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SUMMARY

The purpose of this study was to obtain a categorized data base
of software errors which have been discovered during the various stages
of development and operational use of the Deep Space Network OSN/Mark 3
System.

To achieve this purpose the Reifer Consultants Inc. (RCI)
study team identified several existing error classification schemes
(taxonomies), prepared a detailed annotated bibliography of the error
taxonomy literature, and produced a new classification scheme which was
tuned to the DSN anomaly reporting system and encapsulated the work of
others. Based upon the DSN/RCI error taxonomy, error data on approximately
1000 reported DSN/Mark 3 anomalies was analyzed, interpreted and class-
ified. Next, error data was summarized and histograms were produced
highlighting key tendencies.

Finally, Reifer Consultants Incorporated recommended further statis-
tical analysis of the software error data base so tha-t trends and tenden-
cies could be analyzed and the data could be consistently and meaningfully
interpreted. Recommendations for other studies were also made as a result
of this effort's findings.
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SECTION 1

INTRODUCTION

The purpose of this section is to Introduce the reader to the goals,
scope and importance of this study. In addition, this section defines
terminology used within this report.

1.1 Problem Definition

Numerous studies have been conducted attempting to provide quantita-
tive data on software errors (see References l,'2, 3, 4). All of these
studies collect and/or analyze error data taken from relatively large
software development projects. These efforts are deemed important for
the following reasons:

t A major item impacting costs, risks and uncertainty in software
development is the lack of knowledge of what causes errors, why
they occur and how they can be reduced (or at least located more
quickly). The development of error data bases for software is a
step towards the statistical quantification of error occurrence.
Once error occurrences can be quantified, steps can be taken to
reduce them.

• Identification of relationships between error occurrences, causes,
criticality and time of error occurrence can lead to improved
methods of detecting errors before they become difficult and
costly to correct.

• Reliable error data can be used to measure the impact (both posi-
tive and negative) of modern software development and validation
methodologies and tools on quality and productivity.

t The formal error documentation process forced by error data
collection itself can provide better error control and help
assure appropriate corrective actions are taken.

In the case of DSN/Mark 3, anomaly reports have been maintained for

the last several years. However, since these reports were not intended
for analysis, they were not based upon a consistent set of definitions for
either the terminology or specific categorization types. In order to
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learn from the DSN/Mark 3 effort and lower the costs of the forthcoming
Network Consolidation Program (a huge program which will require over
426,000 lines of code), these software anomaly reports should be reduced to
provide planners with a consistent software error data base which they can
use to avoid critical anomalies which have occurred in the past.

1.2 Purpose

The purpose of this study was to develop a software error data base
from software error records collected by NASA/JPL on a large command and
control network called the Deep Space Network (DSN). This data base took
existing DSN error information and categorized it so that errors within
a class can be evaluated and classes of errors can be compared and analyzed.
In addition, attempts were made to standardize the reporting. Finally, the
data base will be used in subsequent studies to pinpoint those areas that
most often cause software errors. Reduction in rework and improvement in
quality should result when the data base information produced is used to
build in safeguards against critical errors in future DSN development
activities.

The results of this study are based upon our detailed analysis and
interpretation of approximately 1000 DSN/Mark 3 anomaly reports. While
these results are applicable to the DSN, they may not be generally appli-
cable to the community at large. In addition, the trends identified by
our cursory analysis have not been statistically evaluated. As a result,
the tendencies revealed in our histograms may be deceptive. We, therefore,
suggest that the reader wait until the results of the statistical analysis
are published before he/she uses the data to justify error reduction
projects.

1.4 Definitions

0 Anomalies - irregularities, inconsistencies or other software
imperfections.

0 Deep Space Network (DSN/Mark 3) - a Jet Propulsion Laboratory
ground based command and control system used to monitor and guide

unmanned interplanetary space craft.
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• Deep Space Network (DSN/Mark 4) - a network consolidation program
that will combine the JPL DSN/Mark 3 network and the NASA Goddard
STDN network.

• DSN/RCI Software Error Taxonomy - a methodology for categorizing
Deep Space Network (DSN/Mark 3) errors.

• Error Category - an error cause defined by the DSN/RCI Software
error taxonomy.

0 Error Criticality - a error severity classification defined by the
DSN/RCI software error taxonomy.

t Error Taxonomy - a set of rules for classifieating errors.

0 Error Time of Occurrence - a time when a software error was dis-
covered classification defined by the DSN/RCI software error

taxonomy.

0 High Level Module Testing - testing of several modules together
after low level module testing has been successfully performed.

t Module - a program unit that is discrete and identifiable with
respect to combining with other units.

• Reliable Software - software that is correct (capable of executing
and yielding correct results) and that meets other requirements
such as timing and interfacing with the environment.

t Software Development - the formal process during which needs
are transformed into a tested, documented, operational software
system.

• Software Life Cycle - the period of time in which software is
conceived, developed and used.

• Software Package - software delivered in product form to the
potential user.

0 Software Tool - computer software used to develop and maintain
other computer software and/or documentation.

0 Software Quality - the measure of the goodness of a software
package in terms of meeting the objectives of the package.

0 Testing - a process that examines the ability of an item to con-

form to the item's standards.
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Unit Testing - testing individual modules for correctness without
allowing interactions with other modules.

Verification/Validation - the process of determining the computer
program was developed in accordance with stated specifications and
satisfactorily performs the functions for which it was designed.

-4-
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SECTION 2

MANAGEMENT SUMMARY

The purpose of this section is to provide an overview of the study;
the six steps taken during its course (see Figure 2-1) and the study
findings.

Over the life of the DSN/Mark 3 system, JPL has maintained records
of anomalies as they occurred. These anomaly reports contain information
about the error, including the phase in which it was discovered, its
criticality, its disposition and a description of its effects. These
reports were mainly used to assure that test and development personnel
communicated and took appropriate corrective actions. The reports were
maintained for several years in their raw form. Little analysis of error
trends was performed. With the development of an even more complex system
(the DSN/Mark 4 Digital Processing and Communications System) in the wings,
the need for further analysis of these anomaly reports arose. This addi-
tional analysis could help the Jet Propulsion Laboratory define tools,
checks and balances and procedures that have the potential to lower the
expected error rate of future DSN/Mark 4 developments. Lower error rates
could then result in lower software life cycle costs.

The bulk of this section summarizes the six steps taken in completing
the first phase of this analysis (see Figure 2-1) which was aimed at
building a consistent software error data base. Initial study findings
are also discussed.

2.1 Summary of Study Approach

The six step study approach illustrated as Figure 2-1 was used during
the course of the study. Each step will be described briefly in turn.

The aim of the first step was to identify previous work on software
error taxonomies which we could capitalize on. An extensive search of
literature was conducted and several candidate taxonomy developments were
identified. An annotated bibliography (Reference 5) was then published so
that the results of our effort could be captured for others to use.

-5-
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The second step was conducted to evaluate the potential utility
of the error classification schemes Identified In step 1 for the DSN
effort. Each taxonomy was studied and evaluated for strengths and weak-
nesses relative to the goal of capturing meaningful statistics in the
areas of error category, error criticality and time of error occurrence.
The result of the evaluation indicated that a new scheme had to be devised
to meet the specific objectives of the DSN.

During the third step, a new DSN/RCI software error classification
scheme was developed and validated by trial use. This new scheme (Ref-
erence 6) integrated together the best facets of the existing taxonomies
in a manner acceptable to the DSN. The scheme allowed comparison with
statistics generated by the previous efforts.

The fourth step created a DSN software error data base. Approximately
1000 DSN/Mark 3 anomaly reports were analyzed and then categorized in terms
of their category, criticality and time of occurrence using the DSN/RCI
software error taxonomy developed during step 3.

Once the data base was created, a preliminary analysis of it was con-
ducted as step 5. Summaries of the data were compiled and evaluated so
that recommendations for improvement could be formulated.

The final step was aimed at producing this report. As stated in the
introduction, this document presents our findings and recommendations and
culminates our study effort.

