
-. - 

NASA Contractor Report 3413 

NASA 
CR 
3413 
c.1 

An Implicit Method for the 
Calculation of Inlet Flow Fields 

Sedat Biringen and 0. J. McMillan 

CONTRACT NASl-15951 
JUNE 1981 



NASA Contractor Report 3413 

An Implicit Method for the 
Calculation of Inlet Flow Fields 

Sedat Biringen and 0. J. McMillan 

Nielsen Engineering &- Research, Im. 
Mountain View, California 

Prepared for 
Langley Research Center 
under Contract NASl-15951 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Branch 

1981 

TECH LIBRARY KAFB, NM 

IHllllllllnl~IRlllllIIImIIIIml 
llllb228L 





TABLE OF CONTENTS 

Section 

SUMMARY ..................................................... 

1. INTRODUCTION ............................................ 

3. SOLUTION PROCEDURE ...................................... 

2.1 Solution Procedure for Inlet Flow Fields ........... 
2.2 Mesh Generation .................................... 

3. RESULTS ................................................. 

3.1 Grid Generation and Mesh Systems ................... 
3.2 Inviscid Flow Calculations ......................... 

3.2.1 Supercritical solution with uniform 
inflow boundary conditions .................. 

3.2.2 Subcritical solution with uniform 
inflow boundary conditions .................. 

3.2.3 Supercritical solution with 
non-uniform inflow boundary conditions ...... 

3.3 Viscous Flow Solution .............................. 

4. CONCLUDING REMARKS ...................................... 

REFERENCES .................................................. 

FIGURES 1 THROUGH 24 ........................................ 

9 

11 

13 

14 

17 

19 

21 

iii 



SUMMARY 

Inlet flow fields are calculated by an implicit, time- 
marching procedure to solve the thin-layer Navier-Stokes 
equations formulated in body-fitted coordinates. Because the 

method can be used for a flow field with both subsonic and 
supersonic regions, it is applicable to subcritical as well as 
supercritical inlet operation. 

Results are presented and discussed for an inlet of 
current design practice. Results include inviscid calculations 
performed for supercritical inlet operation with uniform and 
nonuniform inflow boundary conditions as well as for subcritical 
inlet operation with uniform inflow boundary conditions. 
Results for viscous calculations performed for supercritical 
inlet operation with uniform inflow boundary conditions are 
also discussed. 



1. INTRODUCTION 

Inlet flow fields for high-speed airbreathing missiles are 

very complex due to their mixed hyperbolic-elliptic nature, and 
the fact that the flow field is influenced by the missile fore- 

body. These flow fields are, of course, also influenced by 
viscous effects and are highly three-dimensional, and a fully 
accurate prediction of such flows requires the inclusion of all 
these phenomena. Despite the difficulties involved, the 
successful performance of such calculations is of considerable 
importance to the efficient design of an air-breathing missile, 

e.g. to maximize total pressure recovery and to minimize cowl 
drag due to spillage at off-design conditions. 

This report is a summary of our work on the computation 
of inlet flow fields for air-breathing missiles in a super- 

sonic free stream wherein an attempt is made to deal with all 
of the complex elements of two-dimensional flow fields; this 
is viewed as an important evolutionary step in the direction 
of the solution of the fully three-dimensional problem. The 
effects of the forebody are included in these inlet calculations 
through nonuniform boundary conditions which are generated via 
a space-marching technique which solves the three-dimensional 
Euler equations around the forebody. Details of the code used 

to solve the forebody flow field and several test cases run 
using the forebody code are given in references 1 and 2. Our 

approach for calculating the inlet flow field is to use a 
recently developed implicit time-marching solution technique 
(refs. 3 and 4) for numerically solving the governing equations. 

Either the time-dependent Euler equations (inviscid) or the 
time-dependent Navier-Stokes equations with the thin-layer 
approximation (viscous effects) are solved. 

