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CLASSIFICATIONS SYSTEMS AFFECTED BY OBSERVATION ERRORS

ABSTRACT

The problem of classifying targets viewed by a "push

broom"-type multiple-band spectral scanner by means of

algorithms suitable for implementation in highspeed onlia.,e

digital cix,yuits is considered. A class of algorithms

suitable for use with a pipelined classifier is investigated

through simulations based on observed data from agricultural

targets. The time distribution of target types is shown to

be an important determining factor in classification.

efficiency.



IE•

Pa

iii

LIST OF TABLES AND GRAPHS

Figure 1: Schematic Diagram of 3--Stage Pipeline

Processing Classifier

Table 1:	 Test for Goodniess-of-Fit of Normality

Table 2:	 Number of Misclassifications in 10,000 Point

Simulation Test for Type 1 Classifier

Table 3:	 Number of Misclassifications in 10,000 Point

Simulation Test for Type 2 Classifier

Figure 2: Misclassification Probabilities in 10,000

Point Simulation Test for Type 1 Classifier

Figure 3: Misclassification Probabilities in 10,000

Point Simulation Test for Type 2 Classifier

st

,



STOCHASTIC ANALYSIS OF MULTIPLE-PASSBAND SPECTRAL
CLASSIFICATIONS SYSTEMS AFFECTED BY OBSERVATION ERRORS

I.	 INTRODUCTION

In considering the problem of rapid, efficient classi-

fication of images by an online processor in an earth-resources

satellite, the complexity and speed of the processor represent

extremely important constraints on the clarssifiration

algorithms which can be used. in the present study, we

consider classification algorithms which may be used with

digital devices organized into a pipeline processor designed

to operate synchronously with a "pushbroom°'--type spectral

scanner. This particular study is based on analyses and

simulations of a three-stage classifier designed to discrim-

inate among -the crops represented in the data contained in

LARS tape, that;, was obtained from Purdue University, but the

methodology is easily applied for any number of stages.

The architecture of the system is described in schematic

form in Figure 1. At time t, the spectral scanner outputs

the output from the target which is scanned by filter 1 at

time t, the output from filter 2 at time t (which represents

the signal from the same target which filter 1 scanned at

time t--1); and the output from filter 3 at time t (corre-

sponding to the target scanned by filter 1 at time t-2).

These signals are represented by x 1 (t) , x 2 (t-1), and x3 (t-2) .

atia. x	 tee.	 WVoru^ etcu^ts;, cm •..a uV:,Me^ +i9► 	 ^F	 _"1:c6lGir q '.^:^	 Su jJ --.:, sum
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The indices follow the convention, which we adopt throughout

this investigation, that t represents the time at which

i	 the target being analyzed crossed filter 1. At each stage,

a processor uses the signal from the corresponding filter

and information stored in a pattern library in system

memory to produce a vector C i ,i. = 1, 2, 3, of information

for classification. In the s ystems which we consider this

information will always be a nayesian estimator of the
f

vector of a 2osteriori probabilities for each type of

source. The three algorithms considered in the present

study can be implemented by processor which can complete

the updating of C in a time on the order of a few hundred

microseconds, thus permitting synchronous operation.

In Section II we discuss the actual crop data that

was used in the present study. A description of the

stochastic model for which the classification algorithms

are based Qn is given in Section III. In Section IV, we

give a detail description of the Bayesian classification

algorithms that includes the results of the two different

type of classifiers that were employed in the present study.

Summary and recommendation of the present investigation are

presented in Section V.

A listing of the software that were developed for the

present investigation is given in Appendix A of this report..



-3-

FIGURE 1

Schematic Diagram of 3-Stage Pipeline

Vrocessing Classifier

Encoder	 TelemetrNy
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IX.	 CALIBRATION D,`TA

The actual data on which the statistics in this

K	 report are based are the spectral scans of crops contained

in LARS tape, that was obtained from Purdue University.

Of the spectra on this tape, 2434 are optical spectra of

crops for which 60 or more observations are available.