2.2 Overview of Study Findings

The major conclusions of this study can be summarized as follows:

t Software error data is an important management tool because it
indicates where problems exist and where management attention
should be placed.

t Existing software error taxonomies could be refined and adapted to
capture meaningful error data from existinq DSN error reports.

• Preliminary analysis of the DSN data base Indicates that the-major-
ity of critical errors occurred under the requirements and design

-7-



categories. Studies into the use of independent verification and
validation and better review and documentation procedures were
recommended to contend with this phenomenon.

Our cursory evaluation of the data also indicated that a large
number of "other" errors were reported. These can be attributed
to poorly defined man/machine interfaces, inadequate anomaly
reporting procedures and no exception handling procedures being in
place. Recommendations for studies into correction of these problem
areas were also included in this report.

Further analysis of the DSN error data base was also recommended so
that insight into the cause and possible cures of errors could be
determined based upon a detailed statistical analysis of the data
collected during this effort.

-8-



SECTION 3

STUDY APPROACH

The purpose of this section 1s to provide detailed discussion of each
of the six steps performed during the course of the study (see Figure 2-1).

3.1 Literature Search

We started our study by conducting an extensive search of existing
literature. This search was performed for the following reasons:

• To locate existing taxonomies that were candidates for building the
DSN software error data base.

• To provide a baseline for refinement if none of the above were
directly applicable.

• To provide guideline targets for comparing DSN error data to soft-
ware error data categorized using other classification schemes.

The search located several software error taxonomies. These were
abstracted and evaluated in terms of their strengths and weaknesses in
order to objectively compare them to the DSN needs. The output of this
task was published and is included as Attachment A to this report. The
major taxonomies identified by our literature search were:

• Logicon
t NASA/GSFC
• NASA/LaRC
t TRW

Six other works that impacted our development of an error taxonomy
for DSN were also Identified. Because these works were either near twins
of the major taxonomies listed above or were applications of these taxono-
mies, they are not listed. They are, however, annotated in Attachment A
of this report.

3.2 Evaluation of Existing Taxonomies

Our next task was to evaluate the existing software error taxonomies.
This evaluation was performed for the following reasons:

-9-



• To evaluate whether or not the existing taxonomies could handle
the DSN anomaly report data.

• To evaluate whether or not the taxonomy was simple to use and-under-
stand.

• To determine whether the classification system was based upon a con-
sistent set of definitions for key terminology.

0 To assess whether the taxonomy could take advantage of all the most
useful information from the existing DSN anomaly reports. These
data included time of error occurrence, error criticality, error

category (through evaluation of the anomaly report text) and other
information.

t To determine whether the taxonomy encapsulated information contained
within other taxonomies. The ability to map to other taxonomies was
considered important because it allows DSN error data to be compared
with other existing error data. Such comparisons identify how well
the DSN does in terms of other's experiences.

There was a great deal of commonality among the existing taxonomies.
However, each had some form of uniqueness. The commonality can be clearly
seen by referring to the following tables:

• Table 3-1, Taxonomy Handling ofTime of Error Occurrence
t Table 3-2, Taxonomy Handling of Error Criticality
• Table 3-3, Taxonomy Handling of Error Category

Although each evaluated taxonomy had some strengths, it was decided that
none of them were sufficient to meet the needs of the DSN without major re-
work. Therefore, the best attributes of each of the taxonomies were combined
and a new taxonomy was developed. Tables 3-1, 3-2 and 3-3 illustrate how the
taxonomies were integrated into a common classification framework.

The final evaluations of the major existing taxonomies are described in
the following subparagraphs.

3.2.1 Logicon Error Taxonomy Evaluation

The major aim of the Logicon error study was to create a validation
phase error data base (stressed correctness of already developed systems).
They did not emphasize data collection or reduction during development
which was felt to be a major weakness. In addition, the study tried to encom-

-10-
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pass error data taken from commercial, scientific, real-time, application
and system software. This generality of application made the Logicon
taxonomy difficult to apply to the DSN case. The Logicon scheme handled
the three classification dimensions needed by the DSN as follows:

• Time of Error Occurrence
This dimension was not identified by the Logicon taxonomy.

• Error Criticality
Four error severity categories were identified:

• Catastrophic
0 Serious
0 Moderate
0 Trivial

These categories could have been directly applied to classifying
DSN anomaly reports.

0 Error Category

Twelve major error categories were defined (see Table 3-3).
However, each category has several subcategories for finer error
breakdown. .The large number of error type classifications makes
this taxonomy complex for use in classifying the DSN anomaly reports,

While the handling of error criticality was nicely done, the typing
was not, in our opinion. We, therefore, decided we could not use this
scheme as is for the DSN without major modifications.

3.2.2 NASA/GSFC (Goddard Space Flight Center) Error Taxonomy Evaluation

The NASA/GSFC taxonomy was appealing since it was simple (contained
on a two-page form) and captured a lot of useful data. This taxonomy was
specifically designed for Goddard application. The activities used to vali-
date the program, detect the error and find its cause were defined in a
matrix so the person filling out the form could quickly check off those
actions taken. This matrix showed such things as programmer interaction
in addition to normal test runs. Errors that were caused by previous
changes were noted since this was often a significant percentage.

The three taxonomy dimensions were handled as follows by the

Goddard form:
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t Time of Error Occurrence
The classifications (requirements, functional specifications,
design, and coding and test) used did not provide a sufficient
breakdown for the DSN. The reason 1s that the DSN anomaly
report data covered the entire software life cycle while the
NASA/GSFC scheme was only intended to show when the error
originally entered the system.

• Error Criticality
This dimension was not specifically identified by the NASA/GSFC
scheme.

• Error Category
Eight major error categories (see Table 3-3) were defined in their
two-page form, with two major sub-classifications for design and imple-
mentation errors. These classifications were Interesting since they
were from a different perspective than those used by the other taxono-
mies. However, we needed more precise definitions of the terminology
so that we could statistically analyze the data base at a later time.

Again, we felt we could not use the Goddard approach as is to fulfill
the DSN's needs. We also felt that we should encapsulate the Goddard scheme
In whatever scheme we adopted or developed so that the DSN and Goddard error
histories could be compared and evaluated in the future.

3.2.3 NASA/LaRC (Langley Research Center) Error Taxonomy Evaluation

The NASA/LaRC taxonomy was appealing because it provided a one-page
failure report analysis form that was designed both for data capture and
for future data analysis.

The three taxonomy dimensions were handled as follows:

• Time of Error Occurrence
This dimension was not specifically Identified by the NASA/LaRC
taxonomy.

• Error Criticality
The following five error severity categories were Identified:

• System crash
• Dependent job failure
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• Local job failure only
t Real time failure
• Other

These categories were not fully applicable to the DSN anomaly
report analysis since they contained only criticality indices
and not breakdowns of job failure types.

• Error Category
The twelve error type classifications (see Table 3-3) used
were similar to the major classifications used in the TRW taxonomy.
We felt this high level classification system was preferable to
the many sub-classifications used by TRW. However, the classifi-
cations could be reduced even further for the DSN's purposes.

Again, we felt we could not use the work as is. The error typing
approach strongly influenced the classification scheme we finally agreed
upon though.

3.2.4 TRW Error Taxonomy Evaluation

The TRW taxonomy was quite useful because it was developed itera-
tively by first using existing error data to define error classifications
and then by refining these classifications based upon trial use. The TRW
scheme was used as the basis of many taxonomies identified during our litera-
ture search.

The three taxonomy dimensions were handled by TRW as follows:

• Time of Error Occurrence
The development phase where the error originally occurred was
tracked by the TRW taxonomy. This classification scheme does
not adequately classify the DSN anomaly reports because the
classifications do not cover the total DSN software life cycle.

• Error Criticality

This dimension was not specifically identified by the TRW
taxonomy. However, the study did suggest that error severity
should be included in any scheme used to collect reliability
data.
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• Error Category
The main error type classifications (see Table 3-3) lend them-
selves to the DSN anomaly data. However, the large number of
sub-categories were thought to be too cumbersome to use
effectively. Since 1t is difficult for a person to remember all
the categories, we felt consistent classification using the scheme
would be a problem.

