Airplane Wing Vibrations
Due to Atmospheric Turbulence

Robert L. Pastel, John E. Caruthers, and Walter Frost

CONTRACT NAS8-32692
JUNE 1981
Airplane Wing Vibrations
Due to Atmospheric Turbulence

Robert L. Pastel, John E. Caruthers,
and Walter Frost
The University of Tennessee Space Institute
Tullahoma, Tennessee

Prepared for
Marshall Space Flight Center
under Contract NAS8-32692

NASA
National Aeronautics
and Space Administration
Scientific and Technical
Information Branch
1981
ACKNOWLEDGMENTS

This research was supported under NASA Contract No. NAS8-32692. The authors are grateful for the support of A. Richard Tobiason of the Office of Aeronautical and Space Technology, NASA Headquarters, Washington, DC. Special thanks go to Dennis W. Camp of the Space Sciences Laboratory, Atmospheric Sciences Division, NASA/George C. Marshall Space Flight Center, Alabama, who monitored the research program.
ABSTRACT

The purpose of this study is to determine the magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip and to determine whether accelerometers mounted on the wing tip are needed to correct for this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. The major finding of the study is that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Analysis</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Spectrum Analysis</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Mechanical Analysis</td>
<td>8</td>
</tr>
<tr>
<td>3.0 Numerical Procedure</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Free Vibration: Structural Character of the Wing</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Forced Vibration: Frequency Response Function</td>
<td>25</td>
</tr>
<tr>
<td>3.3 Spectrum Equation: Wing Tip Velocity Power Spectrum</td>
<td>26</td>
</tr>
<tr>
<td>4.0 Results and Conclusions</td>
<td>34</td>
</tr>
<tr>
<td>5.0 List of References</td>
<td>49</td>
</tr>
<tr>
<td>Appendix A: User's Guide</td>
<td>50</td>
</tr>
<tr>
<td>Appendix B: Estimation of Wing Stiffness</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>38</td>
</tr>
</tbody>
</table>

1. Coordinate system
2. One-dimensional and two-dimensional turbulence encounter
3. Distribution of mass across the semispan of the wing
4. Distribution of semi-chord across the semispan of the wing
5. Natural modes and frequencies for the stiff wing
6. Natural modes and frequencies for the flexible wing
7. Frequency response functions due to gust excitation at 0.86 feet from midspan
8. Frequency response functions due to gust excitation at 14.76 feet from midspan
9. Frequency response functions due to gust excitation at 16.5 feet from midspan
10. Frequency response functions due to gust excitation at 23.44 feet from midspan
11. Frequency response functions due to gust excitation at 26.92 feet from midspan
12. Spectrum of atmospheric turbulence for length scale 132 feet and spectrum of wing tip velocity for flexible and standard wings
13. Spectrum of atmospheric turbulence for length scale 2112 feet and spectrum of wing tip velocity for flexible and standard wings
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Spectrum of atmospheric turbulence for length scale 132 feet and spectrum of wing tip velocity for stiff wing.</td>
<td>39</td>
</tr>
<tr>
<td>15 Spectrum of atmospheric turbulence for length scale 2112 feet and spectrum of wing tip velocity for stiff wing.</td>
<td>40</td>
</tr>
<tr>
<td>16 Relative error in measuring turbulence with length scale 132 feet for flexible wing.</td>
<td>42</td>
</tr>
<tr>
<td>17 Relative error in measuring turbulence with length scale 2112 feet for flexible wing.</td>
<td>43</td>
</tr>
<tr>
<td>18 Relative error in measuring turbulence with length scale 132 feet for standard wing.</td>
<td>44</td>
</tr>
<tr>
<td>19 Relative error in measuring turbulence with length scale 2112 feet for standard wing.</td>
<td>45</td>
</tr>
<tr>
<td>20 Relative error in measuring turbulence with length scale 132 feet for stiff wing.</td>
<td>46</td>
</tr>
<tr>
<td>21 Relative error in measuring turbulence with length scale 2112 feet for stiff wing.</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[a = \frac{b}{b_R} \]
Distribution of semi-chord

\[A_{ij}, B_{ij} \]
Coefficient for the aerodynamic cross terms

\[b \]
Semi-chord (ft)

\[b_R \]
Reference semi-chord (ft)

\[C \]
Theodorsen's function

\[D \]
Characteristic determinate of eigenvalue problem

\[EI \]
Beam stiffness (1bf-ft^2)

\[F \]
Force on beam (1bf)

\[h \]
Response of system to unit impulse

\[J_0 \]
Bessel function of the first kind order 0

\[J_1 \]
Bessel function of the first kind order 1

\[k \]
Reduced frequency

\[K \]
Coefficient function for the lift due to gust

\[\varphi \]
Semi-wing span (ft)

\[L \]
Turbulence length scale (ft)

\[m \]
Mass per unit span along the wing (1bm/ft)

\[M_i \]
Generalized mass of mode

\[p \]
General time history input to system

\[s \]
Spectrum separation distance and non-dimensional time variable

\[S \]
Area of wing (ft^2)

\[t, \tau \]
Time variable (sec)

\[u \]
Vertical gust velocity (ft/sec)

\[V \]
Mean flight speed (ft/sec)
w Vertical displacement of wing and general time history of response of system
W, P Fourier transform of w and p, respectively
y Spanwise distance (ft)
Y₀ Bessel function of the second kind order 0
Y₁ Bessel function of the second kind order 1
Z Frequency response function and Fourier transform of h(t)
Λ Width of strips along the wing used in strip theory (ft)
α Angle of attack (degrees)
ηᵢ Amplitude of natural mode (ft)
μᵢ Non-dimensional generalized mass
ξₙ Non-dimensional amplitude of natural mode
ρ Density of air (lbm/ft³)
φᵢ ith natural bending mode of the wing
ϕₘ Measured spectrum at the wing tip
ϕₘ₀ Cross spectrum between w and p
ϕₘ₀, ϕₚ Power spectrum of w and p, respectively
ψᵢ Fundamental solution to ordinary differential equation
Ωᵢ Reduced natural frequency
ω Frequency (radians/sec)
ωᵢ Natural frequency of wing (radians/sec)
1.0 INTRODUCTION

Progress in applying spectrum analysis in aeronautical engineering is fostering the measuring of the atmospheric turbulence cross spectra, especially across wing spans. Measuring the atmospheric turbulence spectrum across the wing span requires wind sensors mounted on the wing tips, where the sensors are exposed to error due to wing vibrations. Determining this error requires comparison between the spectrum of the wing tip velocity and spectrum of atmospheric turbulence. This study demonstrates a procedure to estimate the wing tip velocity spectrum and the error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip of a B-57 type airplane. The wing characteristics of a B-57 are used for modeling the airplane wing because NASA is currently planning to use this airplane to acquire atmospheric gust gradient data across the wing span. The purpose of this study is to determine whether the error introduced in measuring atmospheric turbulence is large enough to justify mounting accelerometers on the wing tip to correct for the error introduced into the measured turbulence data due to the wing vibration.

An introduction to spectrum analysis is believed useful in order to clarify the general solution technique and introduce the major terms of spectrum analysis. Spectrum analysis is based upon transferring the system from the time domain to the frequency domain.

The form of the response of a linear system in the time domain to a single arbitrary input \(p(t) \) is given by Duhamel's integral:
\[w(t) = \int_{-\infty}^{\infty} p(\tau) h(t - \tau) d\tau \] (1)

where \(h(t) \) is the response of the system to a unit impulse. If \(p(t) \) is a random input, evaluating the integral becomes meaningless because the integral represents only one sample of a random distribution of responses. To overcome this difficulty, Duhamel's integral can be transformed from the time domain to the frequency domain for stationary random inputs. The Fourier transform of Duhamel's integral is:

\[W(\omega) = P(\omega) Z(\omega) \] (2)

where the frequency response function \(Z(\omega) \) is the Fourier transform of \(h(t) \) and represents the response of the system to a sinusoidal input. In general, the functions in Equation (2) are complex valued functions and contain both magnitude and phase information. In order to study only the magnitude of the response in the frequency domain, the power spectrum of the response is defined by:

\[\phi_w(\omega) = |W(\omega)|^2 = P(\omega) Z(\omega) \overline{P(\omega)} \overline{Z(\omega)} = \phi_p(\omega) |Z(\omega)|^2 \] (3)

where \(\phi_p \) is the power spectrum of the input. This equation is the fundamental result of spectral analysis and equates the response spectrum to the product of the input spectrum and the square of the magnitude of the frequency response. References [1] and [2] discuss the derivation of the theory and contain many examples of the application of spectrum analysis.
The input-output relationship of Equation (3) can be used to outline the general solution technique of spectrum analysis. First, the frequency response function, Z, is determined via the "equation of motion"; second, the input spectrum, ϕ_p, is defined; and, third, the product in the right-hand side of Equation (3) is calculated to obtain the output spectrum.

The complicated system involved with wing vibrations requires simplification in order to become amenable to solution. The major simplification in determining the frequency response function is putting restraints on the aircraft. This study will restrain the aircraft to only vertical motion of the center of gravity and vertical wing bending. The coordinate system used in this study is shown in Figure 1, where the spanwise coordinate, y, is the independent variable and the vertical deflection, w, is the dependent variable. The aerodynamic forces appearing in the equation of motion are those calculated from strip theory and assume the wing is a flat plate having stiffness similar to a B-57 wing. The gust is considered to include only vertical wind variations. The atmospheric spectrum is assumed to be stationary, homogeneous and isotropic; but turbulence varies across the wing span. For calculation purposes, the von Karman cross spectral function as defined by Houbolt and Sen [3] is assumed.
FIGURE 1 COORDINATE SYSTEM
2.0 ANALYSIS

2.1 Spectrum Analysis

The spectrum equation for a single stationary random input, derived in the introduction, is not sufficient for calculating the spectrum of the wing tip velocity for an aircraft with large wing span. Assuming that the aircraft experiences a single input or gust would be tantamount to assuming that the gust field is uniform across the span but random in the flight direction, as depicted by the left-hand sketch in Figure 2. This assumption is unrealistic for an aircraft with large wing span. A better assumption is that the gust is two-dimensional, so that it is also random across the span of the aircraft, as depicted in the right-hand sketch in Figure 2. The assumption of one-dimensional turbulence may lead to an underestimation of the response of the aircraft. Houbolt [4] has shown the the root bending moment spectrum determined by two-dimensional turbulence is significantly higher than the root bending moment spectrum for one-dimensional turbulence. The ratio $2\delta/L$, where 2δ is the span of the aircraft and L is the turbulence length scale, determines the validity of the assumption of uniform spanwise turbulence; for $2\delta/L$ approaching unity the assumption of spanwise uniformity becomes invalid. The B-57 has a wing span of $2\delta = 66$ ft, and Houbolt [5] recommends a length scale of atmospheric turbulence of $L = 300$ ft, in which case the ratio $2\delta/L = 0.22$ is large enough to warrant a two-dimensional spectrum analysis. Near the ground L becomes smaller making the above argument even stronger.
Assuming a linear system with a continuum of random stationary inputs, the response in the form of Duhamel's integral is:

$$w(t) = \int_{-L}^{L} \int_{-\infty}^{\infty} p(y, \tau) h(y, t - \tau) \, d\tau \, dy$$ \hspace{1cm} (4)

The Fourier transform of the above equation is:

$$W(\omega) = \int_{-L}^{L} P(y, \omega) \, Z(y, \omega) \, dy$$ \hspace{1cm} (5)

where the frequency response function $Z(y, \omega)$ is a function of both frequency ω and input location y. This study will define $Z(y, \omega)$ as the velocity of the right wing tip due to a sinusoidal gust of frequency ω located at y along the wing and $w(t)$ as the velocity of the right wing tip due to gust excitation along the entire wing.

