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Abstrack

This report represents the culmination of work to date in the areas of
modeling and control of lurge space structures., Both theoretical develop-
ments and the results of laboratory experiments are treated herein, as
they apply to active attitude and vibration control, as well as static
shape control. Modern control theory has been employed throughout as the

method for obtaining estimation and control laws.
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Section 1
1.0 Introduction
1.1 General Background

As spacecraft became larger and more flexible, the equations needed
to accurately model the static and dynamic behavior of these spacecraft
became more complex. In general, higher order finite element models must
be synthesized by the structural analysts in response to spacecraft tending
away from lumped mass configurations and tending toward continuously dis-
tributed configurations. More and more structurai modes or degrees of
freedom are passed on to the control analysts in an attempt to retain a
fuithful model. The use of these models directly for the purpose of on-board
estimation and control of actitude, shape, and station may become unwieldy.
On the other hand, serious well known stability problems may arise due to
the use of oversimplified models.(l)

Spacecraft size also is not the only driver of model complexity. As
more demands are made of control system performance, in terms of attitude
accuracy, pointing accuracy, stability, shape accuracy, slew speed, etc.,
structures which heretofore have been modeled as rigid bodies must now
include flexibility terms. This results from the fact that as more per-
formance 1s required from a given space structure, improved knowledge of
the structure itself is vital, just as are more accurate sensorsg, actuators
with better resolution, better computational accuracy and resolution, and

a better understood disturbance environment.

Prior to this work, very little information was available on the control
of large distributed structures. That is, assuming that any sensor/actuator
arrangement and type were available, the control logic for processing the
sensor outputs to produce actuator commands had not been developed. The
purpose of this work was to obtain a better understanding of the theory
of the control of distributed parameter systems (DPS) through analysis and
laboratury experimentation. Rather than attacking the analysis problem-
by "building up' a general DPS from many discrete, interconnected, lumped
systems, and applying existing modern control theory, new optimal control
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approaches based on continuum models were developed for static ar dynamic
control., Using these new approaches, much insight could be gained for the
control of gerrsal DPS modeled with finite elements,

There ave many possible applications for spacecraft that can be modeled
as DPS. Some of these include antennas, solar arrays, platforms, and solar
satls. Using antevnas, a broad range of the electromagnetic spectrum can be
covered,  Wrap-rib, hoop=-columi, and sunflower antenna designs may all
be represented as DPS, and have applications in the microwave, radio, and
x=ray bands. Solar arrays have applications ranging anywhere from power
supplies for satellites to orbitinpg solar power stations for entire citiles,
Platform structures may provide common utilities including power, thermal
regulacion, communications, and attitude control, for a number of different
experiments, Finally solar sails may some day provide an economical method
of developing low thrust over long time periods.

In an cffort to mimic many of the dynamic and control characteristics
of DPE, a laboratory facility has been assembled. The "spacecraft" consists
of a hanging flexible beam. 7The beam is instrumented with position sensors
and force actuators. A microprocessor directs the entire control sequence
for shape control and vibration control, Laboratory demonstration and
verification of various coutrol‘system concepts will continue to be a vital

part of the large space structure control effort.

The work contained in this report on DPS can be divided into five

major areas:

1) Modeling

2) Optimal Control

3) Active Control

4) Shape Control

5) Experimental Verification

The section on modeling consists of several of the more popular methods
of mathematically representing physical systems for control system design

purposes, The section on Optimal Control consists of a brief description




of some of the modern contrnl approaches. Active Control refers to the
control of systems governed by a set of dynamic equations of motion., This
may include vibration suppression, attitude maneuvers, translation or
station keeping maneuvers, etc., Shape Control means the control of an
elastic structure to produce a glven static shape. Finally, a section on
Experimental Verification contains a description of the develupment and
results of a facility designed to demonstrate and verify various control
system design approaches.



Section 2

2.0 Modeling of Large Spuace Structures

2.1 Introduction

The design of a control system for any physdcal system must certainly
begin with some knowledge of the system itself. A mathematic:l representation
of the system, structure, or spacecraft, is known as a model, The modeling
techndquws <0 be examined in this section are partiasl differential equation
models, finite element models, finite difference models, and modal models.
Bach type of model has its own merits and shortcomings depending upon the
particular application., In an effort to keep all the notation simple,
undamped and non-rotating structures will be considered throughout the
remainder of this work. Although this type of model will not be universally
applicable it will still represent a very large class of proposed large

structures.

2,2 Partial Differential Kquation Models (PDE)

The PDE is the most natural way of describing the behavior of a spatially
continuous system, and, in fact, it will be the only continuous modeling
approaci to be discussed in this work., PDE's can be very useful for modeling
simple systems, such as strings, beams, plates, diaphragms, shells, columns,
ete., but rapldly lose theilr usefulness for complicated structures. The
reader should be reminded that there are many complicated structures that
may be represented approximately using the simple models listed above. The
primary value of the PDE model for control purposes is that a PDE is a very
concise approach to handling a continuous model, i.e., a model that retains
an infinite number of degrees of freedom. Much insight into the control of
general structures may be gained from the analysis of several "comvlete"

modals.
The general form for the PDE model considered here is given in (1).

p(x) ;(x,t) = 1 y(x,t) + f(x,t) /f""
By (I'ht) =0 Q (1)

Y(x, tO) = yQ



The complete model consists of equations of motion, boundary conditions,
and initial conditions. In other words, (L) can be stated as "the mass
times the acceleration of a p~int x in O s equal to the applied forces."
These forces are due to internal forces and external forces. The dynamics
arc also governed by an appropriate set of boundary and initial conditions,
The problem of static shape control may be incovporated into (1) by
suppressing the time dependence.

2.3 [Finlte Element Models (FE)

The finite element modeling approach is a Lagrangian approach used
to assemble the differential equations of motion for complicated structures
from a set of simple elements, such as beawms, plates, rods, point masses,

ete.

The basis of the finlte element approach is that the kinetic and
potential enexgies in a structure can be obtained as the sum of the energies
of the individual elements, and that the energies in individual elements
may be approximated using a (small) finite number of discrete coordinates,
and some fixed continuous interpolation functions. The enerpy in a
particular element results from a spatial integration over the element,
ef fectively allowing the energy to be written as a function of these
variable dlscrete coordinates, and of some fixed constants that result
from the integration process. Applying Lagrange's approach for deriving
the equations of motion results in

Mx + Kx = F (2)

Attitude control, statilonkeeping, and shape control of many structures
can be incorporated in the format in (2).

The advantage of the finite element methad of modeling is that models
for arbitrary structures may be synthesized from much simpler component
pileces. The mating of various components, as well as the boundary conditions
of the overall structure are satisfied "automatically." Furthermore, a
great deal of software has been developed for assembling high order models,

[#4]



and for performing the subsequent analysis. One disadvantage of finite
element modeling is that the model itself may be very high order,
(perhaps hundredg), and that useable results can only be obtained

after an eigensystem analysis of the high order model,
2.4 Finite Difference Models (FD)

A finite diffevence model 1s a direct approach to deriving equations of
motion, as oppose to the variational approach analyzed with FR. The
finite difference method ig the vesult of approximating a differential
operator divectly by means of finite differences. In general, therefore,
the higher the ordar of the operator, the more coupled the dynamics of a given
point is with adjacent points. General boundary conditions can only be
enforced by painstakingly obtaining the FD equation that is also consistent
with thi; desired boundary value. It is not possible using FD techniques
to assemble complex models using simple components, as is the case with
FE. ¥ modeling for large structurss has only very limited usefulness.,

The greneral form for a finite difference model is the same form as (2),

except that the mass matrix with FD is diagonal,

2,5 Modal Models

A modal model of a structure is usually the output of another modeling
process, generally PDE, TE, or FD. Modal models yield a decoupled set of
second order differential equations describing the natural or unforced
behavior of the structure, in terms of the modal amplitudes. Because of the
fact that the natural modes of a system are easily observed, much insight
can be gained by study of a modal model. Under the assumption that any
motion of the system can be represented as some time varying linear
combination of the modes, knowledge of the mode shapes and their time varying
amplitude is sufficient to completely describe arbitrary behavior. The

inhomogeneous modal model of the time varying amplitudes is usually written

q,+2%q = [ b (VEGx,E) dx (3

where the eigensystem analysis is either performed analytically in the case
of PDE, or numerically (using a wide variety of available software) in the
case of FE or FD models,
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For the aforementioned reasons, it would appear that modal models are
ideal for controls applications, being natural and simple in structure,
In fact, modal models had enjoyed widespread usage up to and including
theiy application to large structure control, The particular problem
encountered with the use of modal models is that in theory, an infinite
number of modes are required to model a continuous structure, whereas in
practice, it is only possible to work with some finite number, Truncation
of the series approximation of the model may result in system instability,
inasmuch as these medes are still forced by outside forces, but the
resulting motion was previously assumed to be unimportant,



Section 3

3.0 Optimal Control
3.1 Design Procedure

The primary reason for adding a control system to a system or a structure
is to change the characteristices of that system, whether Lt be in response
to commands, or In response to disturbances., Evidently, thexe are changes
in the system that can be made which makes its characteristics closer to
some desired performance, and there are other changes that make the perfor-
mance less desivable. One method of specifying a measure of performance in
the control system desipn process is through control system design methods
using optimal control,

The optimal control design process involves speclfication of a scalar
performance measure or cost function that reflects the relwvive importance
of a varlety of different factors. The chofce of feedback control law that

minimizes the cost function is then deemed to be "the optimal control,"

The form of the cost function used throughout this work is a quadratic
performance index. That is to say, a quadratically increasing cost is
incurred for both (1) using additional control effort, and (2) desired outputs

from the system not matching actual outputs,

Quadratic cost functions yield easily implemented linear state estimators
and controllers. Furthermore, an entire body of information exists for the

theovy, performance, and implementation of this type of controller.
3.2 Bensors and Actuators

The purpose of this work is to address the theory of the control of
large structures. The two major reasons for the need of a new theory of control
is that future large space structures differ from present day structures
in two very significant aspects. Firsi, the control of large structures
involves the control of systems governed by continuum ovr infinite dimensional
models, and second, even a simplified model of the structures is likely to
contain gross errors due to the inability of conducting meaningful ground

tests of these large structures.



The problem of designing new sensors and actuators, ov, of selecting
them from existing sensor/actuator technology is not addressed in this
work, When needed, it will be assumed that ideal position sensors, angle
sensors, rate sengors, torquers, cte. will be avallable for the control
system design process.

