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PRINCIPAL NORMAL CURVATURE OF SURFACES

R. F. Schmidt
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

This document develops cer*ain principal normal curvatures of differential geometry for use in

curvature matrices associated with the asymptotic solution of electromagnetic diffraction problems.

The effort is directed toward microwave antenna simulations and high speed digital computer analysis

of radiometric instruments used to obtain soil moisture, sea state, salinity and temperature data. It

is shown, that the methods used to develop the principal normal curvatures for paraboloid, hyper-

boloid, ellipsoid, sphere, and cone can be applied to other radiometer geometries, such as the para-

bolic torus, even though the surfa-e parameterizations are different. It is concluded that deployable

offset geometries, distorted by rotational forces and solar loads may be analyzed by similar means

given a suitable sit ,face description.
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GLOSSARY OF NOTATION

Symbols for the three fundamental forms

Surface coordinates

Surface normals

Parameters of surfaces

Vector (dot) products associated with (1)

Vector (box) products associated with (II)

Principal normal curvatures of surfaces

Azimuthal angle about (N) in Euler's theorem

Generic normal curvature of a surface

First partial derivatives of (R)

Second partial derivatives of (x)

Focal length of a paraboloid

Generic z-axis displacement of surface

Radial variable of surfaces

Angle variable of surfaces

Hyperboloid or ellipsoid parameters (in context)

First partials of the normal (N)

Cone parameter (in context)

Linear variable of parabolic torus

Angle variable of parabolic torus

Parabolic torus parameter

Mean curvature

vii
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k s	Gaussian curvature

Q	 Curvature matrix

O	 Order a

v	 Angle between basis vectors and principal directions

fi	 Wave or ray parameter

It	 It,	 Principal radii of curvature

ilk	 Christoffei symbols of the second kind (functions of F, la , G)

(,(iefficients (functions of F. F. G. C, f, g)
I

rorsion

K	 Curvature

k o	Normal curvature of a surface (in context, eqn. 133 on;y)

k	 Cumatur< of a curve (in context, eqn. 133 only)

19	 Angle between principal normal to curve or a surl'ace
A

y	 Surface
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PRINCIPAL NORMALS OF SURFACES

INTRODUCTION

'Ilie analytic exploration of electromagnetic scattering from surfaces requires some facility

with differential geometry. Uslenghi (Ref. 2), James (Ref. 9), and Collin and Zucker (Ref. 10)

associate principal normal curvature of surfaces with the asymptotic solution of electromagnetic

edge diffraction at high wave-numbers. Elemenviry knowledge of curves and surfaces is necessary

for the application of ray techniques such as the geometric theory of diffraction. In particular, pre-

cise distinctions mint be made regarding the curvature of structural members, such as the support-

ing ribs of deployable offset antennas, and the normal curvature of the surfac. c fonned by wnsioned

mesh materials. Analysis of microwave antennas for the radiometric determination of sea state, wind

speed, soil moisture, sea temperature, salinity, and snow maps by means of detail •2d electromagnetic

simulation and high speed digital computers relies heavily on rigorous geometric formulations. It is

important, therefore, to develop the tangents, normals, differential areas and other information for

the well-known surfaces of revolution encountered in the classic literature and also to extend these

techniques to the more sopi,isticated antenna configurations being considered at Goddard Space

Flight Center.

In 1968 a physical optics program was initiated at GSFC at which time a useful W,t) param-

eterization of the "conics" was employed, Ref. 1, Appendix A. Although the topic of curvature was

introduced in that document, the treatment was less than general. Ref. I, Appendix B. The develop-

ment of principal normal curvature in the present document may be regarded as an extension of the

earlier effort in the same (a,t) parameterization. For convenientv the relevant equations for the

conics are reproduced here as Appendix A. Reference 3 reviews the conic sections which lead to

generating arcs for surfaces with axial symmetry.