The output power spectrum as defined by Equation (3) is

$$\phi_w(\omega) = W(\omega) \, \overline{W}(\omega) = \int_{-L}^{L} \int_{-L}^{L} \phi_p(y_1, y_2, \omega) \, Z(y_1, \omega) \, \overline{Z}(y_2, \omega) \, dy_1 \, dy_2$$ \hspace{1cm} (6)
The cross spectrum is defined by:

$$\phi_p(y_1, y_2, \omega) = P(y_1, \omega) \overline{P(y_2, \omega)}$$ \hspace{1cm} (7)

Then it is true for all cross spectra that

$$\phi_p(y_1, y_2, \omega) = P(y_1, \omega) \overline{P(y_2, \omega)}$$

$$= \overline{P(y_1, \omega)} P(y_2, \omega)$$

$$= \overline{\phi_p(y_2, y_1, \omega)}$$ \hspace{1cm} (8)

Because the domain of integration is symmetric, an appropriate choice of the limits of integration can be made so that the integrand can be written as:

$$\phi_p(y_1, y_2, \omega) Z(y_1, \omega) \overline{Z(y_2, \omega)} + \phi_p(y_2, y_1, \omega) Z(y_2, \omega) \overline{Z(y_1, \omega)}$$

$$= \phi_p(y_1, y_2, \omega) Z(y_1, \omega) \overline{Z(y_2, \omega)} + \overline{\phi_p(y_2, y_1, \omega)} \overline{Z(y_1, \omega)} \overline{Z(y_2, \omega)}$$

$$= \phi_p(y_1, y_2, \omega) Z(y_1, \omega) \overline{Z(y_2, \omega)} + \phi_p(y_1, y_2, \omega) \overline{Z(y_1, \omega)} \overline{Z(y_2, \omega)}$$

$$= 2 \text{Re}[\phi_p(y_1, y_2, \omega) Z(y_1, \omega) \overline{Z(y_2, \omega)}]$$ \hspace{1cm} (9)

Therefore the symmetry involved in the domain of the integration and the products of conjugate pairs permits the integral to be rewritten as:

$$\phi_w(\omega) = 2 \text{Re} \left[\int_{-\infty}^{\infty} \lim_{N \rightarrow \infty} \int_{-\infty}^{\infty} \phi_p(y_1, y_2, \omega) Z(y_1, \omega) \overline{Z(y_2, \omega)} \, dy_1 \, dy_2 \right] \hspace{1cm} (10)$$
This equation is completely general and requires only that the inputs be stationary. It is reasonable to expect that the spectrum of the input (in particular, turbulent input) is isotropic; in other words, the spectrum is a function of the separation distance \([\text{meaning } \phi_p(y_1, y_2) = \phi_p(|y_1 - y_2|)]\) only and independent of direction. This assumption can further simplify the integral by making the variable substitutions \(s = y_1 - y_2\) and \(y = y_2\) and interchanging the order of integration so that:

\[
\lim_{s^* \to 0} \int_{s^*}^{2s} \phi_p(s, \omega) 2\text{Re} \left[\int_{-s}^{s} \overline{z}(y, \omega) z(y + s, \omega) \, dy \right] \, ds
\]

This equation is the final form of the spectrum equation that will be used in this study. Note that \(\phi_p(s, \omega)\) is the cross spectrum of the inputs, which within this study is the cross spectrum of atmospheric turbulence. The cross spectrum of turbulence represents the contribution of the frequency \(\omega\) to the covariance of the vertical velocity at two points along the wing span separated by a distance \(s\).

2.2 Mechanical Analysis

Consider a nonuniform wing (chord, beam stiffness, and mass varying along the span) free to move and bend vertically and subjected to a sinusoidal vertical gust at a spanwise element of width \(\Lambda\) centered at \(y = y^*\). The balance of forces then requires that

\[
F_S - F_I - F_M + F_G \delta(y, y^*)
\]

(12)
where F_S is the force due to beam stiffness, F_I is the inertial force, and F_M and F_G are aerodynamic forces due to translatory wing motion and due to vertical gust, respectively. The function $\delta(y,y^*)$ selects the portion of the wing which is subjected to the gust and is zero everywhere except between $y^* \pm \Delta/2$, where it has the value of unity. The theory of strength of material states:

$$F_S = \frac{\partial^2}{\partial y^2} \left(EI \frac{\partial^2 w}{\partial y^2} \right)$$

where EI is the beam bending stiffness and w is the vertical deflection of the wing. Newton's law gives:

$$F_I = m \ddot{w}$$

Theodorsen in his famous NACA report [6] showed that the force due to wing motion for a two-dimensional wing is:

$$F_m = \pi \rho b^2 \ddot{w} + 2\pi \rho V b \ C(k) \ \ddot{w}$$

where V is the mean flight speed, ρ is the density of the flight medium, and b is the semi-chord of the wing. The Theodorsen function, $C(k)$, is a function of the reduced frequency ($k = \omega b/V$) of the motion. Both References [2] and [7] develop and apply the Theodorsen function. Defined in terms of the Bessel function, the Theodorsen function is:

$$C = \frac{J_1(J_1 + Y_0) + Y_1(Y_1 - J_0) - i(Y_1Y_0 + J_1J_0)}{(J_1 + Y_0)^2 + (Y_1 - J_0)^2}$$

\[16 \]
Note that the argument of the functions is k, the reduced frequency of the motion. The lift due to a gust acting on a two-dimensional wing with semi-chord b as reported in [2] is:

$$F_G = 2\pi \rho V^2 b \left(\frac{u}{V} \right) K(k)$$

(17)

where $K(k)$ is the Kussner function. It too is dependent on reduced frequency of the gust. In terms of the Theodorsen function and Bessel functions, the Kussner function is defined:

$$K = C(J_0 - iJ_1) + iJ_1$$

(18)

The forces may be added to yield the partial differential equation:

$$\frac{\partial^2}{\partial y^2} \left(EI \frac{\partial^2 w}{\partial y^2} \right) = -m\ddot{w} - \pi \rho b^2 \ddot{w} - 2\pi \rho Vb \ C(k) \ \dot{w} + 2\pi \rho V^2 b \ K(k) \ \frac{u}{V} \ \delta(y,y^*)$$

(19)

The boundary conditions are:

$$w''(\pm a, t) = w'''(\pm R, t) = w''(-R, t) = w'''(-R, t) = 0$$

(20)

meaning no shear or moment at the wing tips, while the time dependence will be taken to be periodic, as discussed later.

Assume the vertical deflection $w(y,t)$ may be expanded in its natural modes, $\{\phi_i\}_{i=1}^\infty$, as:

$$w(y,t) = \sum_{i=1}^{\infty} n_i(t) \phi_i(y)$$

(21)
Substitution of the solution expanded in its natural modes into the governing Equation (19) yields, after some algebra, an equation for the spatial dependence (the free vibration equation) and another for the time dependence:

\[\frac{\partial^2}{\partial y^2} \left(EI \frac{\partial^2}{\partial y^2} \phi_i \right) = m \omega_i^2 \phi_i \quad \text{for} \quad -\ell < y < \ell \]

where \(\omega_i \) is the natural frequency of the \(i \)th mode. The boundary conditions of the differential equations are:

\[\phi_i^{''}(\ell) = \phi_i^{''}(-\ell) = \phi_i^{''\prime}(\ell) = \phi_i^{''\prime}(-\ell) = 0 \]

which corresponds to the shear and bending moment being zero at the ends, as is the case for free ends.

The natural modes are orthogonal [2] because of the choice of boundary conditions so that:

\[\int_{-\ell}^{\ell} (EI\phi_i^{''\prime}) \phi_j dy = \omega_i^2 \int_{-\ell}^{\ell} m\phi_i \phi_j dy = \begin{cases} M_i \omega_i^2 & \text{for} \quad i = j \\ 0 & \text{for} \quad i \neq j \end{cases} \]

Then by using the orthogonality property of the modes, the differential Equation (19) becomes a system of linear differential equations in terms of the natural modes:

\[M_n \omega_n^2 \dddot{\eta}_n = -M_n \dddot{\eta}_n - \pi \rho b_R^2 \sum_{j=1}^{N} \bar{A}_{nj} \dddot{\eta}_j - 2 \pi \rho V h_R C(k) \sum_{j=1}^{N} \bar{B}_{nj} \dddot{\eta}_j \\
+ 2 \pi \rho V^2 b_R K(k) \frac{u(y^*)}{V} \phi_i(y^*) a(y^*) \Delta \]

(25)
Where

\[A_{nj} = \int_{-\lambda}^{\lambda} a_{nj} \phi_n \phi_j dy \quad \text{and} \quad B_{nj} = \int_{-\lambda}^{\lambda} a_{nj} \phi_j dy \]

are coefficients of the aerodynamic cross terms, the weighting function of the integrals \(a(y) = b(y)/b_R \) is the semi-chord distribution. We now introduce the variables:

\[k = \frac{\omega b_R}{V} \quad \text{and} \quad s = \frac{Vt}{b_R} \quad (27) \]

and assume sinusoidal output to sinusoidal input; in other words, we assume the variables are of the form \(u = \overline{u} e^{iks} \) and \(\eta_n = \overline{\eta_n} e^{iks} \). After substitution of the above variables and division by \(\pi \rho V^2 se^{iks} \), the system of linear differential equations becomes a system of linear algebraic equations:

\[
u_n \Omega_n \overline{\xi_n} = k^2 \nu_n \overline{\xi_n} + k^2 \sum_{j=1}^{N} A_{nj} \overline{\xi_j} + 2ik C(k) \sum_{j=1}^{N} B_{nj} \overline{\xi_j} + \frac{2b_R k(k)}{S} \phi_n(y^*) a(y^*) \quad (28)\]

where \(\Omega_n = \frac{\omega_n b_R}{V} \)

\[A_{nj} = \frac{b_R A_{nj}}{S} \]

\[B_{nj} = \frac{b_R B_{nj}}{S} \]
\[\mu_n = \frac{M_n}{\pi \rho b_R s} \]
\[\xi_n = \frac{n_n}{b_R \bar{u}} \]

This is the final form of the equations which will be used in the program. Many of the constants of the equations are calculated by integrating products of the natural modes by different weighting functions, and they can be determined as soon as the free vibration problem has been solved for the different modes. The solution \(\xi_n = \frac{n_n}{b_R(V/\bar{u})} \) represents the amplitude of the modal response of the deflection of the wing to sinusoidal gust with unit change in angle of attack normalized by the reference semi-chord. The solution, \(\xi_n = \xi_n e^{iks} \), may be differentiated with respect to time to give the amplitude of the wing tip velocity of the modal response:

\[\frac{d}{dt} \xi_n = ik \frac{n_n}{b_R \bar{u}} = i\omega \frac{n_n}{\bar{u}} \quad (29) \]

For the particular problem of this study, the frequency response function is defined as the velocity of the right wing tip due to a sinusoidal gust located at \(y^* \) along the wing. The frequency response function is then:

\[Z(y^*, \omega) = i\omega \sum_{j=1}^{N} \frac{n_j(y^*, \omega)}{\bar{u}} \quad (30) \]

This is the definition used in the spectrum analysis part of the program.
3.0 NUMERICAL PROCEDURE

The numerical procedure is basically divided into three subroutines. The first subroutine solves the free vibration problem and determines the natural bending modes and frequencies of the wing. The second subroutine solves the forced vibration problem and determines the frequency response function of the wing to a sinusoidal gust at a point along the span. Finally, the third subroutine performs the arithmetic in the power spectrum equation and determines the wing tip velocity spectrum.

3.1 Free Vibration: Structural Character of the Wing

The eigenvalue problem solved by this program is for a wing vibrating in only bending modes in free space (meaning free ends, i.e., moment and shear are zero at the wing tips).

