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Abstract

A fast computer program has been developeo that

can be used in two basic modes: (1) an analysis
mode for steady, transonic, potential flow through a
given planar cascade of airfoils and (2) a design
mode for converting a given cascade into a shockless

transonic cascade. The design mode can automati-
cally be f,llowed by the analysis mode, thus con-
firming that the new flow field found is shock
free. The program generates its own multilevel
houndary-conforming computational grids and solves a
full-potential equation in a fu i ly conservative

form. The shockless design is performed by imFle-
merting Sobieczky's fictitious-gas elliptic. con-

tinuation concept.

Nomenclature

a speed of	 sound	 (isentroprc)

at speed of	 sound	 (critical

of speed of	 sound	 (fictitious)
CO coefficient of aerodynamic drag force

(x	 direction)

C 1 coefficient of	 aerodynamic	 lift force
(y	 direction)

c airfoil	 chore	 lengtn

D determinant:	 a(x,y)/a(X,Y)

g y-distance between corresponding points
on	 neighboring	 airfoils

M local	 Mach number	 (M =	 qla)

M* critical Mach number	 (M* =	 q/a*)
M 1 Mach number at	 upstream	 infinity
M 2 Mach number at downstream 	 infinity

m coordinate direction orthogonal	 to

streamline
P constant	 in fictitious-gas	 relation
q magnitude of	 local	 velocity	 vector

S entropy

U,V contravariant components of 	 velocity
vector	 in	 (X,Y)	 plane

u,v components of velocity vector 	 in (x,y)
plane

x . y Cartesian	 coordinates	 in physical	 plane
X,Y ;.artesian coorGindtes	 in computational

plane

a1, o2 free-stream angles at upstream and down-
stream	 infinity

a cascade stagger angle
t ratio of	 specific	 heats
a angle between	 x	 axis and	 velocity vector
V Prandti-Meyer function

• Visiting 2Tesearch Scientist presently employee by
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P	 isertropic fluid density

o*	 critical fluir density

of	 fictitious fluid density

0	 velocity vector potential (pp = q)
stream fuoctio,

Introduction

In the general case of transonic cascade flow,
supersonic regions terminate with shocks. These

shocks create vorticity and generate ent ropy in a
flow field that was initially irrotational and

homentropic. As a consequence the aerodynamic drag
force sharply increases (wave drag) and the total
energy decreases, resulting in a rapid decay of the
aerodynamic efficiency of the cascade and an abrupt

increase in the aerod ynamic noise level. In many
experiments it has been observed that, if the Mach

number just ahead of the foot of the :hock wave is
larger than approximately 1.3, the boundary layer

starts to separate, leading to complex and poten-
tiaily dangerous unsteady flow phenomena and mech-

anical vibrations.
ChOKed flow represents yet inother undesirable

phenomenon associated with transonic cascade flow.

Choking places an upper limit on the mass flow
through a given cascade. As a countermeasure the

airfoils In the cascade are often positioned farther
apart, decreasing cascade solidity. This results in

a decrease in flow turning angle through the cascade
and a drop in pressure rise across the cascade.

The main objective of this work is therefore to
eliminate the shocks (anr possibly even the cnokeo
flew) by slightly altering portions of the contour
of a given airfoil ir the cascade.

Analysis

Governinq Equations

This wo rk is based on the fictitious-gas con-
cept of Sobieczky' and the full-potential, steady,
transonic turbomachinery analysis codes of
Dulikravich. 2 The anal sis was derived exten-
sively in ear,ter works5.4 and will be repeated
here in its concise form only.

In the case of a steady, two-dimensional,
irrotational isentropic flow of an inviscid, com-

pressible fluid the conservative form of the con-
tinuity equation is

(ou) ,x ' (ov),y 
• O	 (1)

Equation (1) can als o) hp expressed in its non-
conservative full-potential form
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Consequently the fully conservative form of the con-

tinuity equation (eq. (1)) becomes

b((°UC + 6X1	 + ( ° VD + 6Y) ) . U	 (8)
,X	 ,Y

where the artificial viscosity terms aX,ay

represent principal parts of a truncation erro r of

equation (3).

