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ABSTRACT

We present approximate analytic expressions for evaluation of the
frequency and angular depende::ice of synchrotron emissjvity from mildly
relativistic particles with aroitrary energy‘spectrum and pitch angle distri-
bution in a given magnetic field. Egs. (11) to (14) give our result in its
most general form. We show that eq. (14) can be simplified considerably as
in eq. (22) and that for most practical cases eq. (11) accepts simpler forms
(eqs. 29 or 35). These results are valid for particle distribution which &re
not extremely anisotropic.

Our result iigrees with previous expressions for a non-relativistic Max-
wellian particle distribution, and when extrapolated to non-relativistic and
extreme relativistic regimes, it agrees with the previous expressions obtained
under those limiting conditions.

We compare the result from our analytic expression with results from
detailed numerical evaluations. We find excellent agreement not only at fre-
quencies large compared to the gyro-frequency but also at lower frequencies,

in fact, all the way down to the gyro-frequency, where the analytic approximations

are expected to be less accurate.

Subject headings: Synchrotron Radiation; Sun: Flares, Radio Radiation;

Stays: Accretion, White Dwarfs; Plasmas
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I. INTRODUCTION

Synchrotron radiation from highly relativistic particles is an old hat worn
by astrophysicists successfully for many decades. At extreme non-relativistic
energies the primary contribution to emissivity is the well known cyclotron radia-
tion at the first and perhaps few low harmonics. In the intermediate range
there dees not exist a simple formula for evaluaiton of the emissi:icity (or
absorption ccefficient) from particles with an arbitrary energy spectrum and pitch
angle distribution. The usual practice is to use lengthy numerical methods “or
evaluation of these quantities at mildly relativistic energies (cf.e.g., Ramaty 1969
and Takakura 1972, in connection with solar flare problems and Lamb and Master 1979,
in connection with accreting white dwarfs). Earlier, in connection with fusion
plasma, Trubnikov (1958) and Drummond and Rosenbluth (1963) derived equationg
for emissivity (or absorption coefficient) of synchrotron radiation from a
thermal plasma (cf., e.g., Bekefi 1966, ch. 6, and references cited there).

In most astrophysical problems the low harmonics of cyclotron radiation
will be either self-absorbed, or absorbed by surrounding plasma, or suppressed
by Rézin-Tsytovich effect. Consequently, only radiation at high harmonics
where optical depth T, < 1 is of interest. We find that at such high harmonics
there exists a simple approximate method for evaluaiton of the spectrum and
directivity of the synchrotron radiation from an ensemble of electrons in a
given magnetic field. In this paper we present the results of this method for
the total emissivity at high harmonics. In §II we present the general formula
and the details of the derivation of the emissivity for an arbitrary energy
spectrum and pitch angle distribution of particles. The emissivity for some
commonly encountered particle distributiors are presented in §III where we also

give some emperical relation valid for a large range of the parameters and
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compare the results from these amalytic expressions with those obtained by
detailed numerical calculations. A brief summary of the result is presented in
§IV. Polarization and intensity of radiation in optically thick regions and at

Tower harmonics will be discussed in a future paper.



4
IT. ANALYSIS AND GENERAL RESULTS

Consider particles with charge e, mass m and distribution f(u,y) where
fdudy 1s the number density of particles in the energv (in units of mcz) interval
v to y + dy and with pitch angle cosine between u to u + du. The specific
emissivity Jv(e) of the synchrotron radiation at frequency v and at an
angle o with respect to the magnetic field of strength B is given by
(cf. Bekefi 1966)

2

2ﬂe vb v (] ] ‘
j\)(e) = I ] def duf(Y.u)vnv(B-Y.u), (])
vpsin©e 6 71
where
n,(8s1su) = 2 {(Cose-au)zdf,(x) + (1-suCose)2[xJ;n(x)/m12} s(y),  (2)
and

y = mv/y - v(1-gucose),  x = vyssine(I-uz)%vb ’

: 6
vy = Zﬁgc = 2.8 x 107(B/gauss)Hz.

