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ABSTRACT

This research demonstrates the feasibility of producing high-efficiency

(15% or greater) thin-film gallium arsenide (GaAs) solar cells with costs

suitable for terrestrial power generation by growing thin epi-GaAs films

on suitably prepared low-cost substrates to replace the expensive single-

crystal GaAs wafers used conventionally. These substrates are made of either

recrystallized-Ge films previously deposited on metal substrates or epi-Ge

films grown by chemical vapor deposition (CVD) on low-cost, low-grade

single-crystal Si substrates.

For the first time, thin GaAs e pi-layers with good crystallographic

quality have been grown using a (100) Si-sub^,trate on which a thin Ge epi-

interlayer has first been grown by CVD from germane. Both anti-reflection

coated metal oxide-semiconductor (AMOS) and n +/p homojunction structures

were studied. AMOS cells were fabricated on undoped-GaAs epi-layers depoo..

Tied on bulk poly-Ge substrates using organo-metallic CVD film-growth,

with the best achieved AM1 conversion efficiency being 9.1:x. Both p-type

and n+-type GaAs growth have been optimized using 50 ppm dimethyl zinc

and l;, hydrogen sulfide, respectively. A new direct GaAs deposition mothod

in fabricating aitra-thin top layer, epiltaxial n + /p shallow homojunction

solar cells on (100) GaAs substrates (without anodic thinning) was developed

to produce large area (1 cm2 ) cells, with 19.4`. Atll conversion efficiency

achieved. Additiondl, an AM1 conversion efficiency of 13.4`;, (17.5 with

grid coveraye) was achieved for a single-crystal GaAs n +/p cell grown

by U14-CU on a Ge wafer.
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SECTION I

INTRODUCTION

The use of GaAs as the semiconductor material in photovoltaic devices is

widely recognized as one of the expected +neans for obtaining high efficiencies

with thin-film solar cells. This is partially due to its high light absorption

and good match to the solar spectrum. Also, high efficiencies are to be expect-

ed because the barriers used in GaAs, such as shallow n + /p homoJunctions and

Ga(A1)As heteroface pin junctions are reasonabl y stable at normal operating

temperatures and do not have the problems of many heterojunctions. Such prob-

lems, except for the InP/CdS configuration, arise from lattice 1)arameter and

electron affinity mismatch between the two components of the heterojunction.

These, in turn, can cause high interface recombination state densities and

unwanted barriers in the conduction bands, respectively, leading to reduced

open-circuit voltages (Voc) and fill factors (M.
The overall objective of this research is to demonstrate the feasibility

of producing high-efficiency (15% or greater) thin-film GaAs solar cells at a

cost reasonable for terrestrial solar electric power generation (under SO.70

per peak Watt in 1980 dollars). To fulfill this objective, a research and

development effort on GaAS solar cells was initially directed towards the

goals of demonstrating that 1) high-efficiency shallow-homojunction solar

cells can be fabricated by orciano-metallic chemical vapor deposition (OH-CH);

2) hi g h-efficiency AMOS or shall ow-honojunction solar cells can be fabricated

on polycrystalline Ge substrates; 3) fabricating and evaluatin(i recrystallized

Gc filris on tungsten metal should he conducted as a preliminary iilvestination



directed toward development of a low-cost substrate for thin-film GaAF <oiar

cells. Progress towards goal 1 during this reporting period is discussed in

Section III, and, progress towards goal 2 and 3 are discussed in Sections II

and IV.A., respectively. Due to the difficulty encountered in achieving good

efficiency for GaAs solar cells made on polycrystalline Ge substrates, a new

approach utilizing single-crystal Si as the low-cost substrate to circumvent

the problems associated with a polycrystalline substrate was pursued. Hence,

a new goal was adopted, goal 4, to demonstrate that hetero-epitaxial Ge inter-

layers on single-crystal Si substrates can be fabricated which are suitable

for use as low-cost substrates for thin-film epitaxial GaAs solar cells.

Progress towards goal 4 is discussed in Section IV.B.
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SECTION I1

POLYCRYSTALLINE GaAs SOLAR CELLS

The technical approach of this program is based on the use of a recrys-

tallized Ge film previously deposited on a sur face passivating layer covering

a low-cost metal sheet, all serving to replace an expensive bulk GaAs wafer as

the substrate for subsequent epitaxial growth of a thin-film GaAs layer. To

prepare a low-cost solar cell using this thin film technology, either an AMOS

or a homojunction structure could be made. Recently, however, a more promising

approach capable of high efficiency js being developed, involving the growth

of an epitaxial single-crystal GaAs thin-film solar cell on a Ge epi-interlayer

on a single-crystal Si substrate. This approach and the status of the work

involved will be discussed below in Section IY.

A.	 AMOS CELLS ON BULK POLYCRYSTALLINE Ge SUBSTRATES

Although a p/n junction as a poly-GaAs thin film solar cell may offer

better long-term stability and higher potential efficiency than a corresponding

Schottky barrier cell, the fabrication of such a successful junction h.s not

yet been demonstrated. Hence the AMOS structure, which has reasonable stabil-

ity at room temperature when formed on a single-crystal substrate, was studied

experimentally as a potentially viable alternative for low-cost polycrystalline

thin-film GaAs solar cells.

To circumvent problem , with diffusion cf metal atoms into the cue film

during its recrystallization, such as reported previously, AMOS cells were first

fabricated on GaAs deposited on bulk poly-Ge substrates. This permitted an
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investigation of the possible role of doping effects on the GaAs by Ge arising

from grain boundaries in the substrate, as well as the role of t" OM-CVD poly-

GaAs grain boundaries on Schottky barrier-type solar cells.

AMOS solar cells were fabricated on undoped poly-GaAs layers using OM-CVG

film-growth temperature from 610° to 70%' f., As/Ga mole ratios from 4 to 11,

and a constant H 2 flow rate of 3 liters/min. In order to study the uniformity

of solar cell performance within the 1.2 cm x 1.2 cm wafer area, a number of

1-mm and 5-mm diameter circular cell arrays were made on each wafer. A defin-

ite improvement in solar cell performance with decreasing As/Ga mole ratios

was observed. The best performance was found for GaAs films grown ,sing an

F Ga mole ratio of 4 at growth temperatures of 610 0-623°C. As the As/Ga mole

ratio was increased, a progressively higher leakage current was evidenced by

lower open-circuit voltage (Voc) and fill factor (FF) values. This leakage

was caused by an excessively high doping co n centration ( indicated by C-V

measurements) and/or higher defect densities n3ar the grain boundary regions,

causing reduced barrier heights and increased thermionic field emission effects

upon the diode current.

With an As/Ga ratio of 4, the effective doping concentration (measured by

the C-V method) increased from 7 x 10 15 to 1 x 10 17 cm - 3 as the growth temperature

increased from 610° to 700% . At a growth temperature of 700°C and an As/G3

ratio of 4, the doping concentration for GaAs films grown on sin l^ e-c rystal

GaAs substrates in our reactor was always under 1 x 10 15 cm-3 . Therefore,

the 1 x 10 17 cm -3 doping concentration observed for GaAs grown on the poly-Ge

substrates must have been due to auto -doping from the Ge substrate. The auto-

doping is probably also responsible for the high leakage currents observed for

A.MOS solar cells made on GaAs thin-films grown at temperatures higher than

a25°C on poly-Ge substrates. The probable cause for this auto-doping was

2-2



preferential diffusion of Ge along grain boundaries and/or the introduction

of inadvertent gaseous products into the OM-CVD gas mixture by its interaction

with the bulk poly-Ge substrate. Subsequently, an experiment was conducted to

test this hypothesis. In different trials using a 700°C growth temperature

and an As/Ga ratio of 4, single-crystal GaAs test samples were placed surround-

ing either a bulk	 ;-Ge wafer or a single-crystal GaAs wafer. Analysis of

C-V measurements on the various test samples showed that the effective doping

concentration of the epi-GaAs films on either GaAs or bulk poly -Ge wafers was

about 1 x 10 17 cm-3 when they were placed near each other during the same

growth experiment. On the other hand, the doping concentration was less than

1 x 1015 cm-3 for those GaAs test samples surrounding the single-crystal

GaAs wafer during the GaAs growth. This experimental observation una.,ibiguously

indicates that there are significant amounts of auto-doping originating from

the CVD gas mixture on account of its interaction with the bulk poly-Ge sub-

strate. Hence, the lower the growth temperature, the less was the effect of

auto-doping. Unfortunately, for OM-CVD growth at atmosphl-ric pressure, the

lower bound of the growth temperature for epitaxy on poly-GaAs was found to be

approximately 600°C. For growth temperatures below 500°C, non-epitaxial

growth with a matte surface occurred, leading to very low short-circuit current

density and poor energy conversion efficiency for the AMOS cells. Curves 1

and 2 of Fig. 2-1 represent the light I-V data of the best solar cell and of a

typical cell, respectively, using 700°C GaAs growth temperature. The observed

low open-circuit voltage (about 0.25 V) and nearly linear light I-V character-

istics (Curve 2 of Fig. 2-1) indicate that a high-leakage shunt is respon-

sible for the poor photovoltaic response of the typical 700°C-grown GaAs solar

cell. Even for the best cell, the open-circuit voltage is low (about 0.51 V),
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as shown in Curve 1 of Fig. 2-1. Figure 2-2 shows the dark forward I-V charac-

teristic of the solar cell as shown in Curve 1 of Fig. 2-1. The low open-

circuit voltage for this sample apparently arises from excessive diode current

due to recombination at the interface or at grain boundaries within the deple-

tion region leading to high reverse saturation current densities in the sample.

