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AN ALTERNATING-DIRECTION-IMPLICIT ALGORITHM
FOR THE UNSTEADY POTENTIAL EQUATION

IN CONSERVATION FORM

Richard R. Chipman
Grumman Aeraspa.:e Corporation

1 - SUMMARY

An implicit finite-difference scheme is presented for the efficient com-
putation of unsteady potential flow about airfoils. The formulation uses density
and velocity potential as dependent variables, and is cast in conservation fcrm
to assure the theoretically correct determination of shockwave location and
speed. To enable boundary conditions to be imposed directly on the airfoil
surface, a time-varying sheared-rectilinear coordinate transformation is em-
ployed. CalculEted time-history solutions on a pulsating airfoil are compared
with the results of another unsteady transonic code. The method is demon-
strated to ha ,.e excellent numerical stability and to give accurate solutions with
sharply resolve:i shocks.

2 - INTRODUCTION

The transonic now regime has long been known to be the most critical for
flutter and other unsteady aeroelastic phenomena. Until recently, there was
no efficient method for calculating unsteady aerodynamics in this speed range;
consequently, transonic flutter Prediction has relied on wind tunnel testing.
With the advent of faster computers and the emphasis on transonic cruise and
maneuver capabilities for new aircraft design, much progress has been recently
made in the development of both steady and unsteady transonic computational
methods.

In unsteady transonic aerodynamics, work has proceeded along two dis-
tinct lines. In the first, researchers have produced lineaezed unsteady solu-
tions about nonlinear mean (steady) flows. The efforts of Ehlers l ; Traci,
Albano, and Farr 2 ; Cunningham; Liu 4 ; and Fung, Yu, and Seebass 5 are
examples of this approach. From experimental measurements, such as those
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of Tijdemen 6 , :t has been obvious that these linearized solutions are only valid
for a limited set of problems. Consequently, other researchers have pursued
a second approach - the use of finite-difference methods to obtain solutions to
the coupled steady/unsteady flow. In this area, the works of Magnus and
Yoshihara 7 ; Lerat and Sides°; Beam and Warming 9 ; Ballhaus and Steger";
Ballhaus and Goorjian 11-12; Isogai 1 '; Chipman and Jameson 1 ''; Goorjian 1 s;

and Sankar and Tassa 16 are notable. The first three cited efforts in coupled
steady/unsteady flow have produced methods for solving the full Euler equa-
tions, which (although computationally too expensive for routine use) do pro-
vide excellent benchmark calculations. Ballhaus' works have produced an
efficient method for solving the lew-frequency, small-perturbation form of the
potential eq uation, thus making possible economic solutions to a range of im-
portant transonic unsteady problems.

To extend this range, the latter four works have solved the full-potential
flow equations. Isogai developed the first such procedure. The next two
works are improvements in that: (1) conservation-law form is used to accurate-
ly locate shock waves in space and time; and (2) the ADI scheme is used for
computational efficiency. The Chipma -Jameson method uses density and ve-
locity components as dependent variables, giving a simple system of first-order
equations to be solved. The Goorjisn method uses velocity potential as the
dependent variable and, by time-linearizing the density, derives a single
(though complicated) scalar equation. The method of Sankar and Tassa uses
the strongly-implicit-procedure algorithm and has been formulated both in con-
servative and noneonservative form; thus far, the scheme has been coded only
in nonconservative form.

he present method uses both the density and velocity potential as de-
pendent variables, resulting in a simple system of two equations. It is a signifl-
cant improvement over the authors' previous method"' in that the use of the
potential function totally Eliminates numerically created vorticity present in the
prior method. Furthermore, it retains the desirable features of conservation
form and efficient implicit differencing.

The theoretical development of the present method is given in Section 4 of
this report. The discussion covers the basic now equation, the details of the
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alternating-direc:ton-implicit (ADI) algorithm, the addition of artificial-viscosity
terms to capture shocks, the introduction. of a time-varying sheared-rectilinear
coordinate transfor,nation, the specification of the boundary conditions, and the
implementation of the method for a specific test problem - an airfoil pulsating
in thickness.

In Section 5, the test problem is discussed in detail, Bind computed results
are presented. These results are compared with those of Reference 15. Also
studies of the effect of variations in the time-step size and artificial viscosity
are summarized.