Again, we did not feel we could use the TRW scheme without some modi-
fications. The categories were well thought out and the results of classifi-
cation were meaningful to our study. Therefore, we were influenced by their
approach.

3.3 Generation of the DSN/RCI Software Error Classification Scheme

Although each of the software error taxonomies we reviewed was inade-
quate, each contributed to the final DSN/RCI taxonomy 1n some way. However,
the NASA/LaRC taxonomy contributed the most. This taxonomy was extremely
useful because it was specifically developed for NASA projects, it lends it-
self towards computer analysis and it combined many of the best points from
the other classification approaches.

The existing DSN anomaly reporting system (Reference 7) played another
important role in development of the DSN/RCI taxonomy. This system, de-
veloped specifically for the DSN, provided the input data for our data
collection activity.

Based upon our evaluation of existing taxonomies and the DSN anomaly
reports, a three dimensional classification scheme was devised to capture
meaningful error data in a manner suitable for additional statistical and
trend analysis. The new scheme capitalized on the experience of others and
incorporated the best of what existed. The three dimensional software error
taxonomy developed is discussed in detail in Section 4 of the report.

Each of the dimensions are summarized as follows:

0 Time of Error Occurrence
Defines in which of the four DSN phases of the software life cycle the
error occurred. The four times are: development, verification, accep-

f

tance or transfer.
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t Error Critlcality
Defines 1n which level of severity the error could be categorized. The
three levels of severity are: criticil, dangerous and minor. .

• Error Category
Categorizes the cause of the error. The ten error types are: computa-
tion, logic, data handling, interface, data base, operation, require-
ments incorrect, design, clerical and other.

It is important to note the DSN/RCI error taxonomy was developed only
for building the DSN error data base and is not intended for other applica-
tions without further adaptation and modification.

3.3.1 Generation of DSN/RCI Error Classification Form

The error classification form illustrated as Figure 3-1 was designed
to provide all desired error information for a particular anomaly report on
a single sheet. All information encompassing the three dimensions of the
taxonomy (time of error occurrence, error criticality and error category)
was specified so the researchers filling out the forms had the taxonomy de-
fined in non-ambiguous terms. A space for comments was provided since an
explanation of the rationale for categorization was desired when it was not
clear from the anomaly reports. _ - - - - . . _ .

In addition to the three dimension information, other pertinent in-
formation was captured. This included the date the anomaly was closed
(resolved or rejected) a subsystem identification and a notation regarding
whether the anomaly was related to a previous change. Knowledge of how
many new errors were caused by correcting others was considered important
because it could suggest changes into how modifications and/or repairs were
processed.
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No.

1. Subsystem,

2. Anomaly No._

3. Activity:

• Design

• Verification,

0 Acceptance

• Transfer

4. Crltlcality:

• Type A

• Type B_

• Type C_

5. Error Category

• Computation

t Logic

t Data Handling,

• Interface

• Data Base

t Operation

• Requirements
Incorrect

• Design_

t Clerical,

t Other

Program ID

Date Closed

Comments

RELATED TO A PREVIOUS CHANGE

Comments

Comments

6. Name of Person Completing Form_
(date)

Figure 3-1
DSN Software Error Classification Form
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SECTION 4

THE DSN/RCI SOFTWARE ERROR TAXONOMY

The purpose of this section is to explain the three dimensional error
classification scheme developed to collect and analyze the DSN/Mark 3 error
data. This scheme, which is illustrated as Figure 4-1, encompasses error
time of occurrence, error criticality and error type. Each of these three
dimensions is discussed in detail in the following paragraphs.

4.1 Time of Error Occurrence

Time of occurrence is the first dimension of the DSN/RCI error classi-
fication scheme. This dimension was deemed important because it identifies
the point in the product life cycle where the error was discovered.

Four time classifiers were chosen because they were compatible with the
DSN anomaly report data provided as input. The classifiers are as follows:

(D) Development - Anomalies in this category were reported during the
design, coding and module unit testing activities. Most required
design or programming revisions to be made. Errors in the category
typically dealt with design problems between modules or with
functional limitations of design. An example follows:

"A system was required to provide~human readable error
messages on a log device. Unfortunately, the function
was not specified in either'the requirements and design
specification. The error was discovered during a design
review and an anomaly report was opened. Under such
circumstances, we would state that the anomaly had
occurred during development."

(V) Verification - Anomalies in this category were reported during inte-
gration and testing activities. Most were specification deviations
that required the code to be revised. An example follows:

r "Module X expects a true or false condition as input from
module Y. Unfortunately, module Y has not been specified
to provide the true or false input. A test identified »
this problem during testing and an anomaly report was
written scoping the rework. Under such circumstances
we would state that the anomaly had occurred during
verification."

PHEGED5NG PAGE BLANK NOT FILMED
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Error
Criticality (2)

Time of Error
Occurrence (i)

Figure 4-1

DSN/RCI Three Dimensional
Software Error Classification Taxonomy
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(A) Acceptance - Anomalies In this category were reported during formal
testing of the software. Errors 1n this category usually stem from
requirements problems or Improper mechanization. An example follows:

"The system malfunctions when accepting more than six '
simultaneous Inputs. The error was discovered during
fumul lestlny when Hit1 program wjs stressed and an
anomaly report was written. Under such circumstances,
we would state that the anomaly had occurred during
acceptance."

(T) Transfer - Anomalies In this category were reported after the soft-
ware package was put Into operation In a live environment. These
anomalies usually resulted from halts, failures or malfunctions.
An example of such an anomaly follows:

"The software halts when a zero Input value Is received.
This error was discovered during operation when the DSN
was reducing telemetry data. Under such circumstances,
we would state that the anomaly occurred during transfer."

4.2 Error Criticality

Error criticality is the second dimension of the DSN/RCI error taxonomy.
The three severity levels currently identified by the DSN anomaly report
forms were retained to simplify the determination problem. The temptation
to add a fourth category for trivial errors was resisted because trivial
errors were often not recorded on the anomaly reports.

The three error criticality classifiers used are defined as follows:
• Level A - Critical error (error impacts mission performance or

sorioir.ly doyrndor, capability and no workaround exists). An example
follows:

"The system halts when the value of one of its inputs
exceeds its nominal end of range. Manual intervention
is required before operation can be resumed. Under such
circumstances, we would state that a level A error had
occurred."

t Level B - Dangerous situation (error exists that could degrade per-

formance or capability but a workaround exists). An example follows:
"A particular utility function causes the system to halt
to await operator's action. The utility function is not
required for correct system operation and can be
disabled temporarily to correct the problem. Under
such circumstances, we would state that a level B
error had occurred."
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• Level C - Minor problem (error exists that doesn't Impact performance
or capabilities and can be fixed at a more leisurely pace. An
example follows:

"An informational message is displayed twice (rather
than once) each time It is enabled. No other
negative effect happens. Under such circumstances,
we would state that a level C error had occurred."

4.3 Error Category

The third dimension of the DSN/RCI error taxonomy is error category.
Each of the ten error categories was defined so that insight into the error
causes could be ascertained. The ten categories are defined as follows:

1. Computation - Computation anomalies are errors in or resulting from
coded equations. Examples of computation errors include:
(a) Incorrect operand in equation, (b) Incorrect use of parenthesis,
(c) Incorrect equation, (d) Missing computations and (e) Rounding
or truncation error.

2. Logic - Logic anomalies are errors in sequencing, control or loop
conditions. Examples of logic errors include: (a) Logic out of
sequence, (b) Wrong variable being checked, (c) Missing logic or
condition tests, (d) Too many/few statements in loop and (e) Loop
iterated incorrect number of times.

3. Data Handling ---Data handling anomalies are errors in handling input/
output. Examples of data handling errors include: (a) Data initiali-
zation incorrect, (b) Variables not set properly, (c) Variable type
incorrect, (d) Data packing/unpacking incorrect and (e) Subscripting
error.

4. Interface - Interface anomalies are errors in communications between
a routine and other routines, the data base and/or the user. Examples
of Interface errors include: (a) Data incorrectly transmitted from
one routine to another, (b) Data incorrectly set/used from the data
base, (c) Improper Input/output synchronization and (d) Data sent
to wrong destination.