At lower growth temperatures (610°-625°C), a considerable reduction in

the leakage current was indicated by the observation of higher open-circuit

voltages nearly reaching 0.7 V. The highest conversion efficiency observed

was about 7% for a 0.2 cm2 AMOS cell made without AR coating on a poly-Ge

substrate at 625°C GaAs growth temperature. The light I-V characteristic for

this cell is shown as Curve 2 in Fig. 2-3. A solar AM1 conversion efficiency

of 11`) is expected for this cell after AR coating. However, after the AR

coating was applied, an AM1 conversion efficiency of only 9.1% was calculated

from the light I-V characteristic, shown as Curve 1 in Fig. 2-3. The reason

for the lower observed conversion efficiency is the lower observed FF value of

the AR-coated solar cell (0.52 instead of 0.64). This was due to problems

associated with contacting the back side of the substrate.

The dark forward I-V curve, the C-V characteristics and a SEM photomicro-

graph for the sample are shown in Figs. 2-4, 2-5 and 2-6, respectively. The

near-exponential dependence of diode current on voltage in the current range

from 10- 7 to 10-4 A for the 625°C growth GaAs cell indicates that the high

leakage encountered in 700°C growth is no longer the major problem. However,

the high value for the diode factor, n and the concomitant high saturation

current compared to AMOS cells fabricated on single-crystal wafers show that

the grain boundaries do locally affect the Schottky barrier interface states,

even for AMOS-treated GaAs surfaces. This effect was not observed for AMOS
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cells on sliced poly-GaAs wafers obtained from ingots grown from the melt, for

which efficiencies of about 14-16% were obtained (Ref. 2-1). Evidently, the

properties of grain boundaries in GaAs deposited from the vapor behave differ-

ently with respect to their effect on metal-semiconductor contacts. Thus,

even with large grain sizes such as found on these sliced poly-Ge wafers or as

obtained by deposition on recrystallized Ge films, the relatively small areas

associated with the regions at the grain boundaries do seriously degrade the

overall cell performance. Thi, is because of the exponential dependence of

diode current on barrier height and because of the likelihood that a consider-

able number of interface states in the grain boundary regions contribute to

large recombination currents. The poor values of FF and V oc observed by

other researchers on GaAs films deposited by various techniques and on various

substrates are probably also related to these phenomena.

The doping concentration of the low growth-temperature cell was calcu-

lated from the slope of the C-V characteristic curve (shown in Fig. 2-5) to

be 8.7 x i0 15 cm- 3 . This is a desirable doping concentration for GaAs AMOS

solar cells. A SEM photomicrograph of the AR-coated sample, using a Robinson

collector attachment for backscattered primary electrons, is shown in Fig. 2-6.

The bright lines with small circles attached are 2000 A silver electrodes

for electrical contacts. The large, faint circle indicates the area of the

O

solar cell coated with 590 A-thick Sb 20 3 AR coating. The slightly smaller

circle (5-mm dia.) inside the large circle indicates the 60 x-thick silver

area of the AMOS GaAs/poly-Ge solar cell. The crystalline structure of the

poly-Ge substrate is composed of elongated crystal grains with crystallite

size of 0.2-1 mm in the narrow direction (see Fig. 2-6). The speckled pattern

is due to etch pits formed during GaAs etching prior to AMOS processing.
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AMOS solar cells were also fabricated on GaAs grown on laser-recrystal-

lized Ge which had been e-beam deposited on tungsten sheet or tungsten-coated

steel substrates. The best efficiency found for the small-area AMOS thin-

film solar cell was 4.8% (8% with AR coating), as previously reported (Ref.2-2).

Once again, the main reason for the low efficiency was the low cell output

voltage.

D.	 NOMOJUNCTION POLYCRYSTALLINE CELLS

Since low conversion efficiencies arising from low Voc values were con-

sistently observed for AMOS cells made on GaAs/poly-Ge substrates, an investi-

gation of homojunction GaAs structures on low-cost poly-Ge substrates was

deemed necessary. However, before fabricating such structures on polycrystal-

line Ge substrates, a study of OM-CVD grown shallow homojunction structures

on single-crystal GaAs and single-crystal Ge substrates was made. The proce-

dures and resu;ts are described in the next section.
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SECTION III

SINGLE-CRYSTAL OM-CVD GROWN GaAs JUNCTION SOLAR CELLS

The technical approach of this program is based on the use of epitaxial

GaAs thin-films on suitably prepared low-cost single-crystal substrate .= to re-

place the expensive bulk GaAs wafer. In due course, producing high-efficiency

GaAs thin-film solar cells requires epitaxial growth of GaAs n/p junctions

with appropriate additional solar-cell-making procedures.

Although successful growth of thin-film n +/p homojunction GaAs struc-

tures by CVD using halide transport of Ga (Ref. 3-1) has been demonstrated,

growth of high-efficiency GaAs cells with similar structure by OM-CVD tech-

niques has not been established. The use of OM-CVD is preferred over hydride-

or halide-CVD, because: (1) there is no excessive etching of the low-cost Si

substrates or the interlayer by HCl, (2) the growth temperature can be lower

with correspondingly lowered auto-doping by diffusion and less detrimental

effects because of thermal-expansion mismatch between the GaAs film and sub-

strate, and (3) the use of a single-temperature zone and a cold-wall ^i ictor

should ultimately allow for future scale-up and the achievement of low-cost

fabrication.

A.	 GaAs (GROWTH

1.	 p-type GaAs Growth

rreviously, an OM-CVD facility for undoped or lightly doped n-type

GaAs (doping concentration less than 10 17 cm- 3 ) epitaxial thin-film growth on

poly-Ge substrates was established. For fabricating the epitaxial GaAs homo-

junction solar cell structure, the OM-CVD reactor was modified to accommodate

additional dopant ' nes for both n }- and p-type dopdntS. Optimization of

p--type GaAs gruw-.1h, tising ^u ppm dimethyl zinc (0149 ) as doping gas waS completed.
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Hole concentrations ranging from 2 x 10 17 to 3 x 10 18 cm- 3 were consistently

achieved using growth temneratures of 700-725°C, DMZ mole fractions !MF) from

8 x 10 -7 to 6 x 10 -6 , a growth rate of 0.17 micrometer/min, arsine (AsH3)

MF of 1.6 x 10 -3 , trimethyl gallium (TMG) MF of 4 x 10 -4 , and H 2 flow rate

of 3000 cc/min. Although a room-temperature hole concentration as low as

6 x 1016 cm- 3 can be achieved with a low MF of DMZ, the reproducibility

was poor. The inability to achieve well-controlled low-doping at a low 14F of

DMZ is possibly due to the loss of DMZ by adsorption on the walls of the tubing

or reactor, and/or loss by hydrolysis with the residual moisture in the system.

The cha:-acterization of the p-type GaAs film growth was achieved by

employing van der Pauw measurements on p-type films grown on (100)-oriented

Cr-doped semi-insulating GaAs substrates. The dependences of hole concentra-

tion (p), resistivity (p), and Hall mobility (p H ) as a function of measurement

temperature for several representative samples are displayed in "rigs. 3-1,

3-2 and 3-3, respectively. Clearly, even for samples doped as low as the high

1017 cm- 3 range, the hole-concentration data show impurity conduction effects

as indicated by the absence of appreciable carrier freeze-out. Figure 3-2

shows that the dependence of resistivity on temperature gradually decreases

as the doping concentration of DMZ increases. For the highest-doped sample

(MF of DMZ = 6 x 10 -6 , room-temperature hole concentration P. = 3.b x 1u 16 
(;rn'"3),

the temperature dependence of p is recuced significantly. Using optical tech-

leiques, Queisser and Panish (Ref. 3-2) reported the mergin_; of the acceptor level

with the valence bands at a hole concentration of about 2 x 10 16 cm- s , near

the doping level in our highest-doped sample. The critical acceptor cone,entra-

tion, Ncr, at which the impurity cenduction becomes "free" (zero activation

energy), is given by (Ref. 3-3) Nor (0.25/A P, where A L given Ly y


/iC ^_ ^L)
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is the radius of the hole orbit around the Zr. acceptor. With the static dielec-

tric constant	 of 12.8 and the binding energy E of 30.7 meV for the hole on

Zn in GaAs (Ref. 3-4), the value for N cr of 2.53 x 10 18 cm-3 is obtained.

The room-temperature Nall mobility as a function of hole concentration

is shown in Fig. 3-4. For comparison, data reported in the literature are also

included here. The solid line is calculated (Ref. 3-5) from the Brooks-Herring

formula with an assumed value of 400 cm 2V-l s- 1 for the lattice-limited mobility.

The exper imental result of Sze and Irvin (Ref. 3-6) is also included -- indicated

by a broken line. For a given hole concentration, the mobility we obtained is

comparable to or higher than that reported by others, indicating good sample

quality for the OM-CVD GaAs films grown during this contract period.

The room-temperature bulk resistivity as a function of hole concentration

for the present Zn-doped OM-CVD GaAs is shown in Fig. 3-5, along with data

obtained by Sze and Irvin (Ref. 3-6). For completeness, the functional depen-

dences of room-temperature hole concentration (p) on the MF of DMZ at 700°C

and 725°C growth temperatures are shown in Fig. 3-6. It should be pointed out

that no doping-saturation effect was observed up to the highest doping concen-

tration (3 x 10 18 cm-3 ) in our experiments. This was expected because the solu-

bility limit of Zn in GaAs is higher than 10 20 cm-3 . The inability to achieve

a consistent doping concentration at a low MF of DMZ is clearly shown, as

discussed previously.

2.	 ;highly Doped n-type GaAs Growth

The investigation of a low-doped, n-type OM-CVD GaAs, using 10 ppm

H 2S doping gas, was reported at the 7th International Conference on Chemical

Vapor Deposition held during the Electrochemical Society Meeting in October

1979. Hence, no further discussion will be given here.

U
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The investigation of depositing highly doped n-type GaAs using 1 ',, H2S in

nitrogen was completed early in the program. Reproducible room-temperature

electron concentrations, ranging from 9 x 10 17 to 4 x 10 18 cm- 3 , were achieved

at a growth temperature of 725°C, using a MF of Ii 2 S between 1.7 x 10 -5 and 4 x

10-4 , MF of AsH 3 of 1.6 x 10 -3 , MF of TMG of 4 x 10' 4 , H 2 flow rate of 3000 cc/

min and a growth rate of 0.17 micrometer/min on Cr-doped, (100)-oriented GaAs

wafer substrates.