The calculation of inlet flow fields by the use of finite 

difference techniques has been the subject of a number of 
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investigations. Explicit time-marching finite difference 
techniques have been used (e.g., refs. 5, 6 and 7) to solve the 
Euler equations for transonic and supersonic flows in inlets. 
For explicit methods, the Courant-Friedrichs-Lewy (CFL) (ref. 6) 
stability criterion restricts the allowable time-step and hence 
for finely clustered meshes (e.g. near solid boundaries where 
the flow field gradients are very large) convergence rates are 
very slow. Other available methods (for example, refs. 8 and 9) 
are limited to supersonic flows and thus cannot be applied to 
the important case of subcritical inlet operation. The present 
work is an attempt to overcome these restrictions by using a 
time-marching implicit scheme; the implicit solution technique 
in many cases allows step sizes much larger than those obtained 
from the CFL criterion for explicit methods, whereas the use 
of time-dependent equations permits the calculation of subsonic, 
as well as supersonic, internal flows without having to switch 
difference operators. 

The objectives of this work are two-fold. The first one 
involves a detailed calculation of the flow field in and about 
a practical inlet configuration. The calculation is structured 
so as to focus on the external aerodynamic effects of the inlet, 
i.e., the captured mass flow and the external forces due to the 
ramp and cowl. Inlet internal performance is not emphasized 
in the present work, although some information in this area is 
available from our results. Inviscid calculations are performed 
and results are presented for supercritical and subcritical 
inlet operation with uniform and non-uniform inflow boundary 
conditions. Calculations are also performed including viscous 
effects which are simulated by the thin-layer Navier-Stokes 
equations. Our second objective involves a critical assessment 
of the present calculation procedure from a user's point of view. 
Consideration is given to special techniques necessary to 
achieve convergence, the convergence criteria used, and the 
convergence time necessary to obtain solutions. 
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All the calculations were performed for the inlet config- 
uration shown in figure 1. This inlet has a shock-on-cowl 
design Mach number of 3.5, a 5" ramp and a sharp-lipped cowl 

with an initial external angle of 20'. Subsonic and transonic 

test results for this inlet configuration are presented in 
reference 10. A supersonic test series is planned by NASA/ 

Langley Research Center. For our calculations, a short 

constant-area channel has been added downstream of the subsonic 
diffuser to simplify the specification of flow conditions at the 
duct exit plane. This inlet is representative of current design 

practice and is a stringent test of the calculation procedure. 

2. SOLUTION PROCEDURE 

In this section, brief descriptions are given of the 

solution procedures employed for the calculation of inlet flow 
fields and of the mesh generation technique. More detail is 
available in references 4, 11 and 12. 

2.1 Solution Procedure for Inlet Flow Fields 

The solution procedure employs the Navier-Stokes equations 
for two-dimensional plane flows written in conservation-law 
form for a perfect gas without body forces. In the inviscid 

code, these become the Euler equations. Otherwise, the thin- 

layer assumptions are employed. In order to allow the use of 

a body-fitted coordinate system, the equations are subjected to 

a general independent variable transformation. In the problem 

under consideration, four types of boundaries are considered 

(fig. 2). These are solid boundaries, inflow boundaries, outer 
boundaries and outflow boundaries. For inviscid calculations, 

along the cowl and ramp surfaces the tangency condition is 

satisfied whereas the no-slip conditions are satisfied in the 

case of viscous calculations. In both cases the pressure on the 
body surface is found from the normal momentum equation. 
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Free-stream values are specified at the inflow and outer 
boundaries. At the outflow boundary, for supercritical inlet 
conditions, all the flow field variables are calculated by 
zeroth-order extrapolation from the interior. For subcritical 
operation (subsonic duct outflow), extrapolation is used 
outside the inlet, but at the duct outflow boundary the velocity 
component parallel to the outflow boundary, v, is set to zero 
and the pressure, p, is set equal to a constant value for 
compatibility with the steady-state momentum equation in the 
direction normal to the body surface. Then in accordance with 
the equations of continuity and streamwise momentum, u and p 
(streamwise velocity and density, respectively) are calculated 

by zeroth-order extrapolation. 