Here Jm(x) is the Bessel function of ords» m and g2 =1 - y'z.

As mentioned above, we are interested in emission at frequencies v such
that optical depth T, S 1. Under most astrophysical circumstances this cccurs
at frequencies much higher than the gyro frequency Vp- We, therefore, seek
solution to eq. (1) for (v/vb) >> 1. In this case the delta function
indicates that m is large and that the relevant harmonics are closely
spaced so that the summation can be replaced by an integration. This integral
can be carried out easily with the help of the delta function. This step then

eliminates the summation, introduces a multiplying factor of y/vb and replaces

m by Yv(]-uBCOSB)/vb.



Furthermore, since m is large and we are not in the extreme relativistic
regime, the Bessel function and its deviation can be approximated as follows

(cf. e.g., Abramowitz and Stegum 1970)

9 . k
3 (%) = (2m) K122y HG, kgt (a)/m = (1-28) g (ma),
3 (4)
L2y 2
2 a zel1-2") 7z X.B8sine (l-uz)}’. )
H(‘_zz) ' 1-upCOSO
2 3/2

This approximation is valid if m(1-2") >> 1. Note that z s 1 and that it
has its largest value when o = % and y = 1.0, i.e., Zs g or 1-22 > Y’z so that

the above approximation is valid for y2 << \J/vb. At higher energies

vy >> 1 and v/vb >> 1, one is in the ultrarelativistic regime where the
spectral and angular distribution of the synchrotron radiation are well known
(cf. =2.g. Bekefi 1961, Ginzberg and Syrovatskii 1964). With the above approxi-

mations eq. (1) becomes

e"v 1
j.\,(e) = c . ( > 2 )fdyf duf(HsY) Y(e’Y’U)zzm(evY»U)
vpsin©e 1 -1

(5)
Lcosege)z ;U-Zz)(T-uBCOSG)Z , m= %)’-'.Y- (1-Bucose).
(1-2%) " (1-ucose)

Y(U’Y’e) =

1) Integration Over Pitch Angle. In general, Y 1is a slowly varying
2m

function of u while, because of the large exponent, 2 varies rapidly
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from its maximum value at y = Mmax to zero at u = 1. We, therefore, use
the method of steepest descent to evaluate the integral over yu. This gives
me= (“Y/“b)(1'“max3°°5°) and
) (6)
ey 1% ¥
b{ N " 2m [ 2 ]
3,(8) ¥ \vbsi_nze) j1 b1 Fipgo1) V(6o )2 (017t Bi
where ¥max is the solution to the transcendental equation,
. . (1-u? . Yo dinf
H Bcose(1-e]), & -2]:2-))1; ['lni- 5ovBcoss dy ] (7)

For slowly varying pitch angle distributions dInf(u,y)/du << v/vb (see below
for a more precise 1imit), the last term in the square brackets can be ignored.

Then as we shall see below, € is of the order of vb/v << 1 so that

Mpax = BCOS8 and eq. (6) becomes
ezvb v i ® -1 2., 2 ncnti| o 2m
sy e) = 2 @& j; it (g0t [(192 cotPory?)(1-g2cos?e) |22 (a)
where
12
+
Zmax " te , M= —=— ('H'tz)- t = gysine . (9)
2 h
1 + (1+4t°)

For =1 = :’-2. d1nf = 0 i i h b k ]

8 =3 ’(“max "% T , the expression in the square bracket is

equal to unity and

' 2v/v
ol -
zm'gx (W/20Y9 umax) = e b I"]"

'YV/\’b
Y*])

(10)

in agreement with the result obtained by Trubrikov (1958).