5. Data Base - Data base anomalies are errors in preset data.. Examples
of data base errors include: (a) Data should have been initialized
in data base but wasn't, (b) Data initialized to incorrect value
and (c) Data base units are incorrect.
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6. Operation - An operation anomaly 1s an error occurring as the soft-
ware executes. Examples of operation errors Include: (a) Operating
systems errors, (b) Hardware errors, (c) Operator errors, (d) Com-
piler or support software errors and (e) Test execution errors.

7. Requirements Incorrect- Requirements errors deal with Improper or
ambiguous functional and software requirements specifications and
not with Implementation and/or operation. Software may correctly
solve the wrong problem if 1t is specified improperly.

8. Design- Design errors deal with improper architectural and detailed
design specifications which form the basis to which the program and
the data base are mechanized.

9. Clerical - Clerical anomalies occur when people are involved in the
translation. Examples of clerical errors include keypunch, typos
and/or transliteration.

10. Other- Other is a "catch-all" for other types of error not encom-
passes by the scheme. Examples of other errors include incorrectly
reporting that an anomaly had occurred when in reality it was a pro-
grammer misconception.
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SECTION 5

STUDY FINDINGS

The purpose of this section is to discuss the major findings of this
study. Each will be explained in the paragraphs that follow.

5.1 Utilization of Software Error Data

The collection and classification of software error data provide manage-
ment with an important tool for spotting areas where problems exist and
where management attention should be placed. This usefulness has been vali-
dated by several other error studies in addition to this study. For future
DSN/Mark 4 programs, the classification of error data should be performed as
the anomalies are reported. This would help assure that the error was more
fully understood as it was reported. It would force personnel reporting
errors to think about its causes, effects and criticality. The data it-
self could serve a useful purpose. First, it could be used to identify error-
prone modules. Management could then concentrate attention and test resources
to ensure problems don't develop when these modules are placed into operation.
Second, the data could be used to serve as justification for making repair
or replacement decisions. For example, a module would be replaced if a
certain error threshold were exceeded. As another example, modules would
not be accepted by the software librarian if an error threshold were ex-
ceeded by a programmer trying to get clean compiles with his/her program.
Last, management could use the data to guide them during their test activi-
ties. For example, a program would not be placed into operation unless an
acceptable error rate were being experienced. As another example, quality
assurance would seed the program with errors and determine whether or not
the test cases identified the majority of these. If the tests didn't, rework
of the test program would be recommended.

We believe the DSN could make better use of the data it collects. A
number of recommendations aimed at correcting current DSN practices are
included within this report in Section 7. All are aimed at enabling DSN per-
sonnel to use the error data it collects as a management tool.

5.2 Control of the Anomaly Reporting Process

Our initial analysis of the DSN error data base identified a lack of
uniformity and wide variance in how individual anomalies were classified. For

PRECEDING PAGE BLANK NOT FILMED
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example, there are several cases where the same error was reported by different
people who each classified the error differently. We believe this discrepancy
can be corrected by modifying existing error reporting procedures currently
In use, training DSN to better understand and use the procedures and making
someone responsible for monitoring adherence to the procedures. The monitor-
ing role is an important one. Feedback on procedures is necessary so they
can be revamped and fine-tuned as necessary. Assurance is also necessary so
that duplication can be minimized and forms can be properly filled out. Again,
recommendations aimed at improving the error reporting process are included in
Section 7 of this report.

5.3 Critical Error Occurrences

Analysis of the DSN software error data base indicates that many of the
critical errors occurred during the requirements definition and design phases.
These errors are the most costly to correct, especially if they are not
caught early in the development cycle. Our preliminary analysis shows that
up to seventy-five percent (75%) of the requirements errors are avoidable
through better documentation techniques and that up to fifty percent (50%) of
design errors may be caught by implementing better review techniques. Studies
into the use of Independent Verification Validation (IV&V), better review and
documentation procedures and automated tools are recommended in Section 7 of
this report to contend with these problems.

It is important to realize that there is more than a subtle difference in
roles for the IV&V and quality assurance organizations. Quality assurance is
primarily a monitoring activity conducted to ensure standards are followed and
specifications are met. IV&V is primarily an assessment activity conducted to
ensure the integrity of the products as they are incrementally developed.

5.4 Nondescript Error Reporting

Our initial evaluation of the error data base showed the largest single
error type classification was "other". Although some Of these can be attri-
buted to improperly completed anomaly reports, many of them could also be the
result of poorly defined man/machine interfaces (e.g., commands that are diffi-
cult to use or whose incorrect usage causes the system to halt), improper and
imprecise procedures for handling exceptions (anomaly reporting), inadequate
documentation and/or user misconceptions (requests for enhancements/modifica-
tions that were not really anomalies at all).
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Recommendations for studies Investigating Improving the OSN man/machine
Interface, developing a new DSN anomaly reporting procedure and Implementing
a DSN discussion/review form are Included 1n Section 7 of this report. These
studies should scope the magnitude of the problem and provide workable
solutions.

5.5 Detailed Data Base Analysis

Our cursory analysis of the error data base has yielded some useful
Information about high level trends and problem areas. We believe this
analysis to be Incomplete and deceptive because 1t has not been statistically
evaluated and compared with similar data taken from the public domain. We
believe further analysis is necessary before information gleaned from the
error data base can be used with confidence. Recommendations for further
statistical analysis are therefore included within Section 7 of this report.
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SECTION 6

ERROR DATA BASE

The purpose of this section is to summarize the DSN error data in
terms of the DSN/RCI classification taxonomy. Histograms summarizing the
1000 anomaly reports are used for this purpose. In addition, the approach
used to translate the anomaly report data into software error information
is included for completeness.

6.1 Creating the Error Data Base

Each of the approximately 1000 DSN anomaly reports was carefully
analyzed in terms of the DSN/RCI taxonomy's three dimensions. In cases
where the categorization was not readily apparent, comments were included
on the error classification form so that group concensus could yield a
classification decision. Sometimes the information on the anomaly report
was incomplete or unclear. Examples of such cases were where the problem
and its resolution were described as symptoms (e.g., 'TIWIWT zeroed1).
When this occurred, the person who originally completed the anomaly report
was contacted and asked to clarify the rationale. Sometimes this procedure
proved fruitless because persons contacted could not remember the circum-
stances of an error that occurred years ago. These problems were then re-
solved using the best judgment of the team.

It is important to note that the same people were involved in all
classification decisions. As a result, consistency in interpretation was
assured and any biases were factored uniformly across the sample size.

6.2 Data Summaries
Data itself is useless unless it can be reduced to yield meaningful

information. RCI researchers took the error data base gathered by the
study and generated histograms to identify apparent trends and conclusions
without resorting to a detailed statistical analysis. The histograms com-
bine error data within an accuracy range of plus or minus one percent.
Seventeen histograms follow in subsequent paragraphs along with a discussion
of our observations. To simplify the graphs the common abreviations listed
in Table 6-1 were used consistently throughout this section.

NOT
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TABLE 6-1

ABBREVIATIONS/ACRONYMS

t Time of Error Occurrence

D - Development - design, coding and unit test of program modules

V - Verification - integration and testing of subsystem

A - Acceptance - formal testing and acceptance of subsystem

T - Transfered - software subsystem operational

U - Unknown

t Error Criticality Levels

A - Critical

B - Dangerous (work-around exists)

C - Minor

U - Unknown

• Errors By Error Category

CO - Computational Error

10 - Logic Error

DH - Data Handling Error

IN - Interface Error

DB - Data Base Error

OP - Operation Error

RI - Requirements Incorrect

DE - Design Error

CL - Clerical Error

OT - Other Error
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TABLE 6-1 (cont'd.)