The initial conditions are specified by using either 
free-stream conditions, or the final solution of a previously 
calculated flow field. For economy the inlet houndary has 
been placed just downstream of the ramp leading edge. On this 
boundary, when starting from free-stream conditions, values 
calculated from oblique shock theory are used at the 3-5 points 
on the inflow boundary that are downstream of the ramp shock. 

The solution procedure employs a temporal linearization 
process: the linearized equations are cast into delta-form 
algorithm after approximate factorization. The inlet flow field 
is obtained as the steady-state solution of the time-marching 
method. 

2.2 Mesh Generation 

The main advantage of using the governing equations in 
transformed form is that a body-fitted coordinate system in the 
physical plane can be mapped onto a rectangular coordinate 
system in the computational plane. Moreover, grid points can 
be clustered in regions where there are large gradients of the 
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field variables. In this work the computer code of reference 13 

for the application of the Thames, Thompson, and Mastin (ref. 14) 
(TTM) method to generate body-fitted coordinates for airfoils 

was modified for the inlet geometry. 

The simplest form of the TTM method solves Laplace's 

equations in the physical plane, x-y, to generate curvilinear 

coordinates <(x,y), n(x,y) in the transformed plane. The 

solution of these equations for x and y on the rectangular <,n 
computational plane yields the mesh in the physical plane. 
One of the most desirable aspects of the TTM method is the 
ability to arbitrarily locate boundary points by specifying 
their locations in the x,y-plane. 

An option is provided to cluster grid points near the 
cowl internal and external surfaces and the ramp surface for 
increased accuracy in regions where the flow field variables 

have large gradients. To this end an exponential clustering 
transformation (ref. 15) was employed which clusters grid 
points near each surface. 

3. RESULTS 

In this section detailed results are presented and 

discussed. All the calculations were performed at the design 

Mach number, Mm = 3.5. Section 3.1 consists of the presentation 

of the grids generated for the inviscid and viscous calculations. 
In section 3.2 results are presented for the inviscid calcula- 
tions. Supercritical and subcritical inlet operation with 

uniform inflow boundary conditions and supercritical operation 
with non-uniform inflow boundary conditions are included. 
Section 3.3 contains the results obtained from the calculations 
including viscous effects for supercritical operation. Compar- 
ison of these results with experimental data awaits the 

completion of the previously mentioned test series to be 
conducted by NASA/Langley Research Center. 

6 



3.1 Grid Generation and Mesh Systems 

In computational methods that make use of body-fitted 
coordinate systems, the calculation of the metric coefficients 
as well as the grid system incorporated have a very large effect 
on the accuracy, stability and covergence of the solution 
(ref. 4). Since a detailed study of these factors tias well 

beyond the scope of the present work, we have found it necessary 
to follow certain general guidelines. In the calculation proce- 
dure of reference 4, the metric coefficients that appear in the 
transformed form of the governing equations are calculated by 
differencing the x-y values in the transformed plane. Minimum 
error is introduced for constant values of the dependent 
variables if identical finite-difference operators are used to 
evaluate the metric terms and the spatial derivatives in the 
transformed equations. Moreover, the dependent variables 
should vary smoothly and gradually with 5 and n and this in 
turn requires a smoothly varying grid. 

