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ABSTRACT

We present a technique for the measurement of magnetic helicity from

values of the two point magnetic field correlation, matrix under the assumption

of spatial homogeneity. Knowledge of a single scalar function of space,

derivable from the correlation matrix, suffices to determine the magnetic

helicity. We illustrate the technique by reporting the first measurement of

the magnetic helicity of the solar wind.
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A considerable body of theoretical plasma physics literature over the

last twenty-five years has emphasized the importance of magnetic helicity,

defined as

He 
a 
lA*Bd'x
	

(1)

where B and .A are the magnetic field and the vector potential, respectively.Jfto

Ibis integral extends over all field containing regions, and ,A is subject to

the gauge condition v • A a 0. H. may also be defined "per unit volume" so that
AW

Hm a <A-, B>.	 The magnetic helicity measures the departure of a turbulent

magnetic field from mirror symmetry, or equivalently, the degree of topologi-

cal linkage of magnetic flux tubes'.

bbltjer = noticed that under fairly general assumptions Hm is an integral

invariant of the incompressible one fluid ideal magnetohydrodynamic (MHD)

equations. He then developed a variational formulation for calculating MHD

equilibria which Thylor • and Montgomery et al.' applied to MHD dynamics in a

conducting cylinder. Their "relaxation theory" has been used in the MHD

theory of Reversed Field Pinch plasma confinement dev ices$.

Turbulence theory has also addressed the dynamical role of magnetic

helicity. Frisch et al.', in onalogu to two-dimensional turbulence theory"',

conjectured that an inverse cascade of magnetic helicity may be characteristic

of three-dimensional MHD flows. In steady state, with helicity and energy

supplied at a constant rate to intermediate wavenumters, an MHD system would

then consist of two inertial ranges: an inverse cascade of magnetic helicity

to large scales, and a direct cascade of energy to small scales. A class of

selective decay hypotheses has been discussed $ " @ which states that the large
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Reynolds number, non steady dynamics, of a two rugged invariant system are

characterized by the rapid decay of the direct transfer quantity and preserve-

a,	 Lion of the back transfer quantity.

The conjectured implications for three-dimensional MHD are that: 1) , the

ratio of energy to magnetic helicity decreases in time; 2), in the limit of

extremely high Reynolds numbers the ratio approaches a limit defined by the

geometry; and 3) , the net magnetic helicity , resides primarily in the largest

scales of the system, regardltsr, of its scale in the initial conditions.

Our understanding of the dynamical importance of tm and the range of

validity of the relaxation,	 inverse cascade and	 selective decay theories is

limited by the look of interplay between theory and experfaent. 1# are not

aware of a single direct measurement of magnetic helicity.or its spectrum.

Thus, it is desirable to develop procedures for obtaining magnetic helicity

from experiments. In this letter we present a straightforward procedure for

evaluating magnetic helicity from values of the two point magnetic field

correlation matrix Rij (L) under the assumption that the statistical properties

are spatially homogeneous.

We begin with the definition

Ri j (,rr) a <Bi(z)Bj(^x+r)>
	

(2)

where the brackets denote an appropriate average over a statistical ensemble.

The assumption of "weak" homogeneity renders Rij a function only of the

spatial separation	 thus Rij (.r) a Rji (-r). Rij also satisfies the solenoi-

dal condition

I
I
r Ri j (,V z 

8r Rij (.) 
a 0	 (3)

j	 i
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where sunmation is implied by repeated indices. As discussed in Ref. 11,

Rij (r) may always be additively decomposed into a symmetric proper tensor

Tij (r) with even spatial pikrity and an ant13ymmetrio pseudotensor P ij (V with

odd spatial parity.

The transformation properties of a homogeneous, solenoidal correlation

matrix Ri 1 uniquely determine the form of the pseudotensor P i j (r) as can be

seen by use of the method of isotropic tensors introduced by Robertson and

others". By using all available vectors and the isotropic forms 
dij 

and

`ijk• one may exhaustively list the linearly independent tensor forms

available for inclusion in R i j . The required manipulations are easier to

perform in Fourier space employin6 the energy spectrum tensor

Si j (	 : (2*)' Idrr a ik-r Rij(L)
Am
	 (u)

If no rotational or reflectional symmetries are assumed, the solenoidal

constraint leads to 31 k-spaoe tensor forms at the onset". These depend on ^k

and two independent principal axis unit vectors. The Fourier space pseudo-

tensor, odd under k .k, must be antisyometric in its indices; similarly, the,. 00

proper tensor is even and symmetric. Simple algebraic manipulations show that

only three pseudctensors oan be linearly independent. The solenoidal

constraint eliminates two of these leaving one form , CijmkmG (k), where G is a

scalar function of 
OW ) satisfying G(k s G(-^ . Additional symmetries imposed

on the system can only modify the way in which G depends on k, but cannot
dw

introduce additional functions into the form of the k-space pseudotensor.

Likewise in configuration space, P ij is derivable from a single scalar

function ♦( r), and has the formI
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Pi j (V 2 eiim 
a
jr a#

The fact that Pij depends only on the gradient of a single scalar function of

r provides the basis for determining the magnetic helicity.