2) Integration Over the Energy. In general, the expression in the square

bracket of eq. (8) varies slowly with v, However,zz'" increases rapidly with
particle kinetic energy (as (y - ])2"‘] when y-1 << 1 and approaches unity

as y =+ = , while f(”max’Y) decreases rapidly (as a power law, fm(Y-l)'f
or exponentially, f « e'Y/ "T) with particle energy. Most of the contribution
to the integral comes from the vicinity of the maximum of f2%"/y. Again,

a good approximation to the integral is obtained by using the method of

steepest descent which gives
3 (8) = (rePup/)(v/vy) 142 cot?e/y2)(1-g2cos?s) ¥ (scoso,y )ZEM (¢ )X, (1)

where m = (v/yovb)(Htoz) and yo(or t, *B, v, sing) is the solution of

the equation

t72(1482) 7% 4 (1-azcos29/t2)1nssnan = -[dIn(F/y)/dy] (vy/2vsine) = —S . (12)

sin™g
In eq. (11)
2
2 JEEdO) | e | e |
- ’ 1
2dy2 2dy2 diny 0
Y=Y° Y,Y Y:Y

0
where

| -3/2
[tg+t§ (3/2+sin29/2)+sinae]t;4(]+t§)

-2 %
2 (1td) T+ (1-g2c0s%e/td)ing

2412
- (cot e/yo)'lnzmax

(14)
t
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3) Asympthotic Limits, These equations describe the synchrotron

emissivity for a general electron spectrum and pitch angle distribution.
Before we can express jv(e) explicitly in terms of v and 6 we must
specify the distribution function f(u,y). Below we shall consider three
kinds of distribution. Before doing so we first describe some general
features and comment on thg accuracy of these expressions by considering some
asym&thotic Timits. This will allow us to simplff& these complicated expres-
sions considerably,
(a) High frequency, high energy limit. At high frequencies, at angles o

such that sine is not negligible, and for distributions so that

vbd]n(f/y)
) 2vdlny
This means that tg >> 1. In this 1imit the left hand side is approximately

2
equal to ;%3‘ (l + gz%gi%ﬂ—g) , S0 that to the first order in € the solution

of eqs. (12) and (14) becomes

€ << 1, the right side of eq. (12) is much smaller than unity.

3/6indp = giy3d = 2 = 3 *

to/sin G} BOYO Tes 1o >>1, W 7 (15)
Note that, in gencral, ¢ may be a function of vy (see examples given below),
and that as o decreases Y, increases, which means that the largest contri-

bution to the integral comes from higher energy particles. Eq. (15) is valid for

%

1 = sing >> sing, = ¢* (16)
however, even for & = 8, (i.e. tg'v 1) it is accurate to better than 20

percent.
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(b) Small angle regime. For 8 < 8¢ che right hand side of eq, (12)
becomes larger than one so that t, becomes less than unity, but Y, is still
much larger than one. In the extreme limit of ¢ <« Hoo we have e/sinee >

and t2 << 1. In this case the left hand side of eq. (12) is approximately

equal to 11? L] %- so that for @ << B, Wwe have
t

26 = 3§Y§ -e'] ln(sinec/sine). Wal, (17)

tg/sin
Note that this equation will not be of much practical use since for & << 1
eq. (15) is valid at all angles except for emission along the field line,
where the emissivity is negligible (emissivity is zero at & =0 except at
the gyro-frequency). Thus, #:cept for the unrealistic (i.e. not attainable
in astrophysical situation) case of uniform magnetic field within the observed
beam, we can ignore emission at angles ¢ < o, and use eq. (15) (cf. Epstein 1973).

(c) Non-relativistic 1imit and low harmonics. At lower harmonics

and/or for very steep electron spectra (which means primarily non-relativistic
particles) glﬂégiil may exceed “/“b and the right side of eq. (12) becomes
greater than one even at sing ~ 1. In the extreme case of ¢ >> 1, it is easy
to see that, indcpendent of 8, the largest contribution to the emissivity
comes from particles with non-relativistic energies. Thus, eqs. (14) and (12)

reduce to
B2y2 = 1/W=1/e, e>1. (18)
(d) Test of the accuracy of approximations used in previous section.