The grid generated for the inviscid calculations is 
presented in figures 3 and 4. About 30 sec. on the CDC 7600 
was required to generate this 73x26 grid system. This grid 
was used for calculations with uniform and non-uniform inflow 
conditions. The outer boundary of the grid is chosen so as to 
include the bow shock from the forebody in the case of calcu- 
lations using non-uniform initial conditions. The grid system 
has 26 lines at constant n and 73 at constant 5. Figures 3 and 
4 display that the grid near the inlet surfaces meets the 
previously mentioned requirements fairly well, although improve- 
ments could generally be made. The grid is well clustered in 
the region around the cowl tip and at the ramp initial station 
to correctly capture the location and strength of the resulting 
shock system. However, the grid is coarse in the external flow 
field far from the cowl and the results in that area should be 
expected to be inaccurate. This area is not important for our 
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present purposes, and these inaccuracies are.not expected to 
affect the results of interest in an important way. Grid 
refinement studies would be of interest, of course, but are 
beyond the scope of the present work. 

In the case of generating a grid to be used in the calcu- 
lations with the inclusion of viscous effects, the following 
additional points have to be considered. 

1. It is usually considered necessary to have fine mesh 
resolution only in the y-direction (refs. 7 and 16), i.e. in the 
viscous-dominated portions of the flow field, Ay = 6/10 where d 
is the boundary layer thickness. This, of course, requires an 
a priori estimate of the boundary layer thickness; we have 
considered turbulent flow only, for which we have used 

-l/5 6/x = 0.37(Re,) . For the case considered here, the 
Reynolds number is 3.3x106/m. 

2. For the turbulence model used (ref. 17), it is desir- 
able that the first mesh point away from the solid boundary 
be placed in the laminar sublayer. Noting that the laminar 
sublayer thickness, y,, is usually about y, = 10e36, for a 
given grid, y, can be estimated from y,/x = 0.37x10 -3(Rex)-1'5. 
In the present calculation we have placed the first mesh point 
away from the wall (ymin) at 5.1x10 -5 m; for most of the flow 

field this satisfies the condition ymin 2 y,. Other authors 
have used ymin = 0.7x10 -5 m at Rex = 36x106/m (ref. 4) and 

Y min = 3x10-5 m for Rex = 106/m (ref. 18). 

The grid system resulting for the viscous calculations 
was similar to that used in the inviscid calculations except 
that there were 36 lines at constant n. It should be noted 
that in the present calculations with lo-12 points in each 
of the boundary layers (of the ramp and the cowl) the flow 
outside these regions is resolved by only 12-16 mesh 
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points; As stated previously, this should be expected to give 
erroneous results in those regions of the outer rotational flow 
where the flow field variables have steep gradients. This com- 
promise has been made to conserve the available computer funds. 

3.2 Inviscid Flow Calculations 

In this section we present and discuss the results of our 
inviscid calculations. Attention is paid to calculation strategy 
as well as convergence criteria and convergence times. Section 
3.2.1 consists of the results for an inlet with supersonic duct 
outflow conditions (supercritical operation) with uniform inflow 
boundary conditions. A subcritical inlet flow field solution 
(subsonic duct outflow conditions) with uniform inflow boundary 

conditions is presented in section 3.2.2 and section 3.2.3 
consists of the results for a supercritical case with non-uniform 
inflow boundary conditions. 

3.2.1 Supercritical solution with uniform inflow boundary 

conditions.- In explicit methods the step size in the marching 
direction is bounded by the CFL condition. In this case the 
step size must be chosen such that the Courant number will be 
always less than or equal to one. In implicit schemes linear 
stability theory suggests that this condition may be relaxed and 
Courant numbers much larger than one are sometimes possible 
without the solution becoming unstable. In the present super- 
critical case, although Courant numbers up to 50 were used, the 
following techniques were necessary to avoid stability problems. 

1. Calculations had to be made for about, 40 time steps at 
a Courant number of one (without the cowl present) to capture 
the ramp shock. 