Figure 3-7 shows the relationship between the room-temperature electron

concentration and the mole fraction of H4S doping gas. The saturation of

room-temperature electron concentration at high mole fraction of N H S due to

the solid solubility limit of S in GaAs is clearly indicated. The room-

temperature Hall mohility yielded values between 1 2 48 and 3133 cm-'V`1s-1

for samples with room-temperature electron concentration (n) values hetween

4 x 10 18 and 9 x 10 17 crr- 3 , respectively, as shown in Fig. 3-8. The Mall

mobility value at n = 9 x 10 17 cnt- 3 is very close to that measured by Sze and

Irvin (Ref. 3-6) on GaAs at 300'x, as shown by the solid curve in Fig. 3

(dopant species unreported). However, at higher doping levels, an increased

level of acceptor concentration due to residual impurities in the gas streto

occurs concomitantly with the saturation of S in GaAs as the H ` J flow r,rte i

increased. Hence, the observed Hall mobility values at increased doming levels

were lower than those measured by Sze and Irvin (Ref. 3-o) because of the

higher compensation ratio.

11.	 OHMIC-CONTACT LVALUATION

1.	 Vacuum-Deposited Ohmic Contact

A nuu^rber of n^,'p hoaio,junction, single-crystal GaAs solar g el l s were

made by growing sequential-pair layers of p-type and ri"-tyke GdAs with varying

thicOnesses and doping concentrations on (100) p + -type GaAs wafer substrates.
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Initially, ohmic contacts on both the back surface of the p + substrate and the

front surface of the n + grown layer were made by vacuum-deposition of either

Au or Au:Ge eutectic compound (12% Ge by weight), due to lack of plating solu-

tions at that time. Poor energy-conversion efficiency with AM1 simulation was

generally obtained (ELH lamp calibrated by a standard Si solar cell). The

main problem stemmed from the low value of the fill factor due to hiqh contact

resistance -- evidenced by non-ohmic behavior between isolated pads on n + /p test

samples. In an n +/p homojunction solar cell structure, the n + layer needs

to be thin (0000A). In order to avoid in-diffusion of the metallization,

sintering is undesirable for forming the ohmic contact. However, ohmic contact

processes for GaAs given in the literature almost invariably rely on sintering

at temperatures higher than 300°C for times longer than 2 minutes. Therefore,

vacuum-deposition of different materials on Te-doped (2 x 10 17 cm-3 ) substrates,

S-doped (4 x 10 18 cm-3 ) films, and Zn-doped (2 x 10 18 cm-3 ) substrates were studied.

The materials were deposited in an array pattern of 2-mm diameter dots with 3-mm

center-to-center distance. Resistance values were calculated from I-V curves

measured between two separate pads and corresponding to the zero-voltage value.

The best results on 2 x 10 17 cm-3 Te-doped GaAs were achieved by depositing

Au:Ge (121 Ge), with resistance between contact pads in the range of 3-12 ohm,

without sinterin g . However, some contacts were not ohmic, showing excessive

resistance values exceeding 10 k ohms. An HO etch of the GaAs wafer before

deposition and sintering did not eliminate the problem. The use of vacuum

deposition of other metals, including Au, Ag:In:Ge (90:5:5 by weight) and ?n,

also did not lead to good ohmic contacts without prolonged sintering (contact

resistance of 5-10 ohms can be achieved for Au and Ag:ln:Ge after sintering

at 400-450°C for 1-3 mins). Similar results to those of 2 x 10 17 cm-3 Te-doped

GaAs were observed for 4 x 10 18 S-doped GaAs.
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With 2 x 1018 cm-3 Zn-doped GaAs (ground-surface finish), the best results

were obtained on samples having metallized contacts of pure gold. A contact

resistance of < 1 ohm was achieved using gold contacts without sintering. Silver

was the next best metal, with a contact resistance of about 5 ohms be("ore sinterii

However, the contact resistance increased after sintering at 300°C. Other metals

used, including Aq:Zn (10`u Zn by weight) and In, produced contact resistances of

about 30 and 500 ohms before sintering, and about 70 ohms and 35 ohms after sinter

ing, respectively.

2.	 Electro-plated Ohmic Contact

Because of the difficulties with evaporated and sintered contacts,

a basic gold cyanide plating solution with pH > 12 was used to furor the ohmic

contact on n+ and p+ GaAs substrates. Ohmic contacts were obtained on To or

S-doped n+ GaAs substrates.

Subsequently, an Aurail 292 gold-plating solution was tried with separdto

contact pads on each wafer (either an n + or p+ GaAs substrate with donino con-

centration in the range of 2-4 x 10
1: cm-3 ) using a suitable maskinq nro^ess.

Ohmic contacts with a contact resistance ^ 1 ohm wds observed for all such

samples studied. To characterize the ohmic contact more precisely, ^^hut^ ^,+^^.^

wore designed for defining the patterns for etching cells and test tr+; tut ,.

The masks were made for us b y the Marshall S pace Flight Center, where t p er, is

cumputeri zed capability for generati ng such masks. Figure 3-9 shows +one ut

the photo:nasks for , definin g1 the mesa -etch pattern. These masks can btu u,^20 not

onl y for contact-resistance evaluation, but also for Hall l redsureciL,it is ,oOl

as C4 characterization.

To characterize the contact and to evaluate the contact resist+n^o 011 "IAs,

the transmission-line model (TLM) (Ref. 3-7) is most suitable. f . iqure ')-lu
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shows such a contact-resistance test-pattern employing the TLM method. For a

given material with known bulk resistivity Np, epitaxial layer thickness a,

and expected contact resistivity q,, the dimensions of f and d in Fig. 3-10

can be calculated from:

I = 1/(IOa) and d z 2/(a),

where

a = 1PB/(a})C171/2.

A photolithographic method was used to define the TLM test patterns for

the evaluation of the ohmic-contact produced by the Lea Ronal Aurall 292 gold-

plating process on the n+/p GaAs substrate.

Figure 3-11 shows a phuLomic rograph of the contact resistance pattern of

a sample made on an n + ,Ip GaAs structure. The gild pads were deposited

at 55°C with about 2 mA/cm2 current density using fresh gold-plating solution

passed through a 0.4 micrometer filter. The filtration is important for main-

taining good edge-definition during the plating process. After evaluation of

numerous test patterns made on n+ /p GaAs substrates having doping concentration

n+ of about 4 x 10 18 cm-3 , the upper bound of the ohmic contact-resistivity was

found to be less than 10- 2 ohm-cm2 . This contact-resistivity value is suffi-

ciently low for solar cells intended for use without solar concentration.

C.	 SINGLE-CRYSTAL n +/p SHALLOW HOMOJUNCTION CELLS ON GaAs

Since low conversion efficiency arising from low Voc values was observed

for AMOS cells evade on GaAs/poly -Ge substrates, the emphasis of our program was

shifted towards the n + /p shallow-homojunction as the initial alternate approach.

A good photolithographic system is essential in obtaining consistent results on

large area n +/p solar cells. During this report i ng period, an existing dark

room was converted into a '"yellow room" for the photolithographic process.
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Specially designed photomasks for a front-contact grid structure were made and

used to produce a 1 cm x 1 cm mesa -etch. Figure 3-12 shows the front-contact

structure.

In the front-contact grid design, ten lines 0.95 cm long and 12.5 micro-

meters wide, spaced 1 mm apart, were used to minimize the series resistance due

to the high sheet-resistance of the very thin top n+- layer. A wedge-shaped

bus-line situated in the center of the 1 cm x 1 cm structure and perpendicular

to th conducting fingers was used to collect current from each finger. The

wedge- • ^hapr•J bus-line design is employed to reduce the shadowing loss. The

thick end of the wedge was terminated by a rectangular pad 2 mm x 1 mm as a

probe or soldering contact. Two additional lines 0.95 cm long and 50 micro-

meters wide were placed perpendicularly to the fine - line conducting fingers

as built-in redundancy elements for collecting the photogenerated current in

case of broken finger-lines. The shadowing loss of this front-grid structure

was only about 4.6%.

Initially, due to lack of a mask aligner at that time, a number of

1 cm x I cm-area n +/p GaAs solar cells were made using a photolithographic method

with the alignment of photomasks done by hand. Unfortunately, the results

were inconsistent and not reproducible. Poor fill factors and poor conversion

efficiencies were observed for these 1 cm 2-area devices.

In order to discover the cause for the poor photovoltaic response of the

1 cm x 1 cm-area n +/p solar cells, arrays of small -area n+ /p solar cells

(0.005 cm2 ) were made on particular substrates. Initially, inconsistent

photovoltaic responses were also observed between these small array cells on

the same wafer. By correlating a test -cell response with its appearance under

the optical microscope, it was determined that the :gad solar cells had poor

mesa-etch photomask registration, resulting in overlap of the mesa -etched edge

with the gold contacting -pad. The observed poor photovoltaic response was
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therefore probably due to the replating of gold across the mesa-etched edge

during mesa-etching of the n+/p GaAs wafer in the presence of the exposed

gold contacting-pad nearby. Such replating of gold created additional shunting

across the n+/p ;unction and caused the observed low photovoltaic response

of the solar cell. This finding might also partially explain why poor photovoltai

response was observed for the 1 cm x 1 cm n +/p solar cell. Some portion of

the gold contact fingers overlapped the mesa-etched edge, thereby causing

increased leakage current.