3.3 On-Board Implementation

As with the gensors and actuators, very little attention will be paid
to the on-board implementation of the control system. It is implicitly
assumed, however, that an on~board ditigal computey will be available for
implementing the control law, 4 necessary. In a qualitative sense, 1t

will be recognized that there are limitations to the computational capability

of the on-bnard processor, whether the processor is physically in the form of

o single, lumped computer, or if it conddsts of a distributed matrix of

smaller processors,



Section 4
4,0 Active Control
4.1 Introduction

This section contains a derivation of the necessary conditions for an
optimal local control law for a general system in state variable format,
A local control law is one in which only locol state information is used
to synthesize the control law for each actuator (even if additional state
information 1s avallable) and hence, is a different problem from that of
output feedbaek.(z’B)
designing control systems for large flexible space structures, where many

A practical application of this idea occurs in

sensor outputs may be avallable for feedback, yet it is not practical to do
so due to the large spatial distances involved.

By representing the structure in physical coordinates (the initial out-
put of the PDE,FD or FE analysis) rather than modal coordinates, the numerical
solution of the optimal full state and local fecdback problems may be
simplified., Numerical examples of control law designs for a simple two
mass model, for a free-free flexible beam, and for a string in tension
are given, Similar examples using different design approaches may be found
in References 4 and 5.

The counterpart to the Local control law is a local estimation scheme,
Local estimation processes sensor information using a dynamic model of the
system to obtain estimates of only the nearby components of the state
vector, not the entire state vector. These comporents of the estimated
state vector should be precisely those components required by the local
control law. Combining the local state estimator with the loerl control
law results in a local controller which significantly reduces the amount
of on-board computation, and allows the computations to be performed in

a distributed or parallel manner,
4.2 Necessary Conditions for Optimal lLocal Control

The derivation of the necessary conditions for the optimal local control
begins with a system in state variable format and a quadratic performance
index to be minimized as is shown in (4).

10




X = Fx + Gu + w x(t ) pgilven
° (4)
by .1 T
Min J = 1/2 J (x” Ax + u” Bu) dt
u t
0
Assuming that the desired firal solution is of the form u = Cx, the
substitution into (4) is made yielding the deterministic equivalent

x = (F 4+ GC) x x(t ) given
0
(5)
¢ 1 T
Min J = 1/2 x (A + C" BC) x dt
c t
0
At this point, the constraint that only local states be fed back can be
enforced by requiring that certain components of C be identically zero and
that the minimization in (5) be carried out with respect to the remaining,
non-zero components of C. Equivalently, the constraints may be adjoined

to the Hamiltonian to yield

Ho= 1/2 x5 (A + GLBC) x 4+ AL (F + 6C) x + ey (6)
where

My = 0 if cij ¥ 0

“ij $ 0 if C11 =

and where summation over the repeated indices is implied. The optimality
condition becomes

BC xx' 4+ GY A x% 4 =0 7

where the 's are picked to make the corresponding constrained Cij's

equal to zero.

The usual sweep solution obtained by letting

ME) = 5(E) x(£), € = - ™YL s(e) (8)

no longer works in general since the optimality condition in (7) results
in C being a function of x and t, i.e. the minimization can no longer be

pexformed independently of the initial condition. However, the appearance

11



of the terms xxT and AxT above suggests that a linear statistically optimal

control may exist. The stochastic analog of (5) in terms of tha covarlance
of the state is(®

Row (F+60) X+X(F+060)T +0 X(t,)  given )
(9

Le
Min J = trace f £ 1/2 (AX + CT BC X) dt

G to

where desdgnated CiJ's are zero and X = E(xxT). The accomplishment 4n the
preceding step 18 to average the performance index over a range of possible
initial conditions, Rather than considering all initial conditions to be

(7)

obtained using the state covariance matrix. The adjoint matrix equation

equally likely, a more realistic range of possible initial states can be

and optimality conditlon are:

T

A A PG+ P+t A+ a+cloBe Mep) = 0

. (10)
BCX+G AX+u=0.,

Although an exact solution to (10) is possible, an approximate solution may
be casily obtained by expanding the cquations in (10) to first order in
u about the optimal solution for u = 0. This yields

c(e) = = 37 (68 Ace) + u X)) (11)

where A and X are the solutions of the unconstrained optimal control problem
(1 = 0), and y 1is picked to zero the corresponding components of C. TFor

the unconstrained problem, u = 0, the result in (ll) reduces to the familiar
result, Cn-BGTA. Equation (11) has a nice physical interpretation. To
first order in u, Lf not all the states can be fed back, those states that
are available should be fed back with a correction to the feedback gains
based on the correlation between those states fed back, and the remaining
gtates. (As a practical note, the inverse in (11l) need never be computed.
In fact only "a few" elements of X need to be manipulated.) Furthermore,
since the solution is expanded about the optimal solution, it can be shown

that'gai— = (0, il.e., this concept of local control does not severely affect
ij
performance to first order in p. The algorithm for solving the local

12



control problem can be outlined as follows, First, solve the full state
optimal control problem, next, apply the local control cocrection appearing
in (11).

Tt should be noted that as in the full atate feedback case, for V¥, G,
A, B, and Q all conetant, it is possible that a steady state solution for
G, A, and X may be obtained as te - to » m, However, as opposed to the caae
of full state feedback, stability of the ¢losed loop system I not guaranteed
when using loeal control gains. The elgenvalues of F 4 G¢ using the local
control gain must be determined to verify stability of the closed loop
syatem,

Thus far, the problem of solving the full state optimal 2ontrol problem
(step one above) for high ovder systems has been avolded. However, the
golution procedure required usually assumes that a low order model of the
high order system is available to make the problem tractable, Traditionally,
the structural anplyst supplies as many modes as the control system desipnoer
wishes,  Regardless of wiere the actunl truncation oecurs, or by what method,
the control system designer beping with a defielent model., This may result
in closed loop fnstabilities.

The alternative to working with the truncated system model is working
with a full oxder finite clement model, as it Is generated by the structural
analyst, The next scction offers some hope that the analysis of these
high order systems, particularly structural systems, may be feasible.

4,3 Finite Element Structural Models Control Design

In an attempt to develop control system design techniques for high order
systems, and to alleviate the problem of truncated modes, it is worthwhile
to examine the structural equations of motion, Attitude control, station-
keeping, and figure control of many structures can be represented by the
following matrix equation.

Mx + Kx = Gu (12)

Matrix bandedness of M and K is a direct result of the finite clement modeling,
Since control inputs from a given actuator are applied at a single station
on the structure, nearly all of the elements of G are zero.

13



Equation (12) can be placed in wodal form

a + 92 qm= ¢T Gu (13)

by normalizing the eigenvector matrix, ¢, so that

X =9 q

S Mgl (14)
F A

L

where i 18 a diagonal matrix of modal frequencies, Furthermore, computer
programs like EIGSQL(B) and DAMP(g) can solve the open loop eigenvalue
problem (u = 0 in (12)) very efficiently by taking full advantage of the
matrix aparsity in both atorvage and computation,

Consider now the problem of designing a control system for the system
in (13). Selection of a contrnl law ean be based on the minimization of a
gquadratic performanco index similar to that appearing in (4).

t . "
J o= 1/2 j £ (x’1 Ax + uT Bu) dt (15)
t

0
Regardless of where or if truncation of the modal system occurs, the open
loop system dynamics matrix, Hz, is a diagonal matrix and hence, simple to
manipulate from a Lomputational point of view, However, the corresponding
control distribution matrix ¢ G 8 not a sparse matrix, and so the
Hamiltonian system for the corresponding optimal control problems has the
following form
ne L F‘ i
o oTen Y6 L

"

(16)
2

A 0

28

The shaded areag in {16) represent non-zero matrix entries. Because little
useful matrix structure remains in (16), the eigensystem analysis required
for the solution of the optimal control problem can not be performed
efficiently., Consider instead the control of the original dynamic system
in (12). At this point the concept of local control emerges naturally,

The dynamics of the flexible structure are characterized locally. This is

14



the reason that a good dynamic model of the flexible structure can be
obtained using tightly banded matrices. Furthermore, actuators produce
effects locally, and sensors measure local behavior., It therefore seems
plausible that a good controller may be possible using only local state
information,

The optimal control problem may be formulated as follows.

Mx + Kx = Gu x(co), §(to) given

Ee o T (17)
Min J = 1/2 I (x"Ax + u Bu) dt
u t

e ]
By adjoining the constraints in (17) to the performance index with Lagrange
multipliers, A, and integrating by parts, two times, the closed loop system
dynamics and the corresponding matrix structure are given by

-"1 r~ -1 T"‘ - ‘1 p-

M 01 x K =GB "G x x(tox i(to) given

A(tf) - i(tf) =0

o o

o M[{A] [ K J|*.

L - 3c A 3
r§1 \\\\\\ x 0
N N, -

A_] L l.xi L 0

Equation (18) is the Hamiltonian system corresponding to the optimal control

(18)

problem in (17). The important feature to notice is that nearly all of

the original system's matrix structure is preserved, and that the eigen-
system analysis that must be performed in (18) to obtain the optimal
control differs from that which must be performed in (17) to analyze the
open loop system dynamics, by only two "stripes" off the principal diagonal,
As such, from a computational point of view, both storage and computation
time can be reduced by fully exploiting the high degree of matrix sparsity
in an eigensystem analysis or through efficient matrix perturbation
techniques.

4.4 FExamples of Local Control Systems

This section contains two examples of the steady state optimal local

control concept and comparisons of the performance of the optimal local

15



control law with the performance of control laws designed using various
otheyr approaches,

Example I - Two Mass Model

—/\, 1.—;
1 V2
2
P xy b x;
2 2
min E(J) J=1/2 J x," + dy® dt Q=1,
0

Fig. 1 Two Mass Model System

Figure 1 consists of two unit masses connected by a spring with stiffness,
one half. The open loop system has a single rigid body translation mode
and a single vibration mode. It is desired to control the position of mass

1 (xl) with a control input u, in the presence of the disturbances w.

Three approaches for designing control systems are examined:

a) Full state optimal control. All four states are available for
feedback (xl, X Xy» xz).

b) Modal control. The control system is designed on the basis of a
rigid body model,

¢) Local control. The feedback gains on x, and %2 are constrained

to be zero.

