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Abstract

This report represents the culmination of work to date 
in 

the areas of'

modeling and control of large space structures. Both theoretical develop-

ments and the results of laboratory experiments are treated herein, as

they apply to active attitude and vibration control, as well as static

shape control. Modern control theory has been employed throughout as the

method for obtaining estimation and control laws.
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Section 1

1.0 Introduction

1.1 General Background

As spacecraft became larger and more flexible, the equations needed

to accurately model the static and dynamic behavior of these spacecraft

became more complex. In general, higher order finite element models must

be synthesized by the structural analysts in response to spacecraft tending

away from lum,)ed mass configurations and tending toward continuously dis-

tributed configurations. More and more structural modes or degrees of

freedom are passed on to the control analysts in an attempt to retain a

faithful, model. The use of these models directly for the purpose of on-board

estimation and control of attitude, shape, and station may become unwieldy.

On the other hand, serious well known stability problems may arise due to

the use of oversimplified model.,-,, (1)

Spacecraft size also is not the only driver of model complexity. As

more demands are made of control system performance, in terms of attitude

accuracy, pointing accuracy, stability, shape accuracy, slew speed, etc.,

structures which heretofore have been modeled as rigid bodies must now

include flexibility terms. This results from the fact that as more per-

formance is required from a given space structure, improved knowledge of

the structure itself is vital, just as are more accurate sensors, actuators

with better resolution, better computational accuracy and resolution, and

a better understood disturbance environment.

Prior to this work, very little information was available on the control

of large distributed structures. That is, assuming that AM sensor/actuator

arrangement and type were available, the control logic 5or processing the

sensor outputs to produce actuator commands had not been developed. The

purpose of this work was to obtain a better understanding of the theory

of the control of distributed parameter systems (DPS) through analysis and

laboratory experimentation. Rather than attacking the analysis problem

by "building up" a general DPS from many discrete, interconnected, lumped

systems, and applying existing modern control theory, new optimal control

1



approaches based 
on 

continuum models were developed for static arld dynamic

control. Using these new approaches, 
much 

insight could be gained for the

control of gerr.,al UPS modeled with finite elemenut,

There are many possible applications for spacecraft that can be modeled

ati IRS. Some of Lheae include antennas, solar arrays, platforms, and solar

sails. Using anwonas, a broad ranp-e of the electromagnetic spectrum can be

covered.	 Wrap-rib,, hoop-coluiiui, 
and 

sunflower antenna designs may all

be represented as UPS, and have applications 
in 

tho, microwave, radio, and

x-ray bands.	 Solar, arrays have applications ranging anywhere from power

supplies for satellite,,; to orbiting, solar power stations for entire cities.

Platform structures may provide common utilities including power, thermal

regulation, communications, and attitude control, for a number of different

experiments. Finally solar sails may some da y provide an economical method

of developing low thrust over long time periods.

In an effort to mimic many of the dynamic and control characteristics

of IRS, , a Inboratory facility has been assenibled. The "spacecraft" consists

of a hanging flexible beam. The beam 
is 

Instrumented with position sensors

and force actuators, A microprocessor directs the entire control sequence

for shape control and vibration control. Laboratory demonstration and

verification of various control system concepts will continue to be a vital

part of the large space structure control effort.

The work contained in this report on UPS can be divided into five

major areas:

1) Modeling

2) Optimal Control

3) Active Control

4) Shape Control

5) Experimental Verification

The section on modeling consists of several of the more popular methods

of mathematically representing physical systems for control system design

purposes. The section on Optimal Control consists of a brief description

2



of some of the modern control approaches. Active Control refers to the

control of systems governed by a set of dynamic equations of motion. This

may include vibration suppression, attitude maneuvers, transIaLion or

station keeping maneuvers, etc. Shape Control means the control of an

elastic structure to produce a given static shape. Finally, a section on

Experimental Verification contains a description of the development and

results of a facility designed to demonstrate and verify various control

system design approaches.

3



Section 2

2.0 Modeling of Large Space Structures

2.1 introduction

Tile design of a control system for any physical system must certainly

begin with some knowledge of the system itself. A mathematical representation

Of the system, structure, or spacecra,ft k is known as a model. The modeling

teehniq%tos o be examined in this section are partial differen0al equation

models, finite element models, finite difference models, and modal models.

Each type of modal has its own merits and shortcomings depending upon the

particular application. in to effort to keep all the notation simple,

undamped and non-rotating structures will be considered throughout the

remainder of p his work. Although this type of model will not be universally

applicable it will still represent a very .Large class of proposed large
structures.

2.2 Partial Differential R'quation Models (PDE)

The 1'1)t, is the most natural, way of describing the behavior of a spatially

continuous system, and, in Cact, it will be the only continuous modeling

approaci to be discussed in this work. PDE's can be very useful for modeling,

simple systems, such as strings, beams, plates, diaphragms, shella, columns,

etc., but rapidly lose their usefulness for complicated structures. Thy:
rvader should be reminded that there are many complicated structures that

may be represented approximately using the simple models listed above. The

primary value of the PDE model for control purposes is that a PDE is a very

concise approach to handling a continuous model, i.e., a model that retains
all
	 number of degrees of ,freedom. Much insight into the control of

general structures may be gained from the analysis of several "comnl,ete"

modals n

The general .Form for the 1"IDE model considered here is given in (1).

p () y(x,t)	 y(x,t) * f(x,t)

H y (P, t) = 0

y(x ' t0 )	 yo

(l)



The complete model consists of equations of motion, boundary conditions,

and initial conditions. In other words, (1) can be stated as "the mass

times the acceleration of a ^— I .ioit x in S) Is equal to the applied forces."

These forces are due to internal forces and external forces. The dynamics

are also governed by an appropriate set of boundary and initial conditions.

The problem of static shape- control may be incorporated into (1) by

5upprestAng the time dependence.

2.3 Finite Element Models (FEO

The finite element modeling approach 
is 

a Lagrangian approach used

to assemble the differential. equations of motion for complicated struatures

fro,.n a set- of simple elements, such as beams, plates, rods, point 11inssles,

etc.

The basis of the finite element approach is that the kinetic and

potential energies in a structure can be obtained as the sum of the energies

of the individual. elements, and that the energies 
in 

individual elements

may be approximated using a (small) finite number of discrete coordinates,

and some fixed continuous interpolation functions. The energy in a

particular element r,?sults from at spatial integration over the element,

effectively allowing the energy to be written as a function of these

variable discrete coordinates, and of sonic fixed constants that result
from the integration process. Applying Lagrange's approach for deriving
the equations of motion results in

Mx + Kx - F
	

(2)

Attitude control, stationkeeping, and shape control of many structures

can be incorporated in the format in (2).

Tlic advantage of the finite element metliad of modeling is that models

for arbitrary structures may be synthesized from much simpler componetiL

pieces. The mating of various components, as well cis the. boundary conditions

of the overall structure are satisfied "automatically." Furthermore, a

,embling high order models,



and for performing the subsequent analysis. One disadvantage of finite

element modeling Is that 
the 

model itself may be very high order,

(perhaps hundreds), and that useable results can only be obtained

after an eigensystem analysis of the high order model.

2.4 Finite Difference Models (FD)

A finite difference model Is a direct approach to deriving equations of-

motion, as oppose , i to the variational approach analyzed with FE. The

finite difference method 
is 

the result of approximating a differential

operator directly by means of finite differences. 
In 

general, therefore,

the higher the order of the operator, the more coupled the dynamics of a given
point is with adjacent points. General boundary conditions can only be
enforced by painstakingly obtaining the FD equation that is also consistent

with 04; desired boundary value. It is not possible using FD techniques

to as,emble complex models using simple components, as is tLe case with

FE. FD modeling for large structures has only very limited usefulness.

The general form for a finite difference model is the same form as (2),

except that the ma
s
s matrix with VD is diagonal.

2.5 Modal Models

A modal model of a structure is usually the output of another modeling
process, generally PDE, FE, or FD. Modal mode.Ls yield a decoupled set of

second order differential equations describing the natural or unforced

behavior of 
the 

Structure, in terms of the modal amplitudes. Because of the

fact that the natural modes of a system are easily observed, much insight

can be gained by study of a modal model. Under the assumption that any

motion of the system can be represented as some time varying linear

combination of the modes, knowledge of the mode shapes and their time varying

amplitude is sufficient to completely describe arbitrary behavior. The

inhomogeneous modal model of the time varying amplitudes is usually written

q + 0 2 q	
f ^n (X) f 

(x, t) dx	 (3)

where the eigensystem analysis is either performed analytically in the case
of PDE, or numerically (using a wide variety of available software) in the
case of FE or FD models.

6



For the aforementioned reasons, it would appear that modal models are
ideal for controls applications, being natural and simple 

in 
structure.

In filet p modal models had enjoyed widespread usage up to and including
their application to large structure control. The particular problem
encountered with the use of modal models is that in theory, an infinite
number of modes are required to model a continuous structure, whereas in

practice, it is only possible to work with some finite number. Truncation

of the series approximation 
of 

the model may result 
in 

system instability,

inasmuch as these modes are still forced by outside forces, but the

resulting motion was previously assumed to be unimportant.

I:
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Section 3

3.0 Optimal Control

3.1 Design Procedure

The primary reason for adding n control system to a system or a structure

is to change the characteristics of that system, whether it be In response

to commands, or In response to disturbances. Hvidetitly, there are changes

in the system that can be made which makes its characteristics closer to

some desired performance, and there 
are 

other changes that make the perfor -

mance less desirable. One method of specifying a measure of performance in

the control system design process is through control system design methods

using optimal itaontrol.

The optimal control design process involves specification of a scalar

performance measure or cost function that reflects 
the 

reLa.*4ve. importance

of a variety of different factors. The cholee of feedback control law that

minimizes the cost function is then deemed Lo be "the optimal control."

'rho form of the cost function used throughout this work is a quadratic

performance index. That Is to say, a quadratically increasing cost is

incurred for both (1) using additional control effort, and (2) desired outputs

from the system not matching aCLutll Outputs.

Quadratic cost functions yield easily implemented linear state estimators

and controllers. Furthermore, 
in 

entire body of information exists for the

theory, performance, and implementation of this type Of controller.

3.2 Sensors and Actuators

The purpose of this work is to address the theory of the control of

large structures. The two major reasons for the need of a new theory of control

is that future large space structures differ from present day structures

in two very significant aspects. Firs ,., the control of large structures

involves the control of systems governed by continuum or infinite dimensional

models, and second, even a simplified model of the structures is likely to

contain gross errors due to the inability of conducting meaningful ground

tests of these large structures.

r.
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The problem of designing new sensors and actuators, or ' of selecting
them from existing sonsor/newator technology is not addressed in this

work. When needed, it will be assumed that ideal position sensors, angle
sensors, rate sensors, torquera, ete• will be available for the , control
system design process.