Subsequently, improved techniques for hand alignment of the metallizing

and mesa-etching of small-area mesa solar cell structures led to some encourag-

ing diode dark I-V characteristics. The dark forward I-V characteristics curve

typical of such diodes with 5 x 10`3 cm-2 area is shown in Fig. 3 -13. The

apparent diode ideality factor n in this case was about 1 . 4 when a single-

exponential curve-fitting procedure was performed on the high-current portion

of the dark I-V curve. The corresponding reverse saturation current density

was about 2 x 10' 14 A/cm2 . A double-exponential curve fitting was also

performed. The procedure is based on the expression:

JO = Jol (exp (qVp/nikT) - 1) +

J02 (exp (qVp/n2kT)	 1) +	 (1 )

VO /RSH ,

where JO is the measured dark forward current density, J0 1 is the reverse

saturation current density associated with the diffusion current of an ideal

,junction, q is the electronic charge, k is the Boltzmann constant, J02 is the

equivalent reverse saturation current density due to additional curr-^ilt

transport mechanisms (e.g., recombination in the depletion region due to un-

desirable trapping centers, su rface recombination at the junction edges, etc.),
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and RSH is the shunt resistance across the diode. The voltage across the

junction of the diode, VD , is related to the applied voltage V by VD = V - JORS,

where RS is the series resistance per unit area. The results of such curve

fitting are as follows: JOl = 1 x 10 -18 A/cm2 , n 1 = 1, J 02 = 1.4 x 10 -8 A/cm2,

n2 = 2.8, RSH = 6.9 k ohm cm 2 and RS = 7.5 x 10 -2 ohm cm2 , with an rms error of

about 1.5% through the current range from 10- 6 to 10-3 A. Comparing the

magnitude of the diode current density associated with the different parameters,

it was found that at a current density higher than 13 mA/cm 2 , the diffusion

current term of the ideal junction characteristic begins to dominate the diode

current term. However, even at 30 mA/cm 2 which is essentially the maximum

theoretical current density (Ref. 3-8) for a GaAs solar cell under AM1 illumi-

nation (Refs. 3-9 and 3-10), about one third of the diode current is contributed

by the term associated with the non-ideal diode factor of n2 = 2.8.

From the diode dark I-V characteristics, a simulated light I-V relation-

ship can be derived according to the following expression:

J = J L - J D ,	 (2)

where J j is given by eq. (1), J is the measured output current density, and

JL is the light-generated current density. Based on the diode dark I-V

characteristics shown in Fig. 3-13 and assuming a short-circuit current density

of 24.5 mA/cm 2 under AM1 conditions (normalized to 100 mW/cm 2 input power

density), a simulated light I-V curve was derived and Is shown in Fi(I. 3-14.

From this curve, the projected Voc, FF and conversion efficiency are 0.956V,

0.8, and 18.8, respectively. Subsequently, a small mesa-etched diode of

2 mm-diameter with a 1-mm electrode was fabricated on a second wafer during

the same OM-CVD growth experiment. The photovoltaic data obtained supports

the projected Voc and FF values. This indicates that fairly accurate eFtimates

. I
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of the photovoltaic results may be obtained by studying the dark forward I-V

characteristics. Further study of the simulated light I-V characteristics

indicated that the improvement in Voc is very minor (about O.O1V) even if

one can eliminate the current term due to the non-ideal junction (n2 = 2.8)

behavior. This is because of the logarithmic dependence of Voc on diode

current density. On the other hand, the improvement in FF is significant

(from 0.80 to 0.87). Due to the improvement in both V oc and FF, the expected

performance of such a solar cell would have a conversion efficiency of 20.6-1)

as compared to the original 18.8`,,. For comparison purposes, the reverse satur-

ation current density of an ideal, abrupt n +/p GaAs junction is 1.2 x 10- 19 A/crn2

(assuming n + = 4 x 10 18 cm- 3 , p = 2 x 1,9 17 cm- 3 , electron mobility in the

p-region equal to 3000 cm 2V- l s- 1 , electron diffusion length in the p-region

equal to 5 micrometers and the intrinsic carrier concentration equal to 10 6 cm-3),

which is about one-eighth of the measured J O1 value (9.7 x 10 -19 A/cm-3)

obtained from curve fitting of the dark I-V characteristics. Bence, some

improvement in the grown n + /p junction should be achievable.

One possible cause of the deviation of reverse saturation current density

from that for the ideal abrupt junction was postulated to be a lack of abrupt-

ness in the grown n + /p homojunction. A non-abrupt junction structure could

be caused by the in-diffusion of the n + dopants into the p-layer during the

W -CVD growth of the n + top layer, or by non-ideal phasing of the dopant-gas

flows. The non-abruptness would then reduce the built-in potential across the

11 + /p junction, leading to higher-than-expected reverse saturation current

density. To determine the abruptness of the n+ /p junction, samples of OM-%VU

grown n +/p substrates were sent to Charles Evans & Associates, San !Mateo, Califor-

nia, for analysis using Secondary Ion ilass Spectrometry (SIMS). The samples

were analyzed under high resolution to distinguish between 32 S and 32(o,).
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During the analysis of the S profile, cesium ions were used to probe the surface

with total sputtering time ranging from 1200 to 2200 seconds. After obtaining

the depth profiles for the n+/p samples, the samples were shipped back to JPL

and the depth of each crater formed during the ion sputtering was determined

by a Model 10 Alpha-step Microtopographer made by Tencor Instruments, Inc.,

Mountain View, California. The depth profiles of both [S] and [02] obtained

by SIMS for two samples are shown in Figures 3-15 and 3-16.

The n+ /p GaAs sample of Figure 3-15 was grown on a (100) p +-GaAs substrate

purchased from Morgan Semiconductor, Garland, Texas. The initial p+- and p-layers

(each about 1.8 micrometers thick) were grown at 725°C with a Zn-doping concen-

tration of 3 x 10 18 and 2 x 1017 cm-3 , respectively. The subsequent n+-layer

was grown at the same temperature with a S-doping concentration of 4 x 1018

cm- 3 and a thickness of about 0.2 micrometer.

The n+ /p GaAs sample of Figure 3-16 was grown on a (100) p +-GaAs substrate

purchased from Crystal Specialties, Monrovia, California. This substrate has

higher residual S concentration than the substrate of Fig. 3-15, as evidenced

by the step shown in the [S] depth profile. For this sample, an initial p+-layer

was grown at 700°C with a Zn-doping concentration of 3 x 10 18 cry -3 and a

thickness of about 2 micrometers, followed by a p-layer grown at 725% with a

Zn-doping concentration of 2 x 10 17 cm-3 and a thickness of about 2 micrometers.

The final n+-layer was grown at 725% with a S-doping concentration of 4 x 1018 cm-3

and a thickness of about 0.2 micrometer. The figures clearly indicate some

diffusion of the n +-dopant (S) into the underlying p-layer. The tail portion

of the observed S concentration, can be approximated by the expression

[S] -: exp ( -x/L )

where x is the depth parameter and L is a constant. The value of L was found

to be about 0.1 micrometer for most of our sam ples. This diffusion of S would
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decrease the abruptness of the n +/p junction, leading to a configuration

closer to a graded-junction structure. Hence, a lower built-in potential and

open-circuit voltage than that of the ideal abrupt n +/p junction would be

measured, agreeing with the observation of the less-than-ideal behavior of the

n+/p diode, as discussed above. The initially high SIM S oxygen signal, dropping

rapidly as the bulk is approached in both Fiqures 3-15 and 3-16, may be due to

surface oxidation. The 32 (02 ] level in the bulk region was really below the

detection limit of the SIMS instrument, with the fluctuations being due to

instrumental noise.

As discussed earlier, poor photovoltaic response was observed for initially

made 1 cm x 1 cm n +/p solar cells, due to poor mesa-etch edge definition before

proper photomask alignment equipment was obtained. Subsequently, a Kasper model

2001C mask aligner was ordered and received. I' was then modified to the

approximating-printing mode and instal'1ed in the yellow room. Good line defini-

tion and registration were then obtained for front-contact-grid and mesa-etch

patterns. Subsequently, the mask aligner was used to make contacts for l cm x 1 cm

n+/p GaAs shallow-homojunction solar cells grown by OM-CVO on single-crystal

(100) GaAs substrates.

Additional GaAs cells were made by sequential growths of a 2 micrometers

thick p+-layer (p+ = 3 x 10 18 cm-3 , Zn-doped), a 2 micrometers thick p-layer

(p = 2 x 10 17 cm-3 , Zn-doped) and a 0.2 micrometer thick n+ layer (n+ = 4 x 10 18 cm-3,

S-doped) on Zn-doped p+ GaAs (p+ = 4 x 10 18 cm-3 ) substrates with orientation

approximately 2' off (100) toward the (110) plane: The OM-CVO GaAs growth temper-

ature was 725°C, and an As/Ga mole ratio of 6, arsine MF of 1.6 x 10- 3 , TMG MF

of 9 x 10 -4 , and H2 flow rate of 3000 cc/min were used. In fabricating the
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n+/p solar cells, the back contact was first deposited by the electroplating

method. Subsequently, an AR coating of approximately 1000 A was produced by

an anodic method similar to the one described by Hasegawa and Hartnagel (Ref.

3-11). Anodization of the GaAs was performed at room-temperature using a 4N

purity aluminum plate as the cathode. During the anodization process, about 550

A of GaAs at the surface was oxidized. Both the thickness of the AR coating

as well as the thickness of the oxidized GaAs layer were measured by the Model

10 Alpha -step Microtopographer.

Typical energy conversion efficiencies of about 15 1/0' were obtained for these

solar cells under simulated AM1 conditions (EL H lamp), with the best efficiency

being 15.3%. The light I-V characteristics curve for the best solar cell is shown

in Fig. 3-17. The values of Voc, Jsc and FF for this solar cell were about 0.97

volt, 20 mA/cm2 and 0.79, respectively. The dark I-V characteristics curve for

the same solar cell is shown in Fig. 3-18. A double-exponential curve fitting

using the expression of Eq. (1) above was performed. The parameter values ob-

tained were: JOl = 1.4 x 10-19 A/cm2 , J02 = 5.6 x 10-12 A/cm2 , n l = 1 and n 2 = 1.8.