`llie three fundamental forms of differential geometry are usually written as

I a IN • dir	 (I)

II = -dx • dN	 (2)

111 = dN • dN	 (3)
where

dx= xu du+ xv dv	 (4)
and

dN = N u du + N v av	 (5)

In this natation the unit surface normal W) and the surface coordinate vector (x ) are both functions

of the parameters (n.v), Itef. 4, p. 103. lief. 5, Chapter IV.

Developmeait of the theory of surfaces in tote classical literature leads to the identification of

1^	 xu • x11• 1 : — x, 1 • x v , G = x v • x v 	(b)

and

x xuu u 
v= x	 N	 (7)

(hG — 1:: 
) i,,	 uu

xuv x u xv =x	 • N	 (K)i	 uv

xwy xu xv

It can be seen that the following correspondences exist between Appendix A of the present docu-

ment and the literature:

	

x ^. x u = Pa. x v P(	(10)

N	 f. N u	io, Nv	 ii i .	 (I I )

Ref. 4. p. 58. p. -15.

In the refers nce ab,we, the expressions for principal normal curvature are given as

	k t ° e , k,= 9	 (12)



for dv = 0 and du = 0, respectively. Since the curvatures (k i ) and (k2 ) represent extrema, the nor-

mal curvature in an arbitrary direction may be written as

k = k i cost a + k 2 sin g a ,	 (13)

which is known as Euler's theorem, or as

11 —d`x - A
dx - dz

Ref. 4, p. 80, p. 81.

A means of verifying the results obtained for the principal normal curvatures of surfaces is

available via Rodrigues' formula:

A = - •k dX (15)

where (k) is the normal curvature in the direction (dn) of the line of curvature. A curve on a surface

whose tangent at each point is along a principal direction is called a line of curvature. That is, equa-

tion (14) holds when (k) is given the value associated with the selected principal direction. Ref. 6,

p. 186; Ref. 4, p. 94; Ref. 7, p. 211; Ref. 5, p. 97. Then either (dv - 0) or (du = 0), when a result

for (k i ) or (k 2 ) is verified, since Rodrigues' formula characterizes the principal directions.

The principal normal curvatures for the axially symmetric surfaces whose generating arcs were

obtained by conic section are now developed in detail, and verified via equation (15) using a (a,t)

parameterization. Subsequently the normal curvatures of an axially symmetric surface described by

an (x,t) parameterization are developed and verified. Both parameterizations employ one linear (o

or x) variable, and one angle variable Q or C).

paraboloid
hyperboloid
ellipsoid	 (OP = (u,v)
sphere
cone

parabolic locus ) ( x,V = (u,v)

A right-handed Cartesian coordinate system may be assumed throughout. The forms (E, F, G, e, f,

g) are written out as they are fundamental for the present development of (k t ) and (k2 ) as well as

other developments (ds, etc.).
3



SURFACE DESCRIPTION
(X)

SURFACE TANGENTS
	

TANGENTIAL RATES
FIRST PARTIALS (X U , X„)
	

SECOND PARTIALS (Xuu, X uv , XvvI

SURFACE NORMALS
IN)

STANDARD FORMS (1)I	 STANDARD FORMS (11)
(E, F, GI	 (e, +, 9)

NORMAL RATES

J	

L	 PRINCIPAL NOk)Mk^CURVATURES

RODRIGUES' FORMULA
(dN = - k dX)

Figure I. Flow Chart Leading to Rodrigues' Formula



PARABOLOID

2
x-(0sint.-ocobt.4F tit)

R U - (sin	 cos r, o/21F)

xv n (a Cos 0 sin r, 0)

R uu - (0, 0, 1/21F)

xuv - (cos r, sin r, 0)

xv„ _ (-a sin r, a cos r, 0)

E - Xu . xu - I + 02/02

	F = X u • xv = 1	 (! systems)	 standard forms of (1)

G - R v •'xv =02

	

x uu x u x v 	 l

(EG - F2)'/:	 (4172 + a2)'/:

	

f 

= xuv xxu

2 
h -0 (1 systems)	 standard forms of (II)