The differential equation is:

\[(EI\phi'')'' = m\omega^2 \phi \quad \text{for} \quad -\ell \leq y \leq \ell \quad (31)\]

with boundary conditions:

\[\phi''(\ell) = \phi''(-\ell) = \phi''(-\ell) = 0 \quad (32)\]

where \(\phi\) is the natural mode or eigenfunction and \(\omega\) is the natural frequency or eigenvalue.

The coefficients of this equation are \(EI\), the bending stiffness of the wings, and \(m\), the mass per unit length, and both are a function
of y. Both EI and m are defined symmetrically for most wings, and this implies that the solution of the differential equation should be either symmetric or antisymmetric. The program takes advantage of this so that the range of integration is cut in half (i.e., the problem needs to be solved only for $0 \leq y \leq l$). The boundary conditions must then be restated at the origin (or the midspan of the airplane) to be those for a symmetric or antisymmetric function dependent upon whether an even or odd mode is being investigated. The conditions at the origin for a symmetric function are:

$$\phi'(0) = \phi''(0) = 0$$ \hspace{1cm} (33)$$

while the conditions for an antisymmetric function are:

$$\phi(0) = \phi''(0) = 0$$ \hspace{1cm} (34)$$

These will be the boundary conditions, along with those at the wing tip ($y = l$).

If the eigenvalue of the differential equation is specified, the problem is reduced to a linear fourth order, two-point boundary value problem, and a shooting method [10] can be used to determine the numerical solution. The first step of the shooting method is to reduce the single fourth order equation to a system of four first order equations. For Equation (31) the system becomes:
and boundary conditions for a symmetric mode are:

\[
\phi_2(0) = \phi_4(0) = \phi_3(\xi) = \phi_4(\xi) = 0
\]

(36)

If all the initial conditions were given, a Runge Kutta scheme could be used to determine the numerical solution, but because the solution must match the boundary conditions at \(y = \xi \), a shooting method must be used. The shooting method estimates the complete set of initial conditions and then uses a Runge Kutta scheme to determine the solution of the initial value problem. The value of the solution of the initial value problem at \(y = \xi \) is compared with the boundary conditions at \(y = \xi \) for the two-point boundary value problem. The estimate of the complete initial condition is improved and the procedure is repeated; in this way the complete set of initial conditions is determined so that the solution to the initial value problem has the correct value for the boundary conditions at \(y = \xi \). Fortunately, for a linear system the complete set of initial conditions can be improved to the correct initial conditions after one trial. This will be shown true later. Because the differential equation is linear, it can be shown [8] that there exists a vector base, \(\{\psi_1, \psi_2, \psi_3, \psi_4\} \), of the solution of Equation (35). Then each solution
of Equation (35) for the boundary conditions indicated is a linear combination of the base solution:

\[\Phi = \sum_{i=1}^{4} \psi_i C_i \]

(38)

By choosing four linearly independent initial conditions, \(\{\psi\}_{i=1}^{4} \) is guaranteed to be a complete base. A convenient choice of linearly independent initial conditions is:

\[\begin{align*}
\psi_1(0) &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
\psi_2(0) &= \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \\
\psi_3(0) &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \\
\psi_4(0) &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}
\end{align*} \]

(39)

A base of \(\{\psi_i\}_{i=1}^{4} \) defined by the above initial conditions and the differential equation is commonly called a fundamental base or the fundamental solutions. The boundary conditions are used to determine the constants \(\{C_i\}_{i=1}^{4} \) of Equation (38). In the case of the even mode, the \(\{C_i\}_{i=1}^{4} \) must satisfy the system of equations:
If the problem was a simple two-point boundary value problem, the boundary conditions would be nonhomogeneous. Then the system of linear equations (40) would be nonhomogeneous and the \(\{ C_i \}_{i=1}^4 \) could be determined after the fundamental solutions \(\{ \psi_i \}_{i=1}^4 \) were determined from one trial of the shooting method. An eigenvalue problem by definition requires that the boundary conditions be homogeneous, and this leads to a homogeneous system of linear equations (40) for the \(\{ C_i \}_{i=1}^4 \). Linear algebra theory requires that the determinant of the coefficient matrix vanish in order for the homogeneous system to have a nontrivial solution. This determinant:

\[
D(\omega) = \begin{vmatrix}
\psi_{12}(0) & \psi_{22}(0) & \psi_{32}(0) & \psi_{42}(0) \\
\psi_{14}(0) & \psi_{24}(0) & \psi_{34}(0) & \psi_{44}(0) \\
\psi_{13}(\ell) & \psi_{23}(\ell) & \psi_{33}(\ell) & \psi_{43}(\ell) \\
\psi_{14}(\ell) & \psi_{24}(\ell) & \psi_{34}(\ell) & \psi_{44}(\ell)
\end{vmatrix}
\]

is commonly called the characteristic determinant, and for \(\{ C_i \}_{i=1}^4 \) to be determined it must vanish. Note that the determinant is a function of \(\omega \), the unspecified parameter of the differential equation.
Reference [9] shows that the characteristic determinant is an analytic function of ω and the eigenvalues of the differential equation are the zeros of the function D(ω). When ω is an eigenvalue of the differential equation, the characteristic determinant vanishes and the boundary conditions can be satisfied as a linear combination of the four fundamental solutions. Note that the solution of the system of linear equations for the \(\{C_i\}_{i=1}^{4} \) is not unique; therefore an extra condition must be supplied. In this study we demand that the natural modes have the value of unity at the wing tips, which becomes our extra condition imposed on the \(\{C_i\}_{i=1}^{4} \). The values of the derivatives of the fundamental solutions appearing as elements of the characteristic determinant are obtained by solving the differential equation by a Runge Kutta method. Note that some of the terms in the determinant are already known from the definition of the fundamental solutions. Substituting in the determinant for these values and simplifying yields:

\[
D(\omega) = \begin{vmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\psi_{13}(\ell) & \psi_{23}(\ell) & \psi_{33}(\ell) & \psi_{43}(\ell) \\
\psi_{14}(\ell) & \psi_{24}(\ell) & \psi_{34}(\ell) & \psi_{44}(\ell)
\end{vmatrix} = \begin{vmatrix}
\psi_{13}(\ell) & \psi_{43}(\ell) \\
\psi_{13}(\ell) & \psi_{43}(\ell)
\end{vmatrix}
\]

The characteristic determinant is now a function of only the first and fourth fundamental solutions because these are the only two fundamental solutions that satisfy the conditions at the origin for a symmetric function. The program takes advantage of this and determines

The general solution procedure can now be outlined. First, the eigenvalue is estimated; then the two fundamental solutions are determined by a Runge Kutta Fehlberg order seven scheme. The value of the characteristic determinant is calculated from the fundamental solutions. A search routine checks if the eigenvalue is bracketed between the current estimate and the previous estimate. In this case, the program is directed to a bisection routine to improve the brackets or continues, taking another step along the frequency line and using this as its next estimate of the eigenvalue. After the eigenvalue has been determined, the natural mode is normalized by a unit displacement at the right wing tip. The new mode is integrated with previous modes determined to calculate the aerodynamic cross terms. The program then steps along the frequency line for its first and second estimates of the next eigenvalue. Another example of this technique for solving eigenvalue problems is found in Reference [10].

The calculation was tested against the uniform beam and was found to be very accurate. Three runs were made for different EI distributions, and the program converged very quickly for the lower modes. Figures 3 and 4 show estimates of \(m \) and \(b_R \) for the B-57 used in all the cases run.

The most difficult parameter to estimate is the beam stiffness, EI. A static analysis was used to estimate the beam stiffness, assuming a loading on the B-57 wing which would be used during extreme operations and a load factor of 10 g. Appendix B shows the details of the analysis;
FIGURE 3 DISTRIBUTION OF MASS ACROSS THE SEMISPAN OF THE WING

FIGURE 4 DISTRIBUTION OF SEMI-CHORD ACROSS THE SEMISPAN OF THE WING
the results of the analysis show that the beam stiffness is approximately:

\[
\begin{align*}
EI &= 9 \times 10^8 \quad \text{for } y \leq |11| \\
EI &= 9 \times 10^7 \quad \text{for } y > |11|
\end{align*}
\] (43)

This wing is referred to as the "standard wing" throughout the rest of this study. Its natural modes and frequencies are shown in Figure 5. From an in-flight experiment with the B-57, NASA/Langley Research Center determined that the natural frequency of the first bending mode of the B-57 is approximately 7 Hz. In this study, a trial and error method was used with the program to determine the beam stiffness necessary to have a first bending mode at 7 Hz. The beam stiffness was found to be:

\[
\begin{align*}
EI &= 3 \times 10^9 \quad \text{for } y \leq |11| \\
EI &= 3 \times 10^8 \quad \text{for } y > |11|
\end{align*}
\] (44)

The wing with this beam stiffness distribution is referred to as the "stiff wing." For comparison purposes, a third beam stiffness with distribution

\[
\begin{align*}
EI &= 9 \times 10^6 \quad \text{for } y \leq |11| \\
EI &= 9 \times 10^5 \quad \text{for } y > |11|
\end{align*}
\] (45)

was run. Figure 6 shows the natural modes and frequencies of this "flexible wing."
<table>
<thead>
<tr>
<th>Mode</th>
<th>Natural frequency (Hz)</th>
<th>Reduced natural frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.37</td>
<td>0.072</td>
</tr>
<tr>
<td>2</td>
<td>12.06</td>
<td>0.199</td>
</tr>
<tr>
<td>3</td>
<td>23.35</td>
<td>0.385</td>
</tr>
<tr>
<td>4</td>
<td>40.34</td>
<td>0.666</td>
</tr>
</tbody>
</table>

FIGURE 5 NATURAL MODES AND FREQUENCIES FOR THE STIFF WING
<table>
<thead>
<tr>
<th>Mode</th>
<th>Natural frequency (Hz)</th>
<th>Reduced natural frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.44</td>
<td>0.0072</td>
</tr>
<tr>
<td>2</td>
<td>1.20</td>
<td>0.0198</td>
</tr>
<tr>
<td>3</td>
<td>2.33</td>
<td>0.0385</td>
</tr>
<tr>
<td>4</td>
<td>4.03</td>
<td>0.0666</td>
</tr>
</tbody>
</table>

FIGURE 6 NATURAL MODES AND FREQUENCIES FOR THE FLEXIBLE WING
3.2 Forced Vibration: Frequency Response Function

The final form of the equations for the frequency response function of the wing tip deflection due to a sinusoidal gust have been obtained by separating variables, integrating the spanwise influence, and assuming sinusoidal form for the solution. Remaining yet unsolved is a system of linear equations for the amplitudes of the different modal responses. The system of equations is:

\[
\left[\Omega_i^2 - k^2\right] \mu_i \xi_i - \sum_{j=1}^{4} \left[k^2 A_{nj} - k \int C(k) B_{nj} dy\right] \xi_j = \frac{2b_R a(y^*)}{S} \Delta K(k) \phi_n(y^*)
\]

(46)

where \(\Omega_i = \frac{\omega_i b_R}{V} \); reduced natural frequency of mode

\[
\mu_i = \int_{-\ell}^{\ell} m \phi_i \phi_i dy/\pi b_R S ; \text{ normalized general mass}
\]

\[
A_{ij} = \frac{b_R}{S} \int_{-\ell}^{\ell} a^2 \phi_i \phi_j dy \quad \text{and} \quad B_{ij} = \frac{b_R}{S} \int_{-\ell}^{\ell} a \phi_i \phi_j dy ; \text{ normalized aerodynamic cross terms}
\]

The unknowns, \(\bar{\xi}_i = \bar{n}_i/b_r(V/u) \), are normalized amplitudes of the modal wing tip deflection in terms of the reference semi-chord, \(b_r \), and the magnitude of the disturbing force, \(\alpha = u/V \). The remaining terms are the reduced forcing frequency, \(\Omega_j \), and the gust location, \(y^* \), which for this study are spaced evenly at 38 locations along the span. The above system of equations is solved by Gaussian elimination for each forcing frequency and gust location. Fortunately, the coefficient matrix does
not change for each gust location, and the coefficient matrix is reduced only once in subroutine GAUSS for each forcing frequency. The nonhomogeneous part is reduced for each gust location and the amplitudes are determined by back substitution in subroutine BACKS.