3.3 on-Board implementation

As with the sensors and 10ttl4lLors, very little attention will be paid
to the on-board implementation of the control, system. It is implicitly
assumed, however, OWL all 011-I)OUrd ditip,,il computer will be available for

implementing the control law, if necessary. its 	 qual ltaLive sense, it

will 
be recognized that there are limitationti to Lhe compuLational capability

of the on-board processor, whether tli(.% processor Is pilysically 
in the form of

o single, lumped computer, or if it conoists of it distributed matrix of

smallor processors.

9
0'



Section 4

4#0 Active Control

4.1 Introduction

ThiN section contains as derivation of the necessary conditions for all
Optimal local control law for a general Hystem in state variable format.

A local control law Is onto
	
which only local state information is used

to Synthesize the control law for each actuator (even if additional  estate

information IN available) anti hence, is a different problem from that of

output feedback. 
(2,3) 

A practical application of this Idea occurs in

designing control systems for large flexible space structures, where many

sensor outputs may be available for feedback, yet it 
is 

not practical to do

so due to the large spatial distances Involved.

By representing the structure 
in 

physical coordinates (tile initial out-

put Of the 11DE,M) or IT, analysis) rather Lhnn modal coordinates, the numerical

solution of the optimal full state and local feedback problems may be

simplified. Numerical. examples of vontrol law designs for a simple two

mass model, for as free-free flexible beam, and for as string in tension

are given. Similar example.,; using different design approaches may be found

in References 4 and 5.

The counterpart to the local control law is as local. estimation scheme.

Local estimation► processes sensor information using as dynamic model of the

system to obtain estimates of only the nearby components of the state

vector, not the entire state vector. These comporents of tile estimated

state vector should be precisely those components required by tile local

control law. Combining the local state estimator with the loovU control

law results in a local controller which significantly reduces tile amount

of on-board computation, and allows the computations to be performed in

a distributed or parallel manner.

4.2 Necessary Conditions for Optimal Local Control

The derivation of the necessary conditions for the optimal local control

begins with a system in state variable format and a quadratic performance

index to be minimized as is shown in (4).

10



	Fx + CU + w	 x(to) given
 (4)

Min j	
t

W 1/2 f (XT Ax + UT Bu) dt
U	 it 0

Assuming that the desired final solution is of the form u Cx, the

substitution into (4) is made yielding the deterministic equivalent

0
x - (F + GO) x	 x(to) given

Min J * 1/2 
t 
f xT (A + CT 11C) x dt

C	 to

At this point, the constraint that only local states be fed back can be

enforced by requiring that certain components of C be identically zero and

that the minimization in (5) be carried out with respect to the remaining,

non-zero components of C. Equivalently, the constraints may be adjoined

to the Hamiltonian to yield

1/2 x T (A + Cif  DO x + XT (F + CC) x + Pij cij	 (6)

where

Pij	
0	 if	 C ij	 0

Pij	
0	 if	 Cif	 0

and where summation over the repeated indices is implied. The optimality

condition becomes

11
BC xx ' 

+ GT X xT + 11 _ 0	 (7)

where the p 
ij 

Is are picked to make the corresponding constrained 0 
ij 

Is

equal to zero.

The usual sweep solution obtained by letting

X(t) - S(t) x(t), C = - B_^ ("" S(t)	 (8)

no longer works in general since the optimality condition in (7) results

in C being a function of x and t, i.e. the minimization can no longer be
performed independently of the initial condition. However, the appearance

0

1	 0'



of the terms xx 
T 

and Xx 
T 

above auggests that a linear statistically optimal

control may exist. The stochastic analog of (,) in terms of the covariance

of the state is (6)

k * (F + CC) X + X (F + GC) T + Q	 X(to)given

Min J * trace 1" 1/2 (AX + (;T 13C X) dt
C	 to

where designated C,'s are zero and X - H(xxT). The accomplishment 
in 

the

preceding step is to average the performance Index over to range of possible

Initial conditions. Rather than considering all initial conditions to be

equally likely, (7) a more realistic range of possible initial states can be

obtained using the state covariance matrix. The ndjoint matrix equation

and optimality condition tire:

-A - A (v + (3c) + (v + cc) T A + A + C T BC	 A(t 
f	

0

C 'A' + G T 
P4 X + P - 0 0	

(10)
P) 

Although an exact solution to (10) Is possible, an approximate solution may

be easily obtained by expanding the equations in (10) to first order in

ij about the optimal solution for ji - 0. This yields

GM a - 13
-1. 

[G T AM + p X 
-1 

W J	 (11)

where A and X are the solutions of the unconstrained Optimal control problem

(p - 0), and )j is picked to zero the corresponding components of C. For

the unconstrained problem, p a 0, the result in (11) reduces to the familiar

result, CO-BG T 
A. Equation. (11) has a nice physical interpretation. To

first order in ji, if not all the states can be fed back, those states that

are available should be fed back with a correction to the feedback gains

based on the correlation between those states fed back, and the remaining

states. (As a practical note, the inverse in (11) need never be computed.

In fact only "a few" elements of X need to be manipulated.) Furthermore,

since the solution is expanded about the optimal solution, it can be shown

that
ap
--Lj— " 0, i.e. this concept of local control does not severely affect

 ij
performance to first order in 1j. The algorithm for solving the local

12
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control problem can be outlinud as follows. First, solve the full state

optimal control problem, next, apply the local control correct ion appearing

in (11).

it should be noted that as in the full state feedback enao, for V, 0,

A, B, and Q all constant, it is possible that as 	 state solution for

C, A t and X may be obtained as L f — t ea  '), W, However, 
as 

opposed to the ease,

of full state feedback, stability of the closed loop system in 
not 

guaranteed

when using lot!,al control gains. The eigenvalues of F + GC, Using the 10eal

COVILrol gain must be determined to verify stability Of the C10140.1 d 10OP

systems

Thus far t the problem of solving 
the 

full state optimal --olltrol problem

(step 
One 

above) for high Order syAtem ,; has 
been 

avoided. However, the

solution procedure required 
usually .18huMes that as low order model of Lilt,

high order system 
is aWilablO to Make the problem tractable, Traditionally,

the structural analyst suppliers as 
many 

modes as they control 
system 

designer

wishes. Regardless of witere they acLual truncation overeat, or by what mothod,

tlav control system designer begins with as deficient model. This may result

in closed loop instabilities.

The alLernative to working with the truncated system modc! 
is 

working

with a full order finitul, element model, ais It is generated by 010 SLrucLural

analyst. The next section offers some hope that the analysis Of LlleSQ

high order Systems, partiet,11,ai l ly structural systems, may be reawlblv.

4.3 Vilifte Element Structural Models C'OnLrol Design

In 
an 

attempt to develop control system design techniques for high order

systems, and to alleviate the problem of truncated modes, it 
is 

worthwhile

to examine the structural CqUaLiollS of motion. Attitude, control, Station—

keeping, anO figure control of many structures can be represented by the

following matrix equation.

Mx + Kx - Gu

Matrix bandedness of M and K is a direct result of the finite element modeling.

Since control inputs from a given actuator are applied at a single station

on the structure, nearly all of the elements of G, are zero.



Equation (12) can be placed in modal form

0#
q + $1

2 q	 T OU

by normalizing the eigenvactor matrix, ^, so that

X 0 + q

T 
M	 1

where 1#1 
is 

a diagonal matrix of modal frequencies. Furthermore, computer

programs like MOM, (8) and DAM110) can solve the open loop eigenvalue

problem (u - 0 in 
(12)) very efficiently by taking full advantage of the

matrix sparoity 
in 

both storage and computation.

Consider now the problem of designing a control system for the system
in (13). Selection of a control law call be based on the minimization of a
quadratic performance index similar to that appearing in (4).

,I - 11 2 I t f (XT Ax + UT DO dt
L
0

Regardless of where or if truncation of the modal system occurs, the open

loop system dynamics matrix, It 2 , is a diagonal matrix and hence, simple to
manipulate from a computational point of view. 1-lowever, the corresponding
control distribution matrix ^ T 

6 s not a sparse matrix, and so the
Hamiltonian system for the corresponding optimal control problems has the
following form

(13)

(14)

(15)

	

Q 2	 T GB 
—1 

G 
T

(16)

	

A	 02

The shaded areas in (,16) represent non-zero matrix entries. Because little
useful matrix structure remains in (16), the eigensystem analysis required
for the solution of the optimal control problem can not be performed
efficiently. Consider instead the control of the original dynamic system
in (12). At this point the concept of local control emerges naturally.
The dynamics of the flexible structure are characterized locally. This is

14



the reason that a good dynamic model of the flexible structure can be

obtained using tightly banded matrices. Furthermore, actuators produce

effects locally, and sensors measure local behavio-.. It therefore seems

plausible that a good controller may be possible using only local state

information.

The optimal control problem may be formulated as follows.

Mx + Kx - Gu	 x(to), x(to )	 given

Min J - 1/2	 (17)/	
tf (x fit

	 + ul'^13u) dt
U	 itI

By adjoining the constraints in (17) to the performance index with Lagrange

multipliers, X, and integrating by parts, two times, the closed loop system

dynamics and the corresponding matrix structure are given by

M 0 x 	 [ K -GB_
1GT
 x	 0	 x(to), x(to) given

0 M A + A	 K	 A s 0	 a(tf) - kt f) ` 0	 (18)

X 
♦ 	
\

 x] 1 

s 0

Equation (18) is the Hamiltonian system corresponding to the optimal control

problem in (17). The important feature to notice is that nearly all of

the original system's matrix structure is preserved, and that the eigen-

system analysis that must be performed in (18) to obtain the optimal

control differs from that which must be performed in (17) to analyze the

open loop system dynamics, by only two "stripes" off the principal diagonal.

As such, from a computational point of view, both storage and computation

time cart be reduced by fully exploiting the high degree of matrix sparsity

in an eigensystem analysis or through efficient matrix perturbation

techniques.

4.4 Examples of Local Control Systems

This section contains two examples of the steady state optimal local

control concept and comparisons of the performance of the optimal. local

15



control law with the performance of control laws designed using various

other approaches.

Example I - Two Mass Model

U l	 1	 1	 w2wl	 2	
tH 

xl 
	 x2

min E(J)	 J • 1/2 
e x

1 2 + 4u 2 dt	 Q I2
Jo

Fig. 1 Two Mass Model System

Figure 1 consists of two unit masses connected by a spring with stiffness,

one half. The open loop system has a single rigid body translation mode
and a :jingle vibration mode. It is desired to control the position of mass

I (xI) with a control input u, in the presence of the disturbances w.

Three approaches for designing control systems are examined:

a) Dull sate optimal control. All four states are available for

feedback (x l , xl , x2 , x2).

b) Modal control. The control system is designed on the basis of a

rigid body model.

e) Local_ control. The feedback gains on x 2 and x2 are constrained

to be zero.

For the given performance index, the results are most easily summarized

in figure 2 and 'fable 1.