Section 6 Dresents conclusions and recommendations.

3 - LIST OF SYMBOLS

a	 = local speed of sound

D= ( )	 = central difference in x of enclosed quantity

D,( )	 = central difference in y of enclosed quantity

{f (T,{W})}	 = vector function of T and the vector W

h	 = stagnation enthalpy

J	 = Jacobian of transformation

M	 = Mach nunber

( )°	 = n-th time level of enclosed quantity

rl, r2	 = right-hand side of Eq (9) or Eq (26)

S(x, t)	 = instantaneous airfoil-surface location

t, T	 = time

U, U	 = streamwise component of velocity, ^-aligned
con y ravariant velocity component

V. V	 = stream-normal component of velocity, 77-aligned
contravariant velocity component

{W}	 = general vector (in this case, having components p and m)

x,y	 = untransformed coordinates

z(x,y,t)	 = surface of flow discontinuity

It	 = specific heat ratio
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O( )	 = time Increment of enclosed quantity

= artificial viscosity coefficient

^^	 = transformed coordinates

µ	 = see Eq (E)

P	 - density

= velocity potential

( )m 	- partial derivative of enclosed quantity with respect to "m" variable

( )^	 = free-stream value of enclosed quantity

p()	 = solution to Eq (11)

4 - THEORY

Basic Flow Equations

For unsteady, two-dimensional, isentropic potential flow, the equations of
conservation of mass and momentum can be written

	

Pt +(Pm=)s+(Pmy)? = 0	 (1)

	m t +h = 0, 	(2)

where

(Equation (2) is called the integrated unsteady Bernoulli equation.) Both
equations are in conservation form, albeit (2) is considered weak-conservation
form. Hence, (1) conserves mass across shocks, where the flow variables are
discontinuous, and results in the jump condition

[P] z t + [Pul zs + [Pv) z,=0,	 (4)

where z(x,y,t) = 0 represents the surface of discontinuity and [ ) denotes
the jump of the enclosed variables across the discontinuity.

Implicit Algorithm

To simplify the ensuing discussion, (1) and (2) are represented by the
vector equation

If
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{W}t +{f(QWW = 0.	 (5)

A family of difference schemes for solving this system is

jAW}+µ4't {f3*1} +(1 -µ)pt{f8} =0,	 (6)

OSP:51,

where n and n + 1 denote the present and new time levels. For u = 0, the
scheme is explicit; otherwise it is implicit. The case v = 1/2 is the standard
Crank - Nicolson scheme, 17 which has second-order accuracy. Using a Taylor
series expansion, the variables at the new time can be writ^'n

{f moll ={f°}+-ât  {I'}at + Ow l ) ,

={f°}+V- jA jjf °}+ O(at 2 ).	 (7)

Substitution into ( 6) gives

JAW} +P atry - {aN }) {f n}= —at{f n} — O(at 2 )	 (s)

where all coefficients appear at time n.

This scheme is now rewritten in the original variables of (1) and (2) ,
and centered differences are used to evaluate the divergence terms. Thus, the
following system of equations is obtained for each interior point of the com-
putational grid:

l +Pat(D,u+D,v)	 PAt(D,PD,+D,PD,) 	
aP	 rl

Pat L'	
1+PAt ( uD,+vD,

 )
	 r2

"P

where
r 1 - - at D,Pu + D,Pv
r2	 h

A( ) _ ( )2.1 - ( )°.

5



Approximate Factorization

The matrix on the left - hand side of (9) can be approximately factored
as

1 +,U at Dv	 µ At D,PD,	 1 + µpt Diu	 µ0t D,pD,
(10)

a2
	µAt P ) 1+pAtvD,	 0	 1+POtuD,

However, this scheme is not unconditionally stable. A small modification of

(10), which introduces error of order LT 3 , does result in an unconditionally

stable scheme. This modification consists of replacing the lower right-hand

term of the second matrix by

1 +µat UD, -42 at' (a', / P) D,PD,.