For the given performance index, the results are most easily summarized

in figure 2 and Table 1.
Table 1. Control System Design Results

eigenvalues gains
X X X Performance
Controller Mode 1 Mode 2 xl 1 2 2 Index J
Open Loop 0,0 + 13 0 0 0 0 o
Full State -.310 + .4043 -.128 + .9743 -.384 -.876 =.116 =,453 3.792
Rigid Body -.357 + .6195 =-.355 + .606] =.500 -1,414 0 0 4,949
Local -.144 + .299j ~.186 + .984) =-.221 -.661 0 0 4,393
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Le *-1

Figure 2, Control System Design Results.
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The closed loop eipenvalues, feedback gains, and performance index
are given for each control system design approach. Of course, the full
stote optimal control law "performs" the best, The desired root locations
for the control system designed using the truncated dynamic model are shown
in Figure 2 with triangles. Due to the presence of the truncated system
dynamics (in this case the vibration mode), the four closed loop roots
actually end up some distance away from the rigid body design point.

The local control system is designed using the full systems dynamics, but
with the constraint of partial state feedback. This closed loop system is
"closer" to the optimal full state control law than is the rigid body
control law in terms of both the system performance and the final root

locations, and only uses feedback of x, and il. It should be noted that

1
as the cost of control decreases (B deereases), the relative merits of
the local control law over the rigid body control law become even more

apparent.
Example II - Free-Free Flexible Beam

The partial differential equation of motion for a free-free flexible
beam with constant properties per unit length is given below (fig. 3).

<

g u (x,t)
g
Sl L x Position
a0 L
/)]
e
A 4
2 , 2 2
p 2L+ 2L - u ) 230 = 23w =0
at 9x ] 9x

3 3
3_%(0) - 3—§(L) - 0
ax 9x

Fig. 3. Free-Free Flexible Beam.

A finite difference discretization of this beam can be obtained by
choosing a state vector composed of deflections and deflection rates at

ten stations along the keam (fig. 4).
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Fig. 4. Discretized Bcam Model

Furthermore, it is assumed that control forces u, can be applied at the

i
designated stutions. Penalizing the beam displacements at each of the ten
stations results in a control law which performs stationkeeping, attitude
control, and shape control. The following matrices were chosen for the

quadratic performance index

A=1 B=0,01-¢°1I

10 4

As before

Q= 1Ipe

A full state optimal control law and a local control law were designed

for the flexible beam using p = EI = 1, L = 9, Due to the symmetrical
placement of the actuators, it is sufficient to present the feedback gains

for synthesizing uy and Uy . In each of the accompanying figures (figures 5,6,7,
and 8) solid lines are the full state feedback gains as a function of station
location and the broken lines are the local feedback gains obtained under

the constraint that only states which are immediately adjacent to the

actuator are allowed to be fed back.

There are several important features of these results to recognize.

1) The full state feedback control law makes very little use of
"distant" state information., This feature is not apparent from the modal
approach where the feedback gains corresponding to the various modes may
be roughly the same magnitude. Evidently the modal feedback effects tend

to accumulate at the actuators and cancel far from the actuator,
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Figure 5. Full State and Local Position Feedback to Actuator 1
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Figure 6. TFull State and Local Position Rate Feedback to Actuator 1.
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Figure 7. Full State and Local Position Feedback to Actuator 2
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Full State and Local Position Rate Feedback to Actuator 2

23



2) The local control law is equlivalent to active springs and dashpots,
to provide stationkeeping, attitude control, and figure control. This
result may be useful for sontrol system design for general flexible
structures.

3) In this example, the difference between the performance index
using the local control in place of the full state optimal control is
less than 1%. In general, the use of local control guarantees no flrst
order change in the performance index.

4) From a computational point of view, the following computer CPU
times were required by a UNIVAC 1108 to obtain the control laws for this

20-state system.

a) orrsys,tO

order Hamiltonian system to extract closed loop eigenvalues and

18 seconds. The QR algorithm is applied to the 40th

elgenvectors.

b) Direct Integration, 15 seconds. Direct integration of the matrix
Ricatti equation exploiting all matrix sparsity was employed to obtain

steady state gains.

4.5 Local Control Based on PDE Models

One possible method of cireumventing the problems resulting from the
increased number of modes to be controlled is by avoiding modal models
completely. Working directly wita partial differential equation (PDE)
models of continuous spacecraft is a viable alternative. In fact, some
structures, such as solar panels, large antennas, and astromasts may be
more easily modeled with PDE than with FE, particularly when many modes

are required.

The motivation behind the 'local' approach to be discussed here is
that the PDE for a continuous spacecraft describes the acceleration of
each physical point on the spacecraft in terms of differential operators,
i.e., in terms of the behavior of the spacecraft within a local neighborhood

of each point. Since sensors measure and disturbances affect local variables,
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a reasonable job of state estimation may be accomplished with local state
estimation, The entire design procedure would avoid entirely the problems
associated with high order (possibly truncated) modal models. If ic is,
in fact, true that a local control law minimizes a quadratic performancs
index for distributed pavameter system, then the underlying explanation for
this certainly must be derivable from the PDE control formulation.

The control analog of this problem has already been addressed in the
previous section. It has been shown that the optimal control law for a
free-free flexible beam very closely resembles a local controller. This
means that if a modal controller for this system is designed, the feedback
law may actually represent a more simply expressed control law were it
expressed in physical coordinates.

Breakwell(ll) has also obtained some vesults for the optimal control
of a continuous flexible beam using PDE, in which a symmetric root locus
approach is used to determine the optimal closed loop root positions.
Following this step, the continuous control gains needed to move the roots
to thedr optimal closed loop locations remain undetermined. That is, no
direct procedure is available for directly determining the optimal feedback

gains,

The purpose of this section i1s to present a PDE estimation and control
problem formulation that contains sufficlent generality to encompass a wide
variety of continuous control system design problems within a single
analytical frawmework. By drawing on a simplified example, a string in
tension, some insight to the control of continuous structures is obtained,
and some generalizations for their control can be made. Although the
estimation problem is discussed here, the results can be extended easily
to include the control problem too. A procedure for the direct determination
of the continuous optimal feedback gain is given, following the format
used in the control of systems governed by ordinary differential equations.

Consider a general partial differential equation of motion in state
variable format. This equation represents the dynamics of the state vector
in some spatial domain, with boundary conditions prescribed on the boundary
of this domain. The initial state of the system is given. It is desired
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to obtain an estimate of the state of the system as time evolves, from
nofry measurements in the presence of disturbances. The mathematical model
ig given below.

y(x,£) = F(D) y(x,t) + Px,tIwlx,t)

y(x,tn) glven .

' (19)
BD) y(r,t)  given ! ( 0 (

z(x,t) = H(D) y(x,t) + v(x,t) *\\\\\\-‘ﬂy’,/}

F(D), H(D), and B(D) are linear differential operators in the spatial
variable, Were it not fer the presence of the differential operators in
(19), the mathematical formulation would be fdentical to the ordinary
differential equation state variable format, (It will therefore be nota-
tionally convenient to omit Future appearances of all superfluous symbols.

It should be wemembered that the model actually analyzed is written in all
of its detail only in (19)). 1In ovder to obtain a state estimate from the
measurements, a performance criterion ie selected which weights the relative
importance of the process and measurement disturbances, Minimization of this
performance index is one way of obtaining the optimal state estimate.

t

J = 1/2 [
t

f J <7Q" e + vIR YY) dx de (20)
Q
(o]

Adjoining the constraint dynamics in (19) to the performance index
in (20) glves

B Y P N R € 1D S €= 1))
e 9 2
(o}

(21)
+ AL (=g + Fy + rw)} dx dt
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The necessary condition for the minimization of the performance index

is that the first variation of J vanishes for arbitrary admissible variations.
This variation yields:

t .
0m 8] m th ot + AT ew dx de
o I
e T.T=1 1o
+ J [ {=8y H'R ~(z=Hy)=)\" &y (22)

t |0
* 0

T

+ A" F 8y} dx dt

Since 8w in (22) is arbitrary, the optimality condition {s obtained,
T
wow =0T} (23)

Two steps are now required to isolate the &y multiplicr in (22).
The first is to integrate the A Sy Lexm by parts to obtain the {inal
conditions on the adjoint variable, A (x t ) = 0, and also an integrated

term, -Ar Sy. The second step requires the igolation of the 8y terms from
thelr gperators F and HT. A short digression is required,

Let (e,¢) define un inner product.,
If T 1s some operator then its adjoint operator T* is defined as
(u,Tv) = (T* u,v)

Using the star notation to denote adjoint operators, the equations for
the adjoint variable becomes

% 4+ Iy = HAR S (z=Hy) = 0 (24)

Boundaxy conditions on X will resalt from computation of the adjoint
operator.,

The closed loop dynamics of the estimator is now written below,

!

K Fooo-rert| |y f 0
Y RIS O I P iul*u'lu
y (&)  given By = 0 (25)
A (k) =0 BX\ = 0
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As usual, it is desirable to wrire the estimator in the form
3
y = Fy + K (z~ly) (26)

Here K may be a differential operator astimator gain. Toward this end,
let

y =y~ Py

where P is also an operator. It is now straightforward to show

A " I "
y = Fy + K (z-ly) y(e) = y(e)

1

bow PI* 4 FP & PQPY - PHATRTY pp P(0) = 0 (27)

K = piiiagt

where products of operators of course represent composite operations,

The problem of determining the optimal estimator gains for a spatially
continuous system has now heen reduced to a familiar format, The only
differences are that the estimator gains are now In operator form, and
that the Ricatgd equation for the estimator gain is in terms of a differential
operunior, P,  That such a solution exists and 1s unique is not pursued
hera.(lz) Rather, a detailed example problem is presented in the following
seetion,

A,6 Flexible String Example

Consider the dynamics of the string in tension shown below.

g y
dﬁﬂ
I NV N
3]
o ”\“\
o ' ~ > % Position
g 0 1 ’
The partial differential equation of moticn is given by
oty %y
= “p - w e
o2 2 w o y(0,e) = y(l,t) =0 (28)

y(x,0) =0
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A

Assume a continuous position measurement, z, is available, and that
it is desired to find the steady state estimator that will minimize the
following performance index.

-]

J = 1/2 I [ (wTQ'lw + v h)  dx de . (29)
0

0
From (28) and (29), the equivalent state variable formulation is obtained as

H=[1, 0] . (30)

{en )
T r— .