The computational grid in the x,y plane is

generated by usinga sequence of simple geometric

transformations 110 incorporating a single
conformal-mapping function, elliptic polar coordi-
nates, and nonorthogonal coordinate stretching and
shearing. The uniform grid (Fiq. 2) in the computa-

tional (X,Y) plane thus remaps back into the body-
fitted, quasi-orthogonal grid of figure 3 in the

physical (x,y) , one. The iterative solution pro-

cess of equation (3) is accele r ated by using a tour-
level, consecutive-grid refinement procedure.

All the flow parameters are nondimensionalized

with re,,iect to the critical conditions denoted by
an asterisk so that the isentropic relations used

for t:.e local fluid density and the speed of sound
arell

IP	
I . I	 Y - 1 

M 
2)	

(9)—P, 1 (--7— - - 7— -

2	 \t-1

_ (o. 1
	 (lU)

a`

_0
2	0	 02

z 
!,—x 
	

0
a	 O.xy ^1	 0^ O.yy 

(2)

or in its canonical operator form5.2

(v(1 - M2 ) OM
S ^ 

- °(1 - M2)0 ^ss) I °(0201 - M20Ess)	
0

(3)

Equation (3) represents a quasi-linear, second-

order partial differential equation of mixed
elliptic-hyperbolic type that accepts isentropic

discontinuities in its solut i on.	 These isentropic

shocks satisfy mass conservation

M"aM•b 
z M

*b( Pa/ c
b )	 (4)

and d'ffer from the Rank ine-m ugoniot Shocks
(Table 1). Superscript n	 in equation (3) desig-
nates upstreem differencing, and superscript E
designates central diffe-encing to be used for the

evaluation of particular second derivat-ves. Solu-

tion of this steady-state equation is jbtained as an

asymptotic solution to an artificially unsteady6
equation

M2 ' 0 .ss + f',mn + 2CO ,st + 2n0 mt + c0 'i l = U

(5)
Shock-Free Surface Design

for large times, where E, n, and c are coeffi-

cients. This e quation is solved by using an itera-

tive line overrelaxation whe re consecutive iteration
sweeps through the flow field are considered as
steps in an artificial time direction 	 The steady
part of the residual (or error) of equation (5) is
.Nays evaluated by using equation (1) supplemented

by a directional numerical viscosity in a continu-
ously fully conservative form, thus uniquely captur-

ing possible isentropic shocks.

For the purpose of a type-dependent,?
rotated 5 finite difference evaluation of the

derivatives in equation (3) and a finite areab
evaluation of the first derivatives in equation (1),
the flow field and the governin q equations are
transformed from the physical (x,y) plane (Fig. 1)

into a rectangular (X,Y) computational domain (Fig.
2) by using local isoparametric bilinear mapping

functions.

If the geometric transformation matrix is

x X yak

[J-1 T	 =

',Y y,Y

then the contravariant velocity components in the
(X,Y) plane are

Within the last decade several versions of an

indirect (hodograpn) design approach based on
Garabedian's method of complex characteristics have
been published. 12 The method proved to be a
powerful tool for the design of high-performance

airfoils and cascades, but nandling the canplicated
boundary and initial-value problems in a four-
dimensional computational space for practically

interesting design case. requires a large amount of

experience. It is therefore desirable to develop
efficient direct - or nearly direct-design methods.

This task can be accomplished by prescribing a
smooth, shock-free pressure distribution along a
portion of a gi,en airfoil contour in a cascade and
then determinir,g a partially new airfoil shape con-
sistent with the prescribed surface flow condi-
tions. Because of the highly nonlinear character of
the transonic flow this design technique generally

does not provide an entirely shock-free flow field.

In order to completely eliminate all shocks (and the
associated wave drag) from the flow field, a number

of sucn designs must be performed, and an optimiza-
tion technique must be devised to search for a cas-
cade that maintains ar. entirely shock-free flow
field for a specific set of flow parameters.