We considered 12 possible filters, each of which has a

rectangular passband spanning six consecutive wavelengths

on the tape, and selected those three filters which provided

the highest entropy for the joint distribution of xi , x21

and x 3 , thus maximizing the total information reaching the

classifier. Since the correlation between adjacent wavelengths

is very high, it is not surprising that the filters chosen

were widely spaced. The three filters chosen, in order by

decreasing conditional entropy of the output distribution,

were:

Filter l:

Filte': 2:

Filter 3:

The crops cons

for each, are given

squared) statistics

Wavelengths	 4 - 9

Wavelengths 24	 29

Wavelengths 59 - 64

i.dered, and the number, of observations

in Table 1, which also contains k 2 (chi-

for the test of normality described below.

In order to determine whether linear discriminant

analysis should be considered as a classification algorithm,

*^	 .•	 « kp awa YZa f
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we used a statistical test of multivariate normality for

the three-dimensional vectors of filter outputs. Let P'

be the sample mean of X, vector filter outputs, for a given
4%

source class, and let S be the sample covariance matrix.

Then the random variable

0 =_ (x-11) 
T 8-1 

(x- P)

should have a X& distribution with 3 degrees of freedom,

and

P X 2($i 3 )3)

should be uniformly distributed. in order to test the

uniformity of the distribution of this latter statistic,

we divided the unit interval into ten equal subintervals

and used the conventional

for the resulting one-way

from Table 1 that neither

We thus conclude that lini

inappropriate and we must

classification algorithms

frequency tables.

X2 test (with 9 degrees of freedom)

contingency table. It is seen

x nor log (x) passed this test.

aar discriminant analysis is

consider only nonparametric

based on the empirical sample

A
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TABLE 1

Tests for goodness-of-Fit

of Normality

Crop	 N
X2 for

Normal	 Lognormal,.

Alfalfa 82 3.1 5.8

Corn 297 27.3 15.8

Sorghum 290 15.7 28.3

Wheat 373 67.5 564

Un_planted
&

Fallow
1392 129.5 35.5

j
I

Note: The chi-squared test fails at the .01 level of
significance for all crop Except alfalfa.
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III.	 STOCHASTIC MODEL

The classification algoritl way which we consider in

the present investigation are based on a Markovian process

type of schemes in which the probaW lity of source s(t)

at time t is governed by the recurrence relation

p (t) = (l-a) p(t-1) + air.

Here P is the vector of probabilities for each source type,

ae[0,1] is the one-step transition probability, and n is

the vector of unconditional. probabilities. In the absence

of information concerning the relative abundances of the

various crops we assume that

for the five sources used in these simulations. We test

each of the classification algorithms on three 10,000-point

simulations. The valves used in generating the pseudorandom

samples are a = .2, a = .5, and a = .8, representing h gh,

intermediate, and low persistence, respectively.

The information used in classification is initially

decoded by comparison with threshold values as follows:

$ 1 (t) = i	 iff	 Til ^ 11 < eil

^(t) = j	 iff	 T'2 ($ 1 ) < x2 < .9241)

^3 (t)	 k	 iff	 Tk3 (11 $ 2) ^< x3 < 0 U (^1,$2)

I
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defined for

<511<k<, .

Note that

T11 = 
Tit = T13 = -CO

and

0 1 = 012 W 013 w «+.

The thresholds are chosen such that ^ is uniquely defined

and the entropy of the distribution of ^ is maximized.

Note that the thrashol,ds used for diNiretization at each

step depend on the results of the previous step. This

procedure considerably increases the information contained

in J, since the three filter outputs x are not stochastically

independent.

Furthermore, we assume that the probability distribution

of 0 is defined by

(t)	 5 pi (t) f i ()

This assumption .amounts to ignoring serial autocorrel.ation

of the G I s whenever s(t) ^ s(t-1). We do not ignore the

dependence between ^(t) and ^(t-l) due to the Markovian

dependence of p(t) on p(t-l). This assumption may under-

state the extent of serial autocorrelation in the signal,
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that is, overestimate the source entropy, but it seems the

most reasonable assumption to use in the absence of suffi-

ciently detailed observational data. The relevant prob-

abilities could be estimated From observational runs in

which group., of consecutive observations have not been

averaged during preliminary processing. 	 .

