
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



4

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOO1,OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

(NASA-C1(-1o4371) THE SULFUR 13UDGET OF Tfll	 i81-4'4tjJJ
TL?OVGSl)flLiir, P1:0Ur0 :j !j R01 ,01t., 1 Dow. 1979 --
3U  NOV - 1989 (U ld DOmillion Univ., NOLtolk,
Vd-)	 56 1, IW A04/,11F Ail	 C!ICL 133	 Uncldl^

GJ/45 42511

THE SULFUR BUDGET OF THE TROPOSPHERE

By	 loft

S.N. Tiwari, Principal Investigator

arid
0

T.R. Augustsson	 '1Q'jM111.0

Progress Report
For the period December 1, 1979 - November 30, 1980

Prepared for the
National Aeronautics and Space Administration
Lai,gley Research Center
Hampton, Virginia

Under
Cooperative Agreement NCCI-30
Joel S. Levine, Technical Monitor
Atmospheric Environmental Science Division -

z
0
F-1

z
:D

0
U.

CY

LIJ

CIO
Cz
W

z
Z)
z

0
z
2
'`

Q
C)__j
0

February 1981

I



DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS

SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

THE SULFUR BUDGET OF THE TROPOSPHERE

By

S.N. Tiwari, Principal Investigator

and

T.R. Augustsson

Progress Report
For the period December 1, 1979 - November 30, 1980

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Under
Cooperative Agreement NCCI-30
Joel S. Levine, Technical Monitor
Atmospheric Environmental Science Division

Submitted by the
Old Dominion University Research Foundation

• ^	 P.O. Box 6369
Norfolk, Virginia 1.3508

February 1981



FOREWORD

This report summarizes work done under NASA Cooperative Agreement

NCCI-30 during the period December 1, 1979 through November 30, 1980,

This agreement was supported by NASA/Langley Research Center (LaRC)

through the Atmospheric Sciences Branch of the Atmospheric Environmental

Science Division. The technical monitor was Dr. Joel S. Levine of the

Atmospheric Environmental Science Division.
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THE SULFUR BUDGET OF THE TROPOSPHERE

By

S.N. Tiwari l and T.R. Augustsson"

SUMARY

A one-dimensional photochemical tropospheric model has been used to

calculate the vertical profiles of tropospheric species. Particular

attention is focused oil the recent inclusion of the chemistry of the

sulfur group, which consists of 13 species involving a total of 45

chemical reactions. It is found that the chemistry of the sulfur species,

because it is largely anthropogenic, plays an increasingly important role

in the distr.^buti.on of tropospheric gases. The calculated vertical

profiles are compared to available measurements and generally found to

be in good agreement.

INTRODUCTION

During the last few years there has been a growing concern over

possible anthropogenic effects oft the troposphere. The chemistry of

the sulfur group is particularly interesting since the emissions of the

species in the sulfur .family are to a large extent anthropogenic in origin.
Of all the tropospheric chemical families, sulfur is pe„' yaps the least

studied and understood. Thus, a detailed scheme to calculate the vertical

distributions of 13 sulfur gases in t1w, troposphere has been; developed.

Studies of sulfur in the atmosphere have primarily been conr,erned with the

so-called 'aerosol layer” (refs. 1 - 5) or concentrated on highly specific

reaction paths and mechanisms in the troposphere (refs. b - 7) or certain

regions (refs. 8	 10). eery few global assessments of sulfur species

exist (refs. 11 - 13), and those studies are qualitative in nature.

1 Eminent Professor, Department of Mechanical Engineering and Mechanics,
old Dominion University, Norfolk, Virginia 213S08,

` Graduate Research Assistant, Department of Mechanical Engineering and
Mechanics, old Dominion University, Norfolk, Virginia 23508.
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The recentl y developed sulfur package allows for quantification (ref. 13).

The research work in this area has been going on for some time, and

we now have a one-dimensional, tame-independent, global, tropospheric,

1,hotochemical mode l.. The model currently includes the chemistry and
photochemistry of OH, HOa, NOx (- NO + NO2), HNO I , NO 3 , N45, HNO 2 , 011 3 , C1130'),
C1130011, C1130, 114C,0, liCO, 0, O(T), 03, M, NH, N114, NH3, N , H^,, N-113,

N2114, S, SO, SO, , SO3, 11S03, H2SO4, HS, 112S, CS, CS , CH3SH, C113SC113,
and COS. Of these 36 species, 16 are being transported (i.e., we use

the continuity equAtion) and the remaining '0 are assumed to be in photo-

chemical equilibrium (because they are short lived). There are 108

reactions and 12 photodissociations in the current model, and the vertical

transport is simulated by the use of eddy diffusvi.ti,es. The results of

the present model have been compared with results of other models with

similar chemistry, rate coefficients, and eddy diffusion parameters.

In general, good agreements between various results has been found.

Decently, an "ammonia package" has been included in the present model.

This consists of the chemistry of N113 and five other closely related

species. A total of 21 chemical reactions has been added to describe

accurately the vertical profiles of the "ammonia group." Ammonia has

been the subject of intensive studies, and the results have been reported

in references 14 to 17.

The significance of coupled radiative-chemical studies of the Earth's

troposphere has been emphasized strongly in the NASA Deference Publication

1023 titled "Klan's Impact oil 	 Troposphere" ( Lectures in Tropospheric

Chemistry, ref. 11). It is evident from this publication that the chemical

composition of the troposphere is determined by complex geochemical

cycles of carbon, nitrogen, sulfur, oxygen, and hydrogen species between

the atmosphere, the oceans, the crust, and the biosphere. In recent

years, anthropogenic activities have become a significant source of tropo-

spheric species, As stated in the above reference, changes in the natural

abundance of tropospheric species may alter other species via chemistry

as well as produce perturbations in climate. For example, tropospheric

ozone is strongly affected by tropospheric levels of nitrogen dioxide

and m(:tllane, and stratospheric ozone is controlled by tropospheric nitrous

oxide. Many of these anthropogenically produced species have absorption

2



lines within the 8- to 12-pin atmospheric window, which contributes to

the greenhouse effect. These greenhouse absorbers include carbon dioxide,
methane, nitrous oxide, amanonia, and ozone. The information available

in the cited reference, therefore, indicates the need for coupled radiative-

chemical studies of the Earth's troposphere in a systematic manner.

The coupling between the Naval Research Laboratory's radiative

transfer model (which includes Rayleigh and Mie scattering and surface

albedo) to the NASA/L,aRC one-dimensional tropospheric photochemical model

has recently been completed. The preliminary results indicate that the

vertical distributions of several key tropospheric species are altered

significantly (ref. 18). The next report will address thii topic in

more detail.

The next section of this report ("Tropospheric Sulfur Species")

reviews and summarizes the existing literature on sulfur species, Each

sulfur species is discussed briefly and available measurements axe

identified. The section titled "One-Dimensional 'Tropospheric Photochemical

Model" then discusses the philosophy of modeling as well as the NASA/LaRC

one-dimensional global, 'tropospheric, photochemical model used for the

calculations summarized under "Results and Discussion," This model now

consists of 37 chemical species (13 of which are in the sulfur group)

and 108 reactions (of which 45 are sulfur related). The major text of

"Fesults and Discussion" describes all the reactions, productions, losses

and lifetimes for each sulfur species as calculated by the present work.

We have found that the sulfur species family consists of gases in various

states of oxidation (from highly reduced to highly oxidized) with a wide

range of lifetimes (from 10-7 s to 4 mo). In the same section we identify

the various sources (i.e., natural vs. anthropogenic) and sinks (homogeneous

vs heterogeneous) for all sulfur species. In the concluding section

("Future Perturbations to the Sulfur Budget"), some global implications

resulting from perturbations in the sulfur budget are discussed. The

continuity equation and its numerical solution together with appropriate

boundary conditions are discussed in Appendixes A to C. Appendix D

describes the calculations of incident solar radiation and photodissocia-

tion rates, while Appendix E discusses the convergence criteria employed

in this study.

3
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TROPOSPHRRIU SULFUR SPECIES

Introduction

According to R. Stewart et al. (ref. 11, p. 42) :

The abundances, sources and sinks, and photochemistry of
atmospheric sulfur compounds are all poorly understood relative
to oxygen, carbon or nitrogen compound:. Various sulfur specie;
are important comp ranent,s of air pollution in many parts of the
world. The anthropogenic input to the sulfur cycle is cleanly
significant and likely to increase in magnitude, but the con-
sequences of these facts have been relatively little explored.