Letting

00 o]
(u,v) ==f J uv dx dt

0“0
the adjoint operator to F is given by %)
o b2
P = % (31)
1 0]

Using the results in (27) and letting

o
~no

5

P =

=
o~

B e e e sn e

P3

it can be shown that the steady state optimal estimator can be obtained

from solution of

-1

1

Pq

2 -
p, + P.D" - P,R "P, = O
4 1 1 2 (32)

2

D7P !

1 + P4 - P3R P1 = 0

2 1

2 -

Again, it is pointed out that products above denote composite opera-

tions. Even so, the feedback gains can be written symbolically as

e /R (/2(1)2 + /00 + Q/R';
¢ = | o (33)
| Py/R 0% A 4 Q/R |

-
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where the square root of an operator is to be interpreted as the operator
whose composite operation with itself yields the desired operator. In
each case, results obtained using the above analysis will be compared
with numerdceal results using a discretized 20 state representation of the
string dynamics, with the program OPTSYS.(lu)

In the following examples, the estimator gains determined using the
differential operator approach will depend on the relative norms of Da
and Q/R in (33). Obviously the norm of D4 defined as

] = a0 /(yay) = 0%,0%)/(yay)

can be made arbitrarily large. At this time some notion of the modal

concept does prove to be usceful (although it is still not required). In
general, higher frequency wodes in the time domain result in higher frequency
mode shapes in the spatial domain, 7The norm of'l)4 on these eigenfunctions
will then serve as a basis for which modes are low frequency, and which are
high frequency. What will eventually be seen is that there will be

distinct estimation approaches for the high frequency modes versus the low

frequency modes.

Case I Q=10% R=1

For Q/R large, or alternatively, for estimation of the component motion due
to low frequency behavior, an expangion of (33) gives

= 2 4
P /R"V/Q' 1 + ) +“’I)“’oco
3 R Q5,4 ]
R R

(34)

. 2
B /R = /E"lf/% 1+ 2. o 4]

2/x
Regardless of the dynamic system involved, for Q/R large, the estimator

gains as a function of position are approximately constants, Since they

are not "operators", they will involve feedback of only local state

information. In fact, Q/R large is precisely the condition needed to

guarantee the optimality of local estimation (or local control in the

control problem). The estimator for this problem will #hen be
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B -2

" 1 ‘A I
.a-év . = ) . + i (2")’) (35)
y b 0 y i VQ7@

Notice that the estimate error tends to zero for all modes, not just for
the low frequency modes, That 18 to say, truncation of the diffevential

operator to include only the leading term does not result in any instabilities.

A comparison of the estimator gains obtained using the operator approach
versus the discrete approximation is shown below (fig. 9).

The real power of the opervator approach can be seen in the next

example where the sensor accuracy spatially varies.
_ 4 :
Case [I Q =10, R = V3/x

In this case, no measurement is availlable at x=0, and the accuracy of
the measurement increases ag x increases. The norm of Q/R is identical
to the previous case, so the same expansion of the differential operator
applies. In thils case, the first order operator approximations to the
optimal estimator gains are

+ lis—"y

P -~
3 Y3 Qx
R / RoF e

(36)

Again, the feedback gains obtained via the operator approach are compared

to those obtained via the discrete approximation {(fig. 10).

By allowing R to be a function of x, it is possible to approximate the

case of spatially discrete sensors by choosing -appropriate continuous

approximation functions for R(x).
Case III Q=10",R=1

For Q/R small, or alternatively, for estimation of the component of
the motion due to high frequency behavior, a different expansion of (33)

gives:
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Figure 9. Operator vs. Discretized Control System Design Results
(constant weight)
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Figure 10. Operato» vs. Discretized Control System Design Results
(variable weight)
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2
p'}/R = - QZ.%. o .S.Q_/.g).
‘ 2D 8n

-1
pl/R* /g /'""6'*' see

(37)

As would be expected, for Q/R = 0, the steady state estimator gains
are zero. For Q/R not equal to zero, the inverse powers of D must be
interpreted as inverse operators. For the case of the flexible string,
the inverse operator to I)2 that satisfies the boundary conditions is
simply the integral operator whose kernel is the Green's function for

the string, i.c.

1
Lyox ~f gy (x,8) () dE (38)
b 0
where
gy (x,6) = £ (x=1) x > §

| x(&-1) x < g
Not» that ~l/02 has a posiltive norm,

The analytical expression for the /~1/1) operator is sc lewhat more
complex, and somewhat more interesting,
/=T 1
=== =l g, (x,8) £(8) d§ (39)
D 0 2
where

sin m(x+&)

1
By (x,8) == 1n |=5= m(x=§)

It should be noted that this operator satisfies the required boundary
conditions at 0 and 1, but has the peculiarity of being infinite at x=f.
At first, it might not seem reasonable that a particular point along the
string could have an infinite weight contribution to the control law. 1In
fact, this is not the case. The kernel does have an infinite value at
x=£, but the fact that this is an integrable singularity, and that the
kernel does appear under an integral, puts this feature in the proper

perspective, It also explains why the gains computed using a discretized
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system dynamics are not infinite valued at x=f, but instead are an average
value over the discretization interval (fig. 1l1).

The Green's function and its square root yield control and estimator
gains and appear naturally in the PDE formulation for controlling (damping)
high frequency modes, These concepts can be extended to include general
models based on FE by using the eigensystem expansion of the Green's

function.

The Green's function can be expanded as

o ¢ (x) ¢,(E)
g (x,8) = § A2

im]l 1

and (40)

@ $(x) by (B)
B8« [ =

where the ¢'s and A's are the normalized eigenfunctions and eigenvalues
of the operator. For the cas¢ of an FE control design, the eigensystenm
analysis is usually performed as part of the structural analysis. The
fact that these results can be dirvectly used for control system design,

as well, is a valuable new result,

The results obtained in this section ave generally applicable to a
wide range of PDE models, not just the string in tension. The general

result can be summed up as follows.

Local estimation and control is optimal for the high gain, low frequency
modes, where performance is required; and estimation and control based on
the Green's function and its square root is optimal for the low gain, high

frequency modes, where damping augmentation is required.
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Section 5

5.0 Shape Control
5.1 Introduction

Lorge, lightweight, flexible, space structures exhibit dynamic shape
varlations greater than those of any previous spacecraft., Whereas the
shape varies continuously with changes in space and time, it must be
estimated (controlled) by sensors (actuators) placed at discrete points along
the structure.

The mixing of continuous and discrete mathematics can present or case
difficulty in the solution of control and estimation problems, depending
on the method by which it is approached. The use of Green's Tunctions to
convert boundary value problems iInto integral equations provides a

convenident treatment of these problems.

The Green's Function provides a solution to a nonhomogencous ordinary
or partial linear differential equation in terms of an integral operator
which acts on the forcing function (the nonhomogencous term). Comparison
of solutions for different forcing functions becomes relatively casy.
Furthermore, the expression of the solution in terms of the Green's
function is espeeially convenient in the case of the spatially discrete
functions found in large space structure control and estimation problems,

since some integrals become finite sums,

The use of an integral operator rather than a differential one

possesses additional advantages:

(1) The expression of a solution as an integral cquation automatically
incorporates the boundary conditions, which must be handled scparately

if the problem is stated as a differential equation.

(2) The integral operator 1s usually bounded and often completely
continuous, whereas differential operaters are unbounded. Thus results
concerning eifgenfunction expansions, sclutions of nonhomogenecous equations,

ete., are more easily obtained.
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(3) Numerieal approximations and variational techniques which include
several other methods of solving problems with constraints are more casily
applied to integral rather than differential equations.

5.2 The General Boundary Value Problem and Green's Function(lé’ls)

We first define a general boundary value problem and discuss the use
of the Green's function in its solution, We then apply the technique to
the solution of a general contrvol problem and a general estimation problem
for larpge space structures,

Congider a surface which occupies a simply connected reglon 8 and isg

o R
i
Y
5 .,

i Y
4
S

bounded by the curve I's

\
\l
|

Assume the surface is acted on at each pointPvid by a force £(P) and that the
static deformatlon u(P) of the surface satisfies the partial differential
equation

Lu = § (101)

where 1. is a linear partial differential operator, and also satisfies
appropriate boundary conditions

B, (u) = 0, 1<i<N, for Pel., (42)

mdan

Agsume the boundary conditions (42) are such that the operator I. is self-
adjoint, That is

(Lu,v) = (u,Lv) (43)
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for any pair of functions (u,v) in an appropriate class which satisfy
the boundary conditions (42). The inner product (u,v) is defined to be the
integral

[
(uyv) = | u(Q) v(Q) dQ . (44)
i
We also assume, for convenlence, that the homogenenus system

Lv =0, B;(v) =0, l<ixN (45)

b
-

has only the trivial solution. This is cquivalent to the assumption that
the system has no rigid body modes,

Thus, the general boundary value problem is the system (41-42)
together with the agsumptions (43-45).

The Green's func.ion g(P,Q) associated with the boundary value
problem (41-42) satisfies

Lg(P,Q) = a(r-Q) (46a)

It represents the respouse at the point P to a unit impulsive foree at
Gs Since 1 is self-adjoint (u,Lgy) = (Lu,p), which provides the solution
to the boundary value problem (41-42):

u(Q) S(P=Q) dg = f g(P,Q) £(Q) dQ . (47)

u(p) = f
82

Y

Remark 1. The Green's function is the kernel of the compact integral

operator K such that
KE =] 5(P,Q) £(Q) dQ . (48)
4]

K is clearly the inverse of the operator L, where defined ova the range of
L, since KLu = Kf = u and LKf = Lu = £,

Remark 2, The solution of (46a) is called a fundamental solution, The

equation (46a) is satisfied in a distributional rather than a pointwise

sense, That is
(Lg,¢) = (g,L*¢) = ¢(§) (49)

39



for all test functions ¢. (A test function is an infinitely differentiable
function defined on a domain which has compact support,)

There are some additional requirements for a solution in the case
that (45) has hon-trivial solutions, that is, the physical system possesses
rigid body modes. . In this case, (41) has no solution unless the "conaistency
condition"

(f, v) = 0
is satisfied for every v(Q) which is a solution of (45).

