannot be used in the derivation leading to eq. (6). Neverthe-

less, for a given n one can always find high enough frequencies where the above

relations are valid. However, for a large n this could occur at such high

harmonics where the emissivity is negligible.
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On the other hand, as mentioned above, because of self-absorption

flux of radiation at lower harmonics is negligible. Assuming that

ry ! 1 for v s 5vb , then the inequality (19) would be violated if

n z10 for 9 = ?r/2 and for even greater n at 8 < n/2 (e.g., n > 20 at

e = n/4). It is difficult to envision astrophysical conditions where the

pitch angle distribution of the particles would be so highly anisotropic

except if this anisotropy is along the magnetic fidld lines, i.e. if particles

form a tight beam along the field line. Even if particles are initially

accelerated along the field lines, their interaction with the medium (through

coulomb collisions, scattering by waves or by inhomogeneities in the magnetic

field) could quickly disperse the beam in the pitch angle space so that the

inequality (19) is satisfied. However, if collisions are infrequent and the

magnetic field is very uniform, then the particle pitch angle could remain small.

To complete our discussion let us consider a highly anisotropic distri-

bution in pitch angle of the form

_ 2 2

	

f(N,Y)	 (2/ao)e ao /ao fly),	 a2	 1 - u2 ,	 aov/vb ^< 1

so that the inequality (19) is no longer satisfied. In this case the Taylor

series expansion of eq. (5) gives

^	 ^ a2 	 a2
e
2
 vbn v	 essine 2m
	

" 2 2ada 2m	 az B

	

J ( e ) _	 - (—)	 dYf (Y) Y(l, Y ,e)	 e	 ° —^— a e	 o ,v	 c	
vb 1	 2(1-0cose)	

ao

0

(37)

	

_ 2v,(,	
vYao	

s 2sin 2 e	 2 1-scose
v

m-	 (1-scose) and B= 1+ v
	

+ scoseln	
2Lb	 b	 4(1-scose)	 sasin 6

(36)



`(39)
o2 :	 2
°	 ln(vb/aov)

for e - W/2
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As we shall see below, the largest contribution to the integral comet from elec-

trons with Y of the order unity so that vYaQ/vb " 1. Then we can neglect

the slow logarithmic dependence of 8 in a and integrate eq. (37) to obtain

to lowest order in vao/vb

e2v r^	 °°	 Wsin2eYv012m

v	 c	 V  i	 [4vb( l ' ecos a )

Now following our previous procedure, we find that the largest contribu-

tion to the integral comes from particles with

s° = cose + 0 D/ln(v b /va"Od for e # ,r/2

Substitution of these in eq. (38) gives

e2v nw( 8 ) -	 cb... 2n( vb) f(YO ) A,	 (40)

when

.	 v
A = cot exp. ^- .wine	

4sinev
. In ----^--2 ^ [ln(

ecos

4sine

° v
	 e ^ ffI2

b	 ecos ea 	 ea°

(41)

A = 3T exp -	 In 
2v 

b	 1 n (4vb/e2vao ) ,	 e = n/2
b	 ea v

0

These are valid for semi-relativistic particles (i.e. for v/dv b or vkT/vb > 1).

The situation becomes more complicated for non-relativistic particles since

there exists two small parameters a2v/vb and vkT/vb so that simple general

expressions such as (40) are not possible.
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IV. SUMMARY AND CONCLUSION

We have found a simple method of integrating the complex synchrotron

emissivity over pitch angles and energies of ensemble of particles.

1) Eqs. (11) to (14) present the results in their most general form.

These equations can be used for evaluation of the synchrotron emissivity

from any particle distribution which falls fairly rapidly with energy and

satisfies the inequality (19). The latter condition restricts the particle

pitch angle distribution.

2) In most practical applications (high, frequencies'and at directions

away from the direction of the field lines), eqs. (12) and (21) provide a

simple expression for the emissivity.

3) Our result when applied to an isotropic thermal gas of temperature T

agrees, in two asympthotic limits	 vkTjvb " 1	 and	 >> 1, with the earlier

results of Trubnikov (1961) ever, though the method used here is quite different

from Trubnikov's, which is restricted tc emissivity of a thermal gas. The

simple emperical formula, eq. (29), connecting the two asympthotic limits is

found to be sufficiently accurate for most practical application.

4) Our result for a power law particle spectrum when extended to high fre-

quencies gives a result identical to that obtained from ultra-relativistic

approximation as for its dependence on frequency, angle with respect to the

magnetic field directions and on the parameters describing the particle

distribution.