Table 1. Control System Design Results

	

eigenvalues	 gains
•	 Performance

Controller	 Mode 1	 Mode 2	 X1	 X1	 X2	 R2	 Index J

Open Loop 090 + 11 0 0 0 0	 W

Full State -.310 + .404J -.128 + .974J -.384 -.876 -.116 -.453	 3.792

Rigid Body -.357 + .619J -.355 + .606J -.500 -1.414 0 0	 4.949

Local -.144 + .299J -.186 + .984J -.221 -.661 0 0	 4.393

16
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Figure 2. Control System Design Results.

i
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The closed loop ei„envalues, feedback gains, and performance index

are given for earth control system design approach. Of course, the full

stateoptimal control. law "performs” the best. The desired root locations

for the control system designed using the truncated dynamic model are shown

in Figure 2 with triangles. Due to the presence of the truncated system

dynamics (in this case the vibration mode), the four closed loop roots

.actually end up some distance away from the rigid body design point.

The local control system is designed using the full systems dynamics, but

with the constraint of partial state feedback. This closed loop system is

"closer" to the optimal full state control law than is the rigid body

control law in terms of both the system perforr;lance and the final root

locations, and only uses feedback of x1 and x1 . It should be noted that

as the cost of control decreases (B decreases), the relative merits of

the local control. law over the rigid body control law become even more

apparent.

Example II - Free-Free Flexible Beam

The partial differential equation of motion for a free-free flexible

beam with constant properties per unit length is given below (fig. 3).

" 
Y	

u (x,t)
a^

a^
U

.M	
x position

L0 
En

R

P a + 
El ?!y

_ u (x.t)	 a(u)	 a (L) • 0
at	 ax	 ax	 ax

a- X(0) - a-- 3 (L ) 0

ax	 ax

Fig. 3. Free-Free Flexible Beam.

A finite difference liscretization of this beam can be obtained by

choosing a state vector composed of deflections and deflection rates at

ten stations along the beam (fig. 4).

. I
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U u2 u3 u4

XD X1 X2 X3 X4 X5 X6 X7 X8 X9

Fig. 4. Discretized Boam Model

Furthermore, It is assumed that control forces u  can be applied at the

designated stations. Penalizing the beam displacements at each of the ten

stations results in a control law which performs stationkeeping, attitude

control, and shape control,. The following matrices were chosen for the

quadratic performance index

10
	 B = 0.01 • 14

As before

Q = x10•

A full state optimal control law and a local control law were designed

for the flexible beam using p EI = 1, 1, = 9. Due to the symmetrical

placement of the Actuators, It is sufficient to present the feedback gains

for synthesizing u  and u2 . In each of the accompanying figures (figures 5,6,7,

and b) solid lines are the full state feedback gains as a function of station

location and the broken lines are the local feedback gains obtained under

the constraint that only states which are immediately adjacent to the

actuator are allowed to be fed back.

There are several important features of these results to recognize.

l) The full state feedback control, law makes very little use of

"distant" state information. This .feature is not apparent from the modal

approach where the feedback gains corresponding to the various modes may

be roughly the same magnitude. Evidently the modal Feedback effects tend

to accumulate at the actuators and cancel far from the actuator.

19
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2) The local control law in equivalent to active springs and dashpots,

to provide stationkeepingo attitude control, and figure control. This

result may be useful for nontrol system design for general flexible

structures.

3) In this example t the difference between the performance index

using the local control in place of the full state optimal control is

less than 1%. In general, the use of local control guarantees no first

order change in the performance index.

4) From a computational point or view, the following computer CPU

times were required by a UNIVAC 1108 to obtain the control laws for this

20-state system.

a) OPTSYS, 
10 18 seconds. The QR algorithm is applied to the 40th

order Hamiltonian system to extract closed loop eigenvalues and

eigenvectors.

b) Direct Integration, 15 seconds. Direct integration of the matrix

Ricatti equation exploiting all matrix sparsity was employed to obtain

steady state gains.

4.5 Local Control Based on PDR' Models

One possible method of circumvOilting the problems resulting from the

increased number of modes to be controlled is by avoiding modal models

completely. Working directly vita partial differential equation (PDE)

models Of COntinUOLIS spacecraft is a viable alternative. In fact, some

structures, such as solar panels, large antennas, and astromasts may be

more easily modeled with PDE than with FE, particularly when many modes

are required.

The motivation behind the "local" approach to be discussed here is

that the PDE for a Montinuous spacecraft describes the acceleration of

each physical point on the spacecraft in terms; of differential operators,

i.e. in terms of the behavior of the spacecraft within a local neighborhood

of each point. Since sensors measure and disturbances affect local variables,

24



a reasonable job of state estimation may be accomplished with local state

estimation. The entire design procedure would avoid entirely the problems

associated with high order (possibly truncated) modal models. 	 If it is,

in fact, true that a local control law minimizes a quadratic performanou

index for distributed parameter system, then the underlying explanation for

this certainly must be derivable from the PDR control formulation.

The control analog of this problem has already been addressed in the

previous section. It has been shown that the optimal control law for a

free—free flexible beam very closely resembles a local Qontroller. This

means that if a modal controller for this system is designed, the feedback

law may actually represent a more simply expressed control law were it

expressed 
in 

physical coordinates.

Breakwell (lj-) has also obtained some results for the optimal control

of a continuous flexible beam using PDE, in which a symmetric root locus

approach is used to determine the optimal closed loop root positions.

Following this step, the continuous control gains needed to move the roots

to their optimal closed loop locations remain undetermined. That is, no

direct procedure is available for directly determining the optimal feedback

gains.

The purpose of this section is to present a PDE estimation and control

problem formulation that contains sufficient generality to encompass a wide

variety of continuous control system design problems within a single

analytical framework. By drawing on a simplified example, a string in

tension, some insight to the control of continuous structures is obtained,

and some generalizations for their control can be made. Although the

estimation problem is discussed here, the results can be extended easily

to include the control problem too. A procedure for the direct determination

of the continuous optimal feedback gain is given, following the format

used in the control of systems governed by ordinary differential equations.

Consider a general partial differential equation of motion in state

variable format. This equation represents the dynamics of the state vector

in some spatial domain, with boundary conditions prescribed on the boundary

of this domain. The initial state of the system is given. It is desired

25



(19)

to obtain an 06CIMate Of the State Or the SyBtOM SO tiMQ OV01VOO, from

noisy measurements in 
the promence of dioturbances. The m4nthemntical model

is given below.

y (X,t) - F(D) Y(X,t) + 1'(X,t)W(X,L)

Y(X,t 
0 ) 

given

B(D) y(l',L)	 given
	 r(

V.(X,t) - 11(D) Y(.-.,t) + V(X,t)

VW), 110), and B(D) aro linear differential operators 
in 

the spatial

variable. Were It 
not 

for the presence of the differential operators in

(19), the mathematical formulation would be Identical 
to 

the ordinary

di lffvrential equation aatatc v
ariable format. (It will therefore lie, nota-

tionally convenient to omit future appearances of all superfluous symbols.

It should be remembered that the model actually analyzed is writt( ."il in all

of Its detail only in (19)). 
In 

order to obtain as state estimate from the

measurements, a performance criterion is selected which weights the relative

importance of the process and meas tire me n t disturbances. Minimization of this

performance index is one way of obtaining the optimal state estimate.

	

J - 1/2 t, 
J 

(x 
TQ- lw + 

JR-lv) dx dt	 (20)
it 

0 

0

Adjoining the constraint dynamics in (19) to the performance index

in (20) gives

Ta-lw +	 Tcl Z-
t

W + Z-Hy^	 (HY)
0	

2
it, J	 (W0

+ X T (-y + ley + rw)} dx dt

26
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The necessary condition for the minimization of the performance index
is that the first variation of J vanishes for arbitrary admissible variations.

This variation yields:

0 n 6j W 
t 
I	 (WTQ-1 + X 

T r) 4w dx dt
j t 0 IQ

+ i t, It	 110

	 {- dy TIITR71
	

(22)

+ X 
T 

F 6y) dX dt

Since 6w in (22) is arbitrary, the optimality condition is obtained.

W 0 - Q rT
	

(23)

Two steps are now ref

The first is to integrate

conditions on the adjoint
term, -IT 6y. The second
their	 and

juired to isolate the 6y multiplier in (22).
the XT  Sy term by parts to obtain the final

variable, XT (X,t,) - 0, and also an integrated

step requires the isolation of the 6y terms from

A short di gression, is required.

Let (- p -) define Lin inner prodl3ct.

If T is some operator then its adjoint operator, T* is defined as

(u,Tv) -, (T* u,v)

Using the star notation to denote adjoint operators, the equations for

the adjoint variable becomes

	

1 + F*X - H* Tcl (z-HY) - 0
	

(24)

Boundnry conditions on X will result from computation of the adjoiat

operator,

The closed loop dynamics of 
the 

estimator is now written below.

7
F	 -rQrT' 	 0y I

I	 +	 z

. -HT*R7'H	 -F*	 L 
11T*1171H

Y (to )	 given	 By - 0
	

(25)

X (t f ) = 0
	

B*X - 0
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An usual, it is desirable to write the estimator in the form
X
y - Fy + K (z-11y)	 (26)

Hera K inny be a differential operator astimator gain. Toward this and,
let

A
y W y

where P is also an operator. it In now straightforward to show

y n Fy + K (z-11y)	 Y(to) W Y(to)

R*'l III, 	V (0) W 0	 (27)1) W pv* + vp + r(Ir
T	

1111wr

K * V11'r*R -1

where products of operatorR of course represent composite operationv.

The problem of determining the optimal estimator gains for a spatially

con0nuous syott=t has aaow been reduced to as 	 format. Tile only

differences are that the estimator gains are now 
in 

operator form, and

that the Meath equation for LIW estimator gain is in terms of as differential

Ope oz.tor, P. That such a solution exists and is unique is not pursued

here. 
(12) 

Rather, a detailed example problem Is presented in the following

section.

A.6 Flexible String Example

Consider the dynamics of LhC string;
	
tension shown below.

0

The partial differential equation of motion is given by

9 Y 
_ 121 + w	 Y(O't) _ Y(J't) . 0

7-2	 2
at	 ax

y (X, 0) it 0

(28)
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Assume a continuous position measurement, z, is available, and that

it is desired to find the steady state estimator that will minimize the

following performance index.

j - 1/2 f' f (wTq-1 w + V, TR71v) dx dt •	 (29)
0 n

From (28) and (29), the equivalent state variable formulation is obtained as

0	 11	 0 j
F X	 r =	 ! II - [1, 0)	 (30)

2
D	 0

Letting

(u'v)	 F 'f uv dx dt
0 0

the adjoint operator to F is given by (13)

0	 D 21

F*	 (31)
1	 0

Using the results in (27) and letting

P	 p2i
P =

P3	 P 4

it can be shown that the steady state optimal estimator can be obtained

from solution of

P 3 + P 2 - P I R7 1P, = 0

P 4 + P 
1 

D 2 _ P 
I 

R_ 1P 2	 0	
(32)

D 
2 
P I + P4 - 

P 
3 

R71P 
1 

0

D2P 
2 

+ P31) 
2 
+ Q - P3R-1P2 ' 0

Again, it is pointed out that products above denote composite opera-
tions. Even so, the feedback gains can be written symbolically as

_7
P 

1 
/R	 2(D 2 + /D 4- 

+ Q/R

K =
1	(33)

L
i

P
3 

/R	 D2 + ^4 + Q/R
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where the square root of an operator is to be interpreted as the operator

whose composite operation with itself yields the desired operator. In

each case, results obtained using the above analysis will be compared

with numerical results using a dlscretired 20 state representation of the

string dynamics, with the progrnm OPTSYS.(10)

In the following examples, the estimator gains determined using the

differential operator approach will depend on the relative norms of p4

and OR in (33). Obviously the norm of v4 defined as

1 
11)4 

({ " (y, D4y) / (Y,Y) _ (D2y , 1) 2y ) / (Y, Y)

can be made arbitrarily large. At this time some notion of the modal

concept does prove to be useful (although it is still not required). In

general, higher frequency modes in the time domain result 'n higher frequency

mode. shapes in the spatial domain.. The norm of i) 4 on these eigenfunctions

will then serve as a basks for which modes are low frequency, and which are

high frequency. WhaL wi11 eventually be seen is that there will be

distinct estimation approaches for the high frequency modes versus the low

frequency modes.