The resulting alternating sweeps of this stable scheme are

• x-sweep:

	

1 + µ Ot D,v	 µ At D,ND,
OP	 '.' l

	

µAt( p I	 1+µ.^t%D,	 A0	 r2

• y-sweep:

1 +µat D,u	 Pat D=PD=
OP	 OP

	

_ 2	 AO - Om0	 1 +µ,it uD	 µ Ot a /p)D All:	 l	 :

Artificial Viscosity

To capture shocks, a-tificial-viscosity terms of the Jameson type 1B are
added to the upper-left portions of each equation and to rl. Respectively,
these terms are

- E ALAy Dy

- E at.ixD.,

where E is a constant, typically equal to 0.15.

(11)

(12)

(13)
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Alternate schemes for incorporating artificial viscosity in a more selective
manner are possible. On p such alternative is to switch the coefficient c from
a low value in regions where the flow is subsonic to a higher va1Le in super-
sonic regions; i.e. ,

E = to +E I • max 10.I l - 0M	 (14)

where c o = artificial viscosity in "subsonic" zones (M SMc)

E 1 = maximum amount of artificial viscosity added to "supersonic"
zones (M > Mc)

M = local Mach number

M c = cutoff Mach number (typically 0.95).

Another scheme is to vary the viscosity based on gradients in the flow field;
e. g. ,

+E1• (

	 0j.j,j-20i:j +0j-j,j	 1	 (15)
E = Ep	 —	 J

1 m1.l,f i + -- 1 o l,a 1+ 1 m 1 -1,j 1

When such schemes are used, however, care must be taken to retain conserva-
tion form in the basic equations. Thue, for example, the first term of Expres-
sions (13) must be replaced by

- ALt-yDy (E DY ).	 (16)

In the present work, only the constant (non-switched) form of srtificial
viscosity has been used. Future efforts could easily include the switching
concept.

Airfoil-Adapted Coordinate Transformation

To conveniently impose the airfoil boundary conditions, a time-varying
coordinate transformation can be introduced to (1) and (2). The genera: form
of such a transformation is

(-'E(X.Y.t),	 n-n(x,Y.t).	 T - t •	 ( 17)

7



Equations ( 1) and ( 2) transform as

Pr + (
LU  /t + P I )  0.

(18)

	

OT 	 0.

where J is the Jacobian of the transformation and U and V are the contra-

variant velocity components, given by

U=(t+E,u+E'v

	

V= *1 t +17= u+77,V 	 (19)

To preserve a factorable form of the equations, cross terms arising when (19)
is introduced into (18) are explicitly differenced. This technique is illus-
trated below.

For the particular sample problem used in this study (see subsection,
Sample Problem) , a simple time-varying sheared-rectilinear coordinate trans-
formation is used

( =x, 77-y-S(x,0, T - t,	 (20)

where S is the instantaneous airfoil surface location as noted in Fig. 1. For
this case, the determinant of J is 1 and (19) become

t'=m1-Si0„

X'=-m^S^+mill +S') -ST.	 (21)

Substitution into ( 18) gives

PT + ("d l + (PI -ST +(1 +2 21 ) m,1),=IPSI©„)t+ (psi mt)o

mT + - ^r-^ i142+(1+S2)m')-h„ = St m t 4n	 (22)(y - 1) Ni.,

8
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R00 1752.00IW

Figure 1. — Shearing Transformation

The implicit algorithm developed previously is now applied to this system;
however tae cross terms, grouped on the right-hand side of (22). are handled
explicitly. The resulting equations are

&P+PaT 	 Q 
+_n 

(-ST + p ] f aP +p 46T1 8̂  P a +
8^ 	 A0

+ATI B PU+ 88 PN'
J
 =0,

C 8
Am+N	 µGT(a 2 /P)OP + OT U 8^ +v 8n J .16 +LET h=U,	 (23)

where "a" is the locel speed of sound and

a = ©, v= ( 1 +Si) b,,, A = (1+S2)p.	 (24)

Replacing the indicated partial derivatives by central-difference operators,
D, one obtains the following matrix equation:

9



l+ p AT(D(U+D„(o-ST)) NOT(DjPDj+D,,PD,)
Op	 -	 D, pU + D,^pV

J \	 Ap
AT D,(25)

µTi P 
J	

l+µATIQD,+OD„)
	

^

t

Following the factorization procedure previously outlined and introducing the

artificial viscosity terms, one obtains the fine! difference equations:

• k - sweep

I+µaTD^(^-S TI-t aT.ar,D'	 µ.^TD„pD„
pp- ^r l

/ y	 -.^T	 (26)
µATl ^ I	 I+µWTCDn	

'am	 r.