(EG F )

x vv xu xv _	 02_ 

(EG-F2 0 (4172+02)/2

surface description

tangent to surface

tangent to ^,.irface

tangential rate

tangential rate

tangentiaJ rate

06)

(17)

(18)

(19)

CO)

(21)

(2222)

(23)

(24)

(25)

('b)

(27)

k = e ^ 4F
2--

	

t	 E s (4F2 + 02)3/2

_ g =	 1

	

k2	 G	 (4172 + 02)1/z

principal normal curvature

principal normal curvature

(28)

(29)
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Rodrigues' formula for (k I ) -► Nu du = -k 1 xu dv

(k2) -► Nv dv = - k2 kv dv

x 9 Xx v 	 —0 sill r I+a cos ^'j +2FkN=	 .._ _.— _ . r .. _, - --e. u--^ ^^^ 	 -	 surface normal
N u X x v l	 (02 +4f.2)'fa

_0 2 Sill ^'	 Sltl ^'	 n	N U
	 °+ 4F 

j _ ,. v._._..^ i normal rate
(0

	

u	 2	 F 2 ^i:	 ( 0 2 +4F2)'vl

0 2 cos ^'	 cos

	

+	 _	 _. ___ .__ +	 _ 
(02 +41,2 )3/z 0 2 +41:2)=J

- 'FO	 A

	

+	 _ k

10 2 + 4t; 2 )3/2

l-0 cos ^') i - (o sin

	

Nv :	 _	 _I _	 normal rate

(30)

(31)

(32)

(33)

(34)

II NIT RBOLOID

x	 10Sill ',-Ocos^,c(I +0'-/a=)"2+ ^1

xu z (sin ^, -cos ^Ac0/a 2m I . 0 2 /a 2 )-Vf i
x v = 10 Cos ^, 0 Sill ^, 0 1

^ u ► ^ = 10. 0, (-r(i2/a°)' I + 0 2 /a 2 )-3/2 +(c/a-)

x uv	 [Cos ^, sin ^, 0 i

X "v = I -0 sin ^, 0 cos ^, 01

surface description

tangent to surface

(35)

(36)

tangent to surface	 (37)

tangential rate

tangential rata

tangential rate

(38)

(39)

(40)

1
0 c^

2(a2 +0 - )

I' = X
11

	 = 0	 G systems)

G \v xv 0`

(41)

standard forms of (1) (42)

(43)

6



S
	 Ca+

k ) n 
Es • (a2(a2 +02)+020213/2

principal normal
	 (47)

Curvature

_ . __ _c
k2 G	 ( a 2 (a2 +02)+02021'/:

principal normal
	

(4x)
curvature

Willi xu xv	 CU2_

n (fG - F2 )'/'	 (82 + 0 2 ) [ a2 (u2 + 02 ) + C 2 02^h

f = 
kuv 

ku 2 v'h 
n 0	 (1 systems)	 > standard

(ECG- 	 t	 tormsof(11)

xw xu x v 	 CO2

(E?G- F2)'/:	 ( a 2 (a2 +o2)+C2021'/:

(44)

(45)

(46)

Rodrigues' formula for (k ) ) -+ N u du a - k ) x u dl.

( k ' ) -+ N'v dv - - k 2 z v dv

N= uX..xv	 —Cusin ^i +Cocosrj+a(a2+o2)^/^k
R

IXu 
x 

)iv)	 1a2 (a2 
+02)+C202,'h

(c ot sin t) (a2 + C 2 ) i _	 _(c sin tN il =
"	 ( a2 (a2 + 0 2) + C 2 02 1 3/2	 1 a2 (a2 + 0 2P) + C 2 0 2 1'/z

(c 02 cos r)(aC2 )+  	 (c Cos

(a 2 (a2 +02)+0202)3/2	 13 2 (a2 +02) +02021'/:

as (a 2 + 02)-'/: k	 oa(a2 + a 2 )'/: (2 2 + c 2 ) k

a 2 (a 2 +02 )+C 2 02 1'/2	 (a2 (a2 +o2)+C20213/2

_(-c o cos r) i -(c o sin 0 i
Nv	

1a2 (a 2 +o2) +C202)!/2

(30)