For convenient comparison purposes, the curve-fitting results for the best

small-area n +/p GaAs solar cell discussed earlier were: J Ol = 1.0 x 10
-18 

A/cm2,

J 02 = 1.4 x 10 -t8 A/cm2 , n l = 1 and n2 = 2.8. The remarkable reduction in Jul,

J02 and n2 values for the n +/p GaAs solar cell with much larger area 0 cm2 ) was

due to improvements in the photolithographic process, which also caused the

improvement in FF and Voc values shown in Fig. 3-17. It is significant to note

that the low J sc value was expected, since the thickness of the top n+-layer

(about 1500 A) was not optimized at that time. Hence it was expected that

reducing the n +-layer thickness to an optimum value should result in n +/p GaAs

cells with efficiencies above 18..
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n +-layer shown in Fig. 3-18, it is clearly evident that its J02 value is 105

times larger (5.8 x 10 -7 A/cm2 vs. 5.6 x 10` 12 A/cm2 ) and its n 2 value is more

than twice as large (4 vs. 1.8), indicating deleterious high current leakage.

It was postulated that the thinning of the top n +-layer by the sequential

anodization-etching technique apparently was not uniform, and probably intro-

duced localized pin holes or ultra-thin regions with thickness less than the

dimension of the normal depletion-width. As a result, there existed undesirable

shunting effects between the grid metallization and the p-type base layer.

Indeed, this was verified from the observation that photovoltaic responses

of array cells made on a 1.2 x 1.2 cm GaAs wafers were not consistent when the

sequential anodization-etching technique was used. Hence, it would be very

difficult to make a large area 0 cm2 or larger) n +/p shallow-homojunction

device and obtain a conversion efficiency similar to the best small area

(2.36mm2 active area) cells using this technique.

One solution to this problem that has been proposed elsewhere is to grow

the n+-layer to a thickness of about one micrometer, then deposit the grid

metallization, and by many successive oxidations and etching steps (stripping),

to reduce the average thickness of the n +-layer between the grid metallizations

to about 500 A. This procedure imposes stringent requirements on the thick-

ness control of the stripping, is costly and time-consumi;ig, and thus economic-

ally unfavorable for large-scale production.

Subsequently, a new approach for fabricating high-efficiency shallow homo-

junction n +/p GaAs solar cells was successfully developed in our work, resulting

in GaAs solar cells showing an AMl conversion efficiency of 20.3R " (19.311• when a

5t, grid coverage is assumed) and having an active area of 2.36 mm 2 . The corres-

ponding values of V oc , J sc and FF for a typical solar cell were 0.97 V, 25 mA/cm2
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and 0.82, respectively. In addition, by employing this new innovative tech-

nique, large area (1 x 1 cm) homojunction n +/p GaAs/GaAs solar cells having

AM1 conversion efficiencies of greater than 19% (ELH Lamp) were also success-

fully fabricated. These cells were made by the direct growth of an ultra-thin

(about 500 A) n +-GaAs top layer using OM-CVD, instead of thinning it down

by sequential anodization-etching steps from the originally grown thickness.

Vacuum-deposited Sb203 was used for the anti-reflection coating instead of the

anodization method previously used. The cells typically had values of Voc9

J sc and FF of 0.98V, 25 mA/cm 2 and 0.76, respectively. The light I-v curve

of one such cell is shown in Fig. 3-21. The greater cell efficiencies obtained

by using the new technique arise from the consistently good Voc and FF values

because the detrimental problems of anodization are avoided altogether. One

of these solar cells was delivered to SERI for evaluation in November 1980.

D.	 SINGLE-CRYSTAL n+/N SHALLOW HOMOJUNCTION CELLS ON Ge

Before undertaking the development of the GaAs/Ge/low-cost-substrate solar

cell structure, it was deemed necessary to study the hetero-epitaxial growth

of GaAs on a single-crystal Ge wafer. Hence, fabrication of n t /p structures on

single-crystal Ge substrates was undertaken using the same growth parameters

and, for the initial work, the sequential anodization-etching technique pre-

viously described for the single-crystal GaAs substrates. Very poor surface

morphology and leaky diode characteristics were observed on the first few

n+ /p GaAs,/Ge structures made. The leaky diode performance was partially

caused by the poor substrate-surface morphology, resulting in a shunted junction

after electroplating the conducti ►ig grid contact on the top surface. In addition,

some portions of the top n + -layer might have been completely removed during
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thinning arising from the anodization process and from producing the 1000 A-thick

anodic AR coating. Another possible cause of the shunted junction might have

been auto-doping from the Ge substrate.

To resolve these problems associated with the n +/p GaAs/Ge structure, a

study was undertaken of the properties of GaAs grown on (100) Ge using differ-

ent substrate surface treatment and growth conditions. Among the different

chemical etchants used were CP4, CP4A, HF:H2O2:H2O:CH3COOH, and HF:HNO3:H2O2:CH3COOH

(9:4:4:20). The last etch was found to result in the best GaAs surface morphol-

ogy after OM-CVD growth. Figure 3-22 is a photomicrograph of a GaAs/Ge surface

for which a CP4 etch of the Ge substrate was used prior to the OM-CVD growth.

Figure 3-23 is a photomicrograph of a GaAs/Ge surface for which an HCl in-situ

vapor etch of the Ge substrate was used. Poor surface morphology is evident

in each case. On the other hand, Fig. 3-24 is a photomicrograph of the GaAs

surface using the HF:HNO3:H2O2:CH3COOH (9:4:4:20) etch prior to GaAs growth,

showing a fairly smooth surface morphology.

The surface morphology of GaAs grown on Ge was also found to be strongly

influenced by the growth temperature. Smooth GaAs epi-layers on Ge substrates

were obtained at growth temperatures of 700°C or higher. However, auto-doping

by Ge from the substrate at 700°C was excessive (Nd of about 10 18 cm -3 for

otherwise undoped GaAs, as determined by Hall measurement). At 625°C growth

temperature, Ge auto-doping was not observed, but poor surface morphology was

invariably obtained, indicating that this temperature was too low for hetero-

epitaxial growth of GaAs on (100) Ge. In order to improve the surface morl ,hol-

ogy and yet avoid high auto-doping, a method using sequential GaAs growths at

two temperatures, a higher one for initial nucleation and a lower one for con-

tinued growth was found to be beneficial and is currently under investigation.

3-39



w 1 N 1
' ^ L .rr ^ ray

^ J ^ ^ L /R̂II •^\

FIG. 3-22. Photomicrograph of the GaAs/Ge surface with CP4 etch

prior to GaAs growth.

-40



x-10 µm

FIG. 3-23. Photomicrograph of the GaAs/Ge surface with HC1
in-situ etch prior to GaAs growth.
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FIG. 3-24. Photomicrograph of the GaAs/Ge surface with
HF:HW03:H202:CH3C00H = 9:4:4:20 etch prior

to GaAs growth.
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By using this improved method, an AM1 (ELH lamp) efficiency of 18.4% (17.5%

when a 5% grid coverage 'is assumed) has been measured for an n +/p GaAs/Ge

solar cell of 2.36 mm 2 area, with the top n +-layer thinned to about 1000 ^.

The values of Voc, 
Jsc and FF for this solar cell are 0.998V, 23.5 mA/cm2

and 0.785, respectively. The light I-V curve of this solar cell is shown in

Fig. 3-25. The excellent Voc value for this cell indicates that the shunting

due to auto -doping from the Ge was no longer a problem. The dark I-V charac-

teristics of this cell are shown in Fig. 3-26. A double-exponential curve

fitting using the expression of Eq. (1) was performed on the dark I-V character-

istics. The values of the parameters obtained were: J Ol = 4.1 x 10-19

A/cm2 , J 02 = 1.3 x 10 -8 A/cm2 , n l = 1, n2 = 2.85. Further experiments

need to be done using the new technique described above in subsection III-C,

for the direct growth of the 500 A-thick n + top layer of the GaAs cell, in

order to avoid all anodization processes and thereby to achieve minimal values

for the J02 and n2 parameters.

-r
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SECTION IV

LOW-COST SUBSTRATE

The key to successful development of low-cost thin-film GaAs solar cells

is the successful preparation of a low-cost substrate covered by a Ge interlayer

having large crystallite size, suitable for hetero-epitaxial growth of a good

quality GaAs epi-layer cell. The two structures used in this program for pro-

viding the low-cost substrate are: 1) recrystallized Ge on a passivated, low-

cost conducting substrate, and, 2) hetero-epite,,ial surface-processed Ge on a

low-cost single-crystal Si substrate.

A.	 RECRYSTALLIZED Ge on TUNGSTEN (W)

1.	 Ge Growth on W Substrates

Prior to the use of low-cost steel substrate covered by a W passi-

nation layer, a W substrate itself was used for Ge deposition to gain experience

with the recrystallization of the Ge layer and the influence of the W on the

physical properties of the Ge during and after recrystallization. The detailed

discussion of laser recrystallization of Ge films deposited on W uy the a-gun

method was reported in the previous Final Report (Ref. 4-1). As described in

that Final Report, a-beam deposition of Ge introduced Cu and Fe from the a-gun

hearth into the deposited Ge films. In subsequent work, molybdenum (Mo) and W

liners were also tried but without success due to excessive alloying with Ge

which resulted in a very short useful lifetime of the liners.

Hence, during the early part of the current contract pe-,od, an investiga-

tion was conducted of Ge layer deposition on W substrates, employing arsine (AsH3)
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(as the n--type dopant), germane (GeH4) and hydrogen (H2) gas mixtures in the

existing OM-CVD GaAs growth system. A growth rate of 0.09 to 0.16 micrometer/min

for heavily-doped Ge was achieved with deposition temperatures of 700" to 800°C,

a H2 flow-rate of 3 liters/min, an AsH 3 mole fraction of 6 x 10 -5 , and a GeH4

_ole fraction between 0.015-0.033. Photomicrographs of typical CVD Ge films

grown at 800°C are shown in Fig. 4-1. The surface has a rough matte finish,

with an average granule size of 10 micrometers. The addition of a thin silicon

interlayer was found to be beneficial for promoting the bonding between the Ge

layer and W substrate. Hence, pyrolysis of silane (Si H4) was also performed

using a growth rate of 0.1 to 0.5 micrometer/min at a deposition temperature

of 1000%. Contamination of the OM-CVD system after using Si H4 and GeH4 was

indicated by the much higher residual doping concentration measured on subse-

quently undoped GaAs growths. Hence, a CVD system dedicated to the growth of

Ge and Si from GeH4 and SiH4 sources was designed and constructed to avoid

such crass-contamination. Figure 4-2 shows the front view of the completed Ge

and Si CVD system. Successful growths of Ge films on W substrates were made

using similar de position parameters des,:ribed above and with similar good

results.