Case I	 Q # 10 4 , R - 1

For Q/R large, or alternatively, for estimation of the component motion due

to low frequency behavior, an expansion of (33) gives

► 	 2	 4

2	R 	 R	
34

4	 2
P1/it ^ f2 ^^ [1 + ll^	 .

`3 it

Regardless of the dynamic system involved, for Q / R large, the estimator
t

gains as a function of position are approximately constants. Since they

are not "operators", they will involve .feedback of only local state

information. In fact, Q/R large is precisely the condition needed to

guarantee the optimality of local estimation (or local control in ti ►e

control problem). The estimator for this problem will *.hen be
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'

	

d	
(Z Y)	 (35)

A	 2	 .1	 1
Y ' 	D	 0	 y	 v/QTRi

Notice that the estimate error tends to zero for all modes, not just for
the low frequency Diodes. That is to say, truncation of the differential
operator to include only the leading term (toes not result in any instabilities.
A comparison of the estimator gains obtained using the operator approach

versus the discrete approximation is shown below (fig. 9).

The real power of the operator approach can be seen in the next
example where the sensor accuracy spatially varies.

	

Case 11	 Q - 104 , R - 13/x

III this case, no measurement is available at x=O, and the accuracy of

the measurement: increases as x increases. The norm of Q/11 is identical
to 

the previous Case, SO the same expansion of the differential operator

applies. In this case, the first order operator a pproximations  to the

optimal estimator gains are

	

3	 s/y, ox

	

T	 *:':^" +
R

(36)

Rl
3

ffj
 

Y7k^

 R

Again, the feedback gains obtained via the operator approach are Compared

to those obtained via the discrete approximation (fig. 10).

By allowing R to be a function of x, it is possible to approximate the
case of s ̂ atjjll discrete sensors by choosing appropriate continuous

approximation functions for R(x).

Case III	 Q = 1.0", 4 , R = I

For Q/R small, or alternatively, for estimation of the component of
the motion due to high frequency behavior, a different expansion of (33)
gives:

a. A.A, - A.
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Figure 9. Operator vs. Discretized Control System Design Results
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1> ltt	 - ®^ .}..S. ' 'R 2
2U	 $D

(37)

1'i /lt	 3 	 3 I + ...

As would be expected, for Q/R - U, the steady state estimator gains

are zero. For Q/It not equal to zero, the inverse powers of D must be

interpreted as inverse operator 's. For tte case of tite flexible string,

the inverse operator to 1) 2 that satisfies the boundary conditions is

simply the integral operator whose kernel is the Green's function for

the string, i.e.

1	
ri

li	 0

where

lx(-7)	 x e ^;

Not , that -1/D 2 has a positive norm.

The analytical expression for the 3-1/1) operator is sciewhat more

complex, and somewhat more interesting.

D f '^	 g2(x,^) f(t,) d4	 (39)
Q

where

sin ir(x+r;)g 2 {x, ;)	 l.tt	 sin 1r(x-t,)

It should be noted that this operator satisfies the required boundary

conditions at U and 1, but has the peculiarity of being infinite at x=^.

At first, it might not seem reasonable that a particular point along the

string could have an infinite weight contribution to the control. law. In

fact, this is not the case. The kernel does have an infinite value at

x--E, but the fact that this is an integrable singularity, and that the

kernel does appear under an integral, puts this feature in the proper

perspective. It also explains why the gains computed using a discretized
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system dynamics are not infinite valued at x•4, but instead are tin average
value over the discretization interval (fig. 11).

The Green's function and its square root yield control and estimator

gains and appear naturally in the I'Dr, formulation for controlling (damping)

high frequency modes. These concepts 
can 

be extended to include general

models based on FE by using the eigensysteni expansion of the Green's

function.

The Green's function can be expanded as

gj(x,0

and	
Ca yx) YO
	 (40)

A i

where the , v s and X's are the normalized ei-enfunction-s and eigenvalues

of the operator. For the case of an FE control design, the eigensystem

analysis is usually performed as part of the structural analysis. The

fact that these results can be directly used for control system design,

as well, is a valuable new result.

The results obtained 
in 

this section are generally 
applicable 

to a

wide range of PDE models, not Just the string 
in 

tension. The general

result can be summed up as follows.

Local estimation and control is optimal for the high gain, low frequency

modes, where performance is required; and estimation and control based can

the Green's function and its square root is optimal :Core the low gain, high

frequency modes, where damping augmentation is required.
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Section 5

5.0 Shape Control

5.1 Introduction

1,arge, lightweight, flexible, space structures exhibit dynamic 811,11)e

variations greater than those of any previous spacecraft. Whereas the

shape varies continuously with changes 
in 

space and time, 
it 

Must bQ

estimated (controlled) by sensors (actuators) placed at discrete points along
the structure.

The mixing of continuous and discrete 10,1010111.1ticS can present or ease

difficulty in the solution of control and estimation problems, depending,

on the method by which It is approached. The use of Oreen'H functions LO

convert boundary value problems into integral equations provides a

convenient treatment of these problems.

The Green's Function provides as solution to a nonhomogeneous ordinary
or partial linear differential equation in terms of an integral operator
which acts on the forcing function (the nonhomogeneous term). Comparison

of solutions for different forcing functions becomes relatively easy.

Furthermore, 
the 

expression of Llv^ solution 
in 

terms of the Green's

f	 'w of 
the 

spatfally discreLounetion 
is 

especially Convenient in fiat rai se

functions Found iii 	 Space sLrucLUrc- control and estimation problems,

since some integrals become finite sums.

The use of an integral operator rather 
than a differential one

possesses additional advantages:

(1) The expression of as 	 as 
in 

integral equation auLomaLivtilly

incorporates the boundary condition.,;, which must be handled separately

if the problem is stated as as differential equation.

(2) The integral. operator is usually bounded and often completely

continuous, whereas differential operators are unbounded. Thus results
concerning eigenfunction expansions, solutions of nonhomogencous equations,

etc. are more easily obtained.
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(3) Numerical approximations and variational techniques which include

several other methods of solving problems with constraints are more easily

applied to integral rather than differential equations.

5.2 The General Boundary Value Problem and Green $ $ Vonction(14,15)

We first define a general boundary value problem and discuss the use

of the green's function in its solution., We then apply the technique to

the solution of a generil control problem and a general estimation problem

for larj,,v space structures,

Consider a 
surface 

which occupies a simply connected region o. and is

bounded by Lhe curve r.

r

Assume the surface is acted on at each pointPt,t1by a force f(P) and that the

static deformation u(P) of the surface satisfies the partial differential

equation

Lu - f	 (41)

where I. is 
a 
linear partial differential operator, and also sativfies

appropriate boundary condit:ions

B i (u) - 0,	 1 < i < N,	 for Per .	 (42)

Assume the boundary conditions (42) are such that the operator L is self-
adjoint. That is

(Lu,v) - (u,Lv) (43)
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for any pair of functions (u,v) in an appropriate class which satisfy
the boundary conditions (42). The inner product (u,v) is defined to be the
integral

(u, v) w Ju(Q) v(Q) dQ	 (44),, 

We also assume, for convenience, that the homogeneous system

I'v - 0 0 Bj(v) * 0	 1 < i	 N
	

(45)

has only the trivial solution. This is equivalent to the assumption that
the system has no rigid body modes.

Thus, the general boundary value problem is the system (41-42)

together with Lite assumptions (45-45).

The Green's func ion g(P,Q) associated with the boundary value

problem (4142) satisfies

40,0) - 6 (11-0
	

(4 6a)

1B 
i 
(P) - 0 ,	 I < i < N v for PcV .	 (46b)

It represents the response at the point 11 to a unit impulsive force at

Q. Since 1, is self-adjoint (u,1.)) - (1,u,g), which provides the solution

to the boundary value, problem (41-42):

u(P) - 
1 

u(Q) S(P-Q) dQ -	 g(P,Q) f(Q) do	 (47)
0 

Remark 1. The Green's function is the kernel of the compact Integral
operator K such that

Kf - f g(P,Q) f(Q) do
	 (48)

Sa

K is clearly the inverse of the operator 1,, where defined oa the range of

1,, since KLu = Kf - u and Mf = Lu - f.

Remark 2.	 The solution of (46a) is called a fundamental solution. 	 The

equation (46a) is satisfied 
in 

a distributional rather 
than 

a pointwise

sense. That is

(Lg,^) w (g,L*V ) = ^Q)
	

(49)
le

hl	
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for nII test functions ^. (A Lest function Is oil infinitely differentiable

function defined on a domain which has compact support.)

There are some additional requirements for a solution in the case

that (45) has icon-trivial solutions, that Li, tile physical System Possesses

rigid body modes. - In this case, (41) has no solution unless tile "Consistency

condition"

(f, V) - 0

is satisfied for every v(Q) Whiell 
is :1 

Solution 
Of (45).

The consistency condition becomes reasonable when we consider that

seek[lig a Solution to (41) for any function f ill some SpaCQ itl 0(illiVi'llOnt to

soekilig the inverses 	 the operator 1, 
in 

that space. If the null space

of 1. is zero (i.e. they 	 Of (45) 
is only the trivial solution)

then T, is one to one and 
its inverse may 

be 
defined. If (46) has non-

ti,ivi ql solutions, 1, is 
not 

one to one. and 14-1
 
play be defined, if at all,

not uniquely on Lix, range of L. Tilo vollAiSUMICY 4.' ► lldiLioll guarantees that

f has no componetAL in the null epaco of L, hence (with a little more

work) that it is 
in 

tile range of L.

If we approach the determination of the Green's function as we did for

the beam with simply supported endpoints then the attempt to solve the BVP in

(46) results in an immediate stumbling block, This system has a solution only

if

(S (f- Q) , VM) - 0
	

(50)

for every solution v(0) of (48).	 But, the delta function, ill general,

has eLjjjlp 0 jleljtss In tile space Of solutions to tile homogeneous problem, so

instoid 
we seek the modified Green's function which satisfies

g(l"Q)	 u (11 ) 11 (Q)
	

(51)

where the u i (P) are the normalized, non-trivial solutions of (45).