In the next section we will discuss the accuracy of the above approximate

expression for three different kinds of distribution f(u,y). Before doing so
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Tet us first examine the accuracy of the approximations used in the derivation
of egs. (11) to (14). In eq, (7) we assumed e to be much less than unity.
Clearly this wiil not be the case at all energies and angles. Our results
would, however, be valid so long as this inequality is satisfied for the

pitch angles and energies of particles which have the largest contribution

to the integral, namely, u = gcosé and vy = Yo' For ¢ <<} gnd Yo

given by egs. (15) and (17), the expression (1-u2)1nzmax/ (1-22) in eq. (7)
is equal to esin/2 and < ez, respectively. Ignoring this term then the

approximation Umax = Bcosé is Justified] as long as

dinf/du < 2vcose/vbsin38 : (19)

Note that at /2 (7) indicates th L s
Note that at 8 = 7 eq. ndicates that = ~ as long
max QGYO

as dinf/du << v/v,. As ¢ decreases the inequality in (19) becomas less

1

restrictive.

For ¢ > 1 and Yo given by eq. (18) £ is no longer negligible,

\Y
= gcoses, = S8 4y s}ge . 2—3— dInf/dy » 0 as long

but in this case ¥max

as dinf/dp << 2v/vb. Thus, for particles with slowly varying pitch angle
distribution, the relation may * BCOS® is a good approximation throughout.

In connection with eq. (4) it was mentioned that the approximg};on used
2
)

for the Bessell function and their derivatives is valid if m(1-z

V:Yo (1+t§) >> 1, For e > 1 fromeq. (18) we have Yo * 1, t§ <<

so that this condition is valid if v/vb +> 1, which is our basic assumption.

L pmsereame ol e emstmSgm©D T Ll
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For e¢<< 1 and sine 2 sinec from eq. (15), we find that the above

inequality reduces to

> 1, (20)

d\n‘f{x}‘d
(esine) %

Y®Y,

which is satisfied for most practical spectra.
In the extreme limit of small angles 6 << 0, the approximation for Bessell
function may not be valid since in this case the right side of the inequality
(19) 1s replaced by 1n(sinec/sine). However, this will happen at very small
angles which, as mentioned in connection with eq. (17), is of no consequence
except at ultrarelativistic energies (see Epstein 1973, and references cited
therein).

Having justified all of our approximations, we can now substitute o

from egs. (15) or (18) in eq. (11) to obtain to first order in e or 1/¢

sin”eexp(din(f/y)/d'lnyzl }, e<<l

J,(8) = (nezvb/c)(v/vb)kf(aocose,Yo)X 1reosZo zv,vbYo . (21)
— eg sing/2 y €>>]
sin“e %, ) i

As evident from expressicns (13) and (14), the quantity X dis a compli-
cated function of Y, and sine. However, as we have seen above, W(to,9)

has a very simple form in the two 1imits. It turns out that, except for
6<<0., eq. (14) can be simplified considerably. Combining the two asymthotic
forms of W given in eqs. (18) and (15), we find that we can replace eq, (14) by

W=3/2+1/(y2-1) (22)

without loss of much accuracy. On Figure 1 we show the variation of the ratio
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of the actual value of W (from eq. 14) to its approximate value given by
eq. (22) with Y, and sine. This shows that, except for the uninteresting
case of sing << 1, the above expression is an excellent anproximation.

We shall use eq. (22) instead of eq. {14) in the following section.
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I11. SOME SPECIAL EXAMPLES

In this section we derive the emissivity for three special particle
distributions using the general eqs. (11), (12) and (21). Whenever possible
we give a simple approximation to eq. (12).

1) Thermal spectrum. We first consider the emissivity of thermal, non-

degenerate gas which was first investigated by Trubnikov (1961) and
Drummond and Rosenbluth (1963)2 and which.has found application in fusion

2There was some disagreement initially between Trubnikov and Drummond and

Rosenbluth (1960) which was settled in favor of Trubnikov. Our results

contirm this.

plasma and in many astrophysical conditions such as solar flares, stellar
coronae and accretion on white dwarfs (see e.g. Lamb and Masters 1979; Ramaty
and Lingenfelter 1967; Ramaty and Petrosian 1972; Petrosian 1981).