Careful examination of the cross terms, A_{ij} and B_{ij}, shows that they vanish when the integration is of the product of an even mode and an odd mode. This means that the linear system of equations becomes uncoupled between even and odd modes, and the response of the system to a sinusoidal input as separated into response of even modes and response of odd modes can then be examined. Obviously, the response of the even modes to a gust located at y is the same as the response to a gust located at $-y$. The response of the odd modes to a gust is antisymmetric. In other words, the response of the odd modes to a gust at y is the negative of the response at $-y$. The system of linear equations is solved for gust locations on only half of the wing. Shown in Figures 7-11 are the plots of the frequency response function versus the reduced frequency of the gust for several gust locations along the nonuniform wings.

3.3 Spectrum Equation: Wing Tip Velocity Power Spectrum

The final form of the output power spectrum due to a continuum of stationary, homogeneous, isotropic input is obtained from Equation (11), which can be integrated numerically using the trapezoidal rule to yield:

$$
\phi_w(s,w) = \phi_p(0,\omega) \sum_{j=1}^{N} z_j z_i + \sum_{j=1}^{N-1} \phi_p(j\Delta,\omega) \text{Re} \left[\sum_{i=1}^{N-j} z_i \bar{z}_j \right]
$$

(47)
FIGURE 7 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 0.86 FEET FROM MIDSPAN
FIGURE 8 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 14.76 FEET FROM MIDSPAN
FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 16.5 FEET FROM MIDSPAN

FIGURE 9
FIGURE 10 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 23.44 FEET FROM MIDSPAN
FIGURE 11 FREQUENCY RESPONSE FUNCTIONS DUE TO GUST EXCITATION AT 26.92 FEET FROM MIDSPAN
where N is the number of gust stations and Δ is the gust station width. The spectrum program determines the wing tip velocity spectrum, therefore, \(Z_i \) must represent the velocity at the right wing tip due to a sinusoidal gust at station i. The frequency response function is defined in the program as:

\[
Z = \frac{i\omega}{u} \sum_{j=1}^{NM} n_j
\]

(48)

where NM is the number of elastic modes considered. The summation includes the response of only the elastic modes; the response of the rigid body mode is not included in the summation because the navigation system, located at the airplane's center of gravity, should be able to subtract the motion of the center of gravity from the turbulence data taken at the wing tip. There is a difference between the motion of the center of gravity and the motion of the rigid body mode; the center of gravity motion includes the motion of the even modes at the center of gravity. An attempt should be made to filter out the elastic mode motion from the center of gravity motion before correcting the turbulence data because the elastic mode motion at the center of gravity can be 180 degrees out of phase with the elastic mode motion at the wing tip and can therefore introduce a larger error in the turbulence data. This study will assume that the motion of the center of gravity measured by the aircraft navigation system has been filtered so that it contains only the rigid body motion of the airplane before correcting the turbulence data. In this study wing vibration is defined as the motion of only the elastic modes of the wing.
Note that the frequency response function is normalized by the gust magnitude, \bar{u}, and therefore represents the velocity at the wing tip due to a unit sinusoidal gust. The input spectrum is taken as von Karman's cross spectrum function of atmospheric turbulence [3] and is normalized in the program by the root mean square of the turbulence, σ_u^2. Therefore, the wing tip velocity power spectrum is normalized by the root mean square of the turbulence. Reference [2] gives further examples of spectrum analysis problem solving.
4.0 RESULTS AND CONCLUSIONS

A study of the frequency response function will aid in understanding the power spectrum. An examination of the frequency response in the high frequency (reduced frequencies above one) domain displayed in Figures 7-11 shows that regardless of gust location, the wing tip velocity vanishes rapidly with increasing gust frequency. Physically, the wing is expected to respond less to higher frequencies because the higher modes have low response amplitude. Another gust location independent trend in the frequency response function is the extreme maximum at low frequency, also displayed in Figures 7-11. This is physically explainable because the gust frequency becomes close to the natural frequency of the wing.

The more interesting trends of the frequency response functions of the wing are the gust location dependent trends. Figures 7-11 show the frequency response functions for both the standard and the flexible wing excited at five different locations along the wing. The locations of the gust are marked along the abscissa in Figures 5 and 6. Figure 7 shows the response of the wing due to a gust near the midspan. Because the odd modes have their nodal point at the midspan, they should not respond as much as the even modes. The response is particularly clear in the curve for the standard wing where only the first and third elastic modes have large peaks. The response of the flexible wing is not quite as clear as the response of the standard wing because its natural frequencies are so close together the curve tends to be washed
out. Figure 8 shows the response of the wing due to gust excitation at 14.76 feet from midspan. This gust location is at the maximum of second elastic mode deflection and close to the nodal points of the first and third elastic modes. The response curve should be like that shown for the standard wing. The frequency response curve for the flexible wing shows a much more pointed maximum than the response curve for the flexible wing shown in Figure 7 because in Figure 8 only the second elastic mode is participating while in Figure 7 the maximum consists of both the first and third elastic mode responses. The first elastic mode has its nodal point approximately 16.5 feet from the mid span. Figure 9 shows the frequency response function due to gust excitation at this point. The response of the flexible wing shows a pointed maximum characteristic of low first elastic mode participation, while the third mode shows a great deal of participation since the excitation is at its maximum deflection for the mode. As expected, the standard wing shows a very small peak for its first mode response. Figure 10 shows the response curve due to gust excitation near the nodal point for the second elastic mode. The response of the flexible wing shows a local minimum for the second elastic mode response, while the first and third elastic modes show peaks for their response. The standard wing shows no response around the second elastic mode. Figure 11 shows the response curve for gust excitation at 26.92 feet from mid span, which is near the nodal point for the third and fourth elastic modes. The curve shows minimum participation of the third and fourth modes for both standard and flexible wings.
The wind velocity measured at the wing tip is the sum of the turbulence, $U_p(t)$, at the wing tip and the velocity of the wing tip, $U_w(t)$, due to wing vibration. The measured wind velocity is then:

$$U_m(t) = U_p(t) + U_w(t)$$ \hfill (49)

The correlation function of the measured wind is:

$$R_m(t) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} U_m(t) U_m(t + \tau) \, d\tau$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left[U_w(t) U_w(t + \tau) + U_p(t) U_p(t + \tau) + U_p(t) U_w(t + \tau) \right] \, d\tau$$

$$= R_w(t) + R_p(t) + R_{wp}(t) + R_{pw}(t)$$ \hfill (50)

The Fourier transform of the correlation equation gives the spectrum equation

$$\phi_m = \phi_w + \phi_p + \phi_{wp} + \phi_{pw}$$ \hfill (51)

Since $\phi_{wp} = \overline{\phi_{pw}}$, the equation can be simplified:

$$\phi_m = \phi_w + \phi_p + 2\text{Re}\phi_{wp}$$ \hfill (52)

where ϕ_p is the power spectrum of turbulence at the wing tip and ϕ_w is the power spectrum of the wing tip velocity. Figures 12-15 show
FIGURE 12 SPECTRUM OF ATMOSPHERIC TURBULENCE FOR LENGTH SCALE 132 FEET AND SPECTRUM OF WING TIP VELOCITY FOR FLEXIBLE AND STANDARD WINGS
FIGURE 13 SPECTRUM OF ATMOSPHERIC TURBULENCE FOR LENGTH SCALE 2112 FEET AND SPECTRUM OF WING TIP VELOCITY FOR FLEXIBLE AND STANDARD WINGS
FIGURE 14 SPECTRUM OF ATMOSPHERIC TURBULENCE FOR LENGTH SCALE 132 FEET AND SPECTRUM OF WING TIP VELOCITY FOR STIFF WING
FIGURE 15 SPECTRUM OF ATMOSPHERIC TURBULENCE FOR LENGTH SCALE 2112 FEET AND SPECTRUM OF WING TIP VELOCITY FOR STIFF WING
the wing tip velocity power spectrum and, for comparison, the atmospheric turbulence power spectrum. The cross spectrum ϕ_{wp} contains phase information between the wing tip velocity and the atmospheric turbulence velocity. The equation for ϕ_{wp} used in the program is:

$$
\phi_{wp} = \int_0^{2\pi} \phi_p(s) Z(\ell - s) \, ds
$$

The relative error introduced due to wing tip velocity is:

$$
E = \left| \frac{\phi_m - \phi_p}{\phi_p} \right| = \left| \frac{\phi_w + 2\text{Re}\phi_{wp}}{\phi_p} \right|
$$

Figures 16-21 show this relative error as a function of frequency for the three different wings and different turbulence length scales. The flexible wing shows a large relative error throughout all the lower frequencies. An airplane having these wing characteristics is not recommended for measuring atmospheric cross spectra across its wing span. The standard wing shows a large relative error close to its first natural bending frequency. The first natural frequency can be close to the lower frequencies of atmospheric turbulence (approximately 0.04 Hz) if the turbulence length scale is small enough. For large turbulence length scale, the maximum error introduced due to wing vibration of the standard wing is reduced but still amounts to some 50 percent more over the turbulence spectra scale as $\omega L/V$ and; hence, for higher length scales the frequency of the wing vibration is out of the frequency range which contains significant turbulence energy. If the wing has characteristics
FIGURE 16 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE 132 FEET FOR FLEXIBLE WING
FIGURE 17 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE .2112 FEET FOR FLEXIBLE WING.
FIGURE 18 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE 132 FEET FOR STANDARD WING
FIGURE 19 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE 2112 FEET FOR STANDARD WING
FIGURE 20 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE 132 FEET FOR STIFF WING
FIGURE 21 RELATIVE ERROR IN MEASURING TURBULENCE WITH LENGTH SCALE 2112 FEET FOR STIFF WING
of the standard wing, it is recommended that accelerometers be mounted on the wing tip to obtain accurate measurements of atmospheric turbulence. The stiff wing shows a smaller relative error than the standard wing and the range of larger error is slightly shifted to the high frequencies. The relative error still reaches 50 percent and for small turbulence length scale can get close to the lower frequencies of atmospheric turbulence. If accurate measurements of atmospheric turbulence frequencies on the order of 0.22 Hz are desired when using an airplane with the stiff wing characteristics, it is recommended that accelerometers be mounted on the wing tip. This study concludes that to measure atmospheric cross spectra across an airplane wing span, a stiff wing is required and that to measure accurately the whole range of the atmospheric turbulence spectrum, accelerometers mounted on the wing tips are required.
5.0 LIST OF REFERENCES

APPENDIX A

USER'S GUIDE

This appendix contains details of the computer code used for this study. The four flow charts illustrate the complete computer code, the free vibration subroutine, the forced vibration subroutine, and the spectrum analysis subroutine. Following the charts is an explanation of how to modify the computer code for different aircraft. Finally, the complete computer code listing is provided.
A.1 FLOW CHART OF THE COMPLETE PROGRAM

NC - Number of Mode To Start On
N ~ Total Number of Mode To Determine
NN ~ Number Modes To Determine Mode On
W ~ First Guess of Frequency

Free Vibration Program

W_i ~ Frequency
M_i ~ Generalized Mass
ϕ_i ~ Mode
A_{ij} & B_{ij} ~ Aerodynamic Cross Product

Forced Program

k ~ Driving Frequency
$z_i(y)$ ~ Response Of i Mode To Gust

Input/Output
Program

Spectrum Program

k ~ Frequency
ϕ_W ~ Power Spectrum Of Wing Tip Velocity
A.2 FLOW CHART FOR THE FREE VIBRATION PROGRAM

MAIN
NC - Number of The First Mode To Determine
N - Number of Modes To Determine
NN - Number of Modes To Determine The Mode On
W - Guess Of Frequency
H - Step Size

SUBROUTINE STRK
1. Determines Coef. For Runge-Kutta
2. Fixes Nodes and Wing Plan X, RA

SUBROUTINE RK7
Integrates Differential Equation
EL & EU - Error Bands
Y - Solution
X - Node Location

SUBROUTINE SZERO
Steps Along Frequency Line Until Brackets Root
F - Value of Characteristic Determinant

SUBROUTINE BISEC
and SUBROUTINE SECANT

SUBROUTINE DEMODE
Determines Mode

FUNCTION SIMPSON
Integrates

SUBROUTINE C0F
Sets Up Integration

PRINT OUT
W ~ Natural Frequency
GM ~ Generalized Mass
RP ~ Modes
A,B ~ Aerodynamic Cross Terms

FUNCTION SET and Function RM

SUBROUTINE FUNEV
Make Derivative Evaluations

SUBROUTINE FUN
1. Fixes Initial Condition Victor
2. Determines Value of Characteristic Determinant

X, Y, F

INPUT/OUTPUT

Variables Passed Between Subroutines
A.3 FLOW CHART OF THE FORCED VIBRATION PROGRAM

MAIN
NN ~ Number of Modes
N2 ~ Number of Gust Station

INPUT
From Free Vibra.