SUBSYSTEM NAME ABBREVIATIONS

DSS - Deep Space Systems

ODA - Occultation Data Assembly

NTK - Network Tracking RTM

CMF - Communication Monitor and Formatter

NTM - Network Telemetry

MDA - Metric Data Assembly

DRP - Data Records Processor

DST - Host Subsystem

DIS - Monitor Subsystem

NCD - Network Command

NDS - Digital Display Subsystem

NLP - Network Log Processor

NMC - Network Monitor and Control

NRS - Network Radio Science

VAP - Video Assembly Processor

VLB - VLBI Block I Program

APS - Antenna Pointing System

BRP - Breakpoint Processor

CPA - Command Processor Assembly

NOC - Network Operations Center
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6.2.1 Errors by Time of Occurence
A histogram illustrating errors by time of occurence, Figure 6-1,

was produced by counting the number of errors in the data base for each
of the following activities: software development, software verification,
software acceptance testing, software transfered to operational usage.,
and undefined time of occurrence. The undefined time of occurrences re-
sulted from anomaly reports which had no time of occurrence specified,
and for which time of occurrence could not be ascertained by our researchers,
The preliminary observations we can make based on this histogram are as
follows:

• The data seems to indicate that formal anomaly reporting proce-
dures were not strictly enforced during the development of most
of the subsystems investigated by this study.

• The software verification and acceptance testing processes un-
covered a large number of errors. Unfortunately, there were
still many more errors not discovered until the subsystem was
placed into operation. Life cycle costs could have been lowered
considerably by investing in methods and tools that located and
isolated anomalies earlier in the process.

6.2.2 Errors by Criticality Level
A histogram illustrating errors by criticality level, Figure 6-2,

was produced by counting the errors in Lhe data base for each of the
following three error criticality levels: A or critical level, B or
dangerous level (can be worked around), and C or minor level. An add-
itional classification U was included to identify those anomolies for
which the error criticality could not be ascertained by our researchers.
The preliminary observations we can make based on this histogram are as
follows:

• Level B errors were in the majority. Although work arounds could
be devised, such a large number of errors makes existing quality
assurance practices suspect.

• A large number of level A errors were identified. Critical
errors of such a large proportion immediately call attention to
review procedures and testing approaches used during development;
Some review of these might be in order.
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6.2.3 Errors by Category
A histogram illustrating errors by error category, Figure 6-3,.

was produced by counting the errors in the data base for each of the
following ten RCI/DSN error categories: computation, logic, data hand-
ling, interface, data base, operational, requirements incorrect and design
clerical, and other. An additional classification "questionable" consists
of "other" anomalies for which no change was generated. These "question-
able" errors were the subset of "other" errors that resulted from docu-
mentation requests, grips, misunderstandings, politics, and potential
hardware failures. The preliminary observations we can make based on
this histogram are as follows:

• Design and requirements errors were the largest single source of
anomalies,(other is smaller if the questionable anomalies are
eliminated). Many of these errors could be eliminated in the
future by using tools for design and requirement analysis and an
independent verification and validation contractor.

t Some anomalies of the "questionable" subcategory of "other" were
not errors but really requests for changes or documentation. This
seems to indicate the need to improve existing anomaly reporting
procedures and the mechanisms used for quality control. The data
also indicates the need for reviewing each anomaly report to
suppress phantoms before they are processed.

6.2.4 Level A Criticality by Subsystem
A histogram illustrating level A criticality by subsystem, Figure 6-4,

was produced by counting all the level A (critical) errors in the data
base for each subsystem for which there was reported data. Some subsystems
with no level A errors reported were not plotted. The preliminary obser-
vations we can make based on this histogram are as follows:

• Subsystems DSS, CMF, and CPA produced the largest numbers of critical
errors. The functions performed by these subsystems are probably
the most complex and should be more carefully reviewed and more
strenuously tested during future developments.

• Because level A errors are critical, special procedures should be
established to review subsystems that experience extremely high
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incidences of errors. For example, error-prone analysis might
be warranted to understand in-depth why a certain threshold of
errors were exceeded during a specific time period.

6.2.5 Level B Criticality by Subsystem

A histogram illustrating level B criticality by subsystem, Figure 6-5,
was produced by counting all the level B (dangerous) errors in the data
base for each subsystem for which there was reported data. Some subsystems
with no level B errors reported were not plotted. The preliminary obser-
vations we can make based on this histogram are as follows:

0 Subsystems DSS, NTK, CMF, and CPA produced the largest numbers
of dangerous errors. These subsystems were also the same ones
that had the highest incidences of level A errors. This data
emphasizes the need to have these subsystems analyzed in-depth to
find out why they are so error-prone.

• Further analysis of these trends is warranted and provided in
subsequent subparagraphs.

6.2.6 Level C Criticality by Subsystem

A histogram illustrating level C criticality by subsystem, Fiqure 6-6,
was produced by counting all the level C (minor) errors for each subsystem
in the data base. The preliminary observation we can make based on this
histogram is as follows:

t Most errors were identified as level A or B leaving this category
immediately suspect. Because this category is the lowest priority,
the tendency was to elevate anomalies to more critical classifica-
tions. This probably resulted in a large number of errors being mis-
classified. Again, better review procedures for anomalies can help
rectify this situation. Also, it probably led to a large number of
minor errors not being reported.

6.2.7 Errors During Verification by Error Category

This histogram, Figure 6-7, was produced by counting all the errors
for each of the ten error categories that occured during the verification
(software integration and testing) process. It shows which of the error
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FIGURE 6-7

ERRORS DURING VERIFICATION - BY ERROR CATEGORY
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categories caused errors while the software was subjected to high level
Integration and testing. The preliminary observations we can make based
on this histogram are as follows:

• Design errors were the most prevelant classification during
software Integration and testing. Many of these design errors
could be eliminated earlier in the life cycle and at reduced
cost using automated design analysis tools. An independent
verification and validation contractor or stronger quality assur-
ance involvement earlier in the project could probably help as
well.

t Data handling errors were common during software integration and
testing. Many of these could be eliminated by educating pro-
grammers on data interfacing standards and by automatically check-
ing compliance of all programs to data handling conventions during
unit check-out. The Air Force uses such an approach at their
Satellite Test Center in Sunnyvale, California to reduce such
error incidences.

• Again, the large percentage of "other" errors could probably
be reduced by procedural improvements.

6.2.8 Errors During Acceptance Testing by Error Category

This histogram, Figure 6-8, was produced by counting all the errors
for each of the ten error categories during the acceptance (formal soft-
ware testing before transfer to the user) process. The preliminary ob-
servations we can make based on this histogram are as follows:

• Design errors are again the most prevelant classification during
formal acceptance testing. Many of these design errors should have
been eliminated well before this activity commenced. This data
stresses the need for investigating earlier forms of design analysis
to eliminate errors before they propagate in impact and cost.

t Data handling errors are again common during formal software
acceptance testing. Our suggestion to improve training and auto-
matically check for compliance during unit testing seems to make
sense.
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FIGURE 6-8

ERRORS DURING ACCEPTANCE - BY ERROR CATEGORY
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6.2.9 Errors After Transfer by Error Category

This histogram, Figure 6-9, was produced by counting all the errors
for each of the ten error categories after the software was transfered to
the user (made operational in a production environment). It shows which
of the error categories caused errors after the software was declared
operational. The preliminary observations we can make based on this
histogram are as follows:

• "Other" errors are the most prevalent classification. These
errors included requests for modification, documentation and clar-
ifications. The high percentage of these errors indicate that
the user does not seem to fully understand what the delivered sys-
tem is supposed to do and how he/she should interface with it.
This human interface problem (i.e., man-machine interface) is
critical to proper operation and seems to deserve immediate
attention. Also, conventions for user documentation should be
investigated to determine whether or not improvements are in
order.

• Again, there were a large number of design errors. Our previous
observations and recommendations should reduce this large number
of incidences.

6.2.10 Level A Criticality by Error Category

This histogram, Figure 6-10, was produced by counting all the level A
(critical) errors for each of the ten error categories. The histogram
identifies which of the error categories caused which proportion of
level A error incidences. The preliminary observations we can make
based on this histogram are as follows:

• Design errors seemed to cause a large number of level A or critical
errors. This provides us with further evidence of the need
to investigate earlier detection of design errors.

• Data handling errors were also a cause of a large number of level A
errors.