(31)

surface non nal	 (49)

normal rate

(50)

normal rate	 (51)

17



I . 1.1,1I ISUi 1)

x	 v 1 0 sin g, -a Cos r, c(I - 0 2 /a 2 ) 1/2 + z  I 
I
	 surface description

x u 	(sin g, -cos ,(-Ca/a2)(I - 0 2 /a 2 )—Vl l	 tangent to surface

X,	 is Cos ^, a sin ^, 01	 tangent to surface

x,,,, = (0.0,(-Ca2/a4)(I -a2 /a2)'3/2

- CAl ( I - 0 2 /a 2 ))	 tangential rate

x u , = ICos	 F i n ^, 01	 tangential rate

X,, = I -a sin ^, a cos 3', 01	 tangential rate

1
a c`

!: = x u 	x w I +
( a 2 -a2)

! m x I. x v = 0	 (1 systems)	 standard forms of (1)

(; = x v x v = a'

x uu x u x v	 -Ca"

((.G, - F-1 	 (a' 02) (a~ (a 2 _ a2) +c2021112

K x x
v - `^--- V = 0	 (l systems)

`vv xu ^v	 -CO2
E

(PC► I' 2 )^ = 	 1a 2 0 - 02)+c20 21 %

(52)

(53)

(54)

(55)

(56)

(57)

(.58)

(59)

(60)

(61)

(62)

(63)

standard forms
of (11)

-Ca4
k l - [ - 

i`120202)+`202 3^

k =	 _	
-C

+	 ` ẑ^ 2	 1	 ^ ^ r(a-(a -v°) r^-a-1

principal normal Curvature

principal normal curvature

(64)

(65)

8



a2
E= xu •`x,, =l+___)

(c2 - a2)

F = x u • k v = o	 (1 systems)

G = zv x-02

standard forms of (I)

(75)

(76)

(77)

Rodrigues' formula for (k t ) -► Nu du -k t R U du

(k 2 ) -i N^ dv ^' -k 2 x^ dv

xuxXv	 eosin ^i - ca COS j+a(a'-02),^2k
N= ^	 _^...__ = _,_._	 .____	 _.-- .,.. __.	 surface normal

IX u x k v i	 la2(a2 _02) + C2ot1'/2

	

(r. a2 sin r) (a2 - C ? I' i	 (C sin r) iN= ,d_._ ..__._._....__..._.-_,^__. + _ 	 normal rateNu
	 a 2 (a 2 - 02

	

l ) +02 0213/2	 (a 2 (a 2 -02)+c20211/:

	

(C 0 2 COS t) (a 2 - C 2 )1	 (c cos ^) j
a 2 (a 2 

-(12)+`20213/2 1 a2`a2 
-U2) C2021'h

_ oa(a 2 - a 2 )' - 'h k	 oa(a2 - 0 2 )1/2 (a2 - c 2 ) k

a 2 (32 - 0 2 )+ c 2 0 2 1 1/1	 132(a2 -02)+C20213/2

N — (C a COS ^) 1 +(C0 a Sin ^ ) J
normal ratev	 [a2(a2_02)+C2o21'/3

(3O)

(31)

(60)

(h7)

(08)

SPITE RE:

x	 = (a Sin d`, -0 COS ^,(C2-a2)'/2+xtl

z 	 _ (sin g, -COS ^, -c kC 2 - 02)-x/21

xv =Iu COS g .a sin g,01

,kuu = 10 0 -0 2 (C 2 - 02)-3/2 - (C 2 - 02)
-1/2)

iuv _ (COS ^, Sin ^, 01

Xvv = 1-o sin g, a COS ^, 01

Surface description

tangent to surface

tangent to surface

tangential rate

tangential rate

tangential rate

(h`))

(70)

(71)

(7')

(73)

(74)