5) For isotropic pitch angle distribytions, spectra from our simple

analytic expressions agree with numerical results to a high degree of accuracy

even at lower harmonics, making resort to such detailed numerical calculations

unnecessary. The absolute value of the synchrotron emissivity also agrees with

20 to 30 percent at high frequency.

-	 - -	 -	 - 	 -
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6) We also briefly describe a method for derivation of emissivity from

particles with highly anisotropic pitch angle distribution. Polarization and

emission at lower harmonics and optically thick regime will be discussed in a

subsequent paper.

ACKNOWLEDGMENT

This work was supported by the National Aeronautics and Space

Administration under Grants NSG 7092 and NGR-668-2DP8399.



24

REFERENCES

Abramowitz, M. and Stegum, I.A., Handbook of Mathematical Functions, 1970.

(Dover, NY), p. 365, eqs. 9.3.2, 6 or 7

Bekefi, G. 1966, Radiation Processes in Plasmas, (John Wiley and Sons).

Drummond, W.E. and Rosenbluth, M.N. 1960, Phys. - Fluids,,  3, 45.

Drummond, W.E. and Rosenbluth, M.N. 1963, Phys. Fluids, 6, 276.

Epstein, R.I. 1973, Ap. J. 183, 593.

Ginzberg, V.L. and Syrovatskii, S.I. 1964, in The Origin of Cosmic Rays

(D. ter Haar, ed.) (The MacMillan Co., N.Y.).

Lamb, D.Q. and Masters, A.R. 1979 9 Ap. J.(Letters), 234 9 L117.

Petrosian, V. 1981, submitted for publication.

Ramaty, R. 1969 9 Ap. J. 158, 753.

Ramaty, R. and Lingenfelter, R.E., 1967, J. Geophys. Res., 72, 879.

Ramaty, R. and Petrosian, V. 1972, Ap. J. 178, 241.

Takakura, T. 1972, Solar Phys. 26 1 151.

Trubnikov, B.A. 1958, Soviet Phys. "Doklady",3, 136.

Trubnikov, B.A. 1961, Phys. Fluids, 4, 195.



26

FIGURL CAPTIONS

Figure 1. Ratio of exact value of W (eq. '15) to its approximate value

(eq. 22) versus Yo and e. Note that the ratio deviates from unity

significantly when (Yo - 1) is of order unity and only for sine « 1.

For most practical purposes eq. (22) will be adequate.

Figure 2. Variation of Yp - 1 (read yo instead of Y in this figure) with

vkT/vb for an isotropic Maxwellian gas at temperature kT. For sine of

order unity YQ - 1 varies smoothly and monotonically between the two

asympthotic values. Deviations from this behavior occurs at very small

values of sine. Note that at high frequencies Yo is independent of

value of kT and depends only on vkT/vb. Note kT = 0 means kT << 1.

Inset. Ratio of the approximate value of Y o - 1 from eq. (29) to

its exact value given by eq. (12) for kT - l and kT + 0.

Figure 3. The synchrotron emissivity normalized to the Rayleigh-Jean value

(Ov a jv/v 2 ) at e * n/2 for kT = 0.1 (or 50 keV for an electron).

Points from our analytic equations using approximations in eqs. (11) and

(29). Solid line fron numerical integration of eq. (1) taken from Bekefi

(1966) figure 6.10a, p. 203. Note the excellent agreement to much lower

frequencies than expected from the analytic approximation.

Figure 4. Deviation of y'
0

 1 (Y in the ordinate should be Y o ) from its high

frequency asympthotic value versus v/dv b at 8 = n/2 for a power taw

spectrum. Note that for c c, of order unity the asympthotic value provides

an excellent approximation throughout. For c
c
 « 1, Y2- 1 changes rapidly

between the high and low frequency asympthotic values (eq. 35), with the

transition value of v/dv b being independent of 6 and cc.

0
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Figure 5. Same as Figure 4 but for various values of sine. Note the transition

becomes sharper with decreasing values of sine but occurs at the same value

Of v/s)b6 for all e.

Figure 64, 'the synchrotron emissivity from an isotropic and power , law particle

distribution with 6 = 3 and 
Ec 

ti 1 at e = 450 . Points from our

analytic eq. (11) using the approximation in eqs. (22) and (35a). The

solid line from the numerical integration of eq. (1) taken from Ramaty and

Petrosian 11972). Note the excellent agreement to much lower frequencies

than expected from the analytic approximations.
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