OUTPUT
RK ~ Frequency
Y ~ Amplitude

SUBROUTINE DO
1. Read Inputs
 A, B, W, GM, RP
2. Performs Operations
 That Are Frequency
 Independent: GAMA OMEG
3. Fixes Driving Freq: RK

SUBROUTINE COF
1. Sets Up Coef. Matrix: C
2. Sets Up Gust Force: D

SUBROUTINE GAUSS
Does Gauss
Elimination
On Coef. Mat.

SUBROUTINE BACKS
Reduces Non-hom
Victor and Back
Substitute

Variables Passed Between Subroutines

Input/Output
Subroutine
A.4 FLOW CHART OF THE SPECTRUM PROGRAM

INPUT

MAIN
- TL ~ Turbulence Length Scale
- N ~ Number of Driving Frequency
- N2 ~ Number of Gust Location
- RK ~ Driving Frequency
- RR ~ Total Response
1. Reads Driving Frequency
2. Outputs RK & RR

OUTPUT
- RK ~ Driving Frequency
- RR ~ Response To Turbulence

RK

RR

RK, TL

RK

RK, TL

RK

RK

RK

RK

RK

RK

FUNCTION TSPEC
- Determines Spectrum of Wing Tip Velocity

FUNCTION BSL2 and BSL1
- Evaluates Modified Bessel Function of Second Kind 5/6 and LS/6 Order

FUNCTION POLY
- Does Polynomial Evaluation

Input/Output
Subroutine
Variables Passed Between Subroutines
A.5 PROGRAM MODIFICATION

The computer code is actually three programs: the free vibration program, run on the IBM 360 at The University of Tennessee, Knoxville; and the forced vibration and spectrum analysis programs, both run on the PDP 11 at The University of Tennessee Space Institute. The input-output data format is compatible between programs, and all three programs may be changed and extended. Listed below are changes that must be made to each program for different wings.

The free vibration program was written for application to any wing. To adapt this program to a different wing, the function EI, specifying bending stiffness along the span, must be changed. Also, the functions EIP and $EIPP$, which are the first and second derivatives of EI, might need to be changed if EI is more complicated than a step function. The array RA, which defines the wing's semi-chord along the span, and the array X, which defines the mode position, must be changed. They are defined in subroutine STRK. Finally, the function RM, the mass per unit length, must be corrected.

The forced vibration program is extremely simple to modify for other aircraft. The array X, specifying the gust locations, must be changed in MAIN. Also, in MAIN the constants BR, reference semi-chord; S, surface area of wing; and U, mean flight speed; must be changed to fit the airplane. Finally, the function RA, wing semi-chord distribution, must be altered.

There are only two constants that must be changed to modify the spectrum analysis program for other airplanes. These are the reference
semi-chord, BR, and the mean flight speed, U. This program is most likely to require change due to a new distribution of the atmospheric turbulence cross spectrum, which will require that function TSPEC be rewritten. The program can be modified to give the power spectrum of the root bending or wing deflection at any point of the span by redefining the response function, the array Z.
A.6 PROGRAM LISTING

COMMON/EDAT/ECC
ECC=3000000000.0
CALL D1
CALL D2
CALL D3
STOP
END

SUBROUTINE D1
C*** THIS PROGRAM IS USED FOR DETERMINING WING'S NATURAL
C FREQUENCY AND MODE.
C
IT USES A BISECTION LIKE METHOD TO IMPROVE THE GUESS
C ON THE FREQUENCY AND MAKES THE CHARACTERISTIC DETERMINANT
C VANISH.
C
RUNGE-KUTTA FEHLBERG 7&8 IS USED TO DETERMINE SOLUTION
C TO DIFFERENTIAL EQUATION IT HAS VARIABLE SIZING BETWEEN
C FIXED NODES.
C
SIMPSONS METHOD IS USED TO INTEGRATE FOR THE AERODYNAMIC
C CROSS TERMS AND GENERALIZED MASS.
C
THE PROGRAM MAYBE ADAPTED BY CHANGING FUNCTION SEI
C (THE FUNCTION DESCRIBING THE DISTRIBUTION OF THE PRODUCT
C YOUNG'S ELASTICITY AND SECTIONAL MASS MOMENT, IF SEI IS TO
C HAVE DERIVATIVES UP TO THE SECOND ORDER FUNCTION NEEDS TO BE
C CHANGED TO INCLUDE THEN IN THE DIFFERENTIAL EQUATION. THE WING
C PLAN ARRAY, KA, WILL NEED TO BE CHANGED.
C***NC=THE NUMBER OF NODES TO START CALCULATING
C***W=THE FIRST GUESS OF THE NATURAL FREQUENCY OF THE NC MODE
C***H=STEP SIZE FOR SEARCH ROUTINE
C***N=TOTAL NUMBER OF NODES TO CALCULATE
C***NN=NUMBER OF NODES TO CALCULATE MODE ON
REAL*8 W,H
NC=2
H=2.000
W=4.000
N=4
NN=151
CALL STHK(NN)
CALL SZERO(W,H,N,NC,NN)
RETURN
END

57
SUBROUTINE SZEROT(W, N, H, EL, EU, NC, NN)
C THIS SUBROUTINE STEPS ALONG THE FREQUENCY DOMAIN UNTILL
C IF THE BRACKETS THE NATURAL FREQUENCY AND THE CALLS A BISECTION
C ROUTINE AND A SECANT ROUTINE TO IMPROVE THE WIDTH OF THE BRACKET
C THE SUBROUTINE FINALLY CALLS SUB...DMODE TO DETERMINE THE
C MODE, AND THEN CALLS COEF TO SET UP THE INTEGRATIONS OF MODES
C AND THEIR PRODUCTS.
C**** EL & EU=ERROR BOUNDS FOR RUNGE KUTTA
C**** W1 & W2=BRACKETS FOR FREQUENCY AND STEPS FOR THE SEARCH ROUTINE
C**** F1 & F2=VALUES OF THE CHARACTERISTIC DETERMINATE FOR W1 & W2
C**** w=NUMBER OF EIGENVALUES TO BE SEARCHED
C**** w=GUSSS FOR EIGEN VALUE
C**** H=STEP SIZE FOR SEACRH
C**** NC=NUMBER OF THE FIRST MODE TO CALCULATE
C**** NN=NUMBER OF NODES TO CALCULATE MODES ON
C**** I=NUMBER OF MODES CALCULATED DURING PROCESS
REAL*8 W, H, W1, W2, F1, F2, EL, EU, Y, X
COMMON/FACT/Y(8,151),X(151)
DIMENSION YY(151)
I=0
W1=W
EL=.0001D0
EU=.0001D0
103 CALL FUN(W1,F1,EL,EU,NC,NN)
101 W2=W1+H
CALL FUN(W2,F2,EL,EU,NC,NN)
IF(F1*F2.LT.0) GO TO 102
W1=W2
F1=F2
GO TO 101
102 CONTINUE
CALL BISEC(W1,F1,W2,F2,NC,NN)
CALL SECANT(W1,F1,W2,F2,NC,NN)
CALL DMODE(YY,NN)
WRITE(6,200) W2
200 FORMAT(2X,F20.10)
WRITE(6,2000)(YY(J),J=1,NN)
I=I+1
W3=W2
CALL COF(NC,YY,W3,NN,I)
NC=NC+1
IF(I.GE.N) GO TO 104
W1=W2+H
GO TO 103
104 RETURN
END

SUBROUTINE FUN(W,F,EL,EU,NC,NN)
C THIS SUBROUTINE FIXES THE INITIAL VALUE FOR THE SOLUTION
C AND THEN CALLS SUB...RK7(RUNGE KUTTA ROUTINE) TO DETERMINE SOLUTION
C AFTER WHICH THIS SUB CALCULATES THE VALUE OF THE CHARACTERISTIC
C DETERMINANT.
C**** EL & EU=ERROR BOUNDS FOR RUNGE KUTTA
C**** NC= WHICH MODE WORTHING ON DETERMINING
C**** Y= FUNDAMENTAL SOLUTIONS TO DIFFERENTIAL EQN OUTPUT FROM RK7
C**** F=VALUE OF CHARACTERISTIC DETERMINATE
REAL*8 RK,W,F,EL,EU,Y,X
COMMON/FACT/Y(8,151),X(151)
COMMON/EGHVL/RK
RK=W
C INITIAL CONDITION TEST FOR EVEN OR ODD MODE
D0 100 I=1,8
100 Y(I,1)=0.0D0
IF(NC.EQ.2,.UK,NC.EQ.4) GO TO 101
C INITIAL CONDITION FOR ODD MODE
Y(2,1)=1.0D0
Y(8,1)=1.0D0
GO TO 500
C INITIAL CONDITION FOR EVEN MODE
101 Y(I,1)=1.0D0
Y(7,1)=1.0D0
500 CALL RK7(8,NN,EL,EU)
F=Y(3,NN)*Y(8,NN)-Y(7,NN)*Y(4,NN)
RETURN
END

SUBROUTINE BISEC(X1,F1,X2,F2,NC,NN)
REAL*8 X1,X2,F1,F2,FM,XM,EL,EU
CCB=.01
EU=.001D0
EL=.0001D0
102 XM=(X1+X2)/2.0D0
CALL FUN(XM,FM,EL,EU,NC,NN)
IF(F1*FM.LE.0.D0) GO TO 100
X1=XM
F1=FM
GO TO 101
100 X2=XM
F2=FM
101 RE=ABS(X1-X2)/X1
IF(RE.GT.CCB) GO TO 102
RETURN
END

SUBROUTINE FUNEV(K,X,Y,F)
C THIS SUBROUTINE SUPPORTS THE RUNGE KUTTA AND DESCRIBES THE
C DIFFERENTIAL EQUATION
C
C THIS SUB WILL NEED CHANGING IF SEI IS TO HAVE DERIVATIVES
C OR IF THE TORSIONAL MODES ARE BEING DETERMINED
C**** K=ORDER OF THE TAYLOR SERIES TERMS
C**** F=DERIVATIVES VALUES
C**** Y=FUNDAMENTAL SOLUTION
C**** =FREQUENCY
REAL*8 F,Y,DRM,W,SEI,X
DIMENSION F(8,13),Y(8)
CUPVPL/EGNVL/W
F(1,K)=Y(2)
F(2,K)=Y(3)
F(3,K)=Y(4)
F(4,K)=URM(X)**2*Y(1)/SEI(X)
F(5,K)=Y(6)
F(6,K)=Y(7)
F(7,K)=Y(8)
F(8,K)=URM(X)**2*Y(5)/SEI(X)
RETURN
END