They further conclude (I) , 40) that:

Man is also intervening in the sulfur cycle, but global-
scale consequences of this influence have yet to be identified.
;lust of the sulfur dioxide that enters the atmosphere is of
industrial origin and can potentially alter such things as the
atmospheric Aerosol loadinn, and the acidity of rainfall over
at least mesoscale regions, The a, Mt/yr of sulfur added to the
sail in fertilizers is relativel y large compared with natural
sources. If substantially increased coal burning occurs in the
future in response to shortages of alternate fuels, the magnitude
of the industrial sulfur source will increase still further. It
is essential that some attempts to Understand the potential impact
of this fact be made in future research,

The purpose of this study is to explore and try to understand the

implications that an increase in sulfur loading wali have on global tropospheric,

chemistry. It has been known for a long time that species of the au,lfur

family adversely affect the aAr duality on the local and regional sealc-4,

This is due mainly to anthropogenic emissions in large metropolitan areas.

Furthermore, it has been known for about two decades that species of the

sulfur family diffuse upward into the stratosphere where they form sulfate

particulates that constitute the so-called "aerosol layer" usually found at

around 20 km (ref. 2). ;natural emissions of particulates from volcanoes

alto contribute to the aerosol layer.

,l

The sulfur group consists of species in various reduced and oxidized

states and with widely varying lifetimes. All sulfur species have in common

an unrelenting trend toward Further oxidation. The oxidation chain for the

sulfttl family is shown schematically in figure 1.
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Sulfur Dioxide (80 — mixing ratio a 5.41 x 10°1")

In largo concentrations, SQ is v 	 toxic to animals and plants.

It is an important precursor to formation of particulates. This affects
the aerosol loading„ which has climatic implications in addition to the very

obvious problem of reduced visibility, Another climatic aspect to consider
is the thermal infrared absorption bands that SO ,, has at S." um and 7.3 um

(ref. 19). At the present time the measurements of $02 arcs very inconclusive

and in some cases contradictory. For examl°le, Georgii and Cravenhorst

(ref. 20) and Maroulis et a1. (ref. 20 found that sulfur dioxide increases

with altitude, while Georgii (ref. b21 ) found a decrease with altitude.

This fact is currently a source of some controversy in the scientific

literature.

Carbonyl Sulfide (COS — mixing ratio = 5 .0 x 10-")

COS is a very stable molecule and is con equently well mix,;j in the

troposphere. It di.411uses into the stratosphere where it is relieved to

undergo photodissociation. It subsequently recombines with other species

to farm SO.-, which, in the stratosphere, is believed to be the gaseous

precursor of the aerosol laver (refs. I - 2). The observational data of

COS indicate a relatively uniform distribution. Sandalls a: ►d ponkett

(ref. 23) found values varying from 4.0 x 10 -0 to 5.0 x 10°E0 with a mean

concentration of 5.1 x 10-10 . Maroulis et al. (ref. 2.1) measured averaged

concentrations of 4.35 x 10- 10 in Philadelphia, -1.51 x 10-10 at Wallops

Island ('Virginia), and 5.11 x 10 -10 at Lawton (Oklahoma). Torres et al.

(ref. 25) found values ranging from d to 5 x 10- 10 during the so-called

"GAMEiTAG" flights. The average value during those flights was 4.71 x 10-10.

Hanst et al. (ref. 26) found values of about 2 to 3 x 10 -10 in some measurements

that had large experimental uncertainties associated with them.

Hydrogen Sulfide (EIS -- mixing ratio = 2.0 x 10-10)

Hydrogen sulfide is formed primarily by microbial activity in the soil

and in tidal fiats (ref. 21"), but it is also emitted by volcanoes (ref. .15)

as well as by some industrial activities such as wood pulping (ref. 29) and sewage

treatment (ref. 10). Measurements of the vertical distribution are very

sparse, but seem to indicate a very rapid decrease with altitude, particularly

6
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in the first few meter: (ref. 213) , The mixing ratio at the surface has
been estimated at 0.41. parts per billion by volume (ppbv)(ref. 31). The

measurement ,? by Georgii (ref. ««) seem to verify this value.

Carbon Disulfide (CS2 — mixing, ratio o 1,9 x 10'10

CSn is formed both ,naturally by volcanic emissions (ref. 34.1.) and by

anthropogenic emissions such as manufacturing, of petroleum (ref. 33) and

of synthetic fiber (C.P.A., 1073-1975, refs. 34 -36). CS, has been measured

in seawater (ref. 37), giving an almost constant value of 5.2. x 10-13

g/ml of water over a wide range of latitudes. This would indicate a natural

source for carbon disulfide. Atmospheric measurements vary from7 x 10"11

to 3.7 x 10- 10 with an average value of 1.9 x 10' 10 (ref, 33), It has

recently been suggested in references 4 and U that the oxidation of CS

to form Son might be similar to the oxidation for COS, It has also been

argued that CS might oxidise to form COS (ref, 4), In either case, CS;

is an important precursor for aerosol formation.

Sulfuric Acid (112SO4 -- mixing ratio - 1.0 x 10"10)

112504 is formed chemically as well as naturally, by volcanic emission

(ref. 38), and anthropogenically, in automobiles t ref. 30) and in 112504

manufacturing; (ref, 39). Sulfuric acid occurs both in li^^uid and solid

forms. It forms the solid form (sulfate, SOY') when it recombines with
cations other than hydrogen. hence, 112S0i, affects the environment in

two ways;

(i) by formation of aerosol particulates, which reduce both incoming

radiation and visibility, and

(ii) by lowering the pH in rainwater,

In Scandinavia, which is downwind from the l arge industrial areas in

Germany and Great Britain, a gradual lowering of p!1 in rainwater has been

observed, The average rate of decrease has been 0.3 to 0,4 units per decade

(ref, 40). Similar acidic rainfalls have been observed in the Atlantic

provinces of Canada, downwind of the highly industrialized metropolitan

"northeast corridor" (ref. 9). Acid precipitation is known to have an

adverse effect on soils and vegetation. If a soil becomes more acidic,

leaching of nutrients in the told soil layer (humus) is accelerated (ref. 7),

7



This leaching affects, among other things, the rate of growth of trees:

for example, forest productivity in Scandinavia has decreased by one percent

per year during the last few decades with high incidents of acidic preel-

pltation (rof, J).	 Ammonia (,Nli3) plays an important role in neutralimine,

acidic sulfur s pecies, Consequently, if the global sulfur budget ,increases

more rapidly Wan the global ammonia budget, a further increase in acid

precipitation would be expected.

Sulfurous Acid Radical WS03 --- mixing, ratio = 1.0 x 10-11)

It is of utmost importance to find out how gaseous sulfur is eventually

converted into aerosol particulates. One reaction st•heme that eventually

produces 11250,, is via the IIS03 radical, This IiS03 to 11,'SO4 conversion

is not immediate, however. it is therefore of considerable interest to

discover the ultimate .fate of the HS03 radical, Some complex reaction

schemes for 11803 have been suggested (refs. 41-43), but none is supported

by rate constants,

.Intermediate Sulfur Species

The five intermediate sulfur species listed below are all ver y short lived

and are therefore assumed to be in photochemical equilibrium U'Cr.). Their

lifetimes vary; from 10 " 2 to 10-" second.,,, and, hence, they react almost

instantaneously to ,form other species. Due to their reactivity they cannot

be measured in situ. Their vertical profiles are calculated from known

kinetic data.

(i) Sulfoxy
	

(SO); (mixing ratio	 4.0 x 10-17)

(ii) Carbon sulfide	 (GS); (mixing ratio - tall x 10 "w0

(iii) Thiohydroxyl radical(IIS) , mixing ratio = 4.0 x 10"41)

(iv) Sulfur trioxide	 (SOS); (mixing ratio = 4.0 x 10-22)

(v) Atomic sulfur
	

( S ( 3p )); (mixing ratio = 2.0 x 10-26)

8
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ONE-UIMUNSIONAL TROPOSPHERIC: PHOTOCHEMICAL MODEL

The one -dimensional, global, tropospheric, photochemical model that
has been under development at NASA/LaRC now contains a total of 108 chemical

reactions and 12 photolytic reactions. Of this, the recent inlcusion of the
sulfur group contributes 45 reactions (reaction 64 to reaction 108). Table 1

lists the photodissociation processes that are included with their rates at

the surface For a solar zenith angle of 45 0 . Table 2 lists all the chemical

reactions with appropriate rate coefficients.