2.	 Electron-Beam Recrystallization or Ge/W

In the past, the recrystailization of Ge layers was done by rasteriag i

focused Nd:YAG laser beam with a mirror scanner, resulting in .: crystall ite

size of the order of millimeters. However, the poor energy utilization factor,

high reflected power during the liquid phase of the Ge, and difficulties with
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fine focusing and beam steering imposed some limitations on the quality of the

recrystallized Ge. A possibilit;; for overcoming these limitations was to

perform the recrystallization using an electron-beam system.

To study the feasibility of such an approach, a service purchase order

was established with the Electron Beam Welding Co., Inc., Los Angeles. Subse-

quently, a sample holder with radiant background heating for use in the vacuum

chamber of an a-beam welding machine (Model EB-312) was constructed. The

temperature-calibration curve for background heating describing the temperature

of the sample holder in vacuum as a function of heater current is shown in Fig.

4--3. Construction of the linear-sweep electronic apparatus and vacuum hardware

to interface with the existing sine-wave-drive e-beam machine were also com-

pleted. Subsequently, experiments were performed in the vacuum chamber of the

e-beam welding machine. Molten Ge films were obtained using the scanned

electron-beam, forming a stationary, line-focused heated zone on a vacuum-

deposited Ge film on a tungsten sheet, while moving the sample holder by a

motorized translation stage inside the vacuum chamber. When a 30 kev scanned-

electron beam was used, the minimum beam current required to melt the ve film

was about 0.1 mA, using a sample background temperature of 900°C. Due to the

interaction between the scanned electron beam and the magnetic field created

by the A.C. background-heater current (about 15 A, r.m.s.), an uneven molten

surface was obtained. Eliminating this problem simply involves using D. C.

heating or a non-inductive heater winding configuration for the background

heater.
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B.	 Ge EPI-INTERLAYER ON SINGLE-CRYSTAL Si

During this reporting period, the work in the photovoltaic community has

not been successful for developing 15% efficient polycrystalline thin-film GaAs

solar cells. Efficiencies this high would probably be needed, for economic via-

bility, given the costs of the materials and processes that are likely to be

required. Furthermore, suitable substrates other than those studied, having the

required physical properties and low cost also have not identified. The dele-

terious effects of grain boundaries on solar cell electrical properties are con-

siderable, whether the potential barrier is a grown p/n junction or an oxide-

enhanced Schottky barrier (AMOS). Excess leakage currents of at least two types

are the primary loss mechanisms, leading to low values of Voc and FF. In addi-

tion, the relative roughness of poly-GaAs films, whether grown on recrystallized

Ge interlayers or directly on foreign substrates, can lead to serious practical

problems in cell and module fabrication. This is particularly true for "sensi-

tive" structures such as the AMOS or shallow n +/p homojunction. The electro-

chemical or liquid-junction structure utilizing poly-GaAs has, perhaps, the

greatest chance of overcoming these problems. However, stable, high-efficiency,

low-cost GaAs cells using polycrystalline materials have yet to be demonstrated.

Hence, a new approach which can circumvent most of the problems by utiliz-

ing single-crystal structures is needed if GaAs is to play a significant role

in terrestrial photovoltaics.	 Because the cost of single-crystal Si substrates

will be dramatically lowered through the efforts of the JPL Low-Cost Solar

Array (LSA) Project and its contractors, an approach which would involve single-

crystal GaAs films deposited on Si substrates was initiated at JPL. This new

approach uses Ge as an interlayer between GaAs and Si, to reduce the effects

of both lattice and thermal-expansion mismatches between them. In this

4-7



approach, Si is not being used as an active semiconductor. Hence, the use of

lower-grade Si wafers with higher-impurity contents should be feasible provided

that good crystallinity is preserved. Employing this approach, the cost of

the finished single-crystal GaAs solar cell could be significantly reduced.

Our progress with this approach will be discussed in the following three sub-

sections.

1.	 Ge Epi-interlayer Growth on Si Substrates

Deposition of the Ge epi-interlayer on Si wafer substrates was made

by pyrolysis of germane rather than halide compounds of Ge. The reasons for

this are similar to those used to justify using metal-organic systems in place

of halide or hydride systems: 1) lower growth temperatures, 2) absence of HC1

vapor etch back - particularly of the substrate, 3) single-temperature zone,

and 4) cold-wall reactor providing for reduced maintenance and higher material

utilization. Initially, helium (He) instead of more conventional H2 was used

as the carrier gas on the expectation of being able to successfully grow good

quality, tightly adherent epitaxial layers of Ge on Si wafers, at even lower

temperatures, and thus minimize the effect of thermal coefficient mismatch

upon final cooling to room temperature. Previous investigations with SiH4

alone (Ref. 4-2) or GeH 4 alone (Ref. 4-3) had shown that He as a carrier

gas does allow lower growth temperatures for a fixed growth rate or higher

rates for a fixed temperature. For example, a crystalline homo-epitaxial

growth of Si from SiH 4 was obtained at 800°C with He as compared to 910%

with H2 (Ref.4-2). By comparison, typical growth temperatures with H2 as

carrier gas at atmospheric pressure are about 1200°C with SiC14, about 1150%

with SiHC1 3 , and about 1000°C with SiH2C12. One study has demonstrated
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the growth of single-crystal Si from Si H4 using N2 as the carrier gas with a

growth temperature as low as 780°C (Ref. 4-4). Other experiments with N2,

He or Ar as carrier gas are reviewed by Bryant (Ref. 4-5), where single-crystal

Si growths were obtained at temperatures as low as 700°C and growth rates

about 0.1 micrometers/min.

The CVD-Ge growth on Si was made in the same system as the CVD deposition

of Ge on W described in Section IV.A.1. An additional HC1 gas line was added

for in-situ etching of the Si substrate prior to growth, and two lines for p-

anel n-type dopants were provided for subsequent use. Although the Si substrate

and Ge interlayer are photovoltaically inactive, the doping polarity of each

must be the same as that of the GaAs base layer to avoid a reverse-biased

junction between them.

During the initial growth procedure, the graphite susceptor was out-gassed

in He at 1000°C for several hours. Unfortunately, poor surface morphology for

Ge epitaxial films on Si with (111) orientation was obtained at a growth temp-

erature of about 650°C with a He gas flow rate of 4500 cc/min and an admixture

of GeN4/He gas (5:95) at a flow rate of 7.7 cc/min. 	 No dopants were added

at that stage. The surface morphology of the Ge layer was examined by optical

and scanning electron microscopy. Figures 4-4 and 4-5 show SEM photographs at

2000X and 6000X, respectively. The surface appears to be quite rough, although

it is shiny (though not mirror-like) to the naked eye. The degree of crystal-

linity of the Ge layer was investigated by Laue back-reflection and transmission

as well as by X-ray diffraction. Figure 4-6 shows a back-reflection photograph

which indicates a high degree of (Ill; orientation. Several accelerating volt-

ages from 15 to 45 keV were used to verify that the pattern obtained was due

to the Ge layer and not the Si substrate. However, although X-ray diffraction
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Fig. 4-6. Laue back-reflection photograph of the same film as
used for Fig. 4-4.
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data showed a preponderance of the (111) orientation, very weak reflections

from two or three other orientations were also present.

Work was continued for several months, but without success, to determine

the growth conditions needed to promote better nucleation, better single -crystal

characteristics and smoother surface for the heteroepitaxy of Ge on Si using He

as carrier gas.

Subsequently, H2 was used as the carrier and dilutant gas for the GeH4

to see if the Ge-interlayer grown on Si could be grown with better crystallogra-

phic characteristics and surface morphology. Indeed, successful growth of a Ge

interlayer was achieved with a high-quality surface and with single crystal-

linity. During this study, various growth temperatures ranging from 700°C-800°C,

GeH4 mole fractions ranging from 8 x 10 -4 to 4 x 10 -3 and a hydrogen flow rate

of 5000 cc/min were employed. The best surface morphology of the as-grown Ge

films was achieved at growth temperatures between 700 0-750 0C for all the

GeH4 mole fractions used in our experiment. X-ray diffraction measurements

were employed to examine the crystallinity characteristics of Ge epi-layers

grown on the Si substrates. Figure 4-7 shows a typical x-ray diffraction

chart obtained on a Ge/Si sample grown at 700°C. The vertical axis indicates

the relative intensity of the diffracted x-ray signal and the horizontal axis

indicates the 29 angle value in degrees (9 is the angle between the plane

of the sample surface and the incident x-ray radiation). The peaks 41 and 03

are due to Si(400) planes associated with Cu-K l and Cu-K O x-ray radiation used

in this experiment, respectively. In addition, the peaks #2 and A4 are due to

Ge(400) planes associated with Cu-K. and Cu-K,^ radiation, respectively. The

absence of any other peaks through the range of 20°-76 0 indicates that the (100)

Ge-film has been epitaxially grown on the (100) Si substrates. In Fig. 4-3,

higher angular resolution and lower ensitivity are used to reveal the details
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of the peaks #1 and #2 which are off-scale in Fig. 4-7. The Ge(400) signal

has been split into two peaks, 2a and 2b, and are associated with the Cu-Nal

and Cu-Ka2 radiations, respectively.

For examining the surface morphology of the as-grown Ge epi-layers on Si,

the scanning electron microscope (SEM) was employed. A SEM photomicrograph

(2700x) of a typical Ge film grown at 700°C is shown in Fig. 4-9. This figure

shows that although the surface looks rather shiny to the naked eye, the surface

contains many microscopic pits and requires processing. The surface morphology

of these Ge deposits can be improved by laser-annealing or a mechanical,-chemical

polishing technique as discussed in the next two subsections (IV.B.2 and IV.B.3).