If the particle distribution is isotropic and Maxwellian with temperature

kT (in units of mcz), then, in general

-
fluyy)/y = Ce KT (y21)% (23a)
where for kT < 1
%
c=3 [Zv(kT)] T (- 3"T ) (23b)

and n is the number density of the particles. From this we find that

2
1 kT d"In(f/y) y2 + 1
din(f/y)/dy = - == |1 - =], z . ) (24)
(i ol [ Y2~1] dy? (v2-1)
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Our detailed calculation with eq. (12) (described below) shows that the
second term in the square brackets is always less than vb/Zv << 1 unless
kT 2 1. However, if kT >> 1, then the method of steepest descent used in the
derivation of eq. (11) does not give a good approximation to the integral over
particle eneryies. This is not of much concern because in most astrophyscial
conditions (except in the early phase of the universe) such high temperatures
are not encountered. Even when such temperatures are encounte¢red, other high
energy processes involving the numerous electron-positron pairs become more
important than synchrutron radiation. Thus, we shall restrict ourselves to
kT = 1, and in what follows immediately we ignore the square brackets in
eq. (24).

Let us first consider a Maxwellian gas with semi-relativistic temperature
so that va/vb >> 1. In this case ¢ in eq. (12) is small (except for the

uninteresting case of sing << vb/va) so that from eq. (15) we find
8% 1, v3= &KT/3u,sine, W=3/2, X= (2kT/3y J (25)

substitution of which in eq. (11) (keeping only the highest order term in yo),

or in eq. (21) gives

/3
AY]
ROE; (23/2ﬂe2vb/3c) C(va/vb)exp{- %’-g [gﬁg(ﬁ)} } : (26)

This is in agreement with results we obtain from Trubnikov's expression in this

limit. In particular, for o = n/2-¢ with « << 1, the angular dependence

Vb

. va? [ 1 [vb 29173 .
reduces to Jv(e) « exp{- — ['4‘8" (—\-,ﬁ) ] as given by Trubnikov (see also

Bekefi 1966, p. 205).
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For a non-relativistic gas with kT << 1 so that va/vb is also much
less than unity, the right hand side of eq. (12) is equal to vb/2vas1ne >> 1

s0 that its solution reduces to the simple expression in eq. (18):
o= Vs 82w 20KT/v,, X = (2u/vp)%. (27)
Substitution of this in eq. (11) or (21) gives

3,(0) = (2 VEnePy/e)c(ukt/uy) ¥/ (ﬁ%:—zﬁ’-) exp{-(v/vb)1n(2vb/evasinze)}.(28)
We find tﬁat the expression given by Trubnikov reduces to eq. (28) in this
1imiting case also.

It is interesting that we find this agreement between the result here
and those of Trubnikov even though the method of integration used here is
quite different than that used by him and that eq. (12) bears no resemblance
to his eqation which plays the same role as our eq. (12). Presumably this
agreement persists throughcut. Note, however, that our result is more general
and is applicable to a variety of spectral and pitch angle distributions
(within the limitation specified in the previous section) while Trubnikov's
result is applicable only to an isotropic Maxwellian gas with kT << 1.

In the intermediate region, va/vb = 1, simple approximations such as those
in eqs. (25) and (27) are not possible and we must solve eq. (12) numerically. In
Figure 2 we show the variation of (y- 1) with va/vb for various values of
sing and for the limiting case of kT » 0 (so that the square brackets in
eq. (24) can be set equal to unity) and for kT = 1 (where we have included the

square bracket in eq. (24) in our calculations). For kT + O these curves
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show a smooth transition between the two limiting expressions (25) and

(27) except for very small vaiue of siné. For kT = 1, va/\ab js always

greater than unity and eq. (25! 'pears to be a good approximation throughout.
From Figure 2 and egs. (22) and (24) we find that the complicated egs. (12) and be

replaced by the following approximate equations without loss of much accuracy:

o (29kT/up ) (1 + 4.5ukTsinZo/v,) "3, KT << 1
e = 1) =
o (aukT/usin0) /3 KT =1
(29)
X% = (KT/YR) (Y2 D/ - 1) KT %1

These expressions asympthotically approach the expressions given in eqs. (25)
ana (27). In addition, as shown by the inset in Figure 2 where we plot the
ratio of Yg - 1 from (29) to that obtained from exact expression (12),

the above approximation agrees with the axact result to better than few percent
for v/vb >> 1 and sine = 1 and to within a factor of 2 throughout. The
largest deviation occurs at va/vb =1 and siné << 1, where eq. (17) is
the appropriate asymthotic limit. Although we can improve on this agreement

by adding new terms to eq. (29), the resultant improvement is not worth the
sacrifice in the simplicity of eq. (29).