Table 1, Photochemical reactions.

Photodissociation
No. Process Rate	 (x-0),	 s-1(450)

1 03 + by	O( 1 0) + 0 2 6.3 E-6

2 03 + itv - ► 	 0 + 02 3.0 9-4

3 NO2 + liv + NO + 0 7.6 E-3

4 NO3+liv	 NO2 +0 8.2E-2

5 NO3 + by + NO + 0 2 2.0 E-3

6 N205 + by -r NO 2 + NO 3 2.0 E-5

7 HNO3 + b y 4 OH + NO2 1.6 E-7

8 HNOo + liv -	 OH + NO 4.8 E-4

9 H2O2 + by	 2 OH 1.6 H-6

10 CH2O + liv	 HCO + .H 2.0 E-5

11 CH2O + 11 2 -	 H2 + CO 6.5 'E-5

12 CH300H + by 4 CI-1 30 + OH 1.6 E-6

9
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Table 2. Chemical reactions,

Reaction	 Rate Expression
No.	 Reaction	 (mole —^ cgs units) 	 Reference

k

1 0114 + OH -► CH3 + H 2O 2.4E-12*exp(-1710.0/T)

2 CH4 + O( 1 D) 4 CH3 + Off

3 CH3 + 02 + M 4' 011302 + tai 2.2E-31*(300.0/T)2.2

4 0-1302 + H0 2 -- CI-1300H + 0 2 3.0E-11 *exp (-500, 0/T)

5 0113001-1 + O11	 C11302 + H2O 6.2E-12*exp(-750.0/T)

6 CU1302 + NO	 CH 2O + HNO2 0,0

7 CH302 + NO2	CH2O + HNO3 010

8 011302 + NO + CH 3O + NO 2 8.02-12

9 Cl-130 + 02	 C1°120 + HO2 5.0E-i3*exp(-2000.0/T)

In CH20 + 011 -} HCO + 1 .120 1.7E-11*exp(-100.0/T)

11 HCO + 02 -	 CO T 1-102 5.0E-12

12 CO + 01.1	 CO2	 + If 1.35E-13*(1 + Patm)

13 CO + 110 2 + CO2 + Oil

14 112 + 011 + H + H 2O 1.2E-11 *exp (-2200.0/T)

15 1.1 + 02 + M -► 1102 + M 5,SE-32*(300.0/T)1.4

16 O(1D)	 + H 2O	 2 Oil

17 O(1D)	 + 11 2 + H + Oil 9.9E-11

18 H02 + Off + 1 120 + 0 2 4.0E-11

19 OH + 011 + H2O + 0 1.0E-11*exp(-500.0/T)

"0 + + H02 + H2O 2 + 0 2 2.5E-12

21 H202 + OH + HO ? + H2O 1.0E-11*exp(-750.0/T)

22 1{02 + NO + OH + NO2 3.4E-12*exp(250,0/T)

23 1102 + NO2 + HNOz + 02 33.0E-14

(a)

(a)

(a)

(b)

(a)

(c)

(a)

(a)

(a)

(a)

(a)

(a)

(c)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(a)

(f)
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Table 2. (continued).

Reaction Rate Expression
No. Reaction (mole -- cgs units) Reference

24 Off + NO2 * HNO3 2.6E-30*(300/T)2.9 (a)

25 Of 	 + NO ^I HNO2 2.0E-12 (g)

26 HNO3 + OH -+ NO3 + H2O 8.5E-14 (a)

27 HNO3 -► rainout 1.0E-6 (d)

28 NO2 + 03	 NO3 + 02 1.2E-13*exp(2450.0/T) (a)

29 NO + 03 °+ NO2 + 02 2.3E-12*exp(-1450,0/T) (a)

30 NO3 + NO2 +i N205 3.813-12 (g)

31 NO3 + NO2	 NO + NO2 + 02 2,313-13*exp(-1000.0/T) (11)

32 NO3 + NO °► 2 NO2 8.7E-12 (i)

33 NO + NO,,) 	 + 1 .120 -} 2 IINO2 6.013-37 (j)

34 N205 + H2O -} 2 IINO3 1-OF-20 (k)

35 N205 NO3 + NO2 5.7E-14*exp(-10600.0/T) (g)

36 0 + 0 2 + M -} 03 + N1 6.2E-34*(300,0/T) 2. 1 (a)

37 0(1 D) +	 Af -r 0	 +	 I.1 3.2E-11 (1)

38 Ol-1	 + 0 3	 H02 + 02 1.6E-12*exp(-940.0/T) (a)

39 1`102	 + 03 -} 0H + 2 02 1.1E-14*exp(-580,0/T) (a)

40 Oil + HNO 2 	NO 2 + H2O 2.1E-12 (m)

41 O(1D) + C1°l 4 -)- CM + H2 1.4E-11 (a)

42 N21.14 + H -* N 2 1-1 3 + H2 9.9E-12*exp(-1200,0/T) (n)

43 N2H3 + N 2 1-1 3 	2 NE1 3 	+ N 2 KL+3 « K44 (0)

44 N21-13 + N2 1-1 3 + N2 f1 4 	+ N2 11 2 6, OE-11 (0)

45 N21-13 + H	 2	 NI-12 2.7E-12 (0)

46 NH3 + 0	 NH2 + Oil 6.6E-12*exp(- 3300.0/T) (n)

11
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Table -1 . (continued),

Reaction Rate Expression
:io, Reaction (mole — cgs units) Reference

47 NH3 + O( I D)	 -^- NF12	+ OH 2.5E;-10 (a)

48 N1 1 3 + 011 -* Min + H2O '.. ,3E- 12 *exp (-800.0/T) (n)

49 N113 + H	 Min + Il2 1.0E-16 (n)

50 NHZ + 0	 HNO + It 1.813-12 (n)

51 N142 + 0	 NH + Oil 1.8E-12 (n)

52 NH2 +	 OH -► 	 NI ,1 3	+ 0 1,0E-13 (n)

53 NI12 + H 2	NH3 + H 1,013-16 (n)

54 NhI, + NO	 N2 + H;aO 2.1E-11 (n)

55 NH2 + NHS	 N2114 1.OE-10 (o)

56 NH + NO + Nz + 0 + H 4,7E-11 (n)

57 Nti + On	 NO + Oil 6.OE-13 (p)

58 NII + NO	 N2 + Oil 3.913-11 (q)

59 HNO +	 02	NO -,	 1-102 "1E-20 (n)

Ok HNO + NI	 NO + H + M S,OE-08*exp(-24500.0/T) (n)

61 FINO + Ii	 NO + H2 5.0E-14 (n)

62 HNO + HNO	 N2 0 + 1120 4.013-15 (n)

63 If	 + H + NI	 H2 + M 8.3E-33 (n)

64 11"S +	 01-1	 -}	 I-IS	 +	 1.1 2 0 1. CSE-11 *exp (-200, 0/T) (a)

65 HS + 0	 SO + 11 1.6E-10 (n)

66 HS + 02	 SO + OH 1,0E-13 (n)

67 HS + NO	 products 1.0E-12 (r)

68 SO + 02	 S02 + 0 7.5E-13*exp(-3250.0/T) (n)

69 SO + NO2 -	 SOZ + NO 1, 51's-11 (s)

7O CS2 + 0 -^ SO + CS 3,1E-11*exp(-640.0/T)(f70 =	 0,8)(a)

12
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Table 2, (continued).

^

{

Reaction
No. Reaction 

7, 1 CS2 + 0 + S + COS

72 CS2 + O + Sa + CO

!3 CS + 0 + S + CO

74 L + 02 + S + CO

75 CS + 02 ® COS + O

76 S + 0) ® S0 + 0

77 SO! + ^!|(+N) + IS| O)(	 O

7a SO2 + 1$2 + S03 + q!