0 Surprisingly, "other" errors contributed a large number of level A
errors. This could be attributed to the user who could not operate
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FIGURE 6-9

ERRORS AFTER TRANSFER - BY ERROR CATEGORY
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or understand operational anomalies anc1 categorized them as critical
to get Immediate attention. Again, this data emphasizes the need
to revamp the existing anomaly reporting procedure and to inves-
itgate ways of improving the man/machine interface.

6.2.11 Level B Criticelity by Error Category

This histogram, Figure 6-11, was produced by counting all the level B
(dangerous) errors for each of the ten error categories. The histogram
Identifies which of the error categories caused which proportion of in-
cidences. The preliminary observations we can make based on this histogram
are as follows:

t "Other" errors were the most common cause of dangerous errors.
Again, we can attribute this to the user who wants attention and
misunderstands the system. Also, hardware errors that were mis-
classified distorted the counts.

• Design errors were again another prevalent cause of dangerous
errors.

t Data handling errors were again a major cause of dangerous
errors.

6.2.12 Level C Criticality by Error Category

This histogram, Figure 6-12, was produced by counting all the level B
(minor) errors for each of the ten error categories. The histogram iden-
tifies which of the error categories caused which proportion of level B
error incidences. The preliminary observations we can make based on this
histogram are as follows:

• "Other" errors were again the most common cause of minor errors,
t Design errors were again a prevalent cause of minor errors.
• Data handling errors were again a common cause of minor errors.

The data confirms the trends experienced under all three severity by error
type counts. Some approach to rectify the problems identified seems in
order.

6.2.13 Subsystem CMF Errors by Software Revision by Criticality

RCI researchers felt that the five most error-prone subsystems should
be subjected to further analysis. We felt that interesting trends could be
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FIGURE 6-11

LEVEL B - CRITICALITY BY ERROR CATEGORY
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FIGURE 6-12

LEVEL C - CRITICALITY BY ERROR CATEGORY
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Identified by looking at errors by revision by critical1ty. We then
reduced the data and included them in this report in this and the next
four subparagraphs.

This histogram, Figure 6-13, was produced by counting all the errors
experienced for subsystem CMF and separating them under the various soft-
ware revisions and error criticality levels. The first five releases in-
cluding the initial issuance plus revisions A through D of the subsystem
were plotted. The histogram shows the number of errors 1n each criticality
level for each software revision. The preliminary observations we can make
based on this histogram are as follows:

0 As expected, the number of errors associated with subsystem CMF
decreased as a function of time and experience. What was not
expected was the extremely high number of level A and B errors
during release D. This revision had more level A and B severity
errors than any other release with the exception of the initial
issuance of the subsystem. There could be several reasons for
this phenomenon. For example, release D might have included
major enhancements to functional capabilities that caused consid-
erable rework. Yet, such a large number of severe errors should
not be present so late in a program's life especially when there is
so much experience available with it. RCI believes some further
investigation is warranted because this trend defies logic and
may be significant.

0 The decrease in level C errors to a steady state was expected.
Level A and B error did not exhibit such a trend indicating
possible problems in the initial release of the subsystem. The
acceptance testing procedures used therefore seem suspect and should
be reviewed.

6.2.14 Subsystem CPA Errors by Software Revision by Criticality

This histogram, Figure 6-14, was produced by counting all the errors
for subsystem CPA and seperating them under various software revisions and
error criticality levels. The initial release and revisions A through D
were included since they all had significant error histories. The his-
togram shows the number of errors in each criticality for each software
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revision. The preliminary observations we can make based on this his.-
togram are as follows:

• The trend was toward lower error incidence during most software
revisions with all error severity categories nearly leveling Out
as revisions were made. This trend is what was expected and demon-
strates that the history learned as a function of time was being
factored into the subsystem.

• Level B error maturing did not accelerate as rapidly as did
levels A and C. Some review might be warranted to understand
this phenomenon more fully.

6.2.15 Subsystem DSS Errors by Software Revision by Criticality

This histogram, Figure 6-15, was produced by counting all the errors
for subsystem DSS and seperating them into various software revisions and
error criticality levels. The initial software release and revisions A
through B were plotted because they were the only revisions for which we
had data. The histogram shows the number of errors of each criticality
level for each software revision. The preliminary observations we can
make based on this histogram are similar to those stated for subsystem
CPA (Paragraph 6.2.14) and would be redundant to state again.

6.2.16 Subsystem DST Errors by Software Revision by Criticality

This histogram, Figure 6-16, was produced by counting all the errors
for subsystem DST and separating them into various software revisions
and error criticality levels. The initial software release and revisions
A through C were plotted because the data for them were available. The
histogram shows the number of errors of each criticality level for each
software revision. The preliminary observations we can make based upon
this histogram are as follows:

t There was a general decline in error incidence until release C.
Possibly, the subsystem became tricky to modify at that time due
to improper enforcement of standards or high difficulty. Aga'in,
the trend is counter-intuitive and should be investigated.

• There was a trend towards a steady state until release C came
along. Again, investigation might be warranted to gain insight
into the cause for this phenomenon.
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FIGURE 6-15
SUBSYSTEM DSS - ERRORS BY SOFTWARE REVISION BY CRITICALITY

25

20

0
o:
oc.
UJ

15
o

UJ
OQ

=5

10

5

0

LEVEL A LEVEL B LEVEL C

25

aBfe

12

m^Q2s

A

•̂ ^̂ ^̂ •iJwhWM^MIH

B

i
27

6

A

t

0

, IE .

B

4

0
•••̂ •Î H
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6.2.17 Subsystem NTK Errors by Software Revision by Criticality

This histogram, Figure 6-17, was produced by counting all the errors
for subsystem NTK and separating them into various software revisions and
error criticality levels. The initial software release and revisions A
through E were plotted since all had significant error rates. The
histogram shows the number of errors for each criticality level for each
software revision. The preliminary observations we can make based on
this histogram are as follows:

t The number of level A errors decreased consistently by release
basis illustrating that learning was feedback to eliminate critical
errors in this subsystem. Possibly, the procedures used for this
subsystem could be employed by others to counter the trends we
observed that were counter intuitive.

• The numbers of errors in each level seem to reach a steady state
solution. This trend compares well with what others have ob-
served on similar data collection activities and illustrates the
maturing process that was expected.

6.3 Comparisons With Other Software Error Studies

As we mentioned in our introduction, many error studies have been
conducted in the past. These serve as useful benchmarks for DSN when it
comes to understanding what their data means. The purpose of this
paragraph is therefore to improve understanding by comparing the DSN/
Mark 3 error data to data revealed by other error studies. The two studies
chosen for our comparative analysis were done by Logicon for the United
States Army (Reference 2) and The Aerospace Corporation (Reference 4) for
NASA Langsley Research Center (LaRC).

The NASA/LaRC software error data was compiled during the development
phase of data base software for a multi-sensor tracking system (LSDB). This
study was chosen for comparison because the software development phase of

OSN/Mark 3 provided little data for our researchers. We wanted to see if
we could shed some light on the nature of errors that occurred during the

development process using this study.

The Logicon software error data was compiled from eleven seperate
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Independent Verification and Validation projects done for the United
States Arn\y. These projects varied 1n type (Included tactical and
command and control) and size of software produced. This study was chosen
as a benchmark because 1t encompassed data that was taken from software
that had been transHloned Into operations by the developing organization.
This data 1s also somewhat similar to the DSN/Mark 3 "acceptance" data.

As our first step 1n comparison, the error categories used In the
LogIcon and NASA/LaRC studies were mapped Into the DSN/RCI taxonomy as
shown In Figure 3-1. Next, a comparison histogram was generated as
Figure 6-18. Only those categories containing pertinent information were
plotted in the comparison graph. Finally, an analysis of what the data
meant was conducted. All error categories were compared using percentages
of errors so that the data could be normalized.

The following observations can be made from this comparing of data:
t DSN/Mark 3 had a smaller percentage of computation errors when
compared against the other two data bases. This was expected be-
cause of the nature of the DSN/Mark 3 software.