59
FUNCTION SEI(X)
C*** X=DISTANCE FROM SEMI SPAN
IMPLICIT REAL*8 (A-H,O-Z)
SEI=300000000.00
IF(X.GE.11.D0) SEI=300000000.00
RETURN
END
SUBROUTINE SECAN(T,X1,F1,X2,F2,NC,NN)
REAL*8 X1,F1,X2,F2,NC,NN
X1=40.0
RETURN
END
SUBROUTINE SECANT(X1,F1,X2,F2,NC,NN)
REAL*8 X1,F1,X2,F2,NC,NN
X1=40.0
RETURN
END
FUNCTION DRM(X)
IMPLICIT REAL*8 (A-H,O-Z)
DRM=130.D0
IF(X.LE.4.D0) DRM=2205.D0
IF(X.LE.11.D0.AND.X.GE.8.D0) DRM=2600.D0
RETURN
END
FUNCTION RM(X)
RM=130.
IF(X.LE.4.) RM=2205.
IF(X.LE.11.AND.X.GE.8.) RM=2600.
RETURN
END
FUNCTION SIMP(Y,H,N)
DIMENSION Y(N)
T1=0.
J1=N-2
T2=0.
DU 100 I=3,J1,2
100 T1=T1+Y(I)
DU 200 I=2,N,2
200 T2=Y(1)+T2
SIMP=H*(Y(1)+Y(N)+2.*T1+4.*T2)/6.
RETURN
END

SUBROUTINE COF(N,YY,W2,NN,II)
C THIS SUBROUTINE SETS UP THE FUNCTIONS FOR INTEGRATION
C*** YY=NEW MODE THEN LATER USED AS SCRATCHED ARRAY
C*** RP=ARRAY OF MASSES
C*** w=FREQUENCY
C*** GM=GENERALIZED MASS
C*** A & h=ARENDY DYNAMIC CROSS TERMS
C*** HA=HING PLAN
C*** N=NUMBER OF MODE BEING WORKED ON
C*** NN=NUMBER OF NODES
C*** II=NUMBER OF TIMES COF CALLED
CUMHIN/DATARA/RH(151)
CUMHIN/TRAN1/W(5),GM(5),RP(5.151),A(5.5),B(5.5)
DIMENSION YY(151),XX(151),HR(151)
C*** READ DATA
H=33./((NN-1)
IF(I1.GT.1) GO TO 500
DU 601 I=1,NN
601 XX(I)=(I-1)*H
IIH=H-1
W(I)=0.
GM(1)=40000.0
DU 600 I=1,NN
600 RP(1,1)=1.
A(1,1)=45.038925
B(1,1)=52.939763
C*** CALCULATE NEW DATA
500 CONTINUE
DU 101 I=1,NN
101 RP(N,1)=YY(I)
DU 102 I=1,NN
A1=RM(XX(1))
B1=RP(N,1)*RP(N,1)
YY(I)=A1*B1
102 CONTINUE
GM(N)=SIMP(YY,H,NN)*2.
W(5)=N2
DU 104 J=1,N
N2=J/2.
NR1=J/2.
N2=N-2+NR2
W1=J-2+NR1
IF(N2.EQ.0.AND.N1.EQ.0) GO TO 400
IF(J.EQ.1) GO TO 400
IF(N2.EQ.1.AND.N1.EQ.1) GO TO 400
A(N,J)=0.0
B(N,J)=0.0
GU TU 105
400 CONTINUE
DO 103 I = 1, NN
 YY(I) = RA(I) * RP(J, I) * RP(N, I)
 103
 RR(I) = RA(I) * YY(I)
 A(N, J) = SIMP(RR, H, NN)
 B(N, J) = SIMP(YY, H, NN)
 CONTINUE
 RETURN
END

SUBROUTINE STKK(NN)
: THIS SUBROUTINE Initializes THE COEFFICIENTS FOR RK7
C*** A, B, C = COEFFICIENTS FOR RK7
C*** X = NODE VALUES
C*** RA=WING PLAN ARRAY
REAL*8 A, B, C, CH, X, Y, DEL
COMMON/DATARA/RA(151)
COMMON/RKC/A(13), B(13, 12), C(13), CH(13)
COMMON/FAC/Y(8, 151), X(151)
DEL = 33. DO/(NN-1)
DEL2 = 33. DO/(NN-1)
ND = (NN-1)/3.
RM1 = (NN-1)/3.
DO 100 I = 1, NN
 X(I) = (I-1) * DEL
100 CONTINUE
 IF (I.GE.ND) RA(I) = 1. - 0.27*(I-RM1)*DEL2
 CONTINUE
 A(1) = 0. DO
 A(2) = 2. DO/27. DO
 A(3) = 1. DO/9. DO
 A(4) = 1. DO/6. DO
 A(5) = 5. DO/12. DO
 A(6) = 1. DO/2. DO
 A(7) = 5. DO/6. DO
 A(8) = 1. DO/6. DO
 A(9) = 2. DO/3. DO
 A(10) = 1. DO/3. DO
 A(11) = 1. DO
 A(12) = 0. DO
 A(13) = 1. DO
 B(1, 1) = 0. DO
 B(2, 1) = 2. DO/27. DO
 B(3, 1) = 1. DO/36. DO
 B(3, 2) = 1. DO/12. DO
 B(4, 1) = 1. DO/24. DO
 B(4, 2) = 0. DO
 B(4, 3) = 1. DO/8. DO
 B(5, 1) = 5. DO/12. DO
 B(5, 2) = 0. DO
 B(5, 3) = -25. DO/16. DO
 B(5, 4) = 25. DO/16. DO
 B(6, 1) = 1. DO/20. DO
 B(6, 2) = 0. DO
 B(6, 3) = 0. DO
 B(6, 4) = 1. DO/4. DO
 B(6, 5) = 1. DO/5. DO
 B(7, 1) = -25. DO/108. DO
 B(7, 2) = 0. DO
 B(7, 3) = 0. DO
 B(7, 4) = 125. DO/108. DO
 B(7, 5) = -65. DO/27. DO

 62
\(B(7,6) \)	= 125.0D0 / 54.0D0
\(B(8,1) \)	= 31.0D0 / 300.0D0
\(B(8,2) \)	= 0.0D0
\(B(8,3) \)	= 0.0D0
\(B(8,4) \)	= 0.0D0
\(B(8,5) \)	= 61.0D0 / 225.0D0
\(B(8,6) \)	= -2.0D0 / 9.0D0
\(B(8,7) \)	= 13.0D0 / 900.0D0
\(B(9,1) \)	= 2.0D0
\(B(9,2) \)	= 0.0D0
\(B(9,3) \)	= 0.0D0
\(B(9,4) \)	= -53.0D0 / 6.0D0
\(B(9,5) \)	= 704.0D0 / 45.0D0
\(B(9,6) \)	= -107.0D0 / 9.0D0
\(B(9,7) \)	= 67.0D0 / 90.0D0
\(B(9,8) \)	= 3.0D0
\(B(10,1) \)	= -91.0D0 / 108.0D0
\(B(10,2) \)	= 0.0D0
\(B(10,3) \)	= 0.0D0
\(B(10,4) \)	= 23.0D0 / 108.0D0
\(B(10,5) \)	= -976.0D0 / 135.0D0
\(B(10,6) \)	= 311.0D0 / 54.0D0
\(B(10,7) \)	= -19.0D0 / 60.0D0
\(B(10,8) \)	= 17.0D0 / 6.0D0
\(B(10,9) \)	= -1.0D0 / 12.0D0
\(B(11,1) \)	= 2383.0D0 / 4100.0D0
\(B(11,2) \)	= 0.0D0
\(B(11,3) \)	= 0.0D0
\(B(11,4) \)	= -431.0D0 / 164.0D0
\(B(11,5) \)	= 4496.0D0 / 1025.0D0
\(B(11,6) \)	= -301.0D0 / 82.0D0
\(B(11,7) \)	= 2133.0D0 / 4100.0D0
\(B(11,8) \)	= 45.0D0 / 82.0D0
\(B(11,9) \)	= 45.0D0 / 164.0D0
\(B(11,10) \)	= 18.0D0 / 41.0D0
\(B(12,1) \)	= 3.0D0 / 205.0D0
\(B(12,2) \)	= 0.0D0
\(B(12,3) \)	= 0.0D0
\(B(12,4) \)	= 0.0D0
\(B(12,5) \)	= 0.0D0
\(B(12,6) \)	= -6.0D0 / 41.0D0
\(B(12,7) \)	= -3.0D0 / 205.0D0
\(B(12,8) \)	= -3.0D0 / 41.0D0
\(B(12,9) \)	= 3.0D0 / 41.0D0
\(B(12,10) \)	= 0.0D0 / 41.0D0
\(B(12,11) \)	= 0.0D0
\(B(13,1) \)	= -1777.0D0 / 4100.0D0
\(B(13,2) \)	= 0.0D0
\(B(13,3) \)	= 0.0D0
\(B(13,4) \)	= -341.0D0 / 164.0D0
\(B(13,5) \)	= 4496.0D0 / 1025.0D0
\(B(13,6) \)	= -289.0D0 / 82.0D0
\(B(13,7) \)	= 2133.0D0 / 4100.0D0
\(B(13,8) \)	= 51.0D0 / 82.0D0
\(B(13,9) \)	= 33.0D0 / 164.0D0
\(B(13,10) \)	= 12.0D0 / 41.0D0
\(B(13,11) \)	= 0.0D0
\(B(13,12) \)	= 1.0D0
\(C(1) \)	= 41.0D0 / 840.0D0
\(C(2) \)	= 0.0D0
\(C(3) \)	= 0.0D0
\(C(4) \)	= 0.0D0
\(C(5) \)	= 0.0D0
C(6)=34.00/105.00
C(7)=9.00/35.00
C(8)=9.00/35.00
C(9)=9.00/280.00
C(10)=9.00/280.00
C(11)=41.00/840.00
C(12)=0.00
C(13)=0.00
CH(1)=0.00
CH(2)=0.00
CH(3)=0.00
CH(4)=0.00
CH(5)=0.00
CH(6)=34.00/105.00
CH(7)=9.00/35.00
CH(8)=9.00/35.00
CH(9)=9.00/280.00
CH(10)=9.00/280.00
CH(11)=0.00
CH(12)=41.00/840.00
CH(13)=41.00/840.00
RETURN
END
SUBROUTINE RK7(NS,NN,EL,EU)
C*** RUNGE KUTTA FEHLBERG SEVENTH ORDER
C*** EL=ERROR LOWER BOUND
C*** EU=ERROR UPPER BOUND
C*** NS=NUMBER OF SYSTEM OF EQU
C*** Y=SOLUTION
C*** NN=NUMBER OF PTS TO DETERMINE THE SOLUTION
C*** HL=LENGTH OF INTERVAL
DIMENSION Yu(8),F(8,13),YY(8)
DIMENSION DY4(8),DY5(8),Y1(8)
COMMON/HKC/A(13),B(13,12),C(13),CH(13)
COMMON/FACT/Y(8,151),X(151)
REAL*8 DY4,DY5,XX,YY,TH,A,B,C,F,DD1,DD2,H,Y1,Y0,CH,EL,EU,X,Y
DO 101 I=1,NS
101 Yu(I)=Y(I,1)
NT=NN-1
L=1
C*** MAIN DO LOOP INCREMENT TO EACH NODE
DO 100 I=1,NT
NC=0
H=X(I+1)-X(I)
GO TO 203
207 L=L+1
GO TO 203
206 L=L+1
NC=1
203 DO 201 I=1,NS
201 Y1(I)=YU(I)
TH=H/L
C*** DO LOOP FOR STEPS BETWEEN NODES
DO 300 I2=1,L
C*** DETERMINE THE NEEDED FUNCTION EVALUATION
DO 300 K=1,13
KR=K-1
DO 301 J=1,NS
AX=A(I1)+TH*(I2-1)+A(K)*TH
Y1(J)=Y1(J)
IF(KM,EU,0) GO TO 303
DO 302 13=1,KM
302 YY(J)=TH+8(K-1)*F(J,13)+YY(J)