7g SO2 +|||20: + S0a + C1130

SQ SOJ + Ha0 + 112SOI4

81 502 + 0 + SO + O2

a2 HS + H + S + 112

a3 S + H2 + |5 + H

84 H|S + R + 15 + 112

SS COS + H + HS + CO

aU COS + 0 + HS + Con-

87 CS., +	 HS + COS

as S + CS, + S2 + CS

89 S « COS + S: + CO

90 SO + SO + S + 502

g l SO + S03 ® 2 S02

92 SO2 +li 3 (+H) + Q / S02(+N!

93 {S| + HS + H;S + S

94 MiSH + 0 + CBa + HSO

Rite Expression
(mole  _ egs units) Referenc e

3,1E-11*exp!(-040,0/T)((77 =	 0-I)(a)

3,18-11*e %,(-640,0/T)(f% ©	 0,1)(a]

2,2§-I1 (n)

(a)

<3.0E-18 (S)

2.2E-12 (t)

(a.2E-13* )/(7,9§17 + N) (u)

2.0E-17 ( )

<313E-15 (W)

9. 13 . 13 (III

(2.12-1	 T0.3)*ex((-9§80.0 /T)	 (n)

2.2E-25 (nl

1,29E-11*ex)C8 60,0/T) (n)

2,2E-14 )

5. y §-14 (a)

1.9E-13 (a)

6,5E-13 (]I)

2,8E-12 «ems (-2050.0/T) (n)

3.0E-13 (n)

2.0E-I5 (a)

3,0E-13 (n)

1.2E-11 (n)

1.9R-12 (X)

13
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Table 2. (concluded).

Reaction
No.	 Reaction

95	 Cli3Sil + 0 # CI13S0 + 11

96	 C113SIl + 0 + CI-13S0ll

9"	 C113SH + Ol1 + products

98	 C113503 + 0	 C1 13 SO + C11 3

99	 C1I3SCI13 + 0 •} C11 2 S + C113O

Rate Expression
(mole — cgs units)	 Reference

1. 911-12	 (x)

1.911-1	 (x)

^. =IE -11 	 (y)

4A -11	 W

61311-11	 (x)

100 C113SC113	 + oil °► products 0,08E-1	 *exp(13a.0/T) (an)

101 COS + 0 + So + CO 2.113- 11*exp( - 2200,0/T) (a)

102 110 + 0	 11S + 011 2. X11,-12*exp (-1300, 0/T) (n)

103 SO + 03 + 50; + 02 ',5R-12*exp(--l050.0/T) (n)

104 SO; + 0 + M - SO3 + tit 3.4E-3.1*exp(-ll30,0/T) (tt)

105 lino,	 + ON - I- SO3	 + 1120 11013-, 1 (hb)

100 SO;, -} washout 3.8E-6*(10-Zw)/10 (I^h)

10^ 11503 - washout 2.3E-5*(10-0)110 (bb)

108 114504 -* washout 2.31:-5* (10-2)/10 (bb)

References:

(a) Chemical Kinetic and Photochemical Data for Use in Stratospheric Modeling,
Evaluation Number 2, JPL Publication 79- 27, (available from NASA).

(b) Levy, ti.: Photochemistry of Minor Constituents in the Troposphere,
Planet, Space Sci,, Vol. 21, 1973, pp. 575 - 591.

(c) Fate, C.T.; Finlayson, R.J.; and Pitts, ,J.N., Jr.: A Long Path Infrared
Spectroscopic Study of the Reaction of Methyl-peroxy Free Radicals
with Nitric Oxide. J. Amer, Chem. Soc., Vol. 96, 19 714, pp. 6551-0558.

(d) Chameides, IV. L. ; and Stedman, D.11.: Tropospheric Ozoi)c: Coupling
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pp. 17871-l"179-1,
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Depending on the lifetime of a species, it can either be considered

in photochemical equilibrium MR.) or it will have to undergo transport.

The rapidly reacting species have their vertical profiles determined by

chemistry alone, while the vertical profiles of the more long-lived ;species

are determined by the combined effects of chemistry and eddy transport,

utilizing a time-independent (sometimes called steady-state) continuity

equation. The details of the continuity equation are described in Appendix A.

Numerically, the continuity equation is solved using a finite-difference

form known as the central difference scheme (see Appendix B for a discussion

of this), The boundary conditions for the continuity equation can be

either a specified number density or a specified flux, as detailed in

Appendix C. With the recent inclusion of the sulfur group, the model

now contains a total of 37 chemical species. Of this amount, 17 are

calculated using the continuity equation: nitric oxide (NO), nitrogen

dioxide (NO,), ozone (03), nitric acid (IINO3), methylhydroperoxy (0130014),

am;nonia (NH3), hydrazine (N ',IM, two hydrazine derivatives (N,411) and (N2112),

hydrogen sulfide (H S1, sulfur dioxide (SO2), carbon disulfide (CS 2 ). carbonyl

sulfide (COS), dimethyl sulfide (C113SC113), methanethiol (CH3SH), sulfuric

acid (02SOO and sulfurous acid radical (I°IS03). For the rapidly reacting

species the condition of PCE is imposed. This includes the following

species: the hydroxyl radical (OH), hydroperoxyl radical (HO" ), nitrogen

trioxide (NO 3 ), dinitrogen pentroxide (NI-05), nitrous acid (NHOµ), the

amino radicals (NH ,, and ..1411) , methylpero°cy radical (030") , methoxy radical

(0I 3 0), formaldehyde (H2CO), formyl radical (1ICO), atomic oxygen (0(3p)),

the excited oxygen atom (OC 1 0)), atomic hydrogen (H), nitroxyl radical (HNO),

thiohydroxyl radical (HS), sul.foxy radical (SO), sulfur trioxide (SO 3 ), atomic

sulfur (S( 3 p)) and carbon sulfide (CS). Certain very long-lived and

well-mixed atmospheric species are specified as input parameters. This

group includes molecular oxygen (0 2 ), molecular hydrogen (1•12 ), carbon

dioxide (CO .,), carbon monoxide (CO), methane (CIM , water vapor (H20),

and hydrogen peroxide (H2102), Nine species are photodisassociated

in 12 different paths in the troposphere in addition to participating

in chemical reactions: they are ozone (03) (2 photolysis paths),

nitrogen dioxide (NO 2), nitrogen trioxide (NO 3 ) (2 photolysis paths),

dinitrogen pentoxide (N203), nitric acid (HNO 3 ), nitrous acid
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(Hti0 ), hydrogen peroxide (11,02), methylhydroperoxy (CHgOOt,) and formaldehyde

(Ott;O) (d photolysis path:). The details of the photodissociation calcula-

tions are given in Appendix D, in order to ensure internal self-consistency,

a convergence criterion is imposed. This criterion is met when there is

agreement between two successive runs tip to the sixth decimal place, A

further description of the convergence condition follows in Appendix h,

Most atmospheric chemistry studies are performed with one-dimensional

(vertical) models, whereas two- and three-dimensional models are usually

used for studies of atmospheric flow, dynamics and circulation, Since

atmospheric chemistry is initiated by photodissociation of various mole-

cules, the vertical coordinate is the important one in atmospheric chemistry

studies. One-dimensional models are known as globally averaged models,

because all parameters in these models should ideally be globally averaged.

Two-dimensional models, or zonally averaged models, employ an .averaging

technique whereby parameters are ;averaged according to latitudinal bands,

usually oaa the order of S° 'to lO°. These models are mostly used to study

certain flow phenomena of »oral character, Two-dimensional models are

usually formulated from a phenomenological point of view rather than from

first principles. The eddy mixing is usually developed using mixing length

theory. Hence, despite increasing the model by ones more dimension, the

transport coupling is still unsatisfactory :since it relies on the choice

of eddy coefficients. Three-dimensional models h,.ave been under development

during the last decade but have yet to be used very extensivel y due to

their nearly prohibitive cost. The three-dimensional models in existence

today have mostl y been used for dynamic studies. The most sophisticated

three-dimensional model in existance uses a more nine chemical reactions

and seven chemical species. it has been calculated that, for each time

seven new species are included, the computational cost rises all order of

magnitude. Also, the largest digital computers available still do not

have adequate storage to fully describe vertical transport, Hence, three-

dimensional models must still rel y oil parameterized vertical eddy diffusi-

vities, a fact that is not fully appreciated even in the scientific

community. In one-dimensional models, a lot of storage is available to

incorporate vast amounts of chemistry, which have most of their interesting

.features in the vertical dimension. Furthermore, most chemical interactions

are more easily studied with one 	 models.
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RUSULTS AND DISCUSSION

Introduction

In this section the sources and sinks of the sulfur compounds are

examined. Some sulfur species are produced chemically as well as emitted

anthropogenicaliy. loss mechanisms include chemical reactions and

heterogeneous losses, i.e., rainout, washout, and dry deposition. The

chemical production and loss terms for each species listed below are

arranged in order of importance.