Shock-Free Flow Field Design

(b)

Shock-free, or shockless, flu% means that the

U 1
I I

rru	 - 1 0	 fluid decelerates from a supersonic speed to a sub-

1 . [J] -1S 1 . [J1 -1 [JT ]	 ' YX	 (7)	 sonic speed not discontinuously (shocked flow), but

V	 v	
10.^	

smoothly over a finite distance (isentrop c recorl^-
l	 pression). This requires determination of a modi-
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fled supersonic region tf!. at is longer but flatter
and thus tan possibly unchoke a flow that was
originally choked. The sonic line bounding such a
supersonic region in an otherwise subsonic flow
field must not have inflection points if shocks are

to be avoided.

to eliminate the possibility of obtaining

shock $ anywhere in the flow field, Sobleczky pro-

posed l and successfully applied l3 , 14 the concept
of a fictitious-gas, shock-free design that corre-

sponds to 
all
	 continuation 3 from the sub-

sonic flow into local supersonic flow domains. 	 This
design technique uses isentropic relations for fluid
density (eq. (9)) and the sound speed (eq. (10))
only where the flow is locally subsonic. At every

point where the flow is locally supersonic, modified
(artificial) relations are used for the fiuid den-
sity and the sound speed so that the governing equa-

tion remains ?llipt"c throughout the flow field.
Therefore any conservative computer code capeble of
solving a subcritical potential flow field can be
modified to include the fictitious gas concept and
then serve as a tool for determining the sonic line
shape.

if is important to point out 14 that the flow
field outside the supersonic bubble calculated from

the fictitious-gas relations is already the correct
subsonic flow field. 	 It is only the supersonic part
of the flow field that must be recomputed and trom
this recalculation a new portion of the shock-free
airfoil surface determined. Lift and drag coeffi-
cients are also already design results, and they
will not be altered by the subsequent recomputation
of the local supersonic region. The sole purpose of
originally using an fictitious gas (modified density

and sound speed relation) is thus to determine a
shape of the sonic line that is compatible with an
entirely shuck-free flow f iela.

In the two-dimensional case of a cascade of
airfoils the values of potential p and stream
function it on the sonic line obtained from the
fictitious-gas calculation serve as the initial data
for ar integration by the method of characteris-
tics.	 This integration is performed in a triangle

ERC of a rheograph (Fig. 4) plane (local flow anqle
e versus Prandtl-Meyer function v(M,). This
recalculation (now using isentropic gas relations

(eq. (9) and Eq. (10)) is performed only inside the
supersonic flow domain. The new section of the air-
foil Surface is then determined from the arc iD . 0,
which is interpolated frontthe solution in the char-
acter W is triangle ERC (Fig. 4). 	 The new airfoil
IS slightly flatter than the original shape: 	 isen-
tropic flow requires more space to pass than the
fictitious one.

The fictitious-gas technique is not limited in
application only to two-dimensional planar problems

like a hodograph technique; it can be successfully
applied to both arbitrary two-dimensional and three-
dimensional 13 , 14 configurations.

Fictitious-Gas Relations

The fictitious-qas relation of/p, is ap-
plied onl y in the regions where M > 1. An arbi-
trary analytic expression for pf/p, is never-
theless subject to several constraints (Fig. 5). 	 It
Should satisfy the first-order continuity condition
on the sonic line in the flow field; that is,

..n=	 -
ii>Y'L-

d Of
- -1	 (1])

(
air l D.

when M . 1. It is desirab l e to use a formula for
of/ P * that includes a single (preferably con-
stant) input parameter P tha l makes the fictitious
gas more or less compressible in the supersonic
regions. Such a function must not have minimum or
maximum values in the range of expected relative
local Mach numbers, because at such points the local
fictitious speed of sound of/a *	is infinite.
This can be observed it the general continuity
crit?rion

q

of	 exp -	 (11)

fa. of

1S used to obtain the relation for of/a•.
After taking a l ogarithm and a derivative of both

sides of equation (12) one gets a general expression
for the speed of sound of the fictitious gas

2
of
	 Of

_M*
	 1	 (13)

a,	 Pik

For the purpose of guaranteeing an entirely
shock-free flow field the values for ot lp' must
always be higher than the values required by the
parabolicity condition; that is, (of/o•)	 M.
(Fig. 5).	 The final condition for the relation

p f /o' = F(M•; P) is that it should be a very
simple function that will also produce a simple ex-
pression for of/a..

in the present work we use the relation

O f	 1 - V/1 - 41)(M. -
= I '— --P—	 (14)

o,	 c

which gives

a
7	 +
f
 1 -

-? • M, I p	-
at

(15)

Results

Based on the preceding analysis, computer

code 15 DCAS20 has been develo ped and tPstea for

the following sequence of test cases. For the pur-
pose of illustrating basic features of the flow
through planar cascades of airfoils the flow around
an isolated NACA 0012 airfoil in free air and the
flow through a cascade of NACA U012 airfoils were
analyzed. Airfoils in the cascade had zero stagger

angle (s • 0 * ) and a gap-chord ratio of 3.o

(g/c • 3.6 ) . The free-stream angle was zero at both
upstream and downstream infinity. In the case of an
incompressible free stream (MI . 0.001) the result

obtained for the cascade aid not differ fron, the
result obtained for an isolated airfoil. i But in



the case of a transonic flow (MI . 0.8) the cas-
cade effects (Fig. 6) were very significant even for

such widely Spaced airfoils.