To summarize, we can calculate the synchrotron emissivity from an isotropic
Maxwellian gas at any kT s 1 using eqs.{11) and (29). Figures 3
compares the results obtained from these equations with results from detailed
integration of eq. (1). As is evident,these simple analytic expressions give
excellent results not only at ‘”/“b >> 1, but surprisingly at lower harmonics

where the accuracy of the steepest descent method is Tower.



17

2) Power law energy spectrum. Power law spectra are other commonly

used spectra in astrophysical problems. Usually power law spectra are defined
with a Tow energy cutoff. To avoid such discontinuities and to simplify our

analysis, we assume a spectrum of the form

§
Fluny) = a(uc (i + 1) (30)
c

which converges at low energies;

+1]
Cansl, fg(u)du .1 (31)

€
¢ -1

In eq. (29) €e plays the role of the low energy cutuff. For energies much
greater than €a the spectium is a power law with index -8 but tends toa con-
stant at lower energies. The particles can be classified as ultra-relativistic
or non-relativistic if €. >> 1 or €. << 1. We are interested primarily

in cases with e.= 1. For e_>> 1 the maximum in the function (ﬂzzm/y)

c C
used in derivation of eq. (11) becomes very broad so that the steepest descent
method does not provide a good approximation to the integrals. In this case
one must use the well known ultra-relativistic results.

For distributions which are not highly anisotropic (i.e.ding(u)/du <<v/v, )
we can carry out calculation similar to that for a thermal gas. From eq. (30)

we find

2
din(f - 8 y2d“In(f/y) _ 8y2 '

dy? (y-1+e.)
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If vbs/v << 1, then Y, >> 1 so that egs. (13), (14), (15) and (22) give

4 -
A e I RN IR &

substitution of which in egs. (11) or (21) gives

-1
-(811) (aegvb(6+1)sine(§f")

3 . (34)

Jv(a) = (/§he2vb/2c) Cecg(socose)sine e

This expression has exactly the same dependence on v, Vb and 8 as the ultra-
relativistic form (cf.e.g. Ginzberg and Syrovatskii 1964, p. 67). Even
the numerical coefficients (which depend primarily on &) agree to within a
factor of 2, although the particle spectrum used in the ultra-relativistic
calculations is different than that given by eq. (30).

In the other extreme limit, v (1+y)/v >> 1, which is not of much interest

here (see below) unless ¢. << 1, from eq. (18) we find that Y, © 1 and

c
eve
Bg = 5—39-. This is identical to eq. (27) if we identify ec/a as an equivalent kT.
b
for the power law spectrum. In fact, substitution of this in eq. (11) or (21)
gives an emissivity also identical to that in eq. (28) if we replace kT by

-\ Vb v )
e /8 and set terms such as e (1" +=—) =1.
C Gvb

In the intermediate ranges the expressions for Yy, or Bo are more com-
plicated and depend on the value of €c Unlike in the case of thermal
spectrum, it is not possible to give a simple expression for yg - 1 because

here yﬁ - 1 varies rapidly between its two asympthotic values:
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y2 - 1= dv vp(146)/v << 1 (35a)
° 3vb(1+6)sine .
2ve
2 el —fo vb(1+6)/v >> (35b)

in a manner similar to that found in degenerate Fermi distribution.

In Figures 4 and 5 we piot (yg - \)3vb/(1+5)sine/4v Vs v/8vy

for various values of e, sine and &, We have attempted to fit the transi-

tion region with an emperical formula. We have not found a simple expression
which could reproduce the transition region even within a factor of 2 at all

e and v/vb. However, as evident from Figure 4 for ¢. . 1, the high frequency

c
form for yg - 1 (eq. 35a) provides a good approximation at all frequencies.