Sulfur Dioxide (M,)

Chemical}aroduction.-- The chemical production of S02 always involves

SO (reactions 68, 69, 103, 90, and 911. Of these reactions, only the

recombination of sulfoxy with molecular oxygen, 0 , (reaction 68) and

sulfoxy with nitrogen dioxide, NO ,,, (reaction 69) are of major importance.

SO reacting with ozone, 03, (reaction 103) is of minor importance, while

the reactions of v0 with itself (reaction 90) and , with sulfur trioxide,

$03, (reaction 91) are negligible.

Chemical loss.	 The most important gas phase loss is due to the>

reaction with the h ydroxyl radical, 011, (reaction 77), A minor loss

mechanism is due to reaction with the methylperoxy radical, C1130;!

(redaction 799). Reactions with the hydroperoxy radical, 110, (reaction 78);

atomic oxygen, 0, in the presence of a third body (reaction 104); tlae methyl.

radical, 0113, (reaction 92); and with atomic ox ygen, 0, (reaction 81) are

all negligible. The lifetime of SOn based solely on gas phase chemistry

is about 2,5 days.

Anthropogenic emission,-- S0- is knw%rn as a product of fuel combustion

(ref, 34). It has also beer detected in the exhaust of turbines (ref, 44)

and of diesel enginos (ref. 36). The ,application of certain types of

fertilizers also emits SO, (ref. 10).

Natural emission.	 Sulfur dioxide has been found in the smoke from

erupting volcanoes (refs. 34, 38).

Heterogeneous loss.-- The heterogeneous loss of SO ,., 	 been estimated

to be about 50 percent of the total loss, and is modeled similarly to that

ku'A". e__
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77-

by Turco (ref. 5), with the e:,-Cption that the NASA/LaRC model has the

tropopause at 10 %m while the model of Turco uses 1.3 Lm for tropopause

altitude. Inclusion of the heterogeneous loss of SO- lowers its lifetime

to slightly less than two days, At the lower boundary, a flux

of 1.215 x 10 10 molecules cm-4 S' l was used together with it depositional

velocity of 1.0 cm s- 1 . This results 
in 

a surface mixing ratio of 0.5 ppb,

The resulting vertical profile is shown in figure A2 . The solid line

represents the standard profile while the dashed line is for the case without

heterogeneous loss. 
In 

both cases a zero flux condition was imposed at the

tipper boundary. Vertical profiles have been measured by Jost (ref. 45)

and by Georgii (ref. 22). 
In 

general, hese measurements show a doi.-reasing

mixing ratio with altitude similar 
to 

tile CalcUlItiOnfi With the NASV'LaRC

model. One notable exception is a profile by Georgii (ref, 21 2) over th,.,.-

Atlantic Ocean (dotted line), 
In 

this case there is an increase in mixing

ratio with altitude. This is consistent with the theory that the oceans

.act as it sink for SO- (ref. .1 0). Also incluced. are some measurements by

Maroulis, (ref. 24) and b y Jao.-;chke of al. fret. 46). The surfice, mixing,

ratio of the vertical profiles by Gcoqi (ref. 22) and Jost (ref. 4$) is

about 
in 

order of magnitude higher than those calculated by the NASA/LaRC

model, This is not very surprising, since Georgii's and Jost's measurements

were made over western rLlr0l)C, an 
area 

which is known to have .1 high back-

ground concentration of SO`. Depositional velocities at the surface have

a range of 0,1 to 2.5 cm s" I (ref. 47). Avalue of 1.0 ciii s- 1 has been suggested

as 
an 

average depositional velocity (ref. 48). The resulting vertical profiles

due to different values of the depo
s
itional velocity are shown In figure 3, With

a	 depositional velocity, a very rapid increase 
in 

mixing ratio with altitude

results, and conversely with a high depositional velocity the mixing ratio
increases slowly with altitude. In all calculations, the downward flux

of SO ,, was kept constant at 1.275 x 10 10 molecules cm- 1- s- 1 . There are

numerous estimates of global SOW emission. For example, Katz (ref, 49)

estimated that 7 71 Mt were emitted. Subsequent estimates by Robinson

and Robbins (ref. 31) indicate that the annual global SO_- emission is

Wo Nit. Of this amount, 710 percent comes from coal combustion, 16

percent from petroleum fuel Combustion, and the rest from various processes

such as petroleum refining and smelting. Approximately 95 percent of all

the anthropogenically emitted sulfur compounds are in the form of SO.,, (ref. 12).
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A recent estimate of global land sulfur dioxide emission was made by

Shinn and Lynn (ref, 10). They estimate anthropogenic emissions to be

183 Mt; 33 Mt of that amount is in the form of fertilizers. Natural

emmissions (biogenic and volcanic) account for 21 Mt of sulfur dioxide.

Hence, man's activities account for nearly 50 percent of all sulfur

dioxide that is emitted into the atmosphere. Since the bulk of this

figure involves coal combustion, a switch to greater use of coal as

recently suggested is likely to rapidly increase man's contribution

to th,,. total sulfur budget.

Carbonyl Sulfide (COS)

Chemical production.-- The chemical sources of COS are the reactions

of carbon disul.,Pide, CS 2 , with the hydroxyl radical, OH, (reaction 87),

the reaction of molecular oxygen, 0 , with carbon sulfide, CS, (reaction 72)

and the reaction of molecular oxygen, 0, with carbon disulfide (reaction 71).

Only reaction 87 is of major importance. Reactions 72 and 71 are only minor

pathways for production of COS.

Chemical loss.— The loss mechanisms of carbonyl sulfide are totally

dominated by the reaction of COS to OH (reaction 86). All other chemical losses

of COS, i.e., reaction with atomic oxygen (reaction 101), reaction with atomic

hydrogen, 11, (reaction 85) and reaction with atomic sulfur, S( 3 p), (reaction 89)

can be neglected. The calculated lifetime of COS based oil the loss mechanisms

mentioned above is about four months. This value agrees reasonably well with a

value of 0.6 year reported by Sze and Ko (ref. 4) and 200 days estimated by Logan

et al. (ref. 6).

Anthlopogenic emission.— COS, which is a very stable molecule, is formed

by maninade processes, such as manufacturing of petroleum (ref. 33) and of synthetic

fiber (ref. 50),

Natural emission.— Some of the natural processes emitting COS include

erupting, volcanoes (ref. 32) and forest fires (ref. 51).

In the model calculations, a surface boundary value of 0.5 ppb was used

together with a condition of zero flux at the tropopause, The resulting vertical

profile is shown in figure a, The measurements of COS have all been at the surface

and indicate that carbonyl sulfide is very well mixed. Sandalls and Penkett (ref. 23)
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obtained a value of 0.51 ppb. Torres et al. (ref. 25) measured an average value

of 0.512 ppb over a wide range of latitudes, while Maroulis et al. (ref. 24)

found an average value of 0.467 ppb over 3 different locations in the United

States. Some early data by Hanst et al. (ref. 26) indicate a value of 0.2 ppb

at the surface, but this measurement was associated with large experimental

uncertainties, The vertical profile calculated by the model shows a nearly

constant mixing ratio in the troposphere as would be expected from its long

lifetime. COS diffuses into the stratosphere, where it undergoes photolysis

forming SO (ref, 1). Hence, COS would be an important precursor to the

formation of the particulates that constitute the aerosol layer,

Hydrogen Sulfide (H?S)

Chemical production. — The only known chemical production of ITS in the

atmosphere is due to the reaction of the thiohydroxyl radical, HS, with

itself (reaction 93). This is only of very minor importance.