The consistency cvondition becomes reasonable when we consider that
secking a solution to (41) for any function f in some space is equivalent to
seeking the inverse of the operator L in that space. If the null space
of 1. 18 zero (L.e. the solutfon of (45) is only the trivial solution)
then T, 48 one to one and its inverse may be defined. If (46) has non-
trivial solutions, L is not one to one and th may be defined, if at all,
not uniguely on the range of L. The consisteney vondition puarantees that
f has no component in the null space of L, hence (with a little more
work) that it is in the range of L.

If we approach the determination of the Green's function as we did for
the beam with simply supported endpoints then the attempt to solve the BVD in
(46) results in an immediate stumbling block. This system has a solution only
if

($(r-Q), v(Q)) =0 (50)

for every solution v(Q) of (48). But, the delta funetion, in general,
has components in the space of solutions to the homogeneous problem, so

instead we seek the modified Green's function which satisfies
L g(P,Q) = 8(P-Q) - § ug (P) uy (Q) (51)
i
where the ui(P) are the normalized, non~trivial solutions of (45).

We have subtracted the offending components of &§(P-Q) which lie in
the nullspace of L. A solution to this system does exist.
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If the Green's function is known, the solution (47) of the boundary
value problem is known, If g(P,Q) 48 not known (47) is an expression of
the solution in terms of a compact operator which Incorporates the boundary
condltions. Approximate solutions may be computed from the eigenfunction

expansions
el |
g(P,Q) = ) == ¢ (P) ¢ (Q) (52)
’ kél X Tk k
and
ke = [, 80PuQ) £C) 40 = DR (53)

where Ak are the non-zero elgenvalues and ¢k are the corresponding normalized
eigenfunctions of (41=42), which satisfy Ly = A 9y and Bi(¢k) = 0,
1 <4 <N,

Substitution of expression (52) for f G (53) yields the following
relation which will also be useful:

[ﬁ ERONFICEARTEI 3i§¢ (P Py (54)

Alternatively, other numerical methods may be applied with greater
convenlence to (47) then to the original boundary value problem (41-42),
because of the superior properties of integral over differential operators.

5.3 The General Shape Control Problem

In this sectlion we define a general control problem and a general
estimation problem corresponding to large space structures, We then solve
these problems using the results of the last section. In the next section
we will give specific examples of problems and their solutions.

The control/sensor mechanisms for large space structures will probably
be located at discrete polnts Pi’ l <1 <m along the structure, rather
than continuously. Thus the general dynamical model for the control
problem is

m

Lu = £, 8(pP-P,) (55)
12;1 ! i

Bj(u)'—'-O, 1<js<N (56)
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where u(P) s the shape, L I8 a lincar differential operator as betore, fi
i8 a forece to be applied at the position Pys and (56) denotes an appropriate
set of boundary conditions.

Let ¢(Q) be the desired shape of the space structure, and define the
quadratic eriterion

i » b o 2a et [ @ - un? (57)
SR AL T '
as o measure of performance, The constants gy are arbitrary weidghts and

. T
{"(fltgnfm)o

The control problem is to determine the veetor of forces I which
together with the corresponding solution u¥  of (55-56) minimizes .J over
all admissible sets (F,u).

The solution of (55-50) is given by

m
u(p) = fn z(P,Q) [Lil LI C SRR
5 ) (58)
- £, g(p,p 58
jmp .

where g(,Q) satisfies (46), Substitution of (58) into the criterion (57)
yields the criterion

A 1 m 2 1 m , , )
J(F) = 5 121 fy5ag + 5 fn Q) ~ 121 £,8(Q,2))7 dQ . (59)

The constrained optimization problem (55~57) has become the simpler problem
of minimizing a function of m unknown congtants without constraints,
folving simultaneously the equations

8

370 tsdsnm, (60)
we arc lead to the following necessary condition for an optimal solution

T

!*ﬂ * * * .
r (fl s e fm) .

(Q+ A) F* = B (61)
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The m x m matrices Q and A have coefficients
Qij "= qi 6(4=1)

Ay ™ [ 52500 80Py, g (62)

13
and the m dimensional vector B has coefficients

I ITRRIORI (63

Once the optimal forces are deteruined, the optimal shapa n* is given by
(58).

It is interesting to note at this point that the necessary indications
for the shape control problem require only thot § be positive semidefinite,
since A is positive definite., That is to say, in contrast with the full
state optimal controllers in the time domain, placing a zero weighting
on a particular control will not result in unbounded control forces, A

simple example will serve as the explanation of this phenomena,

Consider an elastic beam pinned at both ends with a control force
locateu at the center, If it is desired to bend the beam into any shape
which is not symmetric with respect to the applied force, no amount of
control force will accomplish the task exactly. That is to say, even with
a zero weighting on the cost of control, a bounded value of control force

will come closest to producing the desired shape,

5.4 The General Shape Estimation Problem

For the estimation problem we assume the shape u(P) satisfies the

boundary value problem
Lu = £, Bi(u) =0, l<i<N, (64)

where £(P) is an unknown function representing disturbances or errors in the
model. Sensors placed at the positions Pi’ 1 <1< m yield the

observations

yg = u(®y) + vy (65)
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where vy 1s an unknown constant representing inaccuracy in the observation
at P,. let V = (-vl cos vm). We define the performance criterion

i
1§ o2 1 (2
CURE B RARES R
=1

(66)

m
-%3<n-wwﬂ%+%kﬁmdm
=]

The estimation problem is to determine the pair (u*,f*) which jointly
satisfy 64-65) and minimize the criterion (66) over all admissible pairs
(u, ).

The solution to (63) is given by

u(P) = fg (P,Q) £(Q) dQ (67)
where g(P,Q) again satisfies (46). Thus

Vo= Yy - IQ &(P,,Q) £(Q) dQ (68)
We substitute (68) into the criterion (66), which produces the criterion

Sy =% T« 2 L £ d 69

J(E) =5 1£1 Vi = |g 8CRLQEQHT gy + 5 o £7(Q) dQ . (69)

~
The problem is now to minimize the functional J without constraints, A

[
necessary condition for a minimuw of J at f£* is that the differential

m
3(H M =0 =} ay(y, - [o s @en@a@ - [, ey 0n@d

+ [ @) a0 (70)
for all admissible variation h. Thus it may be c¢oncluded that
m
E*(P) = izl q; 8(P,P ) (yy = uk(P)) . - (71)

Substitution of this relation into (25) yields the optimal shape estimate

m

wh®) = ) lag(y, - we) [o BP0 g(2,040) (72)
i=1

Note that u*(x) is expressed in terms of the unknown discrete shape

estimates u*(Pi). Let

X = (uk(P) . o . uk (Pm))T (73)
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angd
Y o= (yy oo ym)l (74)

Evaluation of (72) at x = xJ, 1=1, «os, mylelds the following necessary

condition for the vector x:
(I + AQ) X = AQY . (75)
where A and Q are the matrices of coefficients (62).

Once the vector X has been determined the optimal shape estimate is
given by (72).

In the case the Green's function is not precisely known, or iz
unwieldy, approximate solutions may be obtained using the eigenfunction
expansion (54) for the coefficients Aiju
5.5 Examples of Static Shape Estimation and Control

Case I  Shape Control for a Simply Supported Beam

Consider the problem of controlling the static deflection of an elastic
beam of length & (fig. 12). Define a coordinate system such that the x-axis
passes through the endpoints of the beam, with one end at the origin and the
other at x = . Suppose control is to be implemented by means of transverse

forces f; at positions Xgs 1l <1 <m, where 0 < Xp S Xg .00 X< L.

At each point x £[0,%] denote the deflection by u(x). Assuming no net
tensile force on a cross=-section, the shape of the beam is governed by

the differential equation

“u, ¥
e = £, 8(x-x,) (76)
ax* =1t 1
The ends of the beam satisfy the boundary conditions
u(0) = u"(0) =0 u(R) =u"(8) = 0 (77)

Let y(x) be the desired shape of the heam. As a measure of performance we

define the criterion

J(u,F) =

rol

L S N 2
21 £y +5 j (u(x)-p(x))“ dx (78)
i= Q

where F 's the vector of forces (£, ... fm)’l and q are non-negative

1
constant weights whose values are optional.
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The object is to determine the set of forces fi* which together with
the solution u*(x) of (76) winimizes (78) over all possible pairs (u,F).
The solution of (76) is given by

n

ux) =} glx,x) (79)
i=]
where g(x,£) is the Green's function associated with (76,77) which satisfies
4 .,
d 2 ) « §(x~£) (80)
dx
g(0,8) = 5"(0,8) = 0 p(8,8) = g"(2,8) =0 . (81)

The Green's function wepresents the natural response of the beam to a unit
impulsive force at X = §. The existence and uniqueness of the solution

to (80,81) foilows from the fact that the associated homogeneous system

dﬂg

.H

= 0 v(0) = v"(0) =0 v(R) = v'(R) = 0 (82)

has the only trivial solution. The solution of (80,81) is

“0)x . 2 )
“‘f’ﬁfm G-ead) 0 e x o<y
¥
B(x,6) = N
) 2 ;
Li%fili (X 20x+E %) Fexgn

Figure 13 displays the Green's function which corresponds to impulsive forces

at positious § = n G%) sy =1, veuy 7.

The solution of the control problem follows. Substitution of thc
solution (79) into the criterion (78) yilelds

. 1 O 2 1 [ m 9
IF =% ) Foq +F () alxyx )P ~p(x))° dx (84)
2 =1 i Ll =1 1771

The problem of minimizing the criterion (78) subject to the constraints
(76=77) has become the problem of minimizing a function of m unknown
constants without constraints. A necessary condition for J to have a
minimum at F¥ 4ig

By = 0 l<iz<m (85)

Bfi -
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This condition becomes

fiqi + 1§1 fk(ji g(x,xi)n(x,xk)dx n Ji w(x)g(x,xi) dx . (86)
If we define
g
{11‘1 = f EZ(X,Xi)H(X,Xj) dax, 1<i, J<m, (87)
and &”
bi " I Px) R(X,Xi) dx, 1 s i Lm, (88)

4]

then the necessary condition for a winimum of J at F¥ is that F* satisfy

(T4 ADF = AQB (89)

where  Is the m x m diagonal matrix

,fa N \

Q= ‘ ) (90)
Y .

¢
qlll

A is the m x m matrix with coefficients (87), and B Is the m dimensional
vector with coefficients (88).

The shape control algovithm for the simply supported beam

(1) Compute the constants uij and b] defined by (87-88). Define Q,A,B.
(2) Solve (89) tu pot I, .