On Figure 6 we compare the emissivity obtained using egs. (11), (12), (22),
(32) and (35a) with results from numerical integration of eqs. (1) and (2)

for an isotropic power Taw distribution with 6 = 3, e, =1 and at e = 459,

Just as for the previous case, here again we find excellent agreement between spec-

tra down to the gyro-frequency. Even the absolute value of the emissivities at
high v agree within 30 percent, This slight inaccuracy is because the lefthand

side of expression (20) is equal to 4, making this inequality not a strong one.

3) Non-isotropic pitch angle distribution. The two examples given above

are valid if the inequality (19) is satisfied. This condition is violated (specially)
at low frequencies) if the particles have a highly anisotropic pitch angle distri-
bution. For example, if f(u,y) = (p-u )" and if n > 2u/vp, then the method of
steepest descent cannot be used in the derivation leading to eq. (6). Neverthe-
less, for a given n one can always find high enough frequencies where the above
relations are valid. However, for a large n this could occur at such high

harmonics where the emissivity is negligible.
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On the other hand, as mentioned above, because of self-absorption the
flux of radiation at lower harmonics is negligible. Assuming that
T, 21 for v= 5y , then the inequality (19) would be violated if

n=10 for 8 = 7/2 and for even greater n at o < n/2 (e.g., n > 20 at

o = n/4). It is difficult to envision astrophysical conditions where the

pitch angle distribution of the particles would be so highly anisotropic

except 1f this anisotropy is along the magnetic fidld lines, i.e. if particles

form a tight beam along the field 1ine. Even if particles are initially

accelerated along the field 1ines, their interaction with the medium (through

coulomb collisions, scattering by waves or by inhomogeneities in the magnetic

field) could quickly disperse the beam in the pitch angle space so that the

inequality (19) is satisfied. However, if collisions are infrequent and the

magnetic field is very uniform, then the purticle pitch angle could remain small,
To complete our discussion let us consider a highly anisotropic distri-

bution in pitch angle of the form
-a2/a2
flu,y) = (2/a§)e o' "o fly), al = 1 - u2, agv/vb << ] (36)

so that the inequality (19) is no longer satisfied. In this case the Taylor .

series expansfon of eq. (5) gives

e2y,n ® ine ¥ - 9;- - 5;-8
jv(e)""ég‘ (y\;__)f dyf(y) Y(],Y’e)[__eg_g_g_e_ /e "o '2‘3%& ZMe %
bJ, 2(1-8cos6) . 0

(37)

2 2
vya 2 (1-gcosd]
m = %!1 (1-cose) and B =1 + —=2 [ B%sin 8 4 geosern 2 acgse]
Yo L4(1-gcose) Basine
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As we shall see below, the largest contribution to the integral comes from elec-

trons with y of the order unity so that vyaglvb << 1. Then we can neglect
the slow logarithmic dependence of B in a and integrate eq. (37) to obtain

to Jowest order in va%/vb

2g
j(e)'___b_(\’ Janm[Bsn
4vb(lwacosa)

zeyva2

m
] fly)dy . (38)

Now following our previous procedure, we find that the largest contribu-

tion to the integral comes from particles with

so = coso + O[I/In(vb/va-] for 6 # n/2

(39)
B§ R — for & =1v/2 .
ln(vb/aﬁv)
Substitution of these in eq. (38) gives
. ezvbn Vv
() = —z= Zw(;-b-) flv,) A (40)
when
4sinev, 4v, sing K
ine D b
A = cot exp{ v3 In }/ ln(———z———) 6 #1/2 ,
b eco§§§agv J [ ecos “ea? ] ’
(41)
= /2 exp{' X n 2% } In(4v /ezvaz) 8 = n/2
= - ~ s .
b eagv, b °

These are valid for semi-relativistic particles (i.e. for v/avb or vkr/vb 2 1).
The situation becomes more complicated for non-relativistic particles since
there exists two small parameters agv/vb and va/vb so that simple general

expressions such as (40) are not possible.
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IV. SUMMARY AND CONCLUSION

We have found a simple method of integrating the complex synchrotron
emissivity over pitch angles and energies of ensemble of particles,

1) Egs. (11) to (14) present the results in their most general form.
These equations can be used for evaluation of the synchrotron emissivity
from any particle distribution which falls fairly rapidly with energy and
satisfies the inequality (19). The latter condition restricts the particle
pitch angle distribution.