Chemical loss. — The primary loss mechanism for hydrogen sulfide is the

reaction of 1 .12S to 011 (reaction 64). The losses due to reactions with atomic oxygen

(reaction 102) and with atomic hydrogen (reaction 84) are negligible. Tile calculated

lifetime of 11 25 based oil 	 three chemical losses is a little more than one day,

Anthropogenic emission.— Some of the industrial activities that have been

identified as emitting H 2S include wood pulping (ref. 29) and sewage treatment

(ref. 30).

Natural emission.— 112S is formed primarily b y microbial activity

(ref. 27). Volcanoes also emit hydrogen sulfide (ref. 28) as does animal

waste (ref. 8).

The only measurements available for 1 .12S are those of Geor,;ii (ref. 21.)

and of Slatt et al. (ref. 52). The measurements by Georgii indicate a

surface mixing ratio of 1.5 to 3.0 ppb. This is close to the estimate of

0.2 ppb by Robinson and Robbins (ref. 31). Using this value as the lower

boundary condition and zero flux at the tropopause, the model calculated

the profile shown in figure 5. The model shows a very .rapid decrease in the

mixing ratio with altitude similar to Georgii's measurements.
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Carbon Disulfide (CS 
2 )6

Chemical production.— No known chemical reaction in the atmosphere

produces carbon disulfide.

Chemical loss. — The primary loss mechanism is the reaction with the

hydroxyl radical, 01-1, (reaction 87). Minor loss contributions come from

reactions with atomic oxygen (reactions 70, 71, and 72). The reaction of

CS2 to atomic sulfur, S( 3p), (reaction 88) is negligible. The lifetime

based oil 	 reactions is slightly more than one month, This value compares

reasonably well with the value of 0.2 years given by Sze a;ld Ko (ref. 4),

Anthiopogeniv. emission. — CS C is known to result from the manufacturing

of petroleum (ref. 33) and of synthetic fiber (ref. 36).

Natural emission.— Carbon disulfide has been detected in the smoke

from volcanoes (ref. 32). Also, some measurements in seawater (ref. 37)

seem to indicate a natural source of CS21

Measurements of CS  are very sparse and confined to one location in

England (ref, 23). The average surface value obtained was 0.19 ppb. No

vertical measurements are available. Using the value of 0.19 ppb as the

lower boundary condition and zero flux at the tropopause, the model calculated

the profile shown in figure 6. CS, decreases relatively slowly with altitude,

as would be expected from its moderately long lifetime.

Sulfuric Acid (H2SO4)

Chemical production.— Sulfuric acid is formed chemically by the reaction

of sulfur trioxide, S0 3 , with water vapor, H2O, (reaction 80).

Chemical loss, — No gas phase chemical loss mechanism has yet been

identified for H2so4.

Anthropogenic emission.— Sulfuric acid has been detected in the exhaust

of automobiles (ref. 36) and in the manufacturing process of 1 .1 SO
4
 (ref. 39).

Natural emission,— H 2SO4 is present in volcanic emission (ref. 38).

Heterogeneous loss.— The only known loss mechanism for sulfuric acid

is heterogeneous loss. In the NASA/LaRC model we used a heterogeneous loss

rate similar to that of Turco et al. (ref. 5), again with the exception of a lower
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tropopause altitude (10 kin vs. 13 km), The lifetime of 14 2 SO4 at the

surface teased on this heterogeneous loss rate is about 0,5 day.

It is of utmost importance to learn the fate of the 1{ ,,SO4 molecules,

It can occur in liquid form and rainout in the form of acid tin which

affects the environment adversely, or it can occur in solid form, which

affects the growth of the aerosol layer and, hence, ultimately will

affect the climate. In the model, a zero flux condition was imposed at

both boundaries, The resulting vertical profile is shoipi in figure 7.

There are no tropospheric measurements of FiaSOi, for comparison.

Sulfurous Acid Radical MS03)

Chemical production.-- The only known chemical production is due to

the reaction of SO, with OH (reaction 77).

Chemical loss.-- Gas phase loss occurs as a result of the reaction

of FIS03 with Oli (reaction 105), The homogeneous lifetime of HSO3 is

approximately 15 hours at the surface.

Anthropogenic and natural emission.-- No anthropogenic or natural

emissions are presently known.

Heterogeneous loss . — The heterogeneous loss term is modeled similar

to H SO 4 (ref. 5). The combined lifetime due to both homogeneous and

heterogeneous chemistry is about six hours at the surface,

It is of great interest to find out the details of the fate of the

HS0 3 radical because it offers a loss mechanism for sulfur before oxidation

to sulfuric acid occurs, As in the case of I12SO,,, no atmospheric measure-

ments of HSO3 exist. The free acid H 4SO3 is not believed to exist, while

the bisulfates containing HS0 3 are well known (ref. 53), The boundary

conditions chosen for HS0 3 are similar to those for H^.SO4 , fhe resulting

profile is shown in figure 7. The profiles of HS03 and H2SO4 follow each

other in shape very closely. This is due to the fact that the dominating

heterogeneous loss term is identical for both molecules,
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Intermediate Sulfur Species

Introduction.-- The five short-lived intermediate sulfur species have

only chemical production and loss mechanisms with the exception of sulfur

trioxide, S0 3 . Anthropogenic emissions of So 3 have been detected in fuel-

combustion processes (ref. 54) and in the manufacturing process of sulfuric

acid (ref. 55). The following subsections will discuss the chemical

production and loss mechanisms for each of the five intermediate species.

Again, the chemccal reactions will be mentioned in order of importance.

Sulfox • (SO). — SO is formed primarily by oxidation of the thiohydrvxyl

radical, 11S, with molecular oxygen, 02 (reaction 66). Of minor importance

are the oxidations of carbon disulfide with 0 (reaction 70), carbon sulfide,

CS, with 0 (reaction 74), atomic sulfur [S( 3p)] with 0 2 (reaction 76) and

carbonyl sulfide, COS, with 0 (reaction 101), The productions of SO due

to the oxidations of the thiyl radical, HS, with 0 (reaction 65) and of

sulfur dioxide, 50 2 , with 0 (reaction E1) are negligible compared to the

other reactions producing SO. Losses are due primarily to the oxidation

of SO with 0 (reaction 68), Minor losses are caused by the reaction of

SO with NO 2 (reaction 69) and by SO reacting with ozone, O 3i (reaction 103).

Negligible loss mechanisms include the reaction of SO with itself (reaction 90)

and of SO reacting with S0 3 (reaction 91), fiance, the five loss mechanisms

for SO nearly always produce 50 2 . In only one instance, the reaction of SO

with itself (reaction 90), is S0 2 not produced, Thus, SO acts as an important

precursor to SO 2 . The calculated lifetime of SO is on the order of 10 -2 s.

The vertical profile is plotted in figure 8. Due to its short lifetime and

high reactivity, measurements cannot be made. This is true for the four

remaining intermediate sulfur species also.

Carbon sulfide (CS).-- CS is formed primarily when carbon disulfide

is oxidized by atomic oxygen (reaction 70) and, of negligible importance,

when atomic sulfur reacts with CS 2 (reaction 88). The two primary loss

mechanisms are oxidation of CS with 0 2 (reactions 74 and 75). The reaction

of CS with 02 takes two paths with equal preference. A negligible loss

for CS is the oxidation with 0 (reaction 73). The lifetime of CS based on

these reactions is on the order of 10- 2 s, well justifying the PCE ass , np-

tion. The vertical profile is shown in figure S.
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Thioh,vdroxyl radical (llS). — The thiohydroxyl radical is a highl y reactive

species formed by seven , ,actions and destroyed by Five. Three reactions are of

importance for its formation: hydrogen sulfide reacting, with the hydroxyl

radical, OH, (reaction 64), carbon disulfide reacting with Oil (reaction 8"),

and carbonyl sulfide reacting with fill (reaction 8(,), Minor vroduction of

HS is due to the oxidation of H,S with 0 (reaction 102) and the reaction

of If with 1i,S (reaction 84). Of negligible importance are the reactions

of COS with H (reaction 85) and ,S reacting with H, (reaction 83). Losses

are due almost entirely to the oxidation of O; (reaction tits). Of negligible

importance are the remaining four loss mechanisms.* HS reacting with NO

(reaction 67), HS oxidized by 0 (reaction 05), HS reacting with 11 (reaction 82),

and HS reacting with itself (reaction 93). The resulting lifetime of the

thiohydroxyl radical is very short, oil 	 order of 10
-6
 s. Its calculated

vertical profile is plotted in .figure 8.