9
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x uu xu x v	 -C
(78)

x
f -	

uv 
xu xv = 0	 Q systems)	 standard fonns of (11)	 (79)

xvv xu x v 	 -02

(1'(i - 1 2 ) :	 c

c	 I
k,
	 I:=	 =-	 principal normal curvature	 (81)

 c

k, -- ti - - I	 principal normal curvature	 (82)
C	 c

Rodrigues' formula for (k, -► N u du = -k k u du	 (30)

(k 2 )-+Nv dv = -k 2 z v dv	 (31)

x x	 a sill iI	 oti^j+(c2- o`)'/2k
N = _u - _v	 _	 _ .--- ,	 _ .._____	 surface normal	 (83)Ix U x xv l	 e

sin ^ i - cos ^ j - o (c 2 -o-) 	kNU y 	 normal rate	 (84)
C

ocos i+osin j
N^ =	 normal rote	 (85)

c

10



X °(O Sill -0 Cos r, ca+ZI)

k u = (Sill r. -COs t, C)

9  =(a Cos r , 0 sill r.0)

x uu = (010.0)

R UV _ (cos t, sin r, 0)

iw = (-o sill t.a Cos r,0)

E = R 	 = I +C2

1 " = ic u • RV = 0	 (1 systems

G = x V xV =02

X uu xu R V

-(EG - F2) V2

x uv XU RV

(8b)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

I'=  - -----	 = 0	 (1 systems) ^	 standard forms of (11)
(EG - F")71

ik vv XU 
Kv	 OC

-(EG -1.2 )1/2 	 (1 + c 2 )'fi

(96)

(97)

eki-E=0

k	
g	 c

^.	 2 ' G	 O() +c2 0
(99)

(98)

surface description

tangent to surface

tangent to surface

,angential rate

tangential rate

tangential rate

standard forms of (1)

principal normal curvature

principal normal curvature



Rodrigues' formula for (k f ) -+ Nu 	_ -k i )x u du

(k 2 ) -► Nv dv = - k2 g dv

	

x rr x xv	 -C sin r +ceasrj +kN =	 a = .__ _ .^ . r  -^ _m

	

..,=	 surface normal

	

1''u x X v )	 {1 +c2)n

Nu 0	 normal rate

-c cos ^` i - c sillN	 _	 normal rate*v	 (I +C2)r4

PARABOLIC TORUS

(30)

(31)

(100)

(101)

(10?)

X	 X. 1 4^_ +i1
1 

file, ( 41' F a^ COS +'I.^

J

z = CI , _' sin f:, ^x	 - cos t^^1. 

X2x2x	 0, 
Cap 

+ a) cos , - t ^; + a^ sin is

C

sin tCos i:\

x	 -x
Xx=

	

(01 ^1. Cost, 	 sin al

X2	 \	 Xz	 \\
"a _ CO, -(4F + a

1 
sin t, - (il- +:r

J
 cos

surface description:

tangent to surface

tangent to surface

tangential rate

tangential rate

tangential rate

(103)

(104)

(105)

(106)

(107)

(108)



l2E=kx..Xx:I+(-x^-
	

(109)
2F

F = x x • Xt = 0	 (1 systems)	 standard fonns of (1) 	 (110)

_ _ ( x2
G = x	 xt-(	 +a)

2
	(111)

e = 
x xx xx xt z (4F2 + x2)_v: 	 (I I ^)

(L.G - F2)V:

f = xxt 
x x xt 

= 0 (1 systems)	 standard forms of (11) 	 (113)
(FG - F20

	

x te x x xE	 -(4Fa + x2)

	

(FG - 172)"1	 2(4F2 + x2)1/2

k i = 4F 2 (02 +x 2 )-3/2 principal normal curvature (115)

k 2 = -8F2 (02 + x2)-%2 (x2 + 4Fa)- I principal normal curvature (116)

Rodrigues' formula for (k 	̂ Nu du = - k i x u du	 (30)

(k 2 ) -► Nv dv = -k2 xv dv	 (31)