(3) The optimal shape u¥(x) = X fi*g(x,xi).
i=1
Figure (14) displays the optimal shape vs. the desired shape ¢(x) = sin A

.Q ]
the sccond mode of the system (76,77), for two actuators at 1/42 and 3/4R.

Gase II. The Control Problem for the Pinned-Free Beam

A modification of the control algorithm is necessary if the system

has rigid body modes, as 1s the case with the pinned-free beam.

" The beam with one pinned and one free end point satisfies the differential
aquation (76) with boundary conditions

u(®) = u'"(0) =0 u'(g) = u""(R) = Q. (91)
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We will again use the per formance eriterion (78). The object is to

determine the set of forces {fi} which together with the golution u(x)

of (76,91) minimizes (78) over all possible palrs ({fi} , u)
=
The system (76,91) has the rigld body wmode ul(x) a %ﬁ x (normalized).

Physically this means the beam can have a non-zero slope or tilt as a rigld

body. Mathematically it means that the corrvesponding homogencous gysten

4
_d___}_:’_ =0 v(0) = v"(0) =0 V) = v (R) = 0 (92)
dx

fhas the non-trivial solution ul(x). Thus the system (76,91) has a solution

only if the inner product

o n

m
: . A e m
(izl £, 8Cx=xy), Uy '/33 i)=:1 fx, =0 . (93)

The additional constvaint (93) must be added to the problem of determining

the optimal control forces.

A solution to (80) with pinned-free boundary conditions does not exist

because the tnner product (8(x-£), ul) {s not zero, The "modified” Green's

function which is appropriate to the system (76,91) satisfies

— T §{x-8) - =3 & (94)
dx
gm(D,E) = gm“(O,E) = 0 gm"(ﬂ,ﬁ) = gm”'(ﬂ,é) = 0 (95)

We make the additional requirement that gm(x,ﬁ) have no component in the

subspace spanned by the rigid body modes.

'3
(g (x,E)yuy) = «f@: g (%,6) xdx =20 (96)
m 1 £3 o m
The modified Green's function which satisfies (94-96) is given by
| .3 3
2 Ex X
. _ 33z g“+x2 F4+x4 [*3~ T % O<x<k
g, (%,6) = x& (g 75 7, 03 ) =Y 9 3 on
408 t5§§-+ %— g<x<t .
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Condition (96) guarantees that gm(x,ﬁ) is symmetriec and of minimum norm
among all solutions of (94,95).

The Green's function (97) vepresents the response of the pinned-free
beam to one of a set of unit impulsive forces which satisfy (93). Figure 15
displays the Green's function for impulsive forces at positions n (é),

ne= l’.l',?.
The solution of (76, 91, 93) is given by

y(x) = Z £y 8y (xi3p) (98)
fo1 i i

We solve (93) for fl in terms of the other forees and substitute that

expression together with (96) into the criterion (78), which results in

T(F) =k ¢ { £) ? £,
J(F) = - .
129 %1 l (o2 i
(99)
1[’1 ¥ 6,0 (xxy) - = ))-p(x))?2
+ o ( F,oC {x,x,) - —= g(x,%x,))-y(x))" dx
2 o 19p 1*%m i 3 i
where T is the vector (fz...fm)T
Again, the optimization problem is reduced to one of minimizing a
function of unknown constants.
The necessary condition for a minimum at F* is
9. -
B-E-(F*)=0 2<iz<m, (100)
The conditions (100) result in the following algorithm.
(1) Compute the m dimensional vector B and m x m matrix A whose
coordinates are
L
bi = [ gm(x,xi) p(x) dx (101)
0
L
aij = j gm(x,xi) gm(x,xj) dx . (102)

0
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(2) Compute the (m-1) dimensional vector B and (m=1) x (m=1) matrix A

whose coordinates are

b,

. i+l
R B
A 4%
agy = lag +ay) =

X

1

X X
4+ a - a«j;t'!:‘- -0 c--é';t!'-
SIS B TS S R I Y

Let 6 be the (m=1) x (m=l, diagonal matrix

(3) The vector F+ of optimal forces satisfies
(Q+ A)F* = B ,

The optimal force fl* is found from (93).
m

The ont: . *(x) = V *g ;
(4) The optimal shape u*(x) iél fooe, (%%y)

(103)

(104)

(105)

(106)

Since the optimal shape u* is a linear combination of Green's functions

which satisfly (96), it will have no component in the subspace of the rigid

body mode, If the desired shape ¢(x) does have such a component, that isg if

(w,ul) is not zero, the optimal shape will approximate the shape

pix) - (w,ul) ul(x) .

(107)

That is, it will approximate the desired shape minus its component in the

subspace spanned by ul(x).

As an example, Figure 16 displays the desired shape y(x) = Zx—xz,

the

shape which approximates % zx—xz, and the optimal shape plus the missing

rigid body mode component 1 2Xe
4
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These components of the desired shape in the subspace spanned by rigid
body modes must be added by the attitude control system. A shape control
systom constrained to satisfy the boundary conditions cannot affect these
CompONenty .

Case IV. The Shape Estimation Problem

To illustrate the shape estimation algorithm we consider a simply
supported beam of length 2 and unknown shape u(x), which satisfies

4

A e m 0sxs8, (108)
dx

and

u(0) = u"(0) =0 u(g) = u'(g) =0

The function £(x) represents minor model inaccuracies or random disturbances

acting on the beam,

Assuiic sensors ot positions X (N ¥ S ees S XS £, produce
observations

.
&

= ulx;) + Vi l<i<m., (109

i

As a measure of the accuracy of shape cstimates we define the criterion

m 'A
A = ) (rmulx ) %f £2(x) dx . (110)
" f=] T

The object s to determine the function % which teogether with the solution
u* of (108) minimizes (110) over all possible pairs (f,u).

The solution of (108) is given by
L

a) = [ wex,8) 60 ag (L11)
0

where g(x,§) is the Green's function (83). We substitute (117) into the
criterion (110); resulting in the criterion

~ 1 M L 9 1 2 2

JCE) =5} a,(zy = | g(xE)ECE)AE) S + 5 | £(E)° dE. (112)

2 i i 2
i=l 0 0

The estimation problem has reduced to one of minimizing (112) without
constraints, A necessary condition for J to have a minimum at f% is that
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the Frechet d° ferential

A m %
BI(E,h) = ] g (x - f 8(x,, B EX () do)
)

im],
A A
(- J 8(x,, Oh(dD) + J EX(h(E)AE = 0
0 0
for all admissible variations h. This implies
m
£Fr(E) = 1§1 q8(x;6) (z~uk(x;)) . (113)
Then m 2
are) = Ly Crgmuntx)) [ pe, a0 0) de. (114)
Let iml 0

Y
X = (u*(xi) aee u*(xm))
and
, - lll
7 (zl ese zm) .

Evaluation of (1l14) at x = xi and regrouping of terms yield the following
necessary condition for the veeror X:

(I+AQ) X = AQZ (115)
where A is the matrix of coefficlents (87), Q is the diagonal matrix (90).

The shape estimation algorithm.

(L) Compute the clements of the matrix A given by (87), and define
XyQy %

(2) Solve the system (115) for the vector X.

(3) The optimal error estimates are given by (41) and vy =2y - u*(xi),

l<igm

»

(4) The optimal shape estimate is given by (114).

This algorithm is equally valid for the static beam with other boundary
conditions, provided the appropriate Green's function is used.
Figure 17 displays the optimal shape estimate versus the actual shape

Ty , 1 21X
sin (z ) + 5 sin C~z~0 ’

for three exact observations at % %y % 2y andﬂ% Lo
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5.6 Approximations for Shape Estimation and Control

The following approximations are particulariy .. wirable when the system
models are more complicated so that the Green's functions arve difficult to
compute analytically. They are based on the assumption that the Green's
function 48 symmetric and of mindmum norm, which follows if the boundary
value problem is self-adjoint.

L @y
uij - I‘ gm(x,xi)gm(x,xj)dx h X.*fff ¢k(xi)¢k(xj)
0 kwm] Ak
% © (1lob)
1
by = [0 Wx)g(xyxy)dx = sz-i i (30 (59D

where x1's are the actuator (or sensor) positions, Ak's are the non-zero

cigenvalues, and the ¢k's are the corresponding normalized eigenfunctions

of the assoclated boundary value problems.

Simulations of approximations based on the first term in ecarzh of these
expansdions generated approximate optimal shapes which were visually
indistinguishable from the optimal shapes, and numerlically accurate to the
third or fourth significant figure.



Seetion O

0,0 Experimental Verdfication of Distributed Control Concepts
0.1 Introduction

The previous sections of this document have contained new developments
in the theory of the control of large space structures. In gome cises,
computer simulations of these new developments have been performed to verify
the analytical vesults.  one vital phase of this research and development
program still remalng to be presented, experimental verification,

Laboratory verilicatfons of the analysis and computer simulation arve required
to 111 the gap prior to the final, flight project, stage of the large

structure work,

An experdment emploving a pioned=free lexible beam has been constructed
to demonstrate and verify several facets of the control of {lexible structures.
The desfred features of the experiment arve to demopstrate active shape control,
sotive dynamie control, adaptive control, vardious control law design approaches,
and assoclated havdware requivements and mechanization difficulties. This
soction pontaing the analytical work performed in support of the faeility
developuwent, the final design specifivations, control law synthesis, and

some preliminary resulis.

The flexible beam was chosen for this experiment for being a siwmple,
continuous structure with many of the dynamic charvacteristies that are
representative of peneral large space structures, including, infinitely
wmany vibratiou modes, a vigid body mode, and many, "low" frequency vibration

modes.

The selection of the [lexible beam also resulted in some minor limitations.
The flexible beam does not have repeated eigenvalues, however, by orthogonalily
of the corrvesponding eipenvectors, these modes may be distinguished spatially,
if not by frequency domain methods. Secondly, totally free boundary-
conditions are not possible in a ground based experiment. Two beam support
configurations which replace the rigid body mode with a low frogquency

pendulum mode were considered as alternatives and are shown in figure 18.
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Figure lBashows.the beam supported by several cables in the horizontal
direction and figure 18bshows the beam hanging vertiecally from a pinned
support, Although the configuration in figure l8amore closely approximates
the totally free boundary conditions, the complexity of distributing the
weilght of the beam uniformly and the difficulty with constraining the unwanted
degrees of freedom in 18a resulted in sclection of pinned-free hanging beam

of 1b as the final configuration.