2) In most practical applications (high frequencies and at directions
away from the direction of the field lines), eqs. (12) and (21) provide a
simple expression for the emissivity.

3) Our result when applied toanisotropic thermal gas of temperature T
agrees, in two asympthotic limits va/vb << 1 8and >> 1, with the earlier
results of Trubnikov (1961) even though the method used here is quite different
from Trubnikov's, which is restrictad tc emissivity of a thermal gas. The
simple emperical formula, eq. (29), connecting the two asympthotic limits is
found to be sufficiently accurate for most practical application.

4) Our result for a power law particle spectrum when extended to high fre-
quencies gives a result identical to that obtained from ultra-relativistic
approximation as for its dependence on frequency, angle with respect to the
magnetic field directions and on the parameters describing the particle
distribution.

5) For isotropic pitch angle distributions, spectra from our simple
analytic expressions agree with numerical results to a high degree of accuracy
even at lower harmonics, making resort to such detailed numerical calculations
unnecessary. The absolute value of the synchrotron emissivity also agrees with

20 to 30 percent at high frequency.
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6) We also briefly describe a method for derivation of emissivity from
particles with highly anisotropic pitch angle distribution. Folarization and
emission at lower harmonics and optically thick regime will be discussed in a
subsequent paper.
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FIGURE CAPTIONS

Figure 1. Ratio of exact value of W (eq. i5) to its approximate value
(eq. 22) versus vy, and o. Note that the ratio deviates from unity
significantly when (v - 1) is of order unity and only for sine << 1.
For most practical purposes eq. (22) will be adequate.

Figure 2. Variation of vy -1 (read v, 1instead of v in this figure) with
va/vb for an isotropic Maxwellian gas at temperature kT. For sine of
order unity T, - 1 varies smoothly and monotonically between the two
asympthotic values. Deviations from this behavior occurs at very small
values of sing. Note that at high frequencies Y, is independent. of
value of kT and depends only on va/vb. Note kT = 0 means kT << 1.

Inset. Ratio of the approximaie value of yg - 1 from eq. (29) to
its exact value given by eq. (12) for kT = 1 and kT -+ 0.

Figure 3. The synchrotron emissivity normalized to the Rayleigh-Jean value
(¢, = §,/v*) at 6 =m/2 for kT = 0.1 (or 50 keV for an electron).
Points from our analytic equations using approximations in eqs. (11) and
(29). Solid line fron numerical integration of eq. (1) taken from Bekefi
(1966) figure 6.10a, p. 203. Note the excellent agreement to much lower
frequencies than expected from the analytic approximation.

Figure 4. Deviation of yg - 1 (y in the ordinate should be yo) from its high
frequency asympthotic value versus v/&vb at o0 = 71/2 for a power law

spectrum. Note that for ¢_. of order unity the asympthotic value provides

c

an excellent approximation throughout. For € << 1, yg- 1 changes rapidly

between the high and low frequency asympthotic values (eq. 35), with the

transition value of v/svb, being independent of & and €cr
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Figure 5. Same as Figure 4 but for various vglues of sin6. Note the transition
becomes sharper with decreasing values of sind but occurs at the same value
of v/vbs for all @.

Figure 6. The synchrotron emissivity from an isotropic and power law particle
distribution with 6 =3 and e_~ 1 at 6 = 45°. Points from our
analytic eq. (11) using the approximation in eqs. (22) and (35a). The
solid line from the numerical integration of eq. (1) taken from Ramaty and
Petrosian (1972). Note the excellent agreement to much lower frequencies

than expected from the analytic approximations.
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