2. The cowl boundary conditions then had to be introduced 
into the calculation over some 50 time steps. The Courant 
number could then be increased up to 50. 
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Results from these calculations are shown in figures 5-9. 
In figure 5, the ramp surface pressure distributions obtained 
from the present calculations are compared with values obtained 
using two-dimensional shock theory and Prandtl-Meyer turning 
analysis. Good agreement is shown. In figure 6, a similar 
comparison is shown for the surface pressure distribution on 
the initial portion of the cowl inner surface. Except in the 
immediate vicinity of the cowl tip, i.e., at around x= .4 m, 
fair agreement is shown for the two results, although the 
Euler calculation results are generally lower. The discrepancy 

at the cowl tip is likely due to a combination of a singularity 

introduced by the very sharp cowl tip and the smearing caused 
by the shock-capturing process. Figure 7 shows the pressure 

contours for the entire flow field, whereas figure 8 shows the 
details of the pressure contours around the cowl tip. These 
figures display that while the initial ramp shock and the shock 
at the cowl tip are captured, a considerable amount of smearing 
has occurred. Also the effects of the coarse grid are very 
evident in the flow field calculated outside the ramp shock. 

In figure 9 the convergence history of the calculations 
for this case are detailed. In estimating the progression of 
the solution to convergence, we have examined the time-behavior 
of two quantities. The first of these quantities is the 
residual, a$at where 6 is the solution vector in the trans- 
formed coordinate system. Since we are seeking steady state 
solutions, the desired solution will be obtained when aq/at+O, 
indicating that the solution is not changing in time. We have 
also examined the time history of the captured mass flow ratio,m, 
as another indication of convergence. The choice of m to 
indicate convergence of the solution is due to the fact that it 
is representative of the interesting integral parameters of the 
flow field and these integral parameters tend to converge faster 
than more detailed quantities. However, we found that m 
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calculated at different cross-sectional locations within the 
inlet duct varies somewhat during convergence, so the value 
plotted in figure 9 has been averaged over a number of cross- 
sections within the inlet. In figure 9, the behavior of these 
quantities indicates that the solution has converged in about 
800-1000 time-steps. As expected, the value of i is equal to 
one once the solution converges and in the converged solution, 
a section-to-section variation of only 1% exists. The calcula- 
tions take about 0.75 sec. of CPU time per time step on the 
CDC 7600 computer at NASA/ARC. Hence the total CPU time spent 
on a typical supercritical flow solution is about 600-750 sec. 

3.2.2 Subcritical solution with uniform inflow boundary 
conditions.- The converged solution described above was used to 
initiate a subcritical calculation. The back pressure at the 
duct outflow boundary was set to a value high enough to ensure 
subsonic outflow, namely P B = 0.7PT,, where PT is the total 
pressure in the free stream. In order to makeWthe normal shock 
(that is formed at the outflow boundary because of the boundary 
conditions imposed there) march upstream, the value of PB was 
slowly increased to its full value over about 200 time steps. 
This pseudo time-dependency of the outflow boundary condition 
was found to be absolutely necessary to make the shock move 
regardless of the value of PB. During the integration process 
various measures had to be taken in order to preserve numerical 
stability. 

1. A Courant number of at least 10 could be used while 
there was supersonic flow throughout the duct. To keep the 
calculation stable when the duct flow was nearly all subsonic, 
however, the Courant number had to be decreased to one. 

2. A special "pressure smoothing" had to be applied in the 
inlet almost all the way from the cowl-tip plane to the inlet 
exit plane for about 6500 time-steps. This smoothing consisted 
of averaging the pressure at adjacent points after each time 
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integration step: since it did not alter the structure of the 
main-computation procedure, this additional smoothing did not 
affect the implicit stability properties of the integration 

procedure. 