The actual generation of sample points for simulations

is performed according to the following algorithm based on

the stochastic process described above;

1. Choose s(1) at random from distribution v.

2. For t from 2 to 10,000 perform steps 3 through 5.

3 . Generate u- (0 i 1) with uni form distribution..-

4. if u < a, choose s(t) at random from distribution v;

otherwise set s(t) = s(t-1).

5. Choose x(t) at random from the actual observations

for source type s(t) in the data tape.

The pseudorandom runs of 10,000 points generated for each

of the three values of a by this algotithm are used in all

of the tests of classification algorithms described below.

.-p-
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IV. CLASSIFICATION ALGORITHMS

As was pointed out in the discussion of the observa-

tional data, the filter outputs x fit both normal and

lognormal distributions so poorly that linear discriminant

analysis is unsuitable for the problem at hand. For this

reason, we have concentrated on Bayesian discrimination as

a classification technique.

A Bayesian classification could be based on either

nonparametric density estimates for each source class or

on contingency tables from discretized data. The large

amount of computations required for nonparametric density

estimators argue against applying them for on-line image-

analysis device. The high storage requirements and search

times required for nearest-neighbor classification similarly

appear to preclude the use of this technique in the present

application.

Bayesian discrimination based on discretized scanner

outputs requires only relatively modest amounts of memory

and is wolf adapted for a pipeline architecture consistent

with very rapid operation. A n-stage classifier for M

categories based on a K--level discretization of each filter

output requires only

n-, l
Mk( 	 )

real values in memory. The basic mathematical operations

s:J^i'7ou	 .t...=,.s: ...,.	 .''ur.uf.:	^ie".^di::aK„eta:x^^.a^c„rdw.,,.,r•.¢E^ets^`,r^= 	^';'	 x-'	 r_ .'.^' 	 ^S^A—vs^er;.. ^.
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used are elementwise multiplication and addition of

M-dimensional vectors, a circumstance which also favors

implementation by parallel-processor systems.

We now define the Dayesian update operation as a vector-

valued function of two vectors by

piqi

Now let f(i;j,k,l) denote the probability density of the

event ^ = (J,k,l) given that the source is i. We define

three sets of likelihood vectors by

E Z f(i;j,ktl)
k,l

7T

Note that,

E Z E f (i;	 k r 1) S 7r (i)

j k 1

with

E f(ij,krl)

x2i	 k) = 1 
Tr (i) x ii 

(i )

and

x 
3i	

k, 1) =

r (') X 1i (j) X 2i (j' k)
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	The vector of poster ior probabilities for the categories

based on a single observation _ (j,k,l) could then be

implemented as follows:

'	 C1 = B (7T p?+ l (j) )

C 2 = B (C1 , X2 (j ,k) )

23 = H(C2,13(j,k,l)%•

This three-stage calculation is consistent

architecture of the classifier. The use o

calculation offers no particular advantage

observation classifier just described, but

the speed of classifiers based on the more

algorithms described below.

with the proposed

E a three-step

for the single--

does enhance

sophisticated

To take advantage of the Markovian processes type of

character of the assumed stochastic process, we may add a

fourth computational stage

(t) = B (C3 (t) , (1-a*) C 4 (t-1) + a" 70

where a* is the estimated transition probability for the

Markov process. Such a postprocessor increases the lag

between observation and classification by one cycle time

but does not affect synchronous operation if implemented

in a pipelined system. The results of using classifiers

based on a* = 1,.8,.5, and .2 on 10,000-point simulations

with actual transition probabilities a = .8, .5, and .2 are

given in Table 2.

r

	

	 "d
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As one might expect, the classification is most

efficient when a = a*. The algorithm does, however, appear

quite robust in that underestimating the transition

probability does not severely degrade performance. We

remark that a* = 1 corresponds to a memoryless classifier

in which the fourth Bayesian update step is omitted. The

use of the Markovian property improves on the results

obtained with a* = I in all cases except a = . 8, a* = .2,

for which the transition probability is grossly under-

estimated. Even in this case, the degradation of performance

is small.

