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SUMMARY

For more than the last 20 years there has been a concerted effort to
solve the stationary Navier-Stokes equations; however, this has oaly been suc-
cessful for a few special cases of primarily academic interesit. An alternative
approach has been to solve the equations numerically, and then compaze the
results with experiment. On ogcasion, such comparisons are in good agreement.
However, sueh results are of dubious value since one has no a-priori way of
knowing the relevance of such results until they are explicitly compared
apainst experiment, Therefore, it would seem reasonable to conclude that the
present approaches to solving the Navier-Stokes equations are of limited
value. JAccordingly, it is the purpose of this paper to show that there does,
indeed, exist an equivalent representation of the problem that has significant
potential in solving such problems. This 1s due to the fact that this equiva-
lent representation of the problem consists of a sequence of Fredholm Integral
Equations of the second kind, and the solving of this type of problem is very
well developed. In addition, for the problem in this form, there is an excel-
lent chance to also determine explicit error estimates, since one would now be
dealing with bounded linear operators, rather than unbounded.

INTRODUCTION

Ideally, one would ]ike to obtain a numerical solution to the Stationary
Navier-Stokes problem that is within some prescribed degree of accuracy of the
true solution, Unfortunately, it is not possible to accomplish this objective
by just applying some existing numerical technique directly to the Stationary
Navier-Stokes equations, since error analysis for nonlinear equations is, for
all practical purposes, nonexistent. However, since it is possible to replace
the Stationary Navier-Stokes problem by an equivalent sequence of linear
partial differential equations (ref. 1), providing some rather general condi-
tions can be met, it is at least theoretically possible to obtain error esti~
mates due to the vast wealth of knowledge known about linear equations. How-
ever, even though attaining such error estimates is within the realm of
possibility, one should not be misled into thinking that such a task is a
small undertaking, for this is most certainly not the case. However, the



chances of somcone accomplishing this task are signifieantly greater 4f the
basic sequential problem is tronsformed into an cquivalent form that 1s more
suitable to error analysis. Accordingly, in this paper it will be proven that
the sald secquential problem can be transformed into a form that has signifi-
cantly greater changes of yielding explieit crror estimates.

GENERAL DEVELOPMENT

The Navier-Stokes equations are given by
iy Fovag ok opeo= v dut £y(6y) = 0

in § (1)

uvy + vy, o+ Py - v av + £, (x,y) = 0

y
with boundary conditions
u(ds) = -b,(38) , v(dS) = b, ,
where S 1s a two dimensional Green's domain with surface 23S,
Fy(x,y) e C3(S) ,  and £ (x,3) £ CHS)
or equivalently,

‘ 4 : O : § - f = Y]
VOAY H Ny By = b AR b Ly = £, =0 dn S (2)

Y Y “X
Vi (38) = by 4 4, (28) = by
Let

L R T N T T

y y “s
be denoted by P(y). Hence (2) can be expressed by
PG =0,y (38) = by .y (38) = b,

where P can be interpreted as a mapping from C“(S) into €°(S). As demon-
strated in reference 1, solving (2) is equivalent to solving the sequence of
equations

PO ) + PTG, =) =0

au;n 3\4'*“ X i ()
hrvou = b e s = ‘ f o = 0 l 2 s L} »
ax as 1 ? ay BS & or n LR L ’



i e i Y
- a

providing certain conditions are satis{ied (ref. 1), (i.e., primarily that
¥,» the initial guess is reasonably good), for further insight into the sig~
ngficant latitude on ¢,, the render should consult reference 2.

Plog)L 1 = vaML ]+ o AL 1y by L], - B [ T = Vo ol 1y

Equivalent to equation 13) is the problem

~ "‘"}’n a‘T’n
PR + R U =0, | 0 gm0, =02, ()
by letting
Wn = wn+1 - wn

Now consider (4) under a slight chenge in boundary conditions, in particular:

IO
.—.aa— = 0 ’ m = 0,1’2’ I I ] (5)

95

PQp) + P 0 Y =0, ¥ o 0,

If ¢y 4s a solution to (5), it directly follows that {5 d4s also a solution
of (4), and vice versa (i.e., equation (4) = U = constant, without loss of

generality assume constant = 0), Therefcre, it is sufficient to focus our
attention on equation (5), which in detail is given by

vaap + by AJ’*‘x o+ Awmxi’my - Awmyﬁ‘»mx = ¥ Au?my + P(yy) = 0

With

Vi, (88) = 0, szﬂcas> =0, m=0,1,2, . . .

Hence,

~ lf - - ~ ~ lf
- o G (v At o+ AW W - A - U A ds +~= 1| PG d 6
by ™ % A (qmy i quqmy wmywmx ¥, wmy) s + = ’ s (6)

where G 1s the Green's function of the biharmonic Equation [3]
AAd = 0 1in S, with ¢(38) =0 , ¢n(aS) =0
Lemma:

(6) = (5)
Proof.[]
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For convenience and clarity, equation (6) will be expressed in the form:

e AT+ £ 6
where
Ate )T ] -%; J; G(qmy al ], + A\“mxl' ly - Mmy[ I - Vo, Al ] )ds
and
Qi) = %‘J; P(y,)G ds

Lemma: If the hypothesis of theorem 1 of reference 1 is satisfied, then rhere
exists a solution X of equation (6) for all m and

n
¢ ~ 5
q,?\ - gi“‘ E qxi - Wo
nre img

where Y% 45 the unique of equation (2).

Theorew: Under the condition of the above lemma, §p 18 a solution to the
Fredholm Integral Equation of the second kind

@;(x‘,y') + J; @;CNDY)Km(X'.y"x,y)dx dy - f(“m)(x|‘yl) (7)

where
K (x'oy'a3ay) = =AGy ('3 Tax, )iy (6y) + Alxin E[ny ("“'““x.\: * "’"“vv)]
+ mey(cxx - ny)

Proof: Since Eﬁ will be a solution of (6) under the hypothesis, it is suffl-
cient to show that a solution to (6) is alos a solution of (7). TFor clarity,
denote (6) in the form

W = AQE I = EQyg)

or equivalently,
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By Green's Lemma
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Therefore (6) reduces to

-
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Therefore, (6) rcduces to

,*,lf*[, . ‘ ‘/( A\ (, 1. .
A vo AGy = Y, AGy F 2\Ox (¥ - + ¢ Gy~ G ds = I(y

§ " JS ¥ voy x 7 ¥ A0 Uxy Oyy ¢oxx} ¥°xy xx ~ Yyy)| o)
Hence, (6) = (7).

CONCLUSION

Therefore, under the conditions as cited, the sequence of solutions
generated by (7) converge to the solution ¥ of (1) in the following sense:

Therefore,

wbie



Hence the original problem, equation (1), which falls within the frame-
work of nonlinear operator theory, an area that little is known, has been
replaced by equation (5), which falls within the framework of beumded lincar
operator theory, an area for which there exists a vast wealth of information,
Of course, it could be argued that it is theorctically possible that the
sequential representation of the solution converpes so rlowly that the results
are of questionable value. However, from all indicativns this will not be a
problem, for as pointed out in reference 1, there are parameters at one's
disposal in the method that ¢an be adjusted to speed up the rate of conver=
gence; in fact it was demonstrated in reference 2 that by judicious selection
of the varianble parameters available they were able to get numerieally adequate
convergence with just a few iterations.
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