Let the ijth component of the Fburi)r transform of the symmetric part of

the <B+> correlation be denoted Hi j . Then, using Eq. (4), Hi j %) is'

Hij (k ) s icjr3kr3i4k.)/k=
	

(6)

Because H. is the trace of <B A> evaluated at .r.: 0 ( Eq. 1) , we immediately
00 MW

have

Hm s IdkH, j (k).	 (7)

From Eq. (6) and (7), we now see that Hjj (k) is the spectrum of magnetic

helicity, %(^k) . Furthermore, because H m(A) depends solely on the anti-

symmetric part of Si j , GM : iHn(!) /2. Finally, from Eq. ( 1) and (5) , we

have the desired expression for Hm , via.,

Hm a <"A •B> s 20( 2 0)	 (8)
ft

The function ! (r), which determines both the total magnetic helicity and

its spectrum, may be evaluated by performing a line integral over separation

values:

	

r	 r

2e(,r̀ ) : 2 j vo •dt = L dz i c i jm Rjm (,L.)	 (9)

(5)
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Eq. (9) is valid provided that the correlations vanish rapidly as 	 Ea

is then given by Eq. (8) .

To determine Em(j) , one lust Fburier transform Eq. (9), which requires

exhaustive knowledge of ♦ for all r. However, a reduced hel icity spectrum is

available from knowledge of R ii (r 1 ,0,0), than correlation tensor for a sequence

of coninear separations in the ! 1 direction. The reduced energy spectrum

tensor" is defined as

31j(kt) x '1 Or1 a 
ik Ir 1 Rij ( r 1 .0,0)	 (10)

: fdk2dk3 31 j(k1,k29k3)

so that

%(k 1 ) s	 fdrt •(r1.0.0) 
a-ik1r1	

(11)

: 2 In 3^3 ( kt)/k1
and

H. : f mk t Hs(k 1 ) z 29(r 1 80,0 1 0)	 (12)

Application of these results to fusion plasmas may be limited by strong

inhomogeneities present in a bounded laboratory device. 	 However, in the

laboratory one can interpret the ensemble average as an average over identical-

ly prepared "shots" of a containment device, which may permit useful values of

helicity to be extracted. Magnetic hel icity can also be measured in space

plasmas. Wb have used magnetometer data from the Voyager 2 spacecraft in the

solar wind near 2.8 astronomical units (AU). The results reported here are
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from a single span of 64 burs on days 95 - 97 of 1978. This is a single

point measurement it, a highly super-AlfvGnic flow, which justifies use of the

MHD analogue of the frozen flow appoximation to obtain 3i,(k).

W evaluated 31,(k) via two independent mans: the ffiackman-Tukey (BT)

seen lagged product technique with 24 degrees of freedom, and the Fast Fourier

Transform (FFT) technique smoothed to have equivalent statistical validity.

The two techniques gave essentially identical results. Testa were made to

eliminate the possibility that slimming or leakage affected the analysis, The

results shown in Fig. 1 and 2 were obtained Ath the FFT approach.

Fig. 1 displays both the reduced magnetic energy density E(k) s 31i(k)

and IkHm(k)l (of. Eq. 12) in units of ra 0 r a 10-5 Giuss). (m converting

from frequency to wevenumber, we used the solar wind speed during thib period

which was 450 km/s. In the following discussion, the superscript on the

reduced helicity is omitted

As has often been reported, E(k) closely approximates a power law (the

slope in this case is -1.7 t 0-1). The notable feature in Fig. 1 is that the

envelope of (kH,(k)l closely traces the same power lea. Note that there is no

tendency for (k%(k) /E(k) to become call at large k. In fact, kHM(k)

oscillates between . t0.4 of its maximal values throughout the spectrum.

Nevertheless, the net helicity density ( n 18 Gs as) is entirely due to the

helicity in the largest scale fluctuations. fie helicity containing length

(2*Hm/ tkHm(k)) is about 9.9 x 10 12 cm compared with the similarly defined

energy containing length (2*E/zkE(k)), which is a 5 x 1011 am. The correla-

tion length'' (IR i,dr/E) for this data set is 2.5 x 10 1= am.

The high degree of correlation and anticerrelation between E(k) and Hm(k)

is illustrated in Fig. 2 where k5/3E(k) MW k8/3 ®(k) are plotted against both

frequency and wavenumber. Because of the linear scale, Fig. 2 emphasizes the
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high frequency behavior of %(k) .	 These results suggest that the solar wind

during this -period	 is rich in	 aetical	 structures;	 exhibiting a significant

twist to the magnetic field at very large scales. Large olumps of positive

and negative helicity are also found at all smaller scales, but with so

average value class to zero. A detailed analysis of the solar wind magnetic

field structure at several locations in the heliosphers will be presented in a

more complete paper.
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FIGURE CAPTioNs

Fig. 1. The reduced magnetic energy density E(k) and the reduced helicity

spectrum (k%(k) l (in energy units) of the solar wind at 2.8 AU. The solar

wind velocity as 450 km/s, and the total fluctuation energy is 4.8 x 10-12

erga/cm'. E(k) has a power low slope of k-1'7 t 0.1. For clarity, not all

values of Hm(k) are plotted at high frequencies.

Fig. 2. E(k) and Hm(k) plotted on s linear scale for the data shown In Fig.

1. The top trace is k5/3E(k); the bottom trace is k8/3Hs(k).
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