0 DSN/Mark 3 has a smaller percentage of logic errors when compared
against the other two data bases. The extremely large percentage
of logic errors reported by the LSDB data was expected because these
errors were reported during initial development. Similar percentages
of logic errors probably occured during DSN/Mark 3 development, but
were not reported. This data indicates that DSN has had some success
in removing logic errors early using its existing practices. Such
practices should be continued and possibly should be enhanced as a
result.

• Data handling errors were a large percentage of all three data
bases. This data indicates that there is a need for better standards
and enforcement measures for correctly handling data items in most
large-scale, real-time software projects.

• DSN/Mark 3 has a smaller percentage of interface errors when com-
pared against the other two data bases. This demonstrates that
DSN's approach to modularizing subsystems and checking in detail the
sequencing and control- logic seems to be working. Because these

-62-



CM

«t-
o

00
in

•
in

cc
c
V

V
o>
to
o.

CO
LU
to
«t
CO

"§i^
a: cj

CO
r™- y

vo z
UJ Oa:
=> u. :
CD o

00
V£)

PO

CM
•

in

ro
CO

•

10

QC O

3E 13
O O

cc

CD
O

c/o

O
O CT>

in
r—•
«»

CVJ

CO
o
t/o

CD
O

00
o

CO
o
to

CD
O

o
in

o
CO

o
CM

ScJOcJci3 do ou

O ef.

OJ
Ol
QJ

I I

.— CO
C3 D
O to

-63-



c\j
o>
o>
03

CL

0
tO

O
CO

tfl
O

c\
co

CD
O
to

ou
CO

CO
CO

CO

UJ
a:
§

o
CO

to

CO

CD
a

VD

CO
o
CO

O 2

to
O

o
CO

o
CM

do

-64-



were critical errors in the other studies, the DSN efforts should
be continued.

• Data base errors percentages were similar between DSN and LSDB.
Logicon did not categorize data base errors as a main classification
so further breakdown of the data is currently impossible.

• Design errors percentages exhibited similar percentages for both
the DSN/Mark 3 and Logicon data bases. This again validates the
need for better design review procedures to be established early
in software development. It also reenforces the need for better
quality control and for automated tools.

• Other errors also exhibited high correlation between DSN/Mark 3
and Logicon data bases. Although Logicon has no "other" errors
per se, classifications such as violation of programming practices
and documentation errors were comparable with DSN "other" errors.
Again, this data indicates that there is a need to improve current
procedures for anomaly reporting and to make sure people understand
how to use them.
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SECTION 7

PHASE 2 STUDY PLAN

The purpose of this section is to outline a plan of action for Phase 2
of the project. Also included are several recommendations for studies
which could be of benefit to the DSN.

7.1 Goals of Phase 2

Phase 2 of this study will be conducted to accomplish the following
goals:

• To identify and statistically validate DSN/Mark 3 software error
trends using the software error data base developed during Phase 1
as a basis.

• To enhance the DSN/RCI software error taxonomy so that it can be
applied to collect meaningful data for the DSN/Mark 4 project.

• To define enhanced anomaly reporting forms and procedures for
use now and in the future by DSN personnel.

7.2 Summary of Recommendations

Our action plan is summarized in Table 7-1. Recommendations are
identified within this table to correct problems found as a result of our
Phase 1 analysis. These recommendations extend Phase 2 to encompass a
number of optional studies each of which could be pursued to benefit the
DSN.

7.3 Statistical and Trend Analysis

The first task planned for Phase 2 is Statistical and Trend Analysis.

The preliminary review of the DSN/Mark 3 software error data base seems to
identify error tendencies in several areas. However, the trends identified
by this preliminary evaluation neither have been statistically validated nor
statistically analyzed. Additional data base analysis is needed to both
validate the trends that have been suggested by the Phase 1 data (see his-
tograms in Section 6) and identify other error tendencies that were not
apparent when viewing only the raw data. The statistical and trend analysis
recommended by the study team for conduct during Phase 2 could pave the way
for development of checklists, improved procedures and automated tools all
of which could be used to improve quality through error reduction.

_6?. PRECEDING PAGE BUNK NOT f JUWED



7.4 Extended DSN/RCI Anomaly Reporting Procedures

The next task planned for Phase 2 1s the enforcement of anomaly
reporting procedures. The objective of thf DSN/RCI error taxonomy de-?
veloped during Phase 1 of this study was to create a meaningful software
error data base for the DSN using existing anomaly Information. Applica-
tion of the DSN/RCI taxonomy to the existing anomaly reports pointed out
the need to collect additional data during the software life cycle. The
purpose of this task will be to extend the error taxonomy to encompass
the additional desired error data. In addition, the task would generate
a new anomaly reporting form and procedures for completing it.

This task will also provide procedures for "request for discussion/
review". This request procedure will help eliminate the use of the anomaly
reporting form as a vehicle for requesting design changes, will improve
communications and will provide more consistant anomaly data.

These forms can then be the basis of a management error tracking system,
provide an up to date error data base and assure consistent anomaly reporting
during the DSN/Mark 4 project.

7.5 Additional Studies

7.5.1 Examine Man/Machine Interfaces

One of the items made apparent by our analysis of the DSN/Mark 3
error data base was that many errors were caused by incorrect man/machine
actions. Not only were these errors identified by the "operations" cate-
gory but some were included within the "other" category. Historically,
many of the operator errors were the result of unclear or overly compli-
cated operator procedures. The "other" errors seem to result from similar
causes. Yet, these resulted when programmers were interfacing with the
machine.

We recommend further investigation in this area. This, investigation
will examine errors caused by both operators and programmers when they
work with the operational software. It would attempt to define methods

of simplifying man/machine interfaces and making DSN software more error
tolerant. This study could help eliminate a significant portion of the
errors that occur once the software package is operational in a pro-
duction environment.
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TABLE 7-1
ACTION PLAN SUMMARY

Finding Recommendation

t DSN could use error data
as a management tool.

Extend DSN/RCI taxonomy 'to
collect data.

Automatically collect and
reduce error data..

Quantify software reliability
using existing metrics.

Develop statistical method
for determination of when
testing is complete.

t The anomaly reporting pro-
cess should be more
tightly controlled.

•. Enhance the error reporting
form and make someone
responsible for data validation.

• Requirements and design
phase products should be
more carefully tracked
and reviewed.

t Examine automated tools for
requirements and design
analysis..

• Investigate use of IV&V
organization.

• Improved interface and
reporting procedures
could potentially elimi-
nate many anomalies.

§ Investigate improving man/
machine interfaces..

• Develop Improved anomaly
reporting systems and
procedures..

• Apparent trends in the
error data base must be
validated.

• Perform detailed statistical
and trend analysis of the
software error data base.

• Perform subfactor (sub-
classification) trend
analysis to identify
secondary error effects.
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7.5.2 Automated Tools Use

Software tools can serve as powerful aids In the design, development,
test, operations and maintenance of computer software. They can assist
the analyst, manager, programmer and user by providing meaningful informa-
tion that can be used to automate parts of the software effort and validation
process thereby increasing software reliability and productivity. Some of
these tools can validate requirements specifications, design specifications
and program code. Others can identify highly complex program modules so
these may be tested more thoroughly. This study will explore application
of existing automated tools during the development of software for the
DSN/Mark 4 system. These tools would be used to reduce the DSN error rate
by early detection and correction of errors. Use of tools could provide
significant error reduction and cost savings to JPL.

7.5.3 Detailed Sub-Classification of Error Categories

The DSN/RCI error taxonomy used to create the error data base cate-
gorized error types (such as computation, logic and data handling) into
ten major error classifications. This was done to provide meaningful data
for statistical and trend analysis and to avoid the syndrome of confusing
classification schemes. However, more detailed sub-classification of errors
from the three most error-prone categories (requirements, design and other)
can yield additional information about the nature of these errors. This
could allow us to more precisely identify potential areas of concern during
DSN/Mark 4 development. This sub-classification would be performed by re-
examining the anomaly reports for significant trends in error categories.
For example, design errors may be broken into design errors caused by mis-
interpretation of requirements, by inadequate documentation, by not clearly
thinking through the problem, and other significant design error sub-class-
ifications. This additional sub-classification could highlight areas where
better techniques for design and requirements review could be profitably
used during the DSN/Mark 4 development.