Sulfur trioxide (SO3).-- As mentioned previousl y , sulfur trioxide

is the only intermediate sulfur species that has nonchemical production

terms, The relative importance off` chemical vs. nonchemical contributions

to the total S03 budget is poorly understood. Chemically, 903 is produced

primarily by the reaction of HS03 with OH (reaction 105) ano by 802

reacting with the methylperoxy radical, 01130;, (reaction 79). Ali nor

contributors to S02 production are S0, reacting with H02 (reaction 78)

and S02 being oxidized by 0 in the presence of a third body (reaction 104).

The main path for S03 destruction is the reaction with water vapor, 11x0,

(reaction 80). Of negligible importance is the reaction of S03 with SO

(reaction 91). Sulfur trioxide is very short lived. Its lifetime is on

the order of 10-6 s. The vertical profile due to the chemistry described

above is plotted in figure 8.

Atomic sulfur (S( 3 p) .-- The production of atomic sulfur is due

almost entirely to the reaction of CS Z with 0 (reaction 71). Of negligible

inportance are the four reactions; CS with 0 (reaction 73), SO with itself

(reaction 90), HS reacting with H (reaction 83), and HS reacting with itself

(reaction 93). Loss of S is primarily by oxidation with molecular oxygen

(reaction 76). Minor contributors to loss of S are reactions with CS;?

(reaction 88) and with COS (reaction 89). The reaction of S with H2

(reaction 83) is virtually negligible as a loss for atomic sulfur. The

;^ 3
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lifetime of atomic sulfur 1;1 extremely short, about 10"' :. The vertical

profile of S is shoum in figuro 8. (Observe that the horizontal scale is

shifted for S.)

FUTURE PERTURBATIONS TO THE S:!LFUR BUDGET

A couple of decades ago, the only global scale implication due to

sulfur species was thought to be the formation of stratospheric particulates

(ref. ). This argument was based on the relatively moderate lifetime: of

most sulfur species. Lifetime: on the order of a few days to a week were

thought to preclude any real important contributions to global tropospheric

chemistry. We now know that sulfur species play an integral part in the

highly coupled and complex chemical system that constitutes the troposphere.

S02 emissions had ,lit 	 trend during the 1900's. This trend was

partially reversed during the 1970's. Some actions responsible for this

decrease were a greater use of clean-burning natural ,gas and of crude oil

4	 with low sulfur content. Also, a slower economic growth coupled with

energy conservation contributed to a decrease in SO emissions. Recently,
s

this trend has started upward again. The global concentrations of sulfur

i

	

	 compound: are very likely to see a rapid increase in years to come due to

energy policies, Already emission standards for many oil-burning power

plants and industrial plants are relaxed to allow for usage of lower grade

r

	

	 crude oil containing more sulfur. Anthropogenic emissions are currently

responsible for approximately half as much of the atmospheric sulfur

concentrations as are the natural emissions, but some 30 to 25 years from

now manmade emissions may equal those of nature and may actually at the

turn of the century surpass nature's emissions in the northern hemisphere

(ref. 12), The estimates of global emission of sulfur are widely varying.

Katz (ref. 49) made some early estimates and calculated that 77 hit

of S0; was emitted in 1943. The Study of Critical Environmental Problems

(ref. 56) established a global emission of 93 hit/yr 
lit
	 to 1968

Robinson and Robbins (ref, 31) estimated the annual total SO emission in

the mid-1960's to be 146 Alt. A more recent estimate (ref. 10)

calculates the global manmade emissions of SO ,,, to be 183 Nit. It is

significant to note that of the cotal global emissions of S0 2 93,5 percent

occur in the northern hemisphere and only 6.5 percent in the southern
hemisphere (ref. S6). The most recent estimate (ref, 10) of global

r
34



bacteriogenic production of S0 2 is 210 Mt. Fertilizers are thought

to account for 33 Mt of the manmade emissions. This portion of the

sulfur budget is very likely to increase further. to the SOEP report

(ref. 36), some predictions for the future were made. An annual

growth in fossile fuel usage of 4 percent between 1970 and 1980 was

assumed, with a 3.5 percent growth rate from 1980 to 2000. By the year

2000 A. p ,, a global anthropogenic emission of 275 Mt/yr would occur

(ref, 86). however, at the present time it seems that any prediction

of future crude oil is risky at best.

It is very evident that future sulfur levels in the atmosphere are

a strong function of man's activities. Many questions concerning

sulfur species remain to be answered: for example, the exact amounts

of naturally vs, anthropogenically produced sulfur need to be ascertained.

Also, what is the global concentration of SQ? Present measurements are too

inconclusive and in part contradictory. Furthermore, short-term and long-term

impacts of S0 2 emissions on the sulfur budget must be elucidated. The primary

	

loss for C	 The hydroxyl a icai n i V Ve reactivechemica l lo^., 0. ..0;: is 0!!. T t	 ...i	 (F!1) ^	 ry	 z___

and acts somewhat like a "tropospheric vacuum cleaner." In figure 9, the

resulting; S0 2 profiles due to a doubling of the current OH level and a

decrease by 50 percent in the present OH level are plotted. Thus, any

increase in the S02 level would compete with many other species for the

OH radical. The budgets of these competing trace gases need to be addressed.

The importance of homogeneous vs. heterogeneous loss for S0 2 needs further

research. presently, it is believed that S0 percent is lost homogeneously

and SO percent is lost heterogeneously, but this breakdown is a very crude

estimate. The depositional velocity of S0 2 needs further pinpointing.

Estimates vary from 0.1 to 2.5 cm s" l with 1.0 cm s- 1 as an average, The

vertical profile of S0 2 is very dependent on this quantity, as already

pointed out in figure 3, It is also urgent to find the mechanism that

controls the S02 to sulfate (gas-to-particle) conversion. From figure I

we can see that S0 2 is converted to H ZSO4 via the intermediate species S03,

A possible alternate reaction path involves tha HS0 3 radical. The fate of

this molecule is virtually unknown. Also, the kinetic data concerning the

reactions that convert S0 2 to SO4" need to be improved. Finally, the

role of ammonia, NQ in aerosol formation needs to be addressed. NH 3 is
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largely responsible for neutralizing the acidic sulfur species, Hence, if

the sulfur budget increases more rapidly than the ammoinia budget, an

increase in ac i dic precipitation over the already high levels would result.

Tn conclusion, we have seen that the sulfur family, because it is

largely so anthropogenic plays an increasingly important role in tropospheric

chemistry, Additional research is needed to answer mar ►y of the questions

related to the tropospheric sulfur budget, The answers to these questions

will have a direct impact on many fields of scientific study, e,g,,

radiative transfer, climatology, meteorology, agronomy, ecology, and

limnology, just to mention a few,
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APPENDIX A

THE CONTINUITY EQUATION

The continuity equation can be written in either number density form

or mixing ratio form. In the NASA/LaRC one-dimensional tropospheric

photochemical model, the mixing ratio form is used. The vertical profile

of a long-lived species is then expressed as:

a^i
Q i (n ) ) - Li(n;)Mfi

Y

(A-1)

where 0
i
 is the vertical flux (molecules cm - ' s- 1 ) of the ith species,

Qi (n i ) are the chemical production terms, and L i (n
i
)Mf i are the chemical

loss terms of the ith species; M is the total number density (molecules cm-1),

fi is the mixing ratio of the ith species, and M and f are related

by the expression:

I1.

(A-')

where n 	 is the number density of the species under consideration,

The vertical flux of the ith species, ^ i , can be written in terms of a

parameterization, K„:
Y

3f.

^i--KzM^3t)

The term K„ is an empirical constant (cm 2 s -1 ) usually called the
eddy diffusion coefficient. The word "eddy" is somewhat of a misnomer

since it indicates that the diffusive process occurs on a small scale.