With these measures a solution was obtained, but it was 

observed that owing to the smoothing introduced to damp 
numerical instabilities, the solution was not physically 
realistic. Hence, after about 6500 time steps the pressure 
smoothing technique was used only in a region very close to 

the cowl tip, where it was still found to be required. In 
figures lo-12 surface pressure distributions for this case are 
shown for three instants in time. In figure 10, the pressure 
distribution on the ramp surface at 8500 steps shows a steeper 
gradient than the one at 7500 and the region of large pressure 
gradient has moved upstream with increasing steps, lending 
support to the idea that the solution will improve further with 

increasing steps. Pressure distributions on the cowl inner and 
outer surfaces (figs. 11 and 12) reveal a similar dependence on 

increasing steps. Density contours for this case are shown in 
figure 13 at 8500 steps, in which the sonic line is shown to 
be near the cowl tip plane. It should be noted that the ramp 
leading-edge shock is still smeared over a fairly large 
number of grid points and that the terminal normal shock is not 

yet captured. Convergence history of the solution for these 
calculations is shown in figure 14. Each sharp increase in the 
residual corresponds to a change in the calculation input, e.g. 
decrease of Courant number or a local application of the 
smoothing operator. The trends displayed by both parameters, 

i.e. the residual and m, show that even at 8500 steps the 
calculation is not yet converged. Hence, it is our estimate 
that a much larger number of time-steps will be required to 
satisfy the convergence criteria that we have used herein. 
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3.2.3 Supercritical solution with non-uniform inflow 
boundary conditions.- The capability of the method to calculate 
a realistic situation in which the inlet is immersed.in the 
flow field produced by a forebody was tested by using non-uniform 
inflow boundary conditions. To this end the computer code 
detailed in references 1 and 2 was used to generate a solution 
at Mm = 3.5 and at zero angle of attack for a forebody consisting 
of a 2.46 caliber von Karman ogive nose coupled to a cylindrical 
section (fig. 15). The ratio of body diameter to inlet capture 
height was taken equal to three, which is representative of a 
realistic configuration. 

The solution at x/D = 4.5 was used as the inflow boundary 
condition for the inlet calculation. On this boundary, the Mach 
number varied from 3.465 near the ramp to 3.192 at the farthest 
point from the ramp within the forebody shock. For reasons of 
economy we have again located this boundary just downstream of 
the ramp leading edge. We have, therefore, assumed the first 
four points on this boundary away from the ramp surface to be 
downstream of an oblique shock with a constant 3.465 upstream 
Mach number. We do not expect this to introduce any significant 
error because the actual maximum Mach number variation over 
these four points was about 1%. For all the other points 
outside the ramp shock, exact values from the forebody solution 
were used as described in reference 11. 

The method of transforming variables from one program 
output to the other program input is discussed in reference 11. 
In the subsequent supercritical inlet calculation a similar 
strategy was used to that of section 3.2.1, that is, calculations 
had to be done initially at a Courant number of one (without the 
cowl present) to capture the ramp shock, the cowl then had 
to be introduced into the calculation over some 40 time steps. 
Finally, as the cowl boundary conditions were slowly introduced, 
the Courant number was increased up to 50. 
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Results for these calculations are shown in figures 16-19. 
In figure 16 the surface pressure distributions on the ramp for 
this case are compared with the results from the calculations 
with uniform initial conditions. As expected, surface pressures 
from this case are significantly higher due to the presence of 
the forebody shock, although the general trends displayed by 

both calculations are similar. The same trends are observed in 

figure 17, which displays the surface pressure distributions 
on the cowl inner surface for the two supercritical flow 
solutions with uniform and non-uniform initial conditions. 
Owing to the reduced Mach number at the inlet due to the fore- 

body shock, the non-uniform initial conditions result in 
significantly higher surface pressures. Pressure distributions 
on the cowl outer surface are shown in figure 18, which also 
displays higher pressures for the case of non-uniform inflow 
boundary conditions. 

Details of the convergence history for these calculations 
are given in figure 19. These indicate that the solution 
converges at about 1500 time-steps and that the mass flow ratio 
is about 8% less than the mass flow ratio obtained with 
uniform initial conditions. Note that Ua, is used to calculate 

I;I in all cases. 