To demonstrate the applicability of shock-free,
fictitious-gas design to realistic lifting, stag-

gered cascades, we use a simple analytical shape
generator for geometry definition of the input air-
foils. Flexible geometry definition is most useful

for parametric studies of cascades. here we use a
formula for blade section definition:

y . Ax + BxC 
+ A 112 (I - x) 1/? ( D . Ex . Fx(1 - x))

(16)

with a proper choice of the parameters to Control
leading- and trailing-edge radii, angles, and thick-
ness distribution.

Figure 7 shows a cascade of this family, with a
sonic line and the corresponJing modi f ication on the

upper surface, where shock-free redesign l5 for

chosen operating conditions flat'ened the a  '. 1

contour. For this cascade the global flo► 	 geo-
metric parameter, were M j	 C. B, y!c	 0.

aI . 41', al . 17', and a

It is shown in Figure 8 that the a•-fluw
through this cascade with geometry given by equation
(16) and a gap-chord ratio of 0.85 is not shock-tree
but contains a very strong shock. For the save
global flow conditions the design mode of the code
DCAS?D is then used to obtain a new shape (Fig. 7).
This shape is different from the initial airfoil

onl y between 3 and 38 percent of chord on the upper
surface, resulting in a shock-tree (Fig. 9) pressure
distribution. Then the analysis mode of DCA2SD is
used to verify that the design flow agreement is

excellent (Fig. 10).

This is the first of a series of exam Les from
a parametric cascade airfoil shape study .1
Although the new airfoil losses shock-free proper-
ties at oft-design conditions (Fig. 11), the result-
ing shock is still ce n siderably weaker than a shock

on the originai airtoil. An optimum cascade for a

range of operating conditions can be obtained by
combining the fictitious-gas design concept with an

optimization technique.

As already mentioned, computer code ICASZD is

capable or converting a choked, shocked cascade flow
field into an unchoked, shock-free flow field.

To illustrate this feature we selected a non-
staggered Cascade of NACA Wlb airfoils having a
pap-Chord ratio g/C Of 1. Note that a simple one-
dimensioidl ll flow assumption predicts that
the flow through thi_ cascade will choke it

M I > 0.571. Therefore we used the design nK,de
of the DCAS ?O code with M 1 . 0.582 and the
fictitious-gas parameter P . 500. The resulting
flow field (Fig. 1i) is unchokeJ and entirely shock

free.

All the calculations were performed without
taking into account viscous boundary layer effects.
For this purpose One may use a standard boundary
layer calculation procedure because Shock - boundary
layer interaction effects do not exist in a shock-
free flow.	 The viscous/inviscld calculation can be
performed iteratively with a treatment of trailing-

edgevi5'ous interaction, as has been demon-
strated ll for isolated supercritical airfoils.

Concludinq Remark

An efficient and reliable computer program,
DCAS?D, has been developed and tested that automati-
cally performs partial redesign of i given airfoil
shape in the cascade for the purpose of eliminating

shock waves and the associated wave dra q . The code

represents an application of already known and suc-
cessfully applied numericrl techniques for transonic
flow analysis and the shock-free flow field design.
These techniques are based on the finite volume and
d fictitious-gas approach, respectively. A new for-
mula for the fictitious-gas relation, accompanied
with the related physical constraints, has been

suggested.

The computer code is entirely self-sufficient

in generatinu its own multilevel boundary-conforming

grids. The code can operate separately as a shock-
free cascade design code and also as a general tran-
sonic cascade analysis program with the cal,ability

to accurately capture isentropic shocks.
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1.27000 0.78740 0.73508 1.35581 0.70345
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Figure 7. - Orir-nal and Shock.f1
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