7.5.4_Sial.i3.tica.l. Determination of When Testing is. Cpjnple.te

During the development of the DSN/Mark 4 system software, testing will
be a major concern because of its high costs and the potential deleterious
impact of undetected software errors. This study will address the testing
problem by using statistical techniques and Hal stead's Software Science to
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help set testing objectives. These techniques would also be used to de-
termine whether or not objectives have been met. Included 1n this study
would be an assessment of state-of-the-art methodologies for estimating
the number of software errors within a system, use of the Graeco Latin
Square statistical technique for generating the minimum test data sets
needed to detect errors and recommendations for automating and applying
these techniques during DSN/Mark 4 testing. This study has the potential
to answer the question faced by DSN that asks "How much testing is enough
for large, distributed systems?".

7.5.5 Software Reliability Measurement

Software reliability is often talked about, but seldom quantified in
any useful manner. Using state-of-the-art statistical methods, this study
will answer the question "How reliable is the software?". Existing DSN/
Mark 3 computer utilization records will be used to quantify DSN/Mark 3
reliability over the life cycle using the Musa model (Reference 8).
Additionally for DSN/Mark 4, computer utilization forms will be evaluated
and modified if necessary to assure that reliability can be accurately
measured. This quantification will consist of a mean time between failure
(MTBF) analysis of the software package. Since failure is an often mis-
construed term, a precise definition of failure will be established in
terms of DSN performance. This quantification of reliability will allow
for better management tracking of system performance, better means of
system evaluation and performance measurement and earlier evaluation of
the effects of system modification on system performance.
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PREFACE

This document reports the results of a literature search conducted
to identify source material useful in our developing a software error
classification scheme for the Deep Space Network's Mark 3 System.

Part I summarizes five major taxonomies. Each is abstracted and
evaluated in terms of its strengths and weaknesses. Part II provides
an annotated bibliography of other documents which influenced our re-
commended error taxonomy. Part III lists other references used during
the investigation.
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PART I

MAJOR TAXONOMIES
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HUGHES-FULLERTON

Bowen, J.B., Standard Error Classification to Support Software Re-
liability Assessment, Proceeding 1980 National Computer Conference.
1980, p.697-705.

This article describes the Hughes-Fullerton error classification
scheme. The methodology was developed for internal use, during all
software development phases. Seven major error classifications
(Based on TRW's major categories) have been defined. Appropriate sub-
classifications are added as needed for a particular project.

As errors are reported, the software development phase in which the
error was originally Introduced into the system is recorded.

Three error severity classifications track the impact of the error,
critical, major, and minor. Trivial errors are Ignored.

STRENGTHS

1. Error severity is captured.
2. The development phase where the error originally occurred is iden-

tified.
3. There are few enough error categories that a person can remember

them easily.

4. The assignment of error sub-categories for a particular project
helps assure consistent data recording of unique errors.

WEAKNESSES

1. The more sub-categories used the more difficult the classification
process becomes.
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LOGICON

Dana, J.A. and Blizzard, J.D., Verification and Validation for
Terminal Defense Program Software, The Development of a Software ,
Error Theory to Classify and Detect Software Errors, Logicon Inc.,
for System Development Corporation, HR-74012, May 1974.

This study defined twelve major error categories, each with several
sub-categories. The major categories are well enough defined to en-
compass errors from commercial, scientific, real-time systems, appli-
cation or system software. In addition to the definition of the
errors, error detection methods are recommended.

Four error severity categories (catastrophic, serious, moderate and
trivial) have been defined.

The major consideration of this error report was the validation phase
rather than program development.

STRENGTHS

1. Error severity is captured.
2. The large number of error sub-categories assures consistent error

recording if personnel apply them correctly.

WEAKNESSES

1. The development phase where the error occurred is not identified.
2. The large number of error sub-categories make the system difficult

to use.
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NASA/GSFC

Forms and Instructions Change Report Form, NASA Goddard Space Flight
Center, June 1978.

Eight major error categories are defined in this two page form, with
two major sub-classifications for design and implementation errors.
The development phase (requirements, functional specs, design, coding
and test, other, and can't tell) is also captured on the form.

Errors that were caused by previous changes are noted since this is
often a significant percentage.

The activites used to validate the program, detect the error and find
its cause are defined in a matrix so the person filling out the form
can quickly check off those actions taken. This matrix shows such
things as programmer interaction in addition to normal test runs.

STRENGTHS

1. The development phase where the error originally occurred is iden-
tified.

2. The methodologies for error location and correction are captured
using a simple matrix.

3. There are few error categories and these are merely checked off
on the form.

WEAKNESSES

1. Error severity is not specifically recorded.
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NASA/LaRC

Hecht, H., Sturm W.A. And Trattner $., Final Report, Reliability
Measurement During Software Development, The Aerospace Corporation,
for Langley Research Center, NASA Contractor Report 145205, Sept. 1977.

This study defined twelve error categories with several examples of
errors within each category. This allowed the use of a simple one
page failure analysis report form.

Five error severity categories were used: system crash, dependent
job failure, local job failure only, real time failure and other.

The error categories are based on TRW's major error classifications.

STRENGTHS

1. Error severity is captured.
2. There are few enough error categories that a person can remember

them easily.

WEAKNESSES

1. The development phase where the error originally occurred is not
recorded.
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TRW

Thayer, T.A., Lipow, M.t Nelson, E.C., Software Reliability Study.
TRW Defense and Space Systems Group, Mar. 1976.

The TRW study defined twelve error categories with numerous sub-cate-

gories. First, as errors occurred they were used to define categories

and sub-categories. This method had a tendency to yield a new sub-

category for each error. Then, a reduced set of sub-categories was

generated through analysis of the original sub-categories. The de-

velopment phase in which the error occurred, if known was also tracked.

Although the study did not track error severity, the final recommenda-
tions contained five severity classifications for future studies.

The IKW study rubulU wuru ui>od ut, the bus it, of uwny future error

classification studies.

STRENGTHS

1. The development phase where the error originally occurred is

identified.
2. The large number of error sub-categories assures consistant error

recording if personnel apply them correctly.

WEAKNESSES

1. Although the study recommends the inclusion of severity information,

it was not considered during the study.

2. The large number of error sub-categories makes the system difficult

to use.
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1. Chief of Naval Materiel, Military Standard for Weapon System Software
Development .MIL-STD-1679 (Navy) AMSC No. 23033, Dec. 1978.

This specification defines methodologies for producing accuracy and
effective operation of software, methods of implementing software
changes, and factors that will reduce life cycle costs. Precise
definitions of various software error types and severity are given.

2. Final Technical Report, Software Data Collection Study Summary and
Conclusions, System Development Corporation, RADC-TR-76-329, Jun. 1976.

This study describes the methodology used to create a software data
base including costing, performance and error data. Methods of class-
ifying error type and when the error was generated are given.

3. Final Technical Report, Software Systems Reliability: A Raytheon
Project History. Raytheon Company, RADC-TR-77-188, Nov. 1976.

This study describes the methodology used to create a software error
data base. The error classification scheme is an extended version of
the TRW error classifications.

4. Final Technical Report, Software Error Data Acquisition. Boeing Aero-
space Company, RADC-TR-77-130, Apr. 1977.

This study describes the methodology used to create a software error
database and the results of analysis of the error data. Errors were
categorized using the TRW error classifications. Boeings results were
compared to published TRW results.

5. Final Technical Report. Software Data Collection and Analysis: A Real-
Time System Project History, IBM Corporation, RADC-TR-77-192, Jun. 1977.

This study describes the methodology used to create a software error
data base and describes the results of the error analysis. The error
classification scheme is an extended version of the TRW error classifi-
cations.
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6. Weiss D.M., Evaluating Software Development by Error Analysis: The
Data From the Architecture Research Facility, Naval Research Labor-
atory Communications Sciences Division, NRL RPT 8268, Dec. 1978.

This study describes a technique for collecting data on software
errors. An earlier version of the NASA/GSFC change report form was
utilized. Steps used to evaluate a methodology of error analysis
were also described.
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