3.3 Viscous Flow Solution 

In this section we discuss the results of our viscous 
calculations for a supercritical case. Viscous effects are 
represented by the two-layer eddy-viscosity turbulence model 
of reference 17. The details of the model and its incorporation 

into the governing equations via the thin-layer approximation 
are discussed in reference 12. For these calculations a 73x36 
grid was generated as explained in section 3.1, which enabled 
the resolution of each of the turbulent boundary layers on the 
ramp and the cowl by about 10 mesh points. For most of the flow 
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field the first mesh point away from the wall lies in the 
laminar sublayer. 

On the solid boundaries no-slip conditions were utilized 
for the velocities and the pressure is found from the normal 
momentum equation. Boundary conditions on the outer and outflow 
boundaries were imposed as for the inviscid case. On the inflow 
boundary, again taken just downstream of the ramp leading edge, 
inviscid boundary conditions were employed for simplicity; that 
is, no attempt was made to represent the ramp boundary layer at 
this station. 

The calculation strategy followed was similar to that for 
the previous supercritical cases but differed in detail: 
Starting with a Courant number of one and increasing succes- 
sively to 100 over some 1500 time-steps, the ramp flow field 
was calculated alone until the solution was changing only 
slowly in time. No numerical stability problems were encoun- 
tered for this portion of the calculation. 

Once the ramp flow field was established (with the proper 
ramp shock and boundary-layer type velocity profiles), the 
cowl was slowly introduced into the calculation over some 40 
time-steps at the same time the Courant number was decreased 
to one. In about 300 time-steps the computation started to 
produce instabilities around the cowl tip and the ramp leading 
edge. F7e have been able to suppress the former by using a 
pressure-smoothing operator in the vicinity of the cowl tip but 
we have not been able to alleviate the numerical instabilities 
near the ramp leading edge. We attribute the occurrence of 
these instabilities to the following. 

(a) Insufficiently smoothly-varying mesh. The stability 
of the computation depends on the modulus of the local 
eigenvalues of the iteration matrix which is a function of the 
coefficient matrices; the greater the modulus the smaller 
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the permis,sible time-step. Since the coefficient matrices 

are, in turn, functions of the metric coefficients, the 
value of the modulus increases in-regions where the coordi-- 
nate lines change abruptly, e.g., close to the,ramp at the 
inflow boundary. The accuracy of metric coefficients should 
also be expected to decrease in this region. This situation 
would be improved by employing a more smoothly varying mesh ., 
geometry, but no attempt could be made in this direction in 
this work. 

(b) Insufficient damping. Local instabilities around the 
critical regions could be damped by systematically increasing 
the various damping coefficients in the integration procedure. 
Implementation of other conservative smoothing or damping 
functions could also be tried. A comprehensive study in this 
direction is also beyond the scope of the present contract. 

In figures 20-24 results for this case are shown just 
before the calculation goes unstable. The computation is not 
yet converged but the shock structure in the flow field is 
already established. In figure 20 the pressure distribution 
on the ramp surface for this case is compared with the pressure 
distribution obtained from the inviscid (Euler) calculations. 
The distributions are very.similar except for the dip in the 
pressure observed in the viscous calculations close to the ramp 

leading edge. The same effect is observed in the calculations 
reported in reference 9. .Pressure distributions on the cowl 

inner surface are shown in figure 21, whereas figure 22 displays 
pressure distributions on the cowl outer surface. In both 
cases the distributions obtained from the present calculations 
differ considerably from the inviscid distributions probably 
because the viscous solution is not yet converged. Density 
contours for this case are shown in figure 23, in which the 

ramp shock is clearly seen to converge on the cowl tip as 
expected from the design considerations. However, the flow 
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field around the cowl tip is not properly established at this 
point in the calculation. Finally in figure 24, the velocity 
and pressure distributions in the ramp boundary layer close 
to the inlet exit plane are shown. The velocity profile suggests 
that with the current grid a turbulent boundary layer develops 
on the ramp. As expected, the pressure stays constant across 
the boundary layer. 