2.	 Pulsed Laser Annealing of Ge/Si

Since there exist significant differences in lattice constants

and thermal-expansion cnefficients between Ge and Si, a very large density of

dislocations may,be expected. Consequently, an annealing step for the inter-

layer may be desirable before the GaAs growth is initiated so that the majority

of the defects which intersect the growth surface do not, in turn, induce :,imi-

lar defects in the GaAs during the initial stages of growth 	 In addition when

rough surface morphology of the as-grown Ge film is obtained. the use of pulsed-

laser annealing may promote smoother surface finish by rapid surface melting and

regrowth. ; review of the considerable literature published these past several

years on laser and electron beam processing (mostly on Si maLerial) indicates

that pulsed energy-beam recrystallization is potentially a viable process step

for obtaining nearly defect-free surfaces on the outermost Ge layer.

It is now known that there are basically two different recrystallization

modes, depending on the dynamics of the energy beam (Refs. 4-6 a+,d 4-7). Most
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Fig. -9. SEM photomicrograph (2700X) of a typical Ge
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data relate to the case of amorphous, ion-implanted layers on high--quality

crystalline substrates, buc the results are probably general in nature. In

the case of scanned CW laser beams (usually the Argon-ion laser at 5145 A

and elevated substrate temperatures), the regrowth mechanism is solid-state

recrystallization - similar to that obtained by furnace annealing. Typical

dwell times for the energy beam are of the order of milliseconds, and perfection

of the recrystallized layer is dependent on heating to a depth sufficient to

allow regrowth from the interface region.

The mechanism for pulsed laser beams (usually Q-switched or r,:ade-locked

Nd:YAG or ruby lasers) or pulsed electron beams where the dwell time is of the

order of tens to hundreds of nanoseconds, is clearly the formation of a thin

molten layer followed by rapid recrystallization. The references are far too

numerous to cite here, but several Proceedings of Symposia are very useful

(Ref. 4-8). The recovery of crystalline perfection in this mode is related to

the extremely high , ,ecrystal1ization velocities (as high as 1 m/sec), which

are higher than the climb velocity for dislocations. Complete removal of

misfit dislocations and other defects have been demonstrated) for the case of

imperfect crystalline Si, i.e., no amorphous regions, which is relevant to the

deposited Ge interlayer in this program (Refs. 4-9 and 4-10). The latter work

also demonstrated the permanence of the defect removal after subsequent thermal

anr?als up to 1100°C, where the misfit dislocations were induced by high concen-

trations of a dopant, such as phosphorus, with smaller ionic radius than Si.

Among the different schemes used, pulsed-laser annealing on Si and GaAs has

been found to give better results in many cases than the use of CW lasers.

The pulsed-laser method has been reported not only to crystallize an amorphous

layer, but also to remove displacement damage (Refs. 4-11, 4-12) and crystal
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imperfections due to loops and precipitates (Refs. 4-13, 4-14). Hence, the

pulsed Nd:YAG laser was selected for use in the annealing/recrystallizatio ►

experiment.

During the period of this program, modification of our existing CW Nc

laser to a pulsed operation was completed. The modified pulsed-laser systl

consists of a Quantronix Model 114--2 Nd:YAG laser (the basic laser unit),

Model 305A spatial-mode selector (to allow for single TEMoo mode operation

a Model 317 polarizer/shutter assembly (to linearly polarize the laser beam

for improved output stability by eliminating mode competition between randomly

polarized modes), a Model 301 acousto-optical Q-switch system (for pulsed-mode

operation with the pulse-repetition rate adjustable from 0-100 kHz), a General

Scanning Corp. Model G-100PD mirror scanner with Model LCX-102-1 scanner control

unit, a motorized vacuum-tight sample chamber, and the usual optics and pulse-

power measuring instrumentation.

The basic operating mode of the laser annealing system involves several

steps. The output beam or the pulsed Nd:YAG laser passes through an optical

system which focuses the laser beam onto a small area on the sample surface

to yield the necessary energy density. The focused beam will be deflected

by the mirror scanner to form an annealed-line region on the substrate. Simul-

taneously, the motorized sample chamber continuously translates the substrate

in the direction perpendicular to the annealed line. This results in appro-

priate overlapping between annealed-line regions, until the entire sample

surface has been exposed. The advantages of using the combination of mirror

scanner and motorized translation stage are : 1) elimination of the pin-cushion

distortion of a dual mirror-scanner system, 2) allowance for faster scanning

speeds as contrasted to the dual-motorized translation-stage system because
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of lower inertial mass, and 3) the probability of longer operating lifetime

relative to that of the dual -motorized system.

The use of a repetitively Q-switched Nd:YAG laser in the annealing system

is preferred, due to its stability compared to pulsed-YAG or ruby lasers (Ref.4-15).

Repeatability is probably the most important laser parameter, because in laser

annealing, a carefully controlled temperature distribution must be achieved.

Energy densities below a threshold value will not have the desired effect, whereas

too high an energy density will cause surface damage. Thus, there is a "window"

region of energy densities for optimum laser annealing. The pulse-to-pulse

repeatability for the acous;.o-optical Q-switched Nd:YAG laser is about 5%, with

a maximum pulse energy of about 1 mJ and a full -width-at-half-maximum (FWHM)

of about 110 ns.

To restrict melting to a shallow depth, it is necessary that the pulse

width be small compared to the thermal diffusion time, td (Ref. 4-15). There-

fore, this requires that

td = pcZ2 /k ,	 (2)

where;^,c and k are the density, specific heat and thermal conductivity,

respectively. For solid Ge, p = 5.2 gm/cm- 3 , c = 0.096 cal gm- 1 0, and

k = 0.174 Watt cm` 1 K- 1 at 937°C, the melting temperature of Ge. Hence, the

heating depth (Z) is calculated to be about 2 micrometers with a thermal

diffusion time (td) of 110 ns for Ge at 937%.

The appropriate energy density required for pulsed-laser annealing of Ge

can presently only be estimated because of insufficient information in the open

literature regarding the application of this procedure to Ge. In general, the

energy density required for such annealing of semiconductor substrates is
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related to the melting point of the substrate material, since melting of the

surface layer must precede the fast recrystallization. From numerous studies

reported in the literature, the energy density needed for laser annealing was

found to be 0.2 to 0.3 J cm- 2 for GaAs (melting-point of 1238°C) and 1 to 2

J cm-2 for Si (melting-point of 1410 0C). Hence, it was estimated that the

energy density needed to laser-anneal Ge (melting-point of 940°C) is less than

1 J cm-2. This estimate matches ver? well with our experimental observation,

which will be discussed later.

After the optimum energy density Io for laser annealing is experimentally

determined, the spot size Do (diameter of the 1/e power point) can be determined

by the following expression:

Do = (4E/nI o ) 1i2 ,	
(3)

where E is the total energy per laser pulse. In this case, E = 1 W , and for an

upper limit of I o = 1 J cm -2 , D o is calculated to be 347 micrometers. For a

2 cm x 2 cm-annealing area, with thf Nd:YAG laser operating at 800 pps (the

stability of pulse will deteriorate and the energy per pulse will decrease

when operating at higher frequencies), and with 50% overlapping for both coor-

dinates during pulse annealing, the scanning frequency for the mirror scanner

and the scanning speed for the motorized translating stage are calculated to

be 7.1 Hz and 1.27 mm s- 1 , respectively. hence, it should take only 15.8

seconds to anneal a 2 cm x 2 cm•-Ge sample.

At the time our modified pulsed Nd:YAG laser system was completed, an

opportunity occurred for us to be able to use a large pulsed Nd:YAG laser
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system available at the Lockheed Corp., Sunnyvale, California. The output

energy-per-pulse of this laser system is large enough to anneal the entire

2 cm x 2 cm wafer area with an energy-density up to several J cm-2 , using a

beam homogenizer. The possible lateral stress induced due to localized heating

by the small scanned laser-beam can thus be avoided. Hence, we decided that

the experimental work in annealing/recrystallization of the Ge interlayers

should first be performed using the laser system at the Lockheed Corp. This

laser system consisted of a laser oscillator followed by three stages of laser-

amplifiers operating at a wavelength of 1.06 micrometers with a pulse width of

less than 150 ns. The output laser beam was passed through a 30mm-diameter

quartz optical beam homogenizer to improve the uniformity of the laser radia-

tion power-density upon the samples being annealed.

Systematic experiments were first performed on (100) Ge substrates with

both polished as well as rough surface finishes to estimate the approximate

energy-density needed in the actual annealing of Ge/Si samples. During this

experiment, energy densities ranging between 0.09 J cm-2 to 1.14 J cm-2 in more

than twenty values were used. It was found that damage was readily visible at

high energy densities, with the creation of excessive surface pits. The damage-

threshold energy-densities for visible damage are about 0.39 J cm- 2 and 0.19 J cm-2

for polished and rough surface Ge, respectively. The lower value for the

rough surface Ge is expected, because the laser energy is more readily absorbed

by the rough surface due to the light-trapping effect.
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Based on the results obtained above, the damage-threshold energy-density

of the Ge/Si sample studied was estimated to be greater than that for the

polished Ge wafer (0.39 J cm- 2 ) because Si has a larger thermal-conductivity

than Ge.

Subsequently, systematic annealing experiments were performed on epi-Ge/Si

samples with energy-densities ranging from 0.35 to 0.79 J cm- 2 . Much improved

surface morphology was obtained for the annealed Ge-films on Si substrates as

compared to the as-grown Ge-films. The surface morphology of the annealed Ge

epi-layers on Si substrates was examined using the SEM. A photomicrograph

(7000X) of a Ge epi-layer annealed at a moderate average energy density of

about 0.34 J cm- 2 is shown in Fig. 4-10. This figure shows that the annealed

Ge epi-layer possesses a smoother surface morphology but has similar surface

micro-pit density as compared with the unannealed Ge-film shown in Fig. 4-9.