	

xuxxv	 -xi+2F sin tj+2F cos; tk

2	 2 /a	
surface normal 	 (117)I z x xu	 v l	 (4F + x )^

Nu = 1 x 2 (4F2 + x2)-3/2 - (4F 2 + x 2 )-!i 1 i	 normal rate

	

- 12Fx sin t (4F 2 + x2)-3/21J - [2Fx cos t(417 2 + x2)-3/21 k	 (118)
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GRAPIIW rRFSFNTATION

Two illustrations are now presented. Figures (2) and (3) are representative of the (a, t) and

(x, t) parameteriiations, respectively, and depict the principal nortnai curvatures (k I ) and (k 2 ) as

well as their centers of curvature (e l ) and (c 2 ). The surface nonnais are shown, together with the

parametric lines w m const.,	 const., x - const.,	 constant), and the tangent lines (u u , X v ). The

circles of eurvaturc (k 3 ) and their centers (c 3 ) are associated with the generating arc, and are seen to

be distinct, in general, from (k f ) anti (k, ), anti (c t ) anti (e 2 ),

As a plane containing the normal (N) is rotated about the normal, the center of curvature varies

between the extrema (c ) anti (c 2 ). This definite motion along the normal produces a description

of the surface curvature at the point twing considered. Ref. 8, p. 184. Appropriate plots of (c)

versus angle (a) may be const+-acted as graphic ;acts. TI ► e curvature of eve ►y nonnal section is com-

pletely determined by the principal curvatures anti the angle which the normal section makes with

the principal directions according to Fuler's theorem.

FDGIi DIFFRACTION

"I'I ► e principal normal curvatures (k t ) and (k 2 ) which have been shown to lead to generic normal

curvature via ruler's theorem have a wide range of application in diffraction theory. Ref. 2, p. 67.

Curvature matrices are used extensively; one-halt' of the trace or spur equals the mean curvature (k.„ ),

and the determinant equals the C.,ussian curvature (ks).

	

k t	0
Q =	 (120)

	

0	 k,

For a local Cartesian coordinate frame at a point (0) oil surface y, a typical point in the neighbor-

hoed of (0) may be represented by

Z=

	

[xl] ' Q[XI] +0(x,2)	 (12!)
X2	 x2

When basis vectors (z t , zy) coincide with the principal directions fi t , i► ,) the curvature matrix Q is

diagonal as in equation (120), above. If (ac t , z.,) and (55 1 , ► 2 ) are skew in the amount (0),
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cog	 sin	 T k t	 0	 cog 	sin tr
Qs I	

(1'f)
L:-Sin ^i 	cos ^i	 0	 Its	 -gin ty	 cold

Other adaptations can be found in the literature. A family of parallel wavefront surfaces

(6 = c;;onst.) is considered in terms of a local Cartesian frame as before. Assuming (x t , 1 2 ) are the

principal directions there exists a coordinate system (x i , x 2 , 6), such that the curvature matrix of

w(6) takes the form

I	
a

M	 Rt +6

	

Q(6) a	(123)

o	 I
R2 +8

When the basis vectors do not coincide with the principal directions, the amendment of equation

(122) applies. Here,

1 k	 (124)

	

kf	
Rt ,
	 2	 R2

where (11 1 ) and ( RZ ) are the principal radial of curvature.

In the calculation of ray amplitudes

del Q(6) '^ ( R t + 60 )%2 (R2 + 6n)'/:

jet Q(60 )	 (Rt +6)( R2 +6)"'z^	
(125)

%: 

for two points ( 60 ) and (6) on a given ray.

Additional information pertaining to the theory of diffraction and curvature matrices may be

found in Ref. 9, p. 94-114, and Ref. 10, p. 1 .33. A connection between the curvature matrix and

the Weingarten equations may be found in Ref. 11, p. 67. These topics lie beyond the scope of the

present document.