We have subtracted the offending co,iiponents of S(P-Q) which lie in

the nullspace of L. A solution to this system does exist.

0
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If the Green's function in known, the solution (47) of the boundary

value problem is known. If g(P,Q) is not known (47) is an expression of

the solution III terms of a compact operator which Incorporates the boundary
conditions. Approximate solutions may be computed from the eigenfunction
expansions

8(11 0 0)
 k»1Xk k

(P) YQ)	
(52)

and
CO

Kf. Ise g(PoQ) f(Q) dQ - Y 
.1- Yp) Ntf)	

(53)
kwl k

where A 
k. 

are the non-zero eigenvalues and ^k are the corresponding normalized

eigenfunetions of (41-420, which 
satisfy "

 
k N Xk ^k and ll i (Od ' 0)

1 < 1 4 N.

Substitution, of expression (52) for f ', ,,1 (53) yields the following

relation which will also be useful:

01) 

P dQ U	 -^X X
].2
 k

(P
d ^k (pjjl 

(P	
j	 kni k

Alternatively, other numerical methods may be applied with greater

v,onvenience to (47) than to the original boundary value problem (41-42),
because of the superior properties of integral over differential operators.

5.3 The General Shape Control Problem

In this section we define ,I general control problem and a general

estimation problem corresponding to large space structures. We then solve
these problems using the results of the last section. 

III 
the next section

we will give specific examples of problems and their solutions.

The control/sensor mechanisms for large space structures will probably

be located at discrete points P,, 1 4 1 < m, along the structure, rather
than continuously. Thus the general dynamical model for the control

problem is
m

Lu = X f S(P-P 
i)J=l

B 
i 
(u) - 0	 1 < j IN

(54)

(55)

(56)
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w1wre u(P) in the sh ►pe, 1, is a linenr differential operator as before, L-i

is a force to be applied at the position P,, and (56) denotes an appropriate

net of boundary conditions.

WL ^(Q) be the desired shape of 
the space structure, rind define the

quadratic criterion

U) 0 -2 ^	 ,2 q, + ^	 dQ'k	 f	 MQ) - U((W 
2

iml
	 ^st
	

(57)

as 
a 
measure of performance, The constants q, are arbitrary weights and

T
Q

The control problem Is to determine the vector of forces F* which

t-ogethor with the corresponding soluLlon u* of (55-56) minimizes J over

all adMiaoible Sets

The solution of (55-56) Is given by

mu(P)	 g(P,Q) C	 r- j 6(Q-P i) ) dQ
f

m
UK i Z 

I 
f ,j g(l) I) j )
	

(58)

where g(P,Q) Satisfies (46). Substitution of (58) into the criterion (57)
yields the criterion

A	 t11	
2

111	
2

j	 2	
q, +	 (IP (Q)	 fig(Q)"	 dQ	 (59)

2
i
E
i	

fil it

The constrained optimization problem (55-57) has become, the simpler problem

of minimizing a function of m unknown constants without constraints.

Solving simultaneously the equations

0	 1< i < m	 (60)
af

we are lead to the following necessary condition for an optimal solution,
F* - (fl* ... f *)T

+ A) F*	 B	 (61)

4
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The m x m matrices Q and A have coefficients

Qij , q
i 6(i-J)

Aij . fn  8(Pi ► R) B(PJ OQ) d4
	 (62)

.	 and the ni dimensional vector B has coefficients

rii - f '^ g (p i ,4) ^(R) dQ
	

(63)

Once the optimal forces are deterirAned, the optimal sllap:;i u* is given by

(58).

It is interesting to note at this point that the necessary indications

for the shape control problem require only th:r Q be positive semidefinite,

since A is positive definite. That is to say, in contrast with the full

state optimal controllers in the time domain, placing a zero weighting

on a particular control will not result in unbounded control forces. A
simple example will serve as the explanation of this phenomena.

Consider an elastic beam pinned at both ends with a control force

locateck it the center. If it is desired to bend the beam into any shape

whicli is not symmetric with respect to the applied force, no amount of

control force will accomplish the task exactly. That is to say, even with

a zero weighting on the cost of control, a bounded value of control force

will come closest to producing the desired shape.

5.4 The General Shape Estimation Problem

For the estimation problem we assume the shape u(P) satisfies the

boundary value problem

Lu=f , B i (u) =0,	 1<i <N,	 (64)

where .f(P) is an unknown function representing disturbances or errors in the

model.	 Sensors placed at the positions P i , l < i < m, yield the

observations

yi = u(P i ) + vi
	 (65)
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where vi is an unknown constant representing inaccuracy in the observation

at P i . Let V - (vl ... vm). We define the performance criterion

J(V,f)2 G vi2 qi + 2
 JQ

f2 (Q) dQ

iml

2	
(Yi - u(P i )) 2

 
CI i +	

J^ 
f2 (Q) dQ •

The estimation problem is to determine the Pair (u*,f*) which ;jointly

satisfy 1 64-65) and minimize the criterion (66) over all admissible pairs

(u,f)•

The solution to (63) is given by

U(P) - fQ g(P,Q) f(Q) dQ 	 (67)

where g(P,Q) again satisfies (46). 'Thus

vi = y  - f Sj g (Pi ,Q) f(Q) dQ	 (68)

We substitute (68) into the criterion (66), which produces the criterion

J(f) = 2 ^, (Y i - f^ g(Pi,Q)f(Q)dQ)2
	 fn2

qi +	 f (Q) dQ 	 (69)
i=1

A
The problem is now to minimize the functional J without constraints. A

Anecessary cotidition for a minimuir. of J at f* is that the differential.

8J(f*,h) = 0 = ^ gi (yi - fQ g(Pi,(Q)f*(Q)dQ)(- fQ g(Pi,Q)h(Q)dq)
.L-A.

+ f, 'f*(Q) h (Q) dQ	 (70)

for all admissible variation h. Thus it may be concluded that

m
f*( P )	 qi 8( P , Pi)(yi - u*(P i))	 (71)

i=1

Substitution of this relation into (25) yields the optimal shape estimate

's*(P) _	 [gi(Yi - u*(P i)) 	 g(P,Q) g (Pi ,Q) dQ]	 (72)

Note that u*(x) is expressed in terms of the unknown discrete shape

estimates u*(P i). Let

X = (u*(P 1) .	 u* (Pm))T

w•

(66)

(73)
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and

Y a (y, fee YM) T
	 (74)

^j W 1 0 * se t III yields the following necessaryRvaluation of (72) at x - xi

condition for the vector x:

	

4- AQ) X - AQY •
	

(75)

where A and ^ are the matrices of coefficients (62).

Once the vector X has been determined the optimal shape estimate is

given by (72).

In the case tile (Ireeil's function 
is 

not precisely known, or io

Unwieldy, approximate 
s
olution.,; may be obtained using the eigenfunction

expansion (54) for the coefficients Ai."
J

5.5 Examples of Static Shape Estimation and Coittrol

Case I	
Shape Control for a Simply Supported Beam

Consider the problem of controlling the static deflection of an elastic

beam of length t (fig. 12). Define a coordinate system such that the x-axis

passes through the endpoints of the beam, with one end at the origin and the

other at x = Z. Suppose control is to be implemented by means of transverse

forces f, at posiLlIons x,, 1. < i < m, where 0 
< xi < X2	 . 0 . < X 

in 
< Z.

At each point x E;[OY.] denote the deflection by u(x). Assuming no net

tensile force on a cross-section, the shape of the beam is governed by

the differential equation

d 
if 	 ni

_x')	

(76)

dx^ ill f. S(x

Tile ends of the beam satisfy the boundary conditions

U(0) = UNO) = 0	 UM = 1 1"(P) = 0	 (77)

Let ip(x) be the desired shape of the beam. As a measure of performance we

define the criterion
M	 2	 ))2

J(U,F)	
1	

f1 qi + 2 f (U(X)-^(X.	 dx	 (78)

u

where F *'s the vector of forces (f	 f m ) T and q 
i 

are non-negative
constant weights whose values are optional.
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Figure 12. The Simply Supported gleam
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The object is to determine the set of forces f
i 
* which together with

tile solution u*(x) of (76) minimizes (78) over a13 possftle pairs (uJ").

Tile solution of (76) is given by

[it
U(X) - X g(x,x 

i 
)f

i	 (79)

iIWI

where g(x,^) 
is 

the Green's function associated with (76,77) which satisfies

d g(XX	
(80)

(IX 
4

g (O ' O - g"( O ,F,) - ()	 g(z c) - g"O"O . 0 .	 (81)

Tile Green's function represents the natural response of the beam to a unit

impulsive force 
at 

X - F,,. The existence and uniqueness of the solution

to (80,81) foilows from the fact, that tile ;ISSOCiatOd h0MOgC ►l0OLl,4 system

(1 
4 
v
— WK 0 V(0) - v" (U) - 0	 VM - V1, W - 0	 (82)

dx 4

has 06 only trivial solution. The solution of (80,81) is

0
6 ►

(83)

Figure 13 displays the (Woon's function which corresponds to Impulsive forces

tit positions;	 11	 11	 7.

The solution of the control problem follows. Substitution of the
solution (79) into the criterion (78) yields

2	 z	 III	 I

	

r i qi + A	 ( ^ g(x,x	 dx	 (84)
2	 2	 i

	

1 1	 fo i=1

The problem of minimizing, the criterion (78) subject to tho constraints

(76-77) has become the problem of minimizing a function of m unknown

constants Without constraints. A necessary condition for .1 to liavo a

minimum at F* is

DJ

	

_ (F*)(F*) - 0	 1 < i <	 (85)
a f 

i
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Figure 13. The Green's Function for the Simply Supported Beam
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TIIiI4 condition beenmes

III	 z	 z

fi, (
1 , + X f k (f	 x	 (X, x 

It 
)dx	

0 41 W g (x , X 1 
) dx

iml	 f 
If we define

)1,(x,x
)

dx,	 I	 i t 	111	 (87)

b	
f 

qj(x) g(x,x i
 ) dx,	 't.	

I 
z'	 (88)

o

then the nevessary condition for a minimum of .1 at F* is that F* satisfy

(I + AQ)F - A Q B	 (89)

where Q) it, the tit x to diagonal matrix

(90)

q

A is them X III IIIaLriX With OoQffi0iQI1tS (87), and B Is the tit dimensional

vector with coefficients (88).

control, al gorl Lhm f or tho si.m	 i I. orL	 b Iem I

(1) Compute the constants aid and 1) defined by (87-88). Define Q,A,B.

(2) Solve (89) to got F*.	 III
(3) The optimal shape u*(x)	 f 

I 
*g (x, x

Vigvre (14) displays LhL1 OptiII1,11, shape vs. the desired shape 4)(x) - sin

the second mode of the system (76,77), 
for 

two actuators at 1/4R. and 3/4t.