One further compromise had to be made in the sensing/actuation phase
of this experiment. A totally free spiace structure Is constrained to sense
with respect to (and react against) itself, or inertial space. Because the
major objectives of this experiment are to demonstrate control technology, awnd
not sensor/actuator technology, sensing and actuation of the beam are both

performed with respect to an external frame,
6.2 Dynamic Analysis of Flexible Beam Facility

A schematic of the beam and its support structure (tower) as they
are being crected is shown in figure 1l9, The tower is constructed of
aluminum angles and is twenty feet tall, two feet deep in the stiff direction
and one foot deep in the compliant direction., The weight of the tower is
two hundred pounds. With the sensor/actuator mounting brackets (figure 20),
beam, sensors, actuators, and electronics, the total weight is about three

hundred pounds.

Shake tests were performed on the tower to determine its resonances, and
if they might interact with the control of the flexible beam. The results

are given in order of increasing frequency in Table II.

Table II Tower Resonances

Frequency
(hz) Mode Direction
6 cantilever compliant
10 cantilever stiff
27 pinned-free compliant
35 pinned-free stiff
45 free-free compliant

63 free~free stiff
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For the final configuration, only the natural frequencles in the stiff
direction are of interest because there is very little coupling between
the perpendicular directions,

A schematic of the sensor/actuator mounting bracket is shown in
figure 20, Either the sensor, or actuator, or both may be mounted on a
gsingle bracket, and the brackets may be mounted at any of the stations
located at six inch intervals along the beam.

A dynamic model of the hanging, pinned free beam is required for
control system design. Two modeling approaches will be examined here;

first, an analytical approach, and, second, a finite element model.

Temporarily setting aside the effects of the beam being in tension
due to gravity, the partial differential equation of motion for the elastic
beam with constant mass and stiffness per unit length and the appropriate

boundary conditions are
A

l) %
p %+ ¥ = g (117)
at ax
52
y(0,8) = 0 =% (1,£) =0
ax

.2 3
LY 0,05 =0 31-% (L,t) = 0

X ox
It is straightforward to show by assuming an eigenvector decomposition

of the solution that the eigenvalues and normalized eigenvectors are

NCERZ F

L Q
(118)
o ey
I é-coshgk QQSZA s5innA £ sinA é]
"’(g)"’\‘L ey sl Py e
n cosh™ ), =~ cos™ A cosh n cos n
n n
where R BT 4
w " o= 2
n ;
and pL

tanh) = tan )
n n

and

oy
I
ol 4
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Using an asymptotic approximation (good for n > 1) for (118)

30
¢0(€) i & w, = 0
(119)
[ . |
0 () = & stk + igE » (AL
nt" VI. | cosh) cosA n
n "
ne=1,23,...
The dynamic equations for the modal amplitudes, A become
" 5 b (B)ECE)dE
q, te,;"q, " J S £y n=20,1,2,., (120)

0

For the specifie case that f(£,t) = F(t) 6(&0), i.e., a spatially
concentrated force applied at § = Eo’

fn M ¢n(€o) (121)

A graph of the first four mode shapes is shown in figure 21.

The rigid body motion of figuve 21 is a zero frequency eigenvalue, Of
course, for the pinned-free beam hanging under the influence of gravity,
no such made exists, Rather than being a zero frequency, rigid body mode,
the actual dynamics is a low frequency, pendulum-like behaviocr., In fact,
gravity interacts with all of the modes to some degree. To determine which
behavior (tension or elastic) dominates the various modes, an independent

dynamic analysis of a hanging free string will be performed.

The partial differential equation of motion for a hanging string,
with its boundary conditions is
32 ) d
y L= L. e S
P apl  Ox PBX 3¢

(122)
y (0) finite

¥ (L) = (
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Figure 21. Beam Mode Shapes
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The solution to (122) is given by
4%,
L (wn Eﬁé

where —
L -~
3, 2 /«é) 0. (123)

Again, an asymptotic approximation to the eigenvalues can be obtained

2 2
2 (n -~ 1/4)" =
We  ® %i' T2

If the true mode shapes of the exact system are obtained from 124

2 4
Q"’”x‘ v é‘" - -g-)-n-u - ‘al w Y +
0 atz + EI a;% P g e (L=x) ax ™ f (124)

it can be shown that the squaresof the exact eigenvalues are approximately
the sum of the squares of the string and the besm {requencies with the largest
error occurring when the two frequencles are equal.

Using the experimentally obtained beam parameters appearing in Table 111,
vhe approximate modal frequencies and the experimentally determined modal
frequencies can be compared. These results are contained in Table IV,

Since the exact analytical solution to the differential cguation of
motion is not known, a discretized, finite element model is develaped, The
beam 15 divided into N segments as shown in figure 22. The displacement
and slope at the ends of each segment are specified as coordinates., Mass
and stiffness matrices can be defined for each element, and these assembled
to create overall mass and stiffness matrices for the system, The differential
equation of motion is thereby replaced by a matrix eigenproblem, and arbitrary
accuracy can be obtained by considering smaller divisions of the beam.

The stiffness matrix K for the finite element shown in figure 23 is
defined by

U= 1/2x Ex (12.)
where U is the potential energy of the segment and

T
X" = (xl, Xyy Xq, xa) (126)
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gives the nodal displacements and slopes, Analytically U ip given by

®,4+8%
U= 1/2 J D eryn? 4 0ge - 00yt dx
%
1
Substituting
2m GHY3 50 - % (127)
we obtain
2,07
. :g&[ 7 (2 4 2yt 4 (128)
1
where %
2 = GHY - b (129)
and
8z = - (%%»)”3 8% (130)

The displacement y(z) of the [inite element 1s chosen to minimize the
potential encrgy U of the element, This is equivalent to assuming that
the shape of the element is unaffected by dynamic loading,

Equating a vardation of U to zero and integrating by parts, we
obtain

$
Y. = (zy') = 0 (131)
whose solution is
v(z) = aydg(2) + g6 (2) Hugdy (2) +aqbq(2) (132)

where the ui's are constants and the ¢i’5 are linearly independent
solutions of (131). Though the analytical solution to (131) is known in
terms of Bessel functions of fractional order, it is more convenient to
define the functions ¢i as infinite series, The sheige used in this
analysis is
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bo2) = 1 (133)
(z = zl)é
fbl(Z) ~ (2 - z)‘) o} “';‘{;.i"w”* o} ves

2, b
(z = zl) 41(2 - zl)

‘p‘) (z) [ ] trvvfrrﬂu o + g tz;"wsw ARTOEEY + s

@3(2) - N\""—“"x;i"‘"”" L ZJ, "W'»So’*:»—w'ﬁ‘ E SPI

with coefficients of (z - zl) determined by the recursion relation

‘l . R T rnﬁf}illlwxw o o e T + TIWRAR nzaj—::lliq.ﬂwmt e
et M+ 1M+ 2)Mm+3)  m+ 2D+ 3)
nw=1,2,3,... (134)

The funetions 4, are expanded about z = zy to ensure rapid convergence of
the soerles.

Similar series expansions for the derivatives of g arve easily derived,
Of course, In practice the series are truncated after a finite number of

terms, once convergence has been determined.

Equation (132) can be written in matrix form as

y(z) = ¢Ta (135)
whoere
Y=gty 812D, by(2), $y(2) (136)

u

ot =gy W1y Gg %)
Furthermore, o can be related to q. Writing
bI‘
Q" = (dys Gy dgs Q) (137)
' » '
= (y(x)y y(xp)5 y(xy + 8x), y(x; + 8%))

and substituting (133) into (137), we obtain

q = Aa (138)
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where the matrix A is given by

4>(x1)T ‘i

o )"
(139)

>
X

Il’! i
¢(xl + 8x%)7

1 T
§(xy + 6x) J

~

Equations (138) can be rewritten as

o = Bq (140)

Substituting (140) inte (135), and that in turn into (128), we obtain

— z. 48z i i | 2. it
U= 58 q'n J L7 6 4" + 20 ¢ dabq. (141)

“1
Identifying terms with equation (125), we finally obtain an expression
for the stiffness matrix:

Il\ »

K = - pgB KB (142)
where
~ 2,102z "won Yot
K J 1 (¢ ¢T + z¢ ¢1) dz (143)
VA
L.

The matrix K can be evaluated by integrating (1l43) by parts twice and noting
(131), which yields

’ "oty 1"e . z2. +8z
K= (b o - o o +2zp'¢)| (144)

2

The mass matrix M for this finite element is defined by

=24 (145)

T is the kinetic energy of the element,
For the beam element,

1

. L z1+8z 2
T=3 fz py” dx (146)
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An analysis analogous to that of the previous section yields

M = £8IMB (147)
Y
and
z.+02 ,
M|t ¢ 4)1 dz (148)
1

and where v, I and ¢ are defined as bhefore.

The integrals in (148) are evaluated by expanding the integrands in
series and integrating term by term. Three terms were taken, since it
can be shown that truncation of the series sfter three terms results in
less than ,2% error in the elements of ﬁ for a 20 division finite elewent

model.

The beam shown in figure 22 is divided into N finite elements and is
represented by 2N + 2 coerdinates Xq e The overall stiffness matrix K is
defined by

u =-% X Ko (149)

Equating U to the sum of potential energies of the firite elements, and

matching displacements at nodal points, we find that

TR kys g 0 0
kpt kgt Kyt gy 0 0
kgt gt k331“‘11l k341“‘122 klzz k142

R = .
R Y T kg2 ey oy
0 0 kys” Ky3 k332+Kli Kgy” ;)
0 0 Ky Kyo” k342*“éi k44" oy

(150)



where Kijg denotes the (i,j)th component of the Rch finite element
stiffness matrix. Similarly, the mass matrix for the beam is given by
1 1 1
M1 M2 M3 ™4 0 0
1 1 1 1
m, Moo Mo g My 0 0
Pom ! m 1 m l+m 2 m l+n 2 m 2 m 2
Py 23 33 ™11 M34 ™Mo 13 12
bl L ’ . . .
! m 4 m m l+m 2 m l+ 2 2 n 2
i 14 24 34 T2 Mg Moy Mg 24
i 2 2 2,3 2 3
? 0 0 m q L My Pmllmy4 +my o
: 2 2 2. 3 2, 3
0 0 L) M, My +m21m44 Hily o
" .
i ’ -
The dynamic equation of motion in matrix form becomes,
Mx + Kx = Q (152)
where
r.l‘ .‘1 |l o hnd rv2
Q :(I' ’ T ’ Fry, s o ® ')
gives the forces and torques applied at nodal points,
The boundary condition y(0) = 0 is satisfied by specifying the xl=0,
thereby reducing the order of (151) by one.
Equation (152) can be written in state-variable format as
Fe® vom oy ; .
|51= I_Q:T-*JL“V F | (153)
" ~M K |0 L0 M.
The normal mode shapes and frequencies of the free vibration problem are
the eigenvectors and eigenvalues of the state~variable dynamics matrix.
(154)

(151)



Finding the eigensystem of (154) is not the most economical method of
finding the solutions to (152), particularly since the matrices M and K
are symmetric and banded; however, the solution to the closed=loop system
once feedback control 1is incorporated is most easily solved in state
variable form,

A Fortran program was written to generate the finite element stiffuess
and mass matrices, assemble these into the overall) stiffness and mass
matrices, and solve the eigensystem of the state variable matrix (154).