On the contrary, most vertical transport in the troposphere takes place

on a very large scale. Substitution of equation (A-3) into equation (A-1)

yields:

a	 /afi\ -

az [K, ^ ^ az 1	 -Qi (n
) ) + Li (n j ) hifi

(A-3)

(A-4)
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Because equation (A-4) usually depends on many species other than the ith,

it is a highly coupled, nonlinear, partial differential equation that has

to be solved numerically,

In the case of short-lived species, the chemistry dominates the vertical

distribution, For these species the vertical transport terms [i.e. the

terms on the left-hand side of egt,;ation (A-4)] can be neglected. This

condition is known as photochemical equilibrium (PCE). If the PCE

assumption is justified, the solut:L gn of equation (A-4) is simplified con-

siderably since we can solve explicitly for f i :

gi(na)
fi
 = Li(itj)D1	

(A-5)

Hence, in the cases where PCE can be used, a high degree of computational

efficiency, both in terms of time and money, can be reached.
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APPENDIX B

NUMERICAL SOLUTION Or THE CONTINUITY EQUATION

The NASA/LaRC one-dimensional, global, tropospheric, photochemical

model calculates the continuity equation in the mixing ratio form,

previously given in equation (A-4):

a	 af.

ai K^ bl^ az
	 -Qi (n

j ) + Li (n j ) Nifi (B-1)

By expanding on the derivative with respect to altitude and rearranging the

terms in equation (B-1) we obtain:

3`f.	 af.

K, M	
1 
+ a (K^ M)	 - Li (n^) M fi + Q i (n^) = 0	 ( B-2)

a- 2^	 az	 3z

After dividing this equation by M we obtain:

32f i	 3 f..
K	

+I a
 (K M)

M) 3z^ - L
i (n ) )fi +	 ^^	 = 0	 (B - 3)

z Vz4

Equation (B-3) defines a system of equations for each species, fi.

A finite-difference scheme is used to solve the equations (ref. 57).

The finite-difference equations are defined as:

2

a f + f	
_

k+1	 2f  + fk-1 (for second order equations)	 (B-4)
az L	o^z

and

of	 fk+1	
fk-1 (for first order equations)
	

(B-5)

az	 2A^
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Substituting these equations into equation (a-3), rearranging terms and

dropping the species index i and subscript x on K,,
Y
, we obtain:

kk	
A	 4hk	

kk	
t1

fk+1 Qn4 + 
'Az + 

fk - ®^ - L + fk-1 Q,2 - 'Az 4

Y	 Y	 Y	 Y

(R-6)

The term A represents: 
1 

a 
(Kz 

bf) 
and the index k refers to the

spatial derivative
	

Equation (B- V) can be written in finite-difference

form as

A	
fk+l +	 f  +	 fk-1 ' U

	
(n-z)
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APP9NDIX C

BOUNDARY CONDITIONS

Two types of boundary conditions are available to solve the continuity

equation. We can either specify a, mixing ratio f 	 or a flux obi,

upward or downward at the upper and lower boundaries. In general, the

boundary condition can be written ass

?f .
a i a^4- bi f - c i	 (C-1)

If we specify a mixing ratio f 	 at the lower boundary, ai = U, b i = 1,

and equation (C-1) becomes

f  = c 	 (C-2)

or, in finite-difference forms

Dz • f Z. = D^	 (C-3)

where the subscript Q is used to denote lower boundary. If a mixing

ratio is specified at the Lipper boundary, a i = 1, b i U, and equation

(C-1) becomes

3f.
ai a = ci	 (C-4)

In finite-difference form (with subscript a for upper boundary);

B
Ll	 fU	 `ll	 fLl .. Ll	

(C-5)

This result is obtained from an expansion of equation (C-4);
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fu - fu-1-
	 A

„	 = c u
M

(C-(j)

This can be rearranged to;

fu - fu-1 = cu Az
	

( C -7)

which in finite-difference form can be written as equation (C-5), with

t = 1, k = 0, and ^ = cu A"..

For an upward or downward flux across the upper boundary, the boundary

condition reduces to;

ofMu

a 	 = c Ou
	 (C-8)

The finite-difference form looks similar to equation (C-5);

B(t)u • f M U + Gkmit . f M u = wit	 (C-9)

In this case, B (T) U = 1 , ^ m li = -1, p (^) « = C(^) u 	C(^) u lac, and ^ m u = 0.

For a flux, upward or downward, across the lower boundary, equations (C-3)

and (C-J) are still valid, except in this case B(A) R = -1,G('p)^ = 1,

B(A)R	 C(S)R Oz, and A(S)p, = 0.

Equation (B-7) from Appendix B, together with equations (C-3) and (C-5),

forms a so-called "block tridiagonal" system of equations given t)y.

4a



D At 0 . 0 ft [^z

C2 A2 0 .	 0 PN ^4

(C-10)

0
0u Bu Xu fu iii-1	 -1 - -1 -1

^7 0	
Cu

Du fu
ltu

There are several numerical techniques available to solve the tridiagonal

matrix described by equation	 (C-10), In the NASA/GaRC model, a Gaussian

elimination method without pivoting is used	 (red',	 57),
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APPENDIX p

PHOTOplssoCiATiON RATE CALCULATIONS

In order to calculate the photodissociation rates, one first must

determine the amount of incoming solar radiation. The incident radiation

is a function of wavelength X, altitude z, and solar zenith angle

@ [i.e., I ^ I(X,z,@)]. The expression for incident solar radiation

is due to Leighton (ref, 58) ;

1 0" ' o)Io 	 (̂X)*exp[-T@(X)sec @] *exp[- T
11

(X) - T r (\)) sec @

+ Cl - exp[- Tp (X) - Tr(\)]see 

01. Cos 
@	 (D-1)

where I o (\) is the incident solar flux at the top of the atmosphere.

This has been tabulated by Ackerman (ref. 59), The term exp[-To3(X)

• sec @] is the attenuation due to ozone :absorption. The next term

exp [-Tp M - 'r r (X) ] sec 0 is the direct solar attenuation due to aerosol particle
scattering (TP ) and Rayleigh scattering (T r). The last term [1 -exp[-ri^(X)

- T.r (X) sec @] cos @ is the diffuse solar radiation attenuated by aerosol

and Rayleigh scattering. Values for T p (\) and Tr (X) have been

tabulated by Elterman (ref, 00). Once the incident solar radiation,

is known, the photodissociation rates, J i , can be calculated

according tot

11

J. (a,z,@) =	 AI . (X, z,@)c^. (\)	 (n-)
^	

^=l a

where cr i (\) is the molecular cross section of the ith species. The

solar zenith angle, @, is calculated as;

cos @ = cos w * cos d * cos t + sin ^ * sin d,	 (D-.))

where ^ is the latitude, d is the solar declination angle and t

is the local hour angle of the sun. For a given latitude (o) and solar

declination (6), the local hour angle of the sun (t) varies from -1800
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to 180° with each hour corresponding to a ls° increment, i.e., local
noon is 0 0 , 11 a.m. is -1s°, 1 pom. is +15 0 , etc.

.. -r r.I * .A . x:.	 ,.
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APPENDIX e

CONVERGENCE CRITERIA

The model imposes two separate convergence criteria, one for the
species in photochemical equilibrium and one for the species that are
calculated using the continuity equation. The number of iterations

needed is a strong function of the initial profiles that are prescribed,
Ili general, the flow of the calculations of the model is as follows:
First, the initial profiles for all species are prescribed. Secondly,

the reaction rate constants are calculated. Next, the i.;teident solar

radiation is calculated, and based on these results, the photodissociation

rates are computed. The model then calculates the vertical profiles

of the short-lived species in photochemical equilibrium, Finally, the

long-lived species that are transported are calculated. Tile vertical

profiles that are obtained for the species are compared to the previous

iteration and recalculated, until the convergence criteria is achieved.

For the short-lived species, the convergence criteria is

(ni)11 -	 w 10-f

and for the transported species the criteria is

10-1(n1 - (n l	 < 10-
z

(F-1)

(c-2)

Computationally, the photochemical equilibrium species are calculated

much more rapidly{ than the transported species; therefore, a somewhat

more stringent convergence criteria can be imposed on the PCE species.

With reasonably close initial guesses of the vertical profiles (i.e.,

vertical profiles within a couple of orders of magnitude of the final

profiles), convergence is achieved after three to four iterations for

the short-lived species and five to six iterations for the long-lived

species.
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