Case 11. The Control Problem for 
the 

Pinned-Free Beam

A modification of 
the control algorithm Is necessary if the system

has rigid body modes, as is 
the 

case with the pinned-free beam.,

The beam with one pinned and one free end point satisfies the differential

,aquation (76) with boundary conditions

u(0) 	 U" ( 0) 	 0	 It. It W	 u M	 0.	 (91)
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Figure 14. Optimal vs. Desired Shape for the Simply Supported Beam
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He will again use the performance criterion (78). 'fhe object is to 

determine the set o~ forces (f
i

} which together with the solution u(x) 

of (76,91) minimizes (78) over nll possible pnirs «fi } , u) 

/ :r' 
The system (76,91) hns the rigid body mode ul(X) " R,3 X (normolized). 

Physically this means the beam can have a non-zero slope or tilt ns a rigid 

body. Hnthematically it menns that the corresponding homogcneous system 

d4v _" 0 v(O) " v"(O) cO v"(R.) " v'" (R.) = 0 
dX" 

(92) 

has the non-trivial solution ul(x). 'rhus the system (76,91) has n solution 

only if the inner product 

/ 3' m 
" - L .\!,3 i=l 

(93) 

TIu! udditional constt"uint (93) must be ndded to the problem of determining 

the optimal control forces. 

A solution to (80) with pinned-fre" boundary conditions does noC exist 

bccnusc the inner product (Ii (x-1;), u
1

) is not zero. The "modified" Gn,en's 

fun"tion which is appropriate to the system (76,91) sntisfies 

4 d fl (x,f,) 
m 

4 dx 
" o(x-f,) - 33 xf, 

R. 

o II (l!. 1;) = g '" (l!. 1;) " 0 
n m ' m ' 

(95) 

\~a make the additional requirement that g (x,!;) have no component in the m 

subspace spanned by the rigid body modes. 

(fl (x,!;) ,ul ) " 
m 

x dx " 0 

The modified Green's function which satisfies (94-96) is given by 

2 2 
!In\(x,f.,) = xi; (~+ f, +x 140 4R. 

4 4 
F, +x ) 
40!3 
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Condition (96) guarantees that gm(x,!;) is symmetric. and of minimum norm 

among all solutions of (94,95). 

The Green's function (97) represents thCl rClsponse of the pinned-frCle 

beam to one of a set of unit impulsive forcCls whic.h satisfy (93). Figure 15 

displays the Green's function for impulsive forcCls at positions n (~), 
no 1, ... ,7. 

The solution of (76, 91, 93) is giVC!ll by 

m 
') (x) c L fi g (x,:;!) 

i"l m 

11e solvCl (93) for fl in t"rms of th~ other forces and substitute that 

expression togethClr with (96) into the criterion (78), which results in 

• • 
J(l') 

ql m X m 2 
" - ( L .J:. f ) 2 + 1:. L f1 qi 

2 i=2 Yl 1 2 i"2 

Again, the optimization problem is reduced to one of minimizing a 

function of unknOl'n constants. 

The necessary condition for a minimum at F* is 

E..L (F*) " 0 
af

i 

The conditions (100) result in the following algorithm. 

(1) r:;mpllte the m dimensional vector Band m x m matrix A whose 

coordinates are 
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(2) Compute the (m-1) dimensional vector B and (m-1) x (m-1) matrix A

whose coordinates are

x
b	 L+—1 b

i	 i+1	 x
i I

Xi+IX.I+l	
(103)

aid - 
(q, + a,,)	

x 2

+ a	
- 

a	
Xi+i	

(104)
i+l,j+l	 1,1+1 X

1
	IOJ+l X I

Let Q be the (m-1) x (m-1) diagonal matrix

9 2

A

Q

qM

A(3) The vector F* of optimal forces SaLisfi0s

A

Q	 A F	 B	 (106)

The optimal foroc , IF	 is found from (93).

M

(4) Tho optimal shape u*(x)	 f *g

Since the optimal shape u* is a linear combination of Green's functions

which satisfy (96), it will have no component in the 
subspace of the rigid

body mode. If the desired shape ^(x) does have such a component, that is if

(^, ul ) 
is not zero, the optimal shape will approximate the shape

1P W - (41, u
l
) u

l
 W .
	

(107)

That is, it will approximate the desired shape minus its component in the

subspace spanned by u l(x)-

As an example, Figure 16 displays the desired shape ,(x) = Px-x 2	 the
shape which approximates 

A kx_x2 , and the optimal shape plus the missing
4

rigid body mode component I kxo
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Those components of the desired shape in the subspace spanned by rigid
body modes must be added by the attitude control system. A shape control

system constrained to satisfy the boundary conditions cannot affect these
Component" 0

case iv. The Shnpe R.HLiMItIoIl Problem

To illustrate th y; shape ORLiMaLlon algorithm we consider a simply
supported beam of length k and unknown shape u(x), which satisfies

d
4
U— ^ * f(x) oil 0 x

(IX 
4

and

U(0) - u"(0) - 0	 UM - u ll (k) - 0

The function r- (x) represents minor model Inaccuracies or random disturbances

acting oil tile bealli.

I 
I 
Iseume senaorti dt p0.iiLiOM4 XV 0 < xi < fee	 produce

observations

IZ, 
i 

ba u(x
i
 ) + Vi 	 I < i < in •

	
(109)

As a measure of the accuracy of shape estimates we define the criterion

m
J(f,u) - .1 E (z1 - Li(x1 ))2 qi + --'2 	 f2(x) dx	 (110)
2 

The abject is to determine the function f* which together with the solution

u* of (108) minimizes (110) over all, possible pairs (f,u).

The solution of (108) is given by

f i
ca (x) -	 g(-"0 f(O (it,	 (111)
0 

where	 is the Oreen's function (83). We substitute (117) into the

criterion (110); resulting in the criterion
AIII 	k	

2	 L	 )2z 
f(IT (f) - 2I Y, (I , (z -

	 g (xi 1 0 f 
Q) d&) +	 dE• (112)

il.	 i	 fo	 2 fEo

The estimation problem has reduced to one of minimizing (112) without
constraints. A necessary condition for I to have a minimum at f* is that

0
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the Frachat d AFerential

A

B(Xip&)f*(o d&)
fo

f 4o
for all admissible variations h. This implies

Then
U*( X)	 qi(7. i -u*(x i)) 

f 
g(x ' r') 'g (xi pg) dr,.

Let	 0

X a (U*(X 
i) ... u*(xm)) Y

and
(7. 1 090 z m )T

Evaluation of (114) at x - x, and regrouping of terms yield the following
.I

necessary condition for the vector X:

(I+ AQ) X * AQ%
	

(115)

where A is the matrix 
of 

coefficients (87), Q is the diagonal matrix (90).

The sht	 n a	 ri Ili9 j	 p

(1) Compute the elements of the matrix A given by (87), and define

XtQ,Z.

(2) Solve the system (115) for the vector X.

(3) The optimal error estimates are given by (41) and v	 z i - U*(,X

(4) The optimal shape estimate is given by (114).

This algorithm is equally valid for the static beam with other boundary
conditions, provided the appropriate Green's function is used,

Figure 17 displays the optimal shape estimate versus the actual shape
1	 21rx

sin	 + f sin

	for three exact observations at 1	 !	
4

k, , Z, and 3 to
	4 	 2 
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5.0 Approximations for Shape Estimation and Control

The following approximations are paaieular^, 3, ,iirable when the Hystem

models are more complicated so that 
the 

Green's functions tare diffieulL to

compute analytically. They are based oil the aS$uIIIj)Lion 
that 

010 (3,17001118

.function is symmetric and of mitAlIjum norm, w1iieli follows :if the boundary

value problem is self-adjoint.

Ll
ij	

(X, x)g(X,X d	 X , -' ^k i
x "	

I	
(x	 (x--

b i 	y(X)g(x,x
fo	

i)dx 
kul X k I k

where x 
i 

I s are the actuator (or sensor) positions, X k Is are the non-zero

eigeavalues, and the G k ' s are the corresponding norilialized eigenEunctions

of the assoctated boundary value problems.

81 ► ulatLons of approximations based oll Ole 17 ,13-SL Lvi*m tIA Q.1 1.1 11 Of OW-90

expansions goneraLNI approXiviLv opLimal shopos w1 ► 1vh were visually

indt ,4L, ►iguishable from the optitial shapv.s, and numorleally avetiraLL, Lo the

third or fourth significant figure.
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Scletion 6

6 „0 Experimental Ver lfiCi tiun of DIaLributed Control Concepts

6.1 Int'vodu (I t i on

The previous 800l.lolls of this document have e.011L lil ► ed now developments

ill the t11e4117y of till, Contro 'i of large space strlloLul os, In some gases,

eo.mputer ailnlll10.0111 of these new devV1Opn1e1lt:l 1l+1V0 been porfol.med to verify

L110 . Ml1yt1001 results. tfie vital phaso of this researeh and development

prcli,ram st111 rQ111,1l.111i to he presented, expertmontal verification.

l.aborato^ry veri.lieat:ions of the an.11ysis and computer simulation are roquirod

to I'.iil tilt al: p11oV to the f 111.11, flil;ht llrojeet, stage of the large

structuro work.

Ali oxpol'1111C1it elllploy inl, .1 p miod—free flexible beam has been eonsLructtd

to domonsL ilLv .1nd Vert 1 y several faeet-s of th y' c'clntrol of flexible SLI'tiotllrc-i.

'flit destred Natures of tilt t°xpc# rintent are to demotlatraLo avtJVo Nhilpe volitrol,

ACA, I.Vco dVilalll'le VollL of , adapt lvo conLro L, Vtl1'41Otis e1111trol law dt'si ,ll Oppl-0.1011L

and a1.1,80eiated hardware requirements and me*chaniv.ation. difficulties. This

soct.toll vollLa;lns the analyL Goal work performed ill support of the fare t llty

development, the fillal d0sign spec” 1l'lrations, control :law 4ynt1108'ts, and

;iomo pr eiiillinary results.

The flexible beam was c'hosell for filth experiment for being a , intl^le,

eon.t41Wous Structure with ninny of tho dynamic ollaraeteristios' that are

ropresentative or l,enernl.. Lirl,e ;space structures, including, infinitely

massy vibration modes, a rigid body mode, and Whiny, ".low" frQ(jueneN' Vi.blratj011

modos.

The selec tiull Of the flexible beam also resulto,l in some minor limitations.

The flexible beam does not have repeated eigenvalues, however, by orthollonalVy
of the t.orre8ponding eigenvecttors, these modes may be distinguished spatially,
if not by 1"reclueney domain methods. Secondly, totally free boundary-
conditions are not possible in as ground based cNixriment. 'i'wo burins support
configurations which repl.acto the rigid body mode with a low Frequency
pendulum made ware considered as alternatives and are shown in figure 18.
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Figure 18. Beam Support Configurations
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Figure l8a shows the beam supported by several cables in the horizontal

direction and figure l8b shows the beam hanging vertically from a pinned

support, Although the confijuration in figure 18a more closely approximates
the totally free boundary conditions, the complexity of distributing the

weight of the beam uniformly and 
the difficulty with constraining the unwanted

degrees of freedom in l8a resulted 
in 

selection of pinned-free hanging beam

of lb as the final configuration.