A slightly more refined classification algorithm makes

use of the fact that a small amount of forward information

is always available. By time t + 2, when the image scanned

by filter 1 at time t is ready to be classified, the data

^J(t+l),^I(t+2), and ^2 (t+l) are also available. By

increasing the memory requirement, we can use all of this

information in classifying the source as follows:

Define

X*(';jl'j2 rkl)

Z f (irj l ,kl jl) 	 Z	 E f (';j2']C2'1)
1	 C(1-a) k 2 1 

2

+ a E E E f(i 2;j2 ;k 
2112)]i 2 k 2 1 2

Ir,
LIV

-V,
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X**(i;jlrj2rj3rklrk2i11)

E f (i; j l ,kl rll) [ ('-a)' E E E f (i; j 2 r k 2 r i 2 ) f (ir j3,k3113)
1	 12 k3 13

+2 a(l-a) E E E E f(i2;j2rk2112)f (i2; j3rk3113)
i 2 1 2 k3 13

+a 2 E E 21 E E f(i2;j2,k2,12)f(i3;j3rkV13)]
12 i3 12 k3 13

The classification algorithm can then be specified as

follows.

21 (t)= B (7r, a l ( ^ 1 (t) ) ) ,

22 (t) = B (S 1 (t) , a** (^1(t- 2)	 l (t-1)	 l (t)

93 (t) = B (C^ (t) ^ ^** (^^ (t-2) r ^^ (t-].) r ^^ ( t ) :

^2 (t-1) r $ 2 (t) r $ 3 (t) ) r

and

C 4 (t) = B (C 3 (t) r (1-0 C4 (t--1 ) +aIr) .

Results from this classifier are given in Table 3. While

the improvement over the results of the simpler classifier

evaluated in Table 2 are not large. The greater complexity

may be justified by the small gain achieved in critical

Y	 applications.

- I'T., .1%9l Si 3



A graphical presentation of the probabilities of mis-

classification in the 10,000 point simulation test for type 1

and type 2 classifiers are given by Figure 2 and 3, for

the actual transition probabilities, a, and the assumed

ones, a*,
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TABLE 2

Number of Misclassifications

In

10,000 Point Simulation Test

Type 1 Classifier

a* a	 0.2 0.5 0.8

0.2 2687 4456 5470

0.5 3086 4129 4858

0.8 4070 4346 4664

1.0 4775 4732 4822

a* = assumed transition probability

a = true transition probability
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TABLE 3

Number of Misclassifications

In

10,000 Point Simulation Test

Type 2 Classifier

a*\ a	 0.2	 0.5	 0.8

0.2 2420 4356 5427

0.5 2782 3962 4832

0.8 3757 4181 4630

1.0 4775 4732 4822

a* = assumed transition probability

a = true transition probability
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V. SUMMARY

The results presented, based on a classifier and a

Markovian target-type transition process, show that the

reduction of source entropy due to a tendency for adjacent

targets to be of similar type can be effectively exploited

as a source of information to improve the efficiency of a

multistage image classifier. It is to be expected that an

effect this large will generalize to other Bayesian classi-

fication algorithms and other transition processes.

The most serious limitation on the efficiency of the

classifiers arises from the necessity of using relatively

coarse contingency tables to estimate the posterior proba-

bilities of the source types. This defect could be over-

come either by using a larger corpus of observations to

refine the empirical frequencies or by developing an

analytical model for the conditional distribution of the

filter outputs from each type of target. The very poor

goodness-of-fit results given in Table I indicate that

this will probably be a difficult task.
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VI. RECOMMENDATIONS
1
i

As a consequence of the demonstrated potential for

exploiting temporal coherence of the sequence of target

types scanned in order to reduce classification error,

the investigation of the underlying stochastic process

should be considered as a research objective. Studies of

the spatial coherence properties of the mix of target types

on a scale from several hundred meters to several kilo-

meters would be useful for this purpose.

The characterization of the probability density function

of the spectrum of each source type is also a necessity for

achieving efficient discrimination in practical app4cat ons.

Whale the standard multivariate normal and lognormal

densities provide a poor fit, it is likely that some effec-

tive approximation in terms of a superposition of simple

density functions can be achieved when enough data on a

given source type becomes available. The application of

cluster analysis to large data samples would be useful in

thi;,t; connection.
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Data extraction from LARS tape using BSAK 1/0.
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--,--,--SAS Program for Calculation of Moments.
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SAS Program to Calculate Source Entropy.
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SAS Program to Discretize Filter Outputs.
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s	 SAS program for Tests of Normality and Lognormality.
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