During portions of all of the computations reported above, 
in order to have numerical stability, we have found it necessary 
to keep the Courant number less than one. This requirement is 
equivalent to the Courant-Friedrichs-Lewy (CFL) condition which 
must be obeyed to bound the step size in the marching direction 
in explicit march techniques. This was true in spite of the 
fact that on the basis of linear stability analysis, in implicit 
schemes the CFL condition is expected to be relaxed so that the 
Courant number can assume values much larger than one. 

If should be further noted that the approximate factor- 
ization algorithm used is only neutrally stable (ref. 4). 
Therefore, steady-state convergence cannot be accelerated by 
the use of very large time-steps, even where their use intro- 
duces no instability. 

4. CONCLUDING REMARKS 

A time-implicit finite-difference solution procedure for 
the Euler equations has been applied to the calculation of two- 
dimensional inlet flow fields. Results for a practical inlet 
configuration are presented. Results for supercritcal 
operation with uniform and non-uniform inflow conditions indi- 
cate that the solutions converge fairly rapidly for these cases; 
the accuracy of the method under these conditions, however, 
awaits experimental evaluation. Because the calculations have 
been performed using only one computational grid, grid refine- 
ment studies and an evaluation of the impact of the chosen 
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grid generation schemes on the computational accuracy should 

also be made. Calculations performed for a subcritical case 
have indicated that for this case the solution converges very 
slowly. The necessity of using a Special smoothing operator as 
well as very small time-steps are contributing factors. 

Calculations performed using the same method for the 
Navier-Stokes equations with the thin-layer approximation 
indicate that convergence of the calculation is also very slow 
for this case. To alleviate numerical instabilities that occur 
in some critical portions of the flow field, it appears that 
the Courant number must be kept much less than one, at least 
until the flow field is established in those regions. The 
necessity of having to keep the Courant number less than one 
in a variety of cases and the neutral stability of the solution 
scheme used diminishes the advantage of using the implicit 
method. Hence, the extra computational effort of block tridiag- 
onal matrix inversion associated with the implicit method does 
not seem worthwhile. It is our belief that unless the stability 
properties of implicit methods are improved, for the class of 
problem studied here, space-marching methods for supercritical 
flows or explicit time-marching methods will provide a less 
expensive alternative. 

Before this method is considered for use either as a 

design tool in its present two-dimensional form or for extension 
to three dimensions, its convergence properties for subcritical 
cases and for cases calculated including viscous effects need 
substantial improvement. Additionally, further work is needed 
to understand the sources of the numerical instabilities 
encountered during the viscous calculations reported herein. 
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Figure 1.- Schematic of inlet geometry, design Mach number of 3.5. 
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Figure 3.- Grid system used in the inviscid calculations. 
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Figure 6.- Pressure distribution on cowl inner surface supercritical 
flow;0, computation; ; shock-expansion theory. 
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Figure 8.- Details of pressure contours in the 
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Figure 11.- Pressure distribution on cowl inner surface for subcritical 
solution with PB/PT = 0.7; symbols as in figure 10. 
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solution with PB/PT = 0.7; symbols as in figure 10. 
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Figure 14.- Rate of convergence of the subcritical 
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supercritical flow results;O, 
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Figure 17.- Pressure distribution on cowl inner surface, supercritical flow results; 
0, nonuniform initial conditions; A, uniform initial conditions. 
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Figure 18.- Pressure distribution on cowl outer surface, supercritical flow results; 
0, nonuniform initial conditions; A, uniform initial conditions. 
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Figure 20.- Pressure distribution on ramp surface; 0, viscous 
calculations;A, inviscid calculations. 
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Figure 21.- Pressure distribution on cowl surface; 0, viscous 
calculations; A, inviscid calculations. 



80 

60 

0.40 
II 

0.50 0.60 0.70 

x (meters) 

Figure 22.- Pressure distribution on cowl outer surface;0, viscous 
calculations;A, inviscid calculations. 
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