One further compromise had to be made 
in 

the sensing/actuation phase

of this experiment. A totally free spj( ,e structure 
is 

constrained to sense

with respect to (and react against) itself, or inertial. space. Because the

major objectives of this experiment are to demonstrate control technology, and

not sensor/actuator technology, sensing and actuation of the beam are both

performed with respect to 
an external frame.

6.2 Dynamic Analysis of Flexible Beam Facility

A schematic of the beam and its support structure (tower) as they

are being erected is shown in figure 19. The tower is constructed of
aluminum angles and is twenty feet tall, two feet deep in the stiff direction

and one foot deep in the compliant direction. 
The 

weight of the tower is

two hundred pounds. With the sensor/actuator mounting brackets (figure 20),

beam, sensors, actuators, and electronics, the total weight 
is 

about three

hundred pounds.

Shake tests were performed on the tower to determine its resonances, and

if they might interact with the control of the flexible beam. The results
are given in order of increasing frequency in Table II.

Table II	 Tower Resonances

Frequency
010 Mode Direction

6 cantilever compliant
10 cantilever stiff
27 pinned-free compliant
35 pinned-free stiff
45 free-free compliant
63 free-free stiff
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For the final configuration, only the natural frequencies 
in 

the stiff

direction are of interest because there is very little coupling between
the perpendicular directions.	 i

A schematic of the sensor/actuator mounting bracket is shown in

figure 20. Hither the sensor, or actuator, or both may be mounted on a

single bracket, and the brackets may be mounted at any of the stations

located at six inch intervals along the beam.

A dynamic model of the hanging, pinned free beam is required for

control system design. Two modeling approaches will be examined here;

first, an analytical approach, and, second, a finite element model.

Temporarily setting aside the effects of the beam being 
in 

tension

clue to gravity, the partial differential equation of motion for the elastic

beam with constant mass and stiffness per unit length and the appropriate

boundary conditions are

	

1)	 11

'r-y- + H I  VY - f	 (117)
at 

2	
ax 

4

Y(O ' t) - 0 
a2y 

(1+, t)

  = 0

Dx 
2

(0, t) - 0 2X (1" t) - 0

	

ax 
2	

ax 3

It is straightforward to show by assuming an elgenvector decomposition

of the solution that-. the eigenvalues and normalized eigenvectors are

Wo = 00
(118)

Lcosh 
2 
X
n
 Cos 

2 
X
n 	s

inh X ^	 sin), ^]
 — n 

+	
n

n	
cosh 

2 
) ,
n 

- cos t A
n
	cosh An
	

cos X 
n

-j

 -

where	 4
LXA

W

and n
	

pL 
4

tank X = tan X
n	 n

and

F. = AL
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Using an asymptotic approximation (good for n 1 1) for (118)

3
t

o
 (1) -	 1 F.	 to 

0 
'k 0

(119)

F sinx r,	 SAX 
1A	 (4n+l) it

n	 cohn	 cosX	 11	 4-

n - 1,2,3,...

The dynamic equations for the modal amplitudes, q n , become

2
SMAW 

Aq + w	 q	 n - 0,1,2...	 (120)
R	 3 

n 

fo	 n

For the specific case that Qj,t) - F(t) SA
O
), i.e., a spatially

concentrated force applied at I - Col

fn . M
1 , 

H
A 0

A graph of the first four mode shapes is shown in figure 21.

The rigid body motion of figure 21 is a zero frequency eigenvalue, of

course, for the pinned-free beam hanging under the influence of gravity,

no such mode exists. Rather than being a zero frequency, rigid body mode,

the actual dynamics is a low frequency, pendulum-like behavior. in fact,

gravity interacts with all of the modes to some degree. To determine which

behavior (tension or elastic) dominates the various modes, an independent

dynamic analysis of a hanging free string will be performed.

The partial differential equation of motion for a hanging string,

with its boundary conditions is

1)

Wy =
Fy 

0t
2  K pg 3x

(122)
y (0) finite

y W = 0

M,

.•,
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The solution to (122) is given by
lrl*I

	

^n	 0 
(Wn 3 

4x

9 )

where 
1 (2	 0	 (123)

	

0	 n 9

Again, an asymptotic approximation to the eigenvalues can be obtained

2	 (n 1 /4)_.22
W	 ILT

	

n	 Z,	 2

if the true mode shapes of the exact system are obtained from 124

4	
a

+ C. I ,	 AX
2	

a
'i - P
x

(124)

4

it can be shown that the squares of the exact eigetivalues are approximately

the sum of the squares of the string and the beam frequencies with the largest

error occurring when the two frequencies are equal.

Using the experimentally obtained beam parameters appearing in Table III?
^Aie approximate modal frequencies and the experimentally determined modal

frequencies can be compared. These results are contained in Table TV.

Since the exact analytical solution to the differential equation of
motion is taot known, a discretized, finite element model is developed. The

beam is divided into N segments as shown in figure 22. The displacement

and slope at the ends of each segment are specificd as coordinates. Mass
and stiffness matrices can be defined for each element, and these assembled
to create overall mass and stiffness matrices for the system. The differential

equation of motion is thereby replaced by a matrix eigenproblem, and arbitrary
accuracy can be obtained by considering smaller divisions of the beam.

The stiffness matrix K for the finite element shown in figure 23 is
defined by

TIP
U = 1/2X A'.X	 (12-)

where U is the poteutial energy of the segment and

T
x = (XI f x2 '3 1 '4)	

(126)
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given the nodal diSplaCOM01ILS and slopes, Analytically U is given by
dx

U W 1/2	 1	 (LIYO12 + PA(L - X)YI 2 ) dx
jx I

substituting

Z 0-)	 (127)

we obtain

U	 :*.& z 1 
+6Z	

112 
+ zv l2

) dZ	 (128)2 
jzI

where

z	 6 ) 1/3
	

(129)
and

67.	 Sx	 (130)EI

The displacement y(z) of the finite element is chosen to millililiz.0 tile

potential energy U of the element. This is equivalent to assuming; that

the shape of the element is unaffected by dynamic loading.

Equating a variation of U to zero and integrating by parts, we

Obtain

y fill- -L (zy') - 0
6z

whose solution is

$	 y (z) - Ct A(z) + 41 1 (z) -Hx 
?2(z) +c'% 3 ^ 3 (""' ) 	 (132)

where the a 
i 

I s are constants and the p i
O s are linearly independent

solutions of (131). Though the analytical solution to (131) is known in

terms of Bessel functions of fractional order, it is more convenient to
define tile functions	 as infinite series. Th#* 	 used 

in 
this

analysis is
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(133)

(z — zi

W (z	 Z ) +
1

+
41

2
 
4

(z	 z) z	 (z	 r.1)

21
—, I +

41

3
(z	 Y

5
(z - z I)

3
( Z) +

31
z .- -- +
1	 51

with CoofficiolItH of (z - z I ) determined by the recursion relation

11 C1	
+	 z I 

a

+	 (n •r Wn4-3	 T T -If (Ci 3 )	 -

11 W 1#20feve	 (134)

The funcLi011fi	 are eXI)aIlded ObOUL Z - 7, 
1 

to ensure rapid convergence of

the t;vrivs.

Similar series expansions for the derivativos of ^, are easily derived.

of course, 
in 

praetiev Lho series are truncated after a finite !lumber of

terms, once convurgenve has been determined.

E'QU,lLion (132) can be written in matrix form as

Y(V-) - ^ 
T 
A

where
T
.40 (l) ,  ^,( Z), Yz), ^3(7))

^x T - 
(11 0' "l' "2' "3)

Furtbermore, a can be related to q. Writing

qT , (ql, q2) q 3 9 n4)

(135)

(136)

(137)

(Y(xl)o Y(xl ), Y(xi 
+ 6x), Y(xI + 6x))

and substituting (136)	 into (137), we obtain

q - Acx
	

(138)

^;
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where the matrix A is given by

^(x1)T

1(X1)T

A

	

	 (139)

^(x1 + dx)

T

¢1 (x1 + 4x) T;

Equations (138) can be rewritten as

a = Bq	 (140)

with

B - A
-1

Substituting (:140) into (135), and that in turn into (128), we obtain

U2 

q B jzl.+Sz
 (gyp ^ + z^, ^ 1 ) dzBq ,	 (141)

1.

Identifying terns with equation (125), we finally obtain an expression

for the stiffness matrix:

K = - pgB KB	 (142)

where

,,	 z+8z 	 ,

K	 1	 ( ^T + zQ. ;T ) dz	 (143)
z1

The matrix K can be evaluated by integr." ing (143) by parts twice and noting

(:131), which yields

z +dz
K = (, ^T - $  ^T + Z^ 1' ) 

I 1
	 (144)

z1

u,

The mass matrix Df for this finite element is defined by

T=
L;TI'^

a kinetic energy of the element,

the beam element,

(145)



An analysis analogous to that of the previous section yields

M - f8 MA	 (147)

and
'l

jzl+Sz	 T
M ^

	

	 $ ^ dz

z1

and where y, is and $ are defined as before.

(148)

f

The integrals in (148) are evaluated by expanding the i.ntegrands in

series and integrating term by term. Three terms were taken, since it

can be shown that truncation of the series after three terms results in

less than .2% error in the elements of M for a 20 division finite element

model.

The ream shown in figure 22 is divided into N finite elements and is

represented by 2N + 2 coordinates x1 . The overall stiffness matrix K is

defined by

	

U G k x fKx	 (149)

Equating U to the sum of potential energies of the finite elements, and

matching displacements at nodal points, we find that

	

1	 1	 1	 ^,
k .11	 x`12	 k13	 k14	 0	 0

	

1	 1	 1	 1
k12	 k22	 k23	 k24	 0	 0

k131	 k231	 k331+k111 k341+k122,
	

k122	 k142
K

k141	 k241	 k341+k122 k4 41+k22 2	 k232	 k242

0	 0	 k132	 k232	 it332 +K 3 k 2 +K 3
11 34	 12

2	 2	 2	 3	 2	 30	 0	
k41	 k42	 k34 +K21 k44 +K22

I^
J
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where K 
ij	

denotes
the	

(i1j) tit component of the k
th 

finito element

stiffness matrix. Similarly, the mass matrix for the beam is giveii by

11 2m121 111 13 m14 1
0

12 22 111 
23

111 
24

0

I
III

1 1
+m	

2 1	 2
+Ill

2 2
13

m
23

M
33	 11

III
34	 1 2 M	 III

13	 12

11114 1 1

11124 1

21 

+ml
23. 

+m
m23 2	 M24

2

11 
24

w 
34	 2

I ll 
44	 22

0 0
2

In	
2

1n332  +m 
3 

in
2 
+m 

3

13 23  11	 34 12

0
2

M
14

2

24

2	 3
In,	 +Ili	 Ill
34	 2 1	 44

2	 3
+Il i 22

(151)

The dynamics equation of motion 
in 

matrix form becomes,

10

	

i^Ix + KX	 Q	 (152)

where
T	 1.	 1	 2

Q	 0.1 $ T ) F	 r

givos tho foroes and torques applied at ilodal points.