CONCLUSION

The principal normal curvatures of six surfaces of revolution frequently encountered in micro-

wave antenna analysis were developed via orthogonal coordinate nets. No particular significance

was attached to the sign (t) of (k t ) and (k2 ), but the change in sign is considered significant. An

arbitrary convention may be introduced. It was shown that the results satisfied Rodrigues' formula.
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Naramcterixations of virtually any surface may be dealt with by the means illustrated in this docu-

.L	 ment to obtain normal curvature, area, etc,

The tangents along tines of curvature and the normal to surface (7) comprise an orthogonal triad

Ne x,,, N) that is distinct, in general, from the orthogonal triad (t, n, 6) of 5erret 0851) and Frenet

0847). which pertains to curves (c) lying oa surface (7). The distinction is brought out more strongly

by the following. In the latter case, the derivatives (i,' n; b') are given by

t' = DXt,n'= fix ii, b' a uxb	 (126)

where the b is the Darboux vector

	

Dart +rcb.	 (127)

ht the former case, the continuous derivatives

z uu , k uv , X vv , Nu and R.

are expressed as linear combinations of z u , i v , N via the Gauss-Weingarten equations in an analogous

manner:

x„u = dp i t x u + I , t x v * c N	 (,128)

= 17x uv	 12 x u +r2 
12 

xv +f N	 Gauss	 (129)

xW = rl2 2 x^ + r21 xv +g N	 (130)

N u a1 xu +a2 x v	 (131)
Weingarten

N V = a2 x u +02 xv	(132)

Ref. 6. p. 202, Ref. 4, p, 22,

ie difference between the normal curvature of a surface (ko in Ref. 12, p. 118) and thy, curva-

a curve (k in Ref. 12, p. 117) lying on the surface is also illustrated by the relationship,

	

ko = k cos i9= U
	

(133)

0) is the angle between the principal normal to the curve and the normal to the surface. The

n du : dv for ko is the direction of the tangent for the curve.
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n - (po X Prvl o x Pti - (Pa X Pt)/(PG - p2)%2

dS - (FG - f~ 2 0 dodt

= xa +yQ +zo

(13-A)

(14-A)

(I 5-A)

Differential Areas

APPENDIX A

r

Cylindrical Parameterization (Summary)

x = a sin t

paraboloids

hyperboloids

ellipsoids

spheres

coitus

y = -0 cos r	 (1-A)

z = 02/4P + x l 	(2-A)

z = c(1 + 02 /a2 )q + z i	 (3-A)

z-c(1 -a2 /a2)`/=+zl	 (4-A)

z_ (c 2 -0 2 )VI + z l	 O-A)

z-co+z l 	(G-A)

Tangents to Surfaces

P n =aP/as, Pt'saP/ O r, P=1x+jy+^z-(x,y,z)	 (7-A)

pt _ (a cos r, o sin t, 0) for rotationally symmetric surfaces.

paraboloids	 pQ - (sill -cos t, a/217)	 (t)-A)

hyperboloids	 po = (sin r, -cos t, ac /a(a 2 + c 2 )V2 )	 (9-A)

ellipsoids

	

	 P = (sin r, -cos t, -oc /a(a2 _ c2)'/aI (10-A)a

spheres	 pa = [sin t, -cos r, -0/(c2 - 02 )%x I 	 (I I-A)

cones	 p a = (sin ^. -cos t, c I	 (I 2-A)

Normak to Surfaces
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F =xgxr+yuyf+zOzf

n x2 + y2 +z2

paraboloids

hyperboloids

ellipsoids

spheres

crones

(1G-A)

(1'-A)

dS a a(i +a2 /4f»2 )y dodgy' (1$-A)

dS n a I 1 + -Pi c2 /a 2 (a2 + 02 )1'/1 dodgy' (19-A)

dc • oII +a2 e 2 /a 2 (a 2 -0`) 1 '/1 dads' ('_(}-A)

dS; ac /(c 2 - 02 )'/2 dad 	 (21-A)

dS = o(c 2 + 1)'/2 dads'	 (22-A)
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