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SUMMARY

For more 'than the .Last 20 years there has been a concerted effort to
solve the stationary Navier-Stokes equations; however, this has oAly been suc-
cessful for a few special cases of primarily academic intereF► t. An alternative
approach has been to solve the equations numerically, and then compare the
results with experiment. On occasion, such comparisons are in good agreement.
However, such results are of dubious value since one has no a-priori way of
knowing the 'relevance of such results until they are explicitly compared
against experiment. Therefore, it would seem reasonable to conclude that the
present approaches to solving the Navier-Stokes equations are of limited
value. Bccordingly, it is the purpose of this paper to show that there does,
indeed, e.:ist an equivalent representation of the problem that has significant
potential in solving such problems. This is due to the fact that this equiva-
lent representation of the problem consists of a sequence of Fredholm Integral
Equations of the second kind, and the solving of this type of problem is very
well developed. In addition, for the problem in this form, there is an excel-
lent chance to also determine explicit error estimates, since one would now be
dealing with bounded linear operators, rather than unbounded.

INTRODUCTION

Ideally, one would dike to obtain a numerical solution to the Stationary
Navier-Stokes problem that is within some prescribed degree of accuracy of the
true solution. Unfortunately, it is not possible to accomplish this objective
by just applying some existing numerical technique directly to the Stationary

°	 Navier-Stokes equations, since error analysis for nonlinear equations is, for
all practical purposes, nonexistent. However, since it is possible to replace
the Stationary Navier-Stokes problem by an equivalent sequence of linear
partial differential equations (ref. 1), providing some rather general condi-
tions can be met, it is at least theoretically possible to obtain error esti-
mates due to the vast vealth of knowledge known about linear equations. How-
ever, even though attaining such error estimates is within the realm of
possibility, one should not be misled into thinking that such a task is a
small undertaking, for this is most certainly not the case. However, the



chances of someone, accomplishing this task are significantly greater if tile
basic sequential problem is transformed into an equivalent form that is 

more
suitable to error analysis. Accordingly, in this paper it will be proven that
the said sequential problem cats be transformed into a form that has signifi-
cantly greater changes of yielding explicit error estimates,

GENERAL DEVELOPMENT

The Novier-Stokes equations are given by
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where P can be interpreted as a mapping from C 4( S ) into C O (S). As demon-
strated in reference 1, solving (2) is equivalent to solving the sequence of
equations

P (Yjn) + P' (qln) Utn+l - q'n 	
0

n	 b	 r nb, 	 for	 0,1,2,
ax 

I DS	 ay is

2



providing certain conditions are satisfied (ref. 1), (i.e., primarily that
the initial guess is reasonably good), for further insight into the sig•-

n1ficant latitude on ^n, the reader should consult reference 2.
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Now consider (G) under a slight chr.nge in boundary conditions, in particular:
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if V*1 ;ts a solution to (5), it directly follows that Wm is also a solution
of (k), and vice versa (i.e.. equation (4)	 m1as = constant, without loss of

generality assume constant = 0). Therefore, it is sufficient to focus our
attention on equation (5), which in detail is given by
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where Gis the Green's function. of the biharmonic Equation [3)
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Vor corwenience and clarity ) equation (6) will be expressed in the form;
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Lemma., If the Ilypotbesis of theorem I of reference 1 is satisfied, then there

exists a solution 4_* of equation (6) for all m and
m

n

where ql* is the unique of equation (2).

	

Theorem: Under the condition of the above lemma,	 is a solution to the

Fredholm 'Integral Equation of Ole Becond kind
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to 
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4^* - 'A (4, O )J
* 

- f (4'd

or equivalently,

f
G (0y	 + Aq,oxl;, y* - Ay 0yq,* - v, Ox Aq* ds - f(4 0)

S	

.	
x	 Y)

4



S

5

By Green's Le=a
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CONCLUS ION

Ther'ef'ore, under the conditions as cited, the sequence of solutions
generated by (7) converse to the solution ^* of (1) in the following sense;
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Hence the original problem, equation (1), which falls within the frame-
work of nonlinear operatot theory, an area that little is known, has been
replaced try equation (5), which falls within the framework of bounded linear
operator theory, an area for which there exists a vast wealth of information.
Of course, it could be argued that it is theoretically possible that the
sequential repre3entation of the solution converses so slowly that the results
are of questionable value. However, from all ii,dicativns this will not be a
probinm, for as pointed out in reference 1, there are parameters at one's
disposal in the method that i^an be adjusted to speed up the rate of conver-
gence; in fact it was demonstrated in reference 2 that by judicious selection
of the variable parameters available they were able to get numerically adegt.atc

convergence with just a .few iterations.
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