64
C*** DETE RMIN E SOLUTION VALUE FOR END OF STEP
DU 500 I=1,NS
DY4(I)=0.0
500
DY5(I)=0.0
DO 401 I=1,NS
DO 402 K=1,13
DY4(I)=TH*C(K)*F(I,K)+DY4(I)
402
DY5(I)=TH*C(K)*F(I,K)+DY5(I)
401
CONTINUE
C*** ERROR AND STEP SIZE CONTROL
DD1=HALF((DY4(1)-DY5(1))/(DY4(1)+Y1(I))))
DD2=HALF((DY4(5)-DY5(5))/(DY4(5)+Y1(5))))
IF(DD1,LT,EU,AND,DD2,LT,EU) GO TO 202
GO TO 206
202 IF((DD1,GT,EL,AND,DD2,GT,EL) GO TO 204
IF(L.E(J,11) GO TO 204
IF(NC,EU,1) GO TO 204
GO TO 207
204
CONTINUE
DU 205 I=1,NS
205 Y1(I)=Y1(I)+DY4(I)
200
CONTINUE
DU 102 I=1,NS
YU(I)=Y1(I)
102
Y(I,I1+1)=YU(I)
100
CONTINUE
RETURN
END
SUBROUTINE D2
C THIS PROGRAM DETERMINES THE AMPLITUDES OF THE DIFFERENT
C MODES TO A SINUSOIDAL GUST AT THE DIFFERENT STATIONS ALONG
C THE WING. SUB...DO TAKES CARE OF INPUT AND OUTPUT PLUS
C SETS UP THE COEFFICIENTS THAT ARE DRIVING FREQUENCY INDEPENDENT
C SUBROUTINE CUEF SET UP THE COEFFICIENT MATRIX FOR EACH DRIVING
C FREQUENCY. WHILE SUB...GAUSS DOES HALF OF THE REDUCTION AND
C SUB...BACKS FINISHES THE REDUCTION AND DOES BACK SUBSTITUTION
C FOR THE DIFFERENT NON-HOMOGENOUS VICTORS CORRESPONDING TO
C DIFFERENT GUST LOCATIONS.
C*** N=NUMBER OF NODES THE MODES ARE DETERMINE ON
C*** N2=NUMBER OF GUST LOCATION
NN=151
N2=20
CALL DU(NN,N2)
RETURN
END
SUBROUTINE DU(NN,N2)
C THIS SUBROUTINE TAKES CARE OF INPUT AND OUTPUT
C AND PERFORMS OPERATIONS THAT ARE DRIVING FREQUENCY
C INDEPENDENT, MEANING GAMMA AND OMEG.
C*** Y=SOLUTION, AMPLITUDES OF MODES
C*** RP=MODE ARRAY
C*** X=GUST LOCATION
C*** A,B,AERO DYNAMIC CROSS PRODUCTS
C*** N=NATURAL FREQUENCIES OF MODES
C*** GM=GENERALIZED MASS OF MODES
C*** UMEG=REDUCED NATURAL FREQUENCY
C*** GAMMA=NUM DIMENSIONAL GM
COMMUN/SOL/Y(20,5)
COMMUN/TRAN/W(5),GM(5),RP(5,151),A(5,5),B(5,5)

65
CUMMUN/TRAN2/RRK(37)
CUMMUN/TRAN3/SY(37,19,5)
CUMMUN/EDAT/EEE
CUMMUN/FAC/PI,BR,S,RO,U
DIMENSION X(20)
CUMPLEX Y,SY
CUMPLEX CMPLX
CUMMUN/DAT/GAMA(S),OMEG(5)
N=37
C50 FORMAT(2X,E14.7)
C WRITE(7,50) EEE
PI=3.14159
BR=19.0/2.0
S=960.0
RO=.0765
U=575.0
C*** PERFORM ARITHMETIC
DO 601 I=1,5
GAMA(I)=GM(I)/(PI*RO*S*BR)
OMEG(I)=W(I)*BR/U
JN=I
DO 602 J=1,JN
A(I,J)=A(I,J)*BR/S
B(I,J)=B(I,J)*BR/S
A(J,I)=A(I,J)
B(J,I)=B(I,J)
602 CONTINUE
601 CONTINUE
DO 500 I=1,37
IF(I.LE.10) RK=I/1000.
IF(I.LE.19.AND.I.GT.10) RK=(I-9)/100.
IF(I.GT.29) RK=I-27
DEL=33./(N2-1)
N2M=N2-1
DU 100 II=1,N2M
100 X(I)=DEL*(II-.5)
CALL COEF(RK,X,DEL,N2M,NN)
CALL GAUSS(S,N2M)
CALL BACKS(N2M,5)
RRK(I)=RK
DU 1 J=1,N2M
DU 2 J2=1,5
SY(I,J,J2)=Y(I,J2)
2 CONTINUE
1 CONTINUE
C WRITE(7,101) RK
C101 FORMAT(2X,E14.7)
C DU 102 J=1,N2M
C *WRITE(7,103)(Y(J,I1),I1=1,5)
C103 FORMAT(1X,3(2E13.6))
C102 CONTINUE
500 CONTINUE
RETURN
SUBROUTINE COEF(RK,X,DEL,N2M,NN)
C THIS SUBROUTINE SETS UP COEFFICIENT MATRIX AND THE DIFFERENT
C NUN HOMOGENOUS VICTORS.
C** C=COEFFICIENT MATRIX
C** D=ARRAY OF NUN HOMOGENOUS VICTOR
C*** C=COEFFICIENT ARRAY
C*** RK=REDUCED FREQUENCY
C*** X=LOCATION OF GUST
CUMMUN/LS/C(5,5),D(20,5)

66
COMMON DAT/GAMA(5), OMEG(5)
COMMON/TRAN/ M(5),GM(5),RP(5,151),A(5,5),B(5,5)
COMMON/FAC/P1, BR, S, RO, U
DIMENSION X(20), S1(5,5)
COMPLEX C, CI, D, CC, RKK
COMPLEX CMPLX

*** READ DATA
CI=CMPLX(0.,1.)
DO 103 I=1,5
D0 104 J=1,5
CI(I,J)=-(RK**2*A(I,J)+2*CI*RK*CC0*B(I,J))
IF(I.NE.J) GO TO 901
901 CI(I,J)=CI(I,J)+GAMA(I)*(OMEG(I)**2-RK**2)
104 CONTINUE
103 CONTINUE
C
DO 902 I=1,5
D0 106 J=1,N2M
D0 105 I=1,5
U(J,I)=2*BR/S*RA(X(J))*RPH(I,IX,NN)*RKK(RK)*DEL
105 CONTINUE
106 CONTINUE
RETURN
END

FUNCTION RPH(I,Y,NN)
COMMON/TRAN/M(5),GM(5),RP(5,151),A(5,5),B(5,5)
DEL=33./((N-1)
NN=ABS(I)/DEL+1
RS=ALS(Y)/DEL+1.-NN
RPH=RP(1,NN)+RS*(RP(1,NN+1)-RP(I,NN))/DEL
IF(Y.LT.0.0) GO TO 500
500 CONTINUE
IF(I.EQ.3.OR.I.EQ.5) RPH=-RPH
600 RETURN
END

FUNCTION AHS(Y)
RETURN
END

FUNCTION RY1(X)
RETURN
END

FUNCTION CC(RK)
COMMON CMPLX
CI=CMPLX(0.,1.)
FJO=RJO(RK)
JO=RY1(RK)
PY1=RY1(RK)
PY0=RY0(RK)
F=PY1*(PY1+PY0)+PY1*(PY1=PY0)
G=PY1*PY0+PY1*PJ0
H=(PY1+PY0)**2+(PY1-PJ0)**2
CC=(F+CI*G)/H
RETURN
END

67
COMPLEX FUNCTION RKK(RK)
C FUNCTION DETERMINES THE GUST FORCE FUNCTION
COMPLEX CI, CC
COMPLEX CMPLX
CI=CMPLX(0.,1.)
PJ1=RJ1(RK)
RKK=CC(RK)*(RJO(RK)=CI*PJ1)+CI*PJ1
RETURN
END
FUNCTION RJ1(X)
Z=(X/3.)**2
RJ1=(((((.00001109*Z+.0031761)*Z+.00443319)*Z+.03954289)*Z
++.21093573)*Z+.56249985)*Z+.5)**X
RETURN
END
FUNCTION RJO(X)
Z=(X/3.)**2
RJO=(((((.00021*Z+.0039444)*Z+.0444479)*Z+.3163866)*Z+.2656208)*Z
++.2499997)*Z+.10)
RETURN
END
SUBROUTINE GAUSS(NNZ)
THIS SUBROUTINE DOES GAUSSIAN ELIMINATION FOR ONLY THE COEFFICIENT
MATRIX. SCALED PARTIAL PIVOTING IS USED.
COMMON/LS/C(5,5),P(20,5)
COMM/PIV/INDEX(S(5)
DIMENSION S(S)
COMMON C, D
C*** R=Pivot INDEX
C*** C=Coefficient Array
C*** D=Inhomogenous Vector
C*** N=Number of Eqn
DU 103 I=1,N
INDEX(I)=I
S(I)=0.
DU 104 J=1,N
104 IF(CABS(C(I,J)).GT.S(I)) S(I)=CABS(C(I,J))
103 CONTINUE
AM=1
DU 100 KK=1,NM
IS=KK+1
IP=INDEX(KK)
J=KK
CM=CABS(C(IP,KK))/S(IP)
DU 105 I=IS,N
IP=INDEX(I)
T=CABS(C(IP,KK))/S(IP)
IF(T.LE.CM) GO TO 105
CM=T
J=I
105 CONTINUE
IPK=INDEX(J)
INDEX(J)=INDEX(KK)
INDEX(KK)=IPK
DU 101 I=IS,N
1=INDEX(I)
K=INDEX(KK)
C(I,KK)=C(I,KK)/C(K,KK)
DO 102 J=18,N
102 C(1,J)=C(I,J)=C(I,KK)*C(K,J)
101 CONTINUE
100 CONTINUE
RETURN
END

SUBROUTINE BACKS(N1,N2)
C DOES REDUCTION ON THE NON HOMOGENOUS VICTOR AND THEN DOES
C BACK SUBSTITUTION.
C*** N1=NUMBER OF NON HOMOGENOUS VICTOR
C*** N2=DIMENSION OF NON HOMOGENOUS VICTOR
CUMMUN/PIVOT/IPEN(5)
CUMMUN/L5/C(5,5),D(20,5)
CUMMUN/SUB/Y(20,5)
COMPLEX C,D,Y
C*** K1=SOLUTION INDEX
C*** REDUCTION ON NON HOMOGENOUS VICTOR
DU 100 K1=1,N1
IF=IPEN(1)
Y(K1,1)=D(K1,IF)
DU 101 KK=2,N2
K=IPEN(KK)
T=0.0
JN=K-1
DU 102 J=1,JN
102 T=C(K,J)*Y(K1,K)+T
101 Y(K1,K)=D(K1,K)-T
Y(K1,N2)=Y(K1,N2)/C(K,N2)
C*** BACK SUBSTITUTION
JJ=N2
DU 103 K=2,N2
JS=JJ
JJ=JJ+1
KK=IPEN(JJ)
T=0.0
DU 104 J=JS,N2
104 T=C(KK,J)*Y(K1,J)+T
103 Y(K1,J)=(Y(K1,J)-T)/C(KK,JJ)
100 CONTINUE
RETURN
END