The normal mode frequencies for N=10 and 20 divisions of the beam are
summarized in table IV. The approximate analytical results and experimental
results are included in table IV for comparison., These numbers are based

on the following determination of the beam propertics.

Table III Beam Characteristics

Material Stainless Steel
Length 149,875 inches
Wwidth 6 inches
Thickness 1/32 inches
Linear density 0.644 1b/ft 2
Stiffness 424,352 1b-in

Table IV Normal Mode Frequencies (Hz) «f Beam

n Analytical 10 Divisions 20 Divisions Experimental
0 301 .308 .308 ~.34
1 .728 «753 «755 .75
2 1.27 1.38 1,38 1.37
3 1.98 2,21 2.21 2,15
4 2,92 3.25 3.24 3.16
5 4,08 4,51 4,47 4.38
6 5.49 6,00 5.93

7 7.13 7.76 7.62

8 9.03 9.79 9.55

9 11.16 ' 12.04 11,73

10 13.54 15,92 A 14.15
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In the near future, the following improvements to the model will be made:

* The actuator linkage masses will be included. These masses
add to the mass matrix at nodal points in a straightforward

manner.,

* Damping will be modeled. A common problem with high performance
control systems is instability cf high frequency modes. Since
damping is instrumental din the «tability of these modes, it
should be included in the model during rhe design process.

6.3 Control System Hardware and Software

In addition to the flexible beam, a variety of other components are
required to complete the flexible beam facility. In the c¢vder they will
be discussed, sensors, actuators, a microcomputer, microcomputer interfaces,
and control software development, constitute a part of the completed
facility.

Both an optical position sensor and an eddy current position sensor
reached the final selection phase. Many other possibilities were eliminated
by the requirement of minimum sensor interaction with the beam dynamics.

In order to minimize the effeuts of external disturbances, the developmental
period, and the final cost, an eddy current sensor made by Kaman Science

Corporation was selected.

The final actuator selection was a brushless DC torque motor manu-
factured by Aeroflex Laboratories, Inc. With a three inch moment arm, and
the appropriate mechanical linkages, the actuator has the capability of
applying five ounces of force to the beam for a maximum one amp input,

according to the manufacturer's specifications,

The purpose of the microcomputer in the control loop is to sample
the sensors, pass this sampled data through a digital filter, and send

the filtered data to the actuators. Assuming a general format for the



digital filter

.t Kz

X1 = ¢ Fy k

uk = C xk

The amount of computation is roughly n2+np+nm muitiplications. For
the state vector larger than either the number of sensors or actuators, the
amount Of computation i1s governed by the n2 term. Currently available
eight bit microprocessors are capable of performing one fixed point double
precision software multiply in one millisecond, and one hardware floating
point multiply in one hundred microseconds. Due to the limitation imposed
by the sampling theorem (i.e. sample two or more times per cycle) the
maximum number of controlled wmodes with software arithmetic is four, and

the maximum number using hardware arvithmetic is eight.

The microcomputer chosen for the control function is the SYM-1 by
Synertek System Corporation., It is based on the 6502 microprocessor and
has provisions for 4 K of random access mem ry (RAM) and 6 K of read only
memory (ROM). Additionally, a KIMSI Interface/Motherboard by Forethought
Products has been added for interfacing directly to S-100 products, specifically

the digital to analog converters, and the hardware arithmetic.

The physical interface between the analog sensors and actuators, and
the digital microprocessor is accomplished through D/A and A/D hardware
and appropriate buffer circuitry. Sensor sampling is performed under
computer control., The twelve bit analog-to-digital (A/D) conversion is a
successive approximation technique performed in software with the use of a
Vector Graphic Precision Analog Interface Board (PAIB). Similarly, the
twelve bit digital-to-analog (D/A) conversion is performed in hardware on
the PAIB.

Sensor buffer/amplifiers were used between the sensor output and the
computer, The circuit has a high input impedance and eliminates high
frequency noise and DC offsets, The scale factor from position to voltage
at the A/D converter is five volts per inch. The sensor bandwidth is

greater than thirty hertz,
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The actuator driver presents a high input impedance to the microcomputer
D/A converter and eliminates the high frequency D/A conversion noise and
DC offsects from the actuator command. Current feedback is used to eliminate
the inductive effects of the torquer. The scale factor from the force
applied to the beam to the D/A voltage output is one ounce per volt. The
actuator bandwidth is greater than thirty hertz.

Software has been developed to implement the general digital filter
discussed in the section on microcomputers, The entire program resides
in 2516 erasable programmable ROM by Texas Instruments, and is located on
the computer. When the software is initiated, the computer samples the
sensors, updates the state estimate, and ouvtputs the control. Data for
the program is loaded into RAM and consists of ¢, C, and K, and the
dimensions of these matrices. The exact sample period, T, (in msec) is

gilven by

2

T = 0,983 n“ + 0,963 np + 0.963 nm + 0,258 n ¢+ 0,154 m + 0.597 p

+ 0,010 m* + 0.725 .

A listing of the assembly language software can be found in the Appendix.

6.4 Control Law Design

A variety of control laws may be implemented using the gencral software
discussed in the section cn microcomputers. The particular approach used
in the initial control law design (and the example presented here), is
an implementation of a discrete Kalman filter using a sixth order

estimator.

The controller is based on the discretized version of the following

continuous system

¢

il

Fx+Gu+Tuw

{1

u=0x (156)

Hx+v

[
it
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where
'j_‘ . ' .
x = [qs 55 Gys Qs Qs 9]

0 1 0 0 0 0

3.55 0 0 0 0 0

0 0 o -1 0 0
F = !
0 0 21,60 0 O 0
Lo o 0 0 0 -1
0 0 0 0 68,72 og

With a single position sensor and a single force actuator at the free end

H=[L 0 1 0 1 0]

P20 0.18 0 0.18 0 0.18]

This control gains, C, and the estimator gains K are dotermined by
minimizing the appropriate performance index J, In the case of the control
problem

o]
J = f (xT A%+ url B u) dt
o]

and for this particular example

1
| o 0
_ 1
A= | 0 , B = 0,0025
i
l 1
L 0 OJ
For the estimation problem
o« )
J = J (wr Q-lw + vT R-lv) dt
)
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and for this particular example

4

Q = E(w wT) = 10~ (m/secz)2 sec

6

R = E(v VT) = 10 (m)2 sec

For a six state estimator, one control, and one sensor,
T = 0,049978 sec.

Using a discrete optimal system synthesis DOPTSYS(lG) algorithm, the
following results are obtained

o

[ 0,950 0,047 -0.045 =0.000 =0.044 =0.000
-0.251 0,910 =0.085 -0.033 -0.053 -0.019
~0.019 -0.002 0,953  0.048 =0.018 =0.000
-0,064 ~0.084 ~-1.144  0.939 =0.044 0,019
~0,011 =-0,002 -0.011 =0.000  0.904  0.048

-0.059 "'00082 "‘0.068 —0.032 "‘00374 0.896_J

e oy

0.0438
0.0265
0.0183
0.0165
0.0103
0.0110

(=5.3744 |
~9.4553
T |-6.5416
-3.7488
~3.0469
-2.2l54J

.

and the egaivalent. frequency domain eigenvalues of the closed loop system
are given by
Eo = 0,38 El = 0,082 gz = 0,025
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These matrices zre converted to the sixteen bit fixed point format
used by the microcomputer and are loaded into the controller ns data,

The results for this controller can be found in figure 24, TFigure 24
contains the uncontrolled and controlled responuss to bhoth an initial
rondition error on positions and to an impulse force input.

Figure 24a showo the open loop response to an initial position error,
The majority of the response 1s the lowest frequency, pendulum mode. It
has an open loop damping ratio of -2%,

Figure 24b shows the closed loop response to the same input as in
figure 24a, using the controller degeribed previously. Notiee the much
faster decay rate of the closed loop system. The corresponding control
force applied to the beam is shown iIn figure 24c.

LIt is now possible to partially verify the control analysls. The
predicted closea loop damping ratio for the low frequency mode is 0,38,
Using the maximum overshoot of the closed loop position response for
determining the closed loop damping ratlo, ti. closed loop damping ratio
of 0.40 is experimentally obtained.

Figures 24d, 24e, and 24f show analogous responses of the beam to an
impulse force disturbance applied at the free end.

One additional featur: present iu the closed loop responses in figure 24
is the high frequency oscillation appearing at the tail of each plot.
This phenomenon is due to control/observation spillover into the first

unmodeled mode at two hertz.

The deleterious cffects of spillover in control system design can be
demonstrated in the following example. By decreasing the cost of the
squared control by a factor of eight, a second control system can be
designed and lmplemented., The results of this control system are shown
in figure 25,

In this case thke control spillover into the first unmodeled mode

is sufficient to drive the system unstable.,
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Section 7

7.0  TFuture Work

Future work in the distributed control of large space structures will
be concentrated In two arcas: (1) extending the distributed control
analytical techniques to include general (FE) models and (2) expanding
the experimental test faclliity.

Distributed control analytical techniques will be extended by replacing
the continuum models (1f needed) used for understanding the theory, with
more vealistic FE models. Since the theory developed using PDE models
will apply to any linear operator, the extension of the finite clement
models will be straightforward.

The flexible beam test facility will be expanded te¢ an interactive
faeility., This will allow a general user to work at the computer
terminal, design shape and/or active control systems, to implement these
control gystems with the microprocessor control system, and to obtain
graphic outputs and chart recordings of the finul results.
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