The boundary condition y(0) = 0 is satisfied by specifying the X1=0,

thereby reduoiog the order of (151) by one.

1,1quition (152) can be written in state-variable format as

+	 0
(153)

X
;X

	

1	 0

The normal mode shapes and frequencies of the free vibration problem are

the eigenvectors and eigenvalues of the state-variable dynamics matrix.

r
0	

(154)
-rF_'



Material
Length
Width
Thickness
Linear density
Stiffness

Stainless Steel
149.875 inches
6 inches
1/32 inches
0.644 lb/ft

424.352 lb-in2

n Analytical 10 Divisions 20 Divisions Experimental

0 .301 .308 .308 ^ .34

1 .728 .755 .755 .75

2 1.27 1.38 1.38 1.37

3 1.98 2.21 2.21. 2.15

4 2.92 3.25 3.24 3.16

5 4.08 4.51 4.47 4.38

6 5.49 6.00 5.93

7 7.13 7.76 7.62

8 9.03 9.79 9.55

9 11.16 12.04 11.73

10 13.54 15.92 14.15
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Finding the eigensystem of (154) is not the most economical method of

finding the solutions to (152), }particularly since the matrices M and K

are symmetric and banded; however, the solution to the closed-loop system

once feedback control is incorporated is most easily .solved in state

variable form.

A Fortran program was written to generate the finite element stiffness

and mass matrices, assemble these into the overall stiffness and mass

matrices, and solve the eigensystem of the state variable matrix (154).

The normal mode frequencies for N=10 and 20 divisions of the beam are

summarized in table IV. The approximate analytical results and experimental

results are included in table IV for comparison. 'these numbers are based

oil the following determination of the beam properties.

Table III Beam Characteristics

-_T

'fable IV Normal Mode Frequencies (Hz) of Beam



In the near future, the following improvements to the model will be made:

• The actuator linkage masses will be included. These masses

add to the mass matrix at nodal points in a straightforward

manner.

• Damping will be modeled. A common problem with high performance

control systems is instability of high frequency modes. Since

damping is instrumental in the ocabtlity of these modes, it

should be included in the model during the design process.

6.3 Control System Hardware and Software

In addition to the flexible beam, a variety of other components are

required to complete the flexible beam facility. In the cider they will

be discussed, sensors, actuators, a microcomputer., microcomputer interfaces,

and control software development, constitute a part of the completed

facility.

Both an optical position sensor and an eddy current position sensor

reached the final selection phase. Many other possibilities were eliminated

by the requirement of minimum sensor interaction with the beam dynamics.

In order to minimize the effects of external disturbances, the developmental

period, and the final cost, an eddy current sensor made by Kaman Science

Corporation was selected.

The final actuator selection was a brushless DC torque motor manu-

factured by Aaroflex Laboratories, Inc. With a three inch moment arm, and

the appropriate mechanical linkages, the actuator has the capability of

applying five ounces of force to the beaus for a maximum one amp input,

according to the manufacturer's specifications.

The purpose of the microcomputer in the control loop is to sample

the sensors, pass this sampled data through a digital filter, and send

the filtered data to the actuators. Assuming a general format for the

.I

ab
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digital filter

x k+l ^ X k + K z k

u k - C x k

The amount of computation is roughly n 
2 +np+nm multiplications. For

the state vector larger than. 	 the number of sensors or actuators, the

amount of computation is governed by the n2 term. Currently available

eight bit microprocessors are capable of performing one fixed point double

precision software multiply in one millisecond, and one hardware floating

point multiply in one hundred microseconds. Due to the limitation imposed

by the sampling theorem (i.e. sar-ple two or more times per cycle) the

maximum number of controlled modes with software arithmetic is four, and

the maximum number using hardware arithmetic is eight.

The microcomputer chosen for the control function is the SYM-1 by
Synertek System Corporation. It is based on the 6502 microprocessor and
has provisions for 4 K of random access mem,ry (RAM) and 6 K of read only

memory (ROM). Additionally, a KIMS1 Interface/Motherboard by Forethought

Products has been added for interfacing directly to S-100 products, specifically
the digital to analog converters, and the hardware arithmetic.

The physical interface between the analog sensors and actuators, and
the digital microprocessor is accomplished through D/A and A/D hardware
and appropriate buffer circuitry. Sensot sampling is performed under
computer control. The twelve bit analog-to-digital (A/D) conversion is a
successive approximation techniquo performed in software with the use of a
Vector Graphic Precision Analog Interface Board (PAIR). Similarly, the
twelve bit digital-to-analog (D/A) conversion is performed in hardware on
the PAIR.

Sensor buffer/amplifiers were used between the sensor output and the
computer. The circuit has a high input impedance and eliminates high
frequency noise and DC offsets. The scale factor from position to voltage
at the A/D converter is five volts per inch. The sensor bandwidth is
greater than thirty hertz.

:..X,
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The actuator driver presents a high input impedance to the microcomputer

D/A converter and eliminates the high frequency D/A conversion noise and

DC offsets from the actuator command. Current feedback is used to eliminate

the inductive effects of the torquer. The scale factor from tlae force

applied to the beam to the D/A voltage output is one ounce per volt. The

actuator bandwidth is greater than thirty hertz.

Software has been developed to implement the general digital filter

discussed in the section oil microcomputers. The entire program resides

in 2516 erasable pr.,grammable ROM by Texas Tnstrumenis, and is located on

the nomputer. When the software is initiated, tlae computer sCanaples tale

sensors, updates the state estimate, and ot!tputs the control. Data for

the program is loaded into RAM and consists of 0, C, and k, and the

dimensions of these matrices. The exact sample period, T, (in cosec) is

given by

T = 0.983 n 2 + 0.963 np + 0.963 nm + 0.258 n 4- 0.154 m + 0.597 p

+ 0.010 m2. + 0.725 .

A listing of the assembly language software can be found in the Appendix.

6.4 Control Law Design

A variety of control. Laws may be implemented using the general software

discussed in the section oaa microcomputers. The particular approach used

in the initial control, ;Law design (and the example presented here), is

an implementation of a discrete Kalman filter using a sixth order

estimator.

The controller is based on the discretized version of the following;

continuous system

x = F x+ G u+ r w

u = C x
	

(156)

z = H x + v
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where
r^^

x [ao ^	 oP	 ql'	 q l ,	 Q29	 ;2]

— 0 	 1	 0	 0 0	 0

3.55	 0	 0	 0 0	 0

0	 0	 0	 -1 '3	 0
F 3

0	 0	 21.60	 0
r

0	 0!

i	 0	 0	 0	 0 0	 -1

0	 0	 0	 0 68.72	 0

With a single position sensor and a single Force actuator at the free end

H = [1	 0	 1	 0	 1	 01

G
11T =	 [0	 0. 18	 0	 0.18	 0 0.18)

This control gains, C, and the estimator gains K are determined by

minimizing the appropriate performance index J.	 In the case of the control

problem

J=f (XT Ax+uT B u) dt
0

and for this particular example

;l
0	 0

A = 1	 0	 B = 0.0025

1
0	 0

For the estimation problem

J =
J
. (wf 

Q- ' 
w  + v 	 R 1v) dt

0

w
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-0.85 ± 2.07 j -0.38 ± 4.66 j -0.21 + 8.29 j

to = 0.38
41 =

0.082 52 = 0.025

and for this particular example

Q w E(w w T ) - 10-4
	

(m/sec 2 ) 2 see

R - E(v v T ) - 10-6
	

(m) 2 sec

For a six state estimator, one control, and one sensor,

T * 0.049978 sec.

Using a discrete optimal system synthesis DOPTSYS (16) algorithm, the

following results are obtained

0.950 0.047 -0.045	 -0.000 -0.044 -0.000

-0.251 0.910 -0.085	 -0.033 -0.053 -0.019

-0.019 -0.002 04953	 0.048 -0.018 -0.000

-0,064 -0.084 -1.144	 0.939 -0.044 -0.019

0.011 -0.002 -0.011	 -0.000 0.904 0.048

--0.059 -0.082 -0.068	 -0.032 -0.374 0.896

0.0438

0.0265

0.0183
K

0.0165

0.0103

0.0110

-5.3744

-9.4553

T -6.5416

-3.7488

-3.0469

-2.2154

and the equivalent frequency domain eigenvalues of the closed loop system

are given by
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Figure 24. Controlled and Uncontrolled Beam Responses
Amplitude 1/2 Actual 'displacement
Time Scale = 1 sec/cm
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Figu ^ 25. Unstable. Control. System
Amplitude 1/2 Actual Displacement
Time Scale = 1 sec/cm
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These matrices nta converted to the sixteen bit fixed point format

used by the microcomputer and are loaded into the controller as data.

The results for this controller can be found 
in 

figure 24. Figure 24
contains the uncontrolled and controlled responses to both an initial
condition error on positions and to an impulse force input.

Figure 24a shown the open loop response to an initial position error.
The majority of the response is the lowest frequency, pendulum mode. It

has an open loop damping ratio of -2%.

Figure 24b shows that 	 loop response to the same input as In

figure 24a, using the controller described previously. Notice, Lite much

faster decay rate of the closed loop system. The corresponding 0,ontrol

force applied to 
the 

bear, is shown 
in 

figure 24c.

It is now possible to partially verify the vontrol analys"s . The

predicted closeQ loop damping ratio for the low frequency mode is 0.38.

Using the maximum overshoot of 
the 

closed loop position response for

determining 
the 

closed loop damping ratio, t,.. closed loop damping ratio

of 0.40 is experimentally obtained.

Figures 24d, 24c, and 24f show analogous responses of the beam to an

impulse force disturbance applied a!; the free end.

One additional feaLUt^ present iti the closed loop responses 
in 

figure 24

is the high frequency oscillation appearing at the tail of each plot.

This phenomenon is due to control/observation spillover into the first
unmodeled mode at two hertz.

The deletertous effects of spillover in control system design can be
demonstrated In the following example. By decreasing the cost of the
squared control by a factor of eight, a oecond control system can be
designed and implemented. The results of this control system are shown

in figure 25.

In this case the control spillover into the first unmodeled mode
is sufficient to drive the system unstable.

V
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Section 7

7.0 Future Work

FULUry work in the distributed control of large space structures will

be voncenLrlLed 
In 

two areas: (1) extending the distributed control

analytical techniques to include general (FE) models and (2) expanding

the experimental 
test 

faciliLy.

Distributed control analytical techniques will be extended by replacing

the continuum models (if needed) used for understanding 
the 

theory, with

more realistic FE' models. Since the theory developed using PDE models
will apply to arty linear operator, the extOnSiOn of the finite eleflievx

models will be straightforword.

The flexible beam test facility will be expanded to an interactive

facility. This will, allow a general user to work at tile computer

terminal, design shape and/or active control, systems, to implement these

control systems With the microprocessor control system, and to obtain

graphic outputs and chart recordings of 
the 

final results.
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