Further increase in the laser energy density to about 0.49 J cm- 2 leads to

much greater improvement in the surface morphology of the Ge/Si substrate. A

SEM photomicrograph (7000X) of such a sample is shown in Fig. 4-11. This figure

shows that the further increase in laser energy density has eliminated many sur-

face micro-pits (area density reduced about 3X) and also has reduced their

diameter from about 8000 A to less than 4000 4 as contrasted to the appearance
of the as-grown and lightly annealed samples shown in Figs. 4-9 and 4-10, respec-

tively. The size of the surface micro-pits would now be small enough for sub-

sequent GaAs OM-CVD growth to form a continuous epi-layer on the Ge. Under these

conditions, further processing for improving the surface morphology of the Ge

epi-interlayer (the mechanical-chemical polishing as discussed in the next

section) could be eliminated. The surface micro-pit densities for the samples
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Fig. 4-10.	 SEM photomicrograph (7000X) of a Ge/Si sample
annealed a an average energy-density of about
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shown in Figs. 4-9, 4-10 and 4-11 were found to be about 6 x 10 7 , 6 x 107 and

2 x 107 cm-2 , respectively. A surface micro-pit density of an order of magni-

tude less, about 6 x 106 cm-2 , was achieved on one Ge/Si sample with a laser-

beam energy density of about 0.64 J cm-2 . The SEM photomicrograph (2700X)

of this sample is shown in Fig 4-12.

To examine the crystallinity of the annealed samples, x-ray diffraction

measurements were performed on the samples. It was found that after laser

annealing, the double peak of Ge(400) due to Cu-K,.1 and Cu-K,,2 had been

broadened into one single peak (#2) in the x-ray diffraction chart (Fig. 4-13)

of the annealed Ge/Si substrate. This broadening suggests that there might be

significant alloying between Ge and Si at the interface during the molten phase

of the Ge epi-layer in the laser-annealing process.

Since the thermal mismatch between Ge and Si is significant, there is

serious concern as to whether such an epi-layer/substrate bond would survive

exposure to rapid and large temperature excursions. Therefore, several Ge/Si

samples were directly immersed in liquid nitrogen and withdrawn to room temper-

ature several times. It is significant to note that after the samples (each

with about 1 micrometer Ge-interic,•ar) were subjected to such cycles, no

evidence of film peeling and/or surface cracking was observed, indicating that

the films were tightly adherent.

3.	 GaAs/Ge Epi -i nterl aver/Si

To prove the suitability of the Ge/Si substraVt for the subsequent

epitaxial deposition of GaAs, OM-CVD growth of GaAs on sut-face-processed Ge/Si

substrates was attempted. A relatively thick (about 5 microoeta;s) undoped

epi-layer of Ge was CVD-grown on (100) Si, then carefully ;:echanical chemically

polished to a smooth finish. A thin epitaxial layer of GaAs, bright and shiny,
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was successfully grown on the polished Ge layer, exhibiting a very uniform

appearance. X-ray diffraction measurements indicated that both the Ge-

interlayer and the GaAs layer were completely single crystal, having the same

(100) orientation as the Si substrate. This is the first report of the fabri-

cation of such a structure having a quality suitable for making solar cells.

An x-ray diffraction chart of such a sample is shown in Fig. 4-14. Note that

because of the top GaA^, layer, the Si x-ray signals are much weaker than the

GaAs or Ge signals (GaAs and Ge signals are nearly identical and not resolvable

by the x-ray instrument used in this experiment) as compared to that in the

x-ray diffraction chart of Ge/Si shown in Fig. 4-7 or 4-13. The thickness

of the GaAs and Ge epi-layers were determined by SEM measurements of the

cleaved cross section of the GaAs/Ge/Si structure. A SEM photomicrogra ph of

such a sample is shown in Fig 4-15, from which the layer thicknesses for GaAs

and Ge are found to be about 4 and i micrometers, respectively.

The surface morphology of the GaAs/Ge!Si sample was also studied by the

SEM. Figure 4-16 shows a SEM photomicrograph (270UX) of the GaAs/Ge/Si sample.

Other than relatively few surface micro-pits (density about 6 x 10 5 cm-2)

a very smooth surface is evident as compared to any samples discussed in the

previous two sections.

This encouraging result demonstrates that the GaAs/Ge/Si structure

physically can be successfuiiy fabricated. Further research activity will

fi*;t be conducted with a p-doped Ge epi-interlayer (instead of the undoped

one) to facilitate the evaluation of the electronic properties of this struc-

ture. Subsequent experiments will be directed toward optimizing the structure

for the fabrication of solar cells.
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Fig. 4-15. SEM photomicrograph (10,000X) of the cleaved cross-

section of the GaAs/Ge/Si structure.
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Fig. 4-16. SEM photomicrograph (2700X) of the GaAs/Ge/Si sample.

4-32



REFERENCES

	

2-1	 ".C.H. Yeh and R. J. Stirn, Appl. Phys. Lett. 33, 401 (1978).

	

2-2	 Y.C.M. Yeh, F. P. Ernest, and R. J. Stirn, Proc. 13th IEEE Photovoltaic
Specialists Conf., Washington, D.C., June 1978.

	

3-1	 J.C.C. Fan, C. 0. Bozler, and R. L. Chapman, Appl. Phys. Lett., 33, 390
(1978).

	

3-2	 H. G. Queisser and M. B. Panish, J. Phys. Chem. Solids 28, 1177 (1967).

	

3-3	 N. F. Mott and W. D. Twose, Adv. Phys. 10, 197 (1961).

	

3-4	 D. J. Ashen, P. J. Dean, D. T. J. Hurle, J. B. Mullin and A. M. White,

J. Phys. Ch-em. Solids 36, 1041 (1975).

	

3-5	 J. D. Wiley, Semiconductors and Semimetals, Vol. 10, ed. by R. K. Willardson
and A. C. Beer (Academic Press, ew or 	 975), Ch. 2.

	

3-6	 S. M. Sze and J. C. Irvin, Solid-State Elect. 11, 599 (1968).

	

3-7	 See for example, H. Murrmann and D. Widman, IEEE Ed-16, 1022 (1969).

	

3-8	 Y. C. M. Yeh, F. P. Ernest, and R. J. Stirn, J. Appl. Phys., 47, 4107 (1976).

	

3-9	 Sun with zero zenith angle, standard atmosphere having 20 mm precipitable
water vapor, 3.4 mm ozone, and turbidity coefficients ,=1.300 and ;=0.040.

3-10 M. P. Thekaekara, Symp. on Solar Energy Utilization, Washington, D. C. 1974

(Inst. of Environmental Sciences, Mt. Prospect, IL, 1974).

3-11 H. Hasegawa and H. L. Hartnagel, J. Electrochem. Soc., 125, 713 (1976).

3-12 J. P. Andre, A Gallais, and J. Hallais, Inst. Phys. Conf., Ser. No.
33a, 1 (1977).

3-13 F. Ermanis and K. Wolfstirn, J. Appl. Phys. 37, 1963 (1966).

3-14 0. V. Emelyanenko, T. S. Lagunova, and D. N. Vasledov, Sov. Phys.

Solid-state 2, 176 (1960).

3-15 N. Matsunaga, T. Suzuki and K. Takahashi, J. Appl. Phys. 49, 5710 (1978).

in

R-1



3-16 D. E. Hill, J. Appl. Phys. 41, 1815 (1970).

3-17 D. Meyerhofer, Proc. International Conf. on Semicond. Phys., Prague,
1960 (Academic Press, New York, 1961) p. 958.

4-1 Hi gh Efficiency! Thin-Film GaAs Solar Cells, Final	 Report, JPL Publ	 catiol
79-3S^^Propulsion Laboratory, Pa^ena, CA, April 15, 1979.

4-2 D. Richman and R.	 H. Arlett, J.	 Electrochem.	 Soc. 116, 872 (1969).

4-3 D. J. Dumin et al.,	 RCA Rev.	 31,	 620 (1970..

4-4 F. L. Gittler, J.	 Crystal	 Growth 17, 271	 (1972).

4-5 W. A. Bryant, Thin Solid Films 60, 19 (1979);

4-6 D. H. Auston et al., Proc. of SPIE 198, Laser Applications in Materials
Processing, Edited by J. F. Ready M707

4-7 A. E. Bell, RCA Review 40, 295 (1979).

	

4-8	 Proc. of the Symposium on Laser and Electron Beam Processing of Elcc0,cnic_
ateri al s, Edi ted by 	 L. Anderson . K-eTTerand G. A. Rozgonyi , the
E ectroc em. Soc., Inc. 80-1 (1980); Laser - Solid Interactions and
Laser Processing, Edited-5y S. D. Ferris, H. J.L eamy, and J. M. Poate,
Amer. Inst.of Phys. 50 (1979). See also Refs. 4-6 and 4-7.

	

4-9	 L. Jastrzebski, A. E. Bell and C. P. Wu, Appl. Phys. Lett. 35, 608 0 979).

4-10 W. K. Hofker et al., Appl. Phys. Lett. 34, 690 (1979).

4-11 R. T. Young, C. W. White, G. J. Clark, J. Naryan, W. H. Christie, M. Murakami,
P. W. King and S. D. Kramer, Appl. Phys, Let;;. 32, 139 (1918).

4-12 N. Narayan, R. T. Young, and C. W. White, J. Appl. Phys. 49, 3912 (1978).

4-13 J. Narayan, Appl. Phys. Lett. 34, 312 (1979).

4-14 R. T. Young and J. Narayan, Appl. Phys. Lett. 33, 14 (1978).

4-15 R. A. Kaplan, M. G. Cohen and K. C. Liu, Proc. of the Symposium on Laser
and Electron Beam Processing of Electronic ateria s, Edited by C. L. Anderson,

Celler and G. A. Rozgohyi, The Elec roc em.	 oc., Inc. 80-1, 58 (1980).

R-2



Fig. 4-15.	 SEM photomicrograph (10,000X) of the cleaved cross-

section of the GaAs/Ge/Si structure.

4-31



Fig. 4-16. SEM photomicrograph (2700X) of the GaAs/Ge!Si sample.
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