SUBROUTINE D3
C THIS PROGRAM PERFORMS THE ARITHMETIC TO DETERMINE WING TIP
C VELOCITY POWER SPECTRUM. SUB...SPEC PERFORMS THE CALCULATION
C AND FUNCTION SPEC EVALUATES ATMOSPHERIC TURBULENCE SPECTRUM.
C*** N2=NUMBER OF GUST STATIONS
C*** N=NUMBER OF DRIVING FREQUENCIES
C*** TL=TURBULENCE LENGTH SCALE
CUMMUN/TRANS/RKK(37)
CUMMUN/TRANS/SY(37,19,5)
CUMMUN/EDAT/EVE
COMPLEX SY
CALL CUEF1
CALL CUEF2
HR=19./2.
DU 101 J1=1,5
TL=66.*(2**J1)
N=37
N2=20
N22=N2-1
N2=N2**2
WRITE(7,202)EEE,TL,N2
202 FORMAT(2X,'EL=',F10.1,'TL=',F10.2,'N2=',F10.1)
DU 100 I=1,N2
KK=RRK(1)
RNU=RR*TL/BR
SS=0.0
U=575.
TS=TSPEC(SS,RNU,U,TL)
CALL SPEC(RK,RR,TL,N2,I)
WRITE(7,201) RK,RR,TS
201 FORMAT(2X,E14.7,2X,E14.7,2X,E14.7)
100 CONTINUE
102 CONTINUE
101 CONTINUE
RETURN
END

SUBROUTINE SPEC(RK,RR,TL,N2,IC)
C THIS SUBROUTINE DETERMINES THE SPECTRUM OF THE WING
C
C*** RK=TOTAL AIRPLANE RESPONSE
C*** RR=REDUCE FREQUENCY #B/U
C*** Z=RESPONSE TO GUST AT ONE STATION
C*** N2=NUMBER OF GUST STATIONS
COMMUN/TRAN2/HRK(37)
COMMUN/TRAN3/SY(37,19,5)
DIMENSION Y(20,5),Z(40)
COMPLEX Y,C1,Z,T,T2,SY
C*** READ DATA
C1=CMPX(0.,1.)
BK=19./2.
N2=I5/2
DEL=06./N2
U=575.
DU 100 J=1,N2
DU 2 J2=1,5
Y(J,J2)=SY(IC,J,J2)
2 CONTINUE
100 CONTINUE
C*** DETERMINE PLANES RESPONSE
DU 101 J=1,N2
T=0.0
T2=0.0
DU 102 L=2,5
T2=Y(J,L)+T2
IF(I.EQ.3,0.,E1.EQ.5) T2=T2-2.*Y(J,L)
102 T=Y(J,L)+T
Z(J)=T2*RR*C1
101 Z(J+N2)=C1*RR*T
C*** DETERMINE PLANES TOTAL RESPONSE
TT=0.0
DU 300 L=1,N2
IS=I-1
T=0.0
JN=I2=15
DU 301 J=1,JN
301 T=2*REAL(Z(J)*CONJG(Z(J+IS)))+T
SS=IS*DEL/TL
RNU=RR*TL/BR
IF(IS,EQ.0)TT=T2,
300 TT=TSPEC(SS,RNU,U,TL)*T+TT
RR=TT
RETURN
END
FUNCTION TSPEC(SS,RNU,U,TL)
C THIS FUNCTION DETERMINES TURBULENCE CROSS AND POWER
C SPECTRUM FROM THE VON KARMAN SPECTRUM FUNCTION.
C*** SS=SEPARATION DIVIDED BY TL(TURBULENCE LENGTH SCALE)
C*** RNU=0.001/TL THE REDUCED FREQUENCY OF TURBULENCE
C*** U=FLIGHT SPEED OR MEAN WIND SPEED
C*** TL=TURBULENCE LENGTH SCALE
IF(SS,EQ.0.0) GO TO 500
C CROSS SPECTRUM
Z=SS*SORT(1.+(1.339*RNU)**2)/1.339
TSPEC=TL*1.10853/U*(4.78112*SS**(5./3.)/Z**((5./6.)*BSL1(Z))
+SS**(11./3.)/Z**((11./6.)*BSL2(Z))
RETURN
500 CONTINUE
C POWER SPECTRUM
Z=(1.339+RNU)**2
TSPEC=TL*((8./3.)*Z)/(1+Z)**((11./6.)/3.14159/U)
RETURN
END SUBROUTINE COEF1
C THIS SUBROUTINE SETS UP THE COEFFICIENTS FOR THE POLYNOMIAL
C APPROXIMATION FOR THE MODIFIED BESSEL FUNCTION OF THE
C SECOND KIND 5/6 ORDER.
COMMON/K13/A(10),B(10),A2(10)
F=5./6.0
A(1)=1.0/9405612296
DU 100 I=1,9
100 A(I+1)=A(I)/F+1
F=1.0-F
B(1)=1.0/5.56756615
DU 101 I=1,9
101 B(I+1)=B(I)/F+1.0
S=4.*(5./6.)**2
A2(1)=1.
DU 200 I=1,9
200 A2(I+1)=A2(I)*((S-(2*I-1)**2)/8./I
RETURN
END FUNCTION BSL1(Z)
C THIS FUNCTION EVALUATES THE MODIFIED BESSEL FUNCTION
C OF THE SECOND KIND 5/6 ORDER
COMMON/K13/A(10),B(10),A2(10)
IF(Z.EQ.2) GO TO 100
Y=1./Z
BSL1=SORT(1.5707*Y)*EXP(-Z)*POLY(A2,10,Y)
RETURN
100 Y=(Z/2.0)**2.0
RIP=(Z/2.0)**((5./6.)*POLY(A,10,Y)
RIN=POLY(B,10,Y)/((Z/2.0)**((5./6.))
BSL1=(3.141/2/SIN(5.0/3.141/6.0))*(RIN=RIP)
RETURN
END FUNCTION POLY(A,N,Z)
C THIS FUNCTION DOES THE POLYNOMIAL EVALUATIONS
DIMENSION A(N)
T=A(N)*Z
N=K-2
DU 100 I=1,NN
100 T=(T+A(I-1))*Z
POLY=T+A(I)
RETURN
END
FUNCTION BSL2(Z)
C THIS FUNCTION EVALUATES THE MODIFIED BESSEL FUNCTION OF THE
C SECOND KIND 11/6 ORDER.
C COMMON/KZ3/E(10),G(10),E2(10)
1F(Z.LT.2) GO TO 100
 Y=1./Z
 BSL2=SQRT(1.5707*Y)*EXP(-Z)*POLY(E2,10,Y)
 RETURN
100 Y=(Z/2.0)**2.0
 R1P=(Z/2.0)**(11./6.)*POLY(E,10,Y)
 R1N=POLY(G,10,Y)/((Z/2.0)**(11./6.))
 BSL2=(3.141/2/SIN(11.0*3.141/6.0))*(R1N-R1P)
 RETURN
END

SUBROUTINE COEF2
C THIS SUBROUTINE SETS UP THE COEFFICIENTS FOR THE POLYNOMIAL
C APPROXIMATIONS OF THE MODIFIED BESSEL FUNCTION OF THE
C SECOND KIND 11/6 ORDER.
C COMMON/KZ3/E(10),G(10),E2(10)
 F=11./6.

C**** ONE OVER THE GAMMA VALUE OF 1+ORDER *******
 E(1)=1.0/1.724362254
 DU 100 I=1,9
100 E(I+1)=E(I)/I/(F+I)

C**** ONE MINUS THE ORDER OF THE MODIFIED BESSEL **
 F=1.0-F
 G(1)=1.0/(-8.68107938)
 DO 101 I=1,9
101 G(I+1)=G(I)/I/(F+I-1.0)
 S=4*(11./6.)**2
 E2(1)=1.
 DU 200 I=6,9
200 E2(I+1)=E2(I)*(S-(2*I-1)**2)/8./I
 RETURN
 END
APPENDIX B

ESTIMATION OF WING STIFFNESS

A major parameter of this study is the beam stiffness. Because structural information about the B-57 could not be located, this parameter had to be estimated. A static analysis is used in this appendix to estimate the beam stiffness. We assume that the deflection at the wing tip is one foot for a 10 g loading of the aircraft in wartime operation (meaning fuel tanks completely full and aircraft loaded with bombs both in the fuselage and on the wings). The wing is modeled as a cantilever beam. The loading on the wing, including structural weight, fuel and bombs, is depicted:

LOADING OF B-57 WING
The values for the loading diagram were determined from the Air Force Basic Flight Manual for the B-57. The loading can be written in functional form using singularity functions:

\[l(y) = -150<y>^0 - 500<y - 11>^0 - 550<y - 22>^0 + 900<y - 25>^0 \]
\[- 3325<y - 29>^0 + Q<y>^{-1} \]

where Q represents a hypothetical force at the wing tip and is used for Castigliano's Theorem to calculate the deflection at the wing tip. The loading equation is integrated twice to give the moment equation:

\[2M(y) = -150<y>^2 - 500<y - 11>^2 - 550<y - 22>^2 + 900<y - 25>^2 \]
\[- 3325<y - 29>^2 + Q/2<y>^0 \]

The form of the beam stiffness must also be specified:
\(\varepsilon \) is the characteristic beam stiffness and must be determined from this analysis. The internal strain energy may be written:

\[
\frac{U}{n} = \int_0^{33} \frac{M^2}{2EI} \, dy = \int_0^{22} \frac{M^2}{2\varepsilon} \, dy + \int_{22}^{33} \frac{M^2}{20\varepsilon} \, dy
\]

where \(n \) represents the load factor, assumed to be 10 g. According to Castigliano's Theorem, the deflection is:

\[
\frac{\Delta h}{h} = \frac{\partial U}{\partial Q} = \int_0^{33} \frac{M}{EI} \frac{\partial M}{\partial Q} \, dy = \frac{1}{\varepsilon} \left[\int_0^{22} M \frac{\partial M}{\partial Q} \, dy + \frac{1}{10\varepsilon} \int_{22}^{33} M \frac{\partial M}{\partial Q} \, dy \right]
\]

Substituting the equation for the moment and the derivative of the moment with respect to the hypothetical force, the equation becomes:

\[
\frac{\Delta \varepsilon}{h} = \int_0^{22} y \left(\frac{-150}{2} <y>^2 - \frac{500}{2} <y - 11>^2 \right) \, dx
\]

\[
+ \frac{1}{10} \int_{22}^{33} y \left(\frac{-150}{2} <y>^2 - \frac{500}{2} <y - 11>^2 - \frac{550}{2} <y - 22>^2 \right) \, dy
\]

\[
+ \frac{900}{2} <y - 25>^2 - \frac{3325}{2} <y - 29>^2 \right) \, dy
\]

Performing the integration, the equation is approximately:

\[
\frac{\Delta \varepsilon}{h} \approx 9 \times 10^6
\]

Assuming a one foot deflection at the wing tip due to a 10 g loading
we get $e \approx 9 \times 10^7$. Therefore the beam stiffness distribution due to design characteristics is estimated as:

\[
EI = 9 \times 10^8 \quad \text{for} \quad y \leq |11|
\]

\[
EI = 9 \times 10^7 \quad \text{for} \quad y \geq |11|
\]
The purpose of this study is to determine the magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip and to determine whether accelerometers mounted on the wing tip are needed to correct for this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. The major finding of the study is that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.