L

w here

r 1 = DI PU + D,PV - c (.S; D7 + Jn D^ l P

r'2	 h

• 11 - sweep

I + µ .aT D^U - t. .a"1'.a; D2	 P .aT D j PD(

/	 1	
OP	 Op	 ( 27 )

0	 1 +,u ATnDI _
(

p . IT 
`'t• J D. FD,	

ya m	 A

Discretization

In (26) and (27) , differences will be centered about (i , j) and will span

2 mesh widths (3 points): consequently, the operators (D r vD `1 ) and (D^oD^)

will spread to 4 mesh widtris (5 points) . The equation for the j-th mesh

point in (26) may then be written in the form

.•

10
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(Al{OW}}.;+IB){OW}f_, +(C){OW}f + ( D 1{OW}f.t +IE) {OVV}f^= { r} 	 (28)

where the coefficients of { A W ) for mesh points outside the range j - 2 to j + 2
are zero. If (26) is multiplied by 2(e n ) j /6T, the coefficients in (28) become

 [	 ]

(A) = 0	 0	 , IE) =	 0	 0

[('V—ST)J-1
	 o	 ( —v +ST)f:t	 0

IB)=	 o	 v	
fD1=	

o	 — v

	

f	 f

µ JT ^^ f +	 C 20'1 r, (ZOn ) f. t
I C1(29)=	 2 ^^a21
	

2 ^q 

	C P /f	 PAT f

A similar set of matrices can be obtained from (27).

Stretchings

For computational efficiency, simple grid stretchings also are introduced:

4= 1 Q) and n =ill+))• 	 (30)

The effect of these transformations on the equations to be solved is simply to
introduce the derivatives of the stretching functions as multipliers of the
terms containing spatial derivatives. The details of the particiilar stretchings
used are discussed in the Sample Problem subsection.

Solution Procedure

If equations similar to (28) are written for all mesh points and combined
into one system of equations corresponding to (26), the result is a system of

11



block-five-diagonal matrix equations. This can be solved efficiently by a

splitting procedure. Thus, (26) is rewritten as

[M1 {OW} -W,	 (31)

where

C,	 D,	 E,	 0	 0	 0	 0

B2 	C 2 	D;	 E;	 6	 0	 0

A 3 	B 3 	C 3 	D3 	E 3 	0	 u
[Ml 0	 A 4 	B4 	C 4 	D4 	E 4 	0

or in split form as

[L1 • [U1 jAi'}-{r},

where

y1	 0	 0	 1	 -6 1	 -E	 0	 0	 .

0 2 y.	 0	 0	 0	 1	 -b2 -E 2 0

013 0.1 	 0	 0	 0	 1	 -63 —E3	 .

[ Ll =	 0	 Q 4	 0 4 y4	 ( Ul =	 0	 0	 0	 1	 _ 64

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

Expanding the product LU and comparing with 111, one obtains tiie following

relationships between the elements of N1, L. and L

(3l)0j=By +aJ6j_:,	 F =-[1jl-'Ej.
-t j =C i + Q JEr,2+ Oj6;-1•

12



Then, the solution is obtained by sequentially solving

[L){z}={r}
(33)

Thus,

zt = [ y t ] - ' (r t - o )z !-2 —RJzrd,

pV^'t=z^+b^(p^'^^t)+E^(pWt.2),	 (34)

where the first solution is obtained by a forward sweep in j and the second

by a reverse sweep. An identical procedure is used to obtain a solution for
ro7N

To initialize and terminate the sweeps, the difference equations are mod-

ified to incorporate the presence of the boundaries. At the lower boundary,

for example, we choose to backward difference the c- and v-type terms (so

that no physical variables are defined outside the computational space) and

to retain central differences in S terms by introducing a row of dummy points

just below 17 = 0. Before and after the sweeps are completed, the boundary

conditions ( discussed below) are enforced.

Boundary Conditions

On the airfoil surface, tangential now is maintained. I n the transformed

coordinates, this is equivalent to

V=O, iorn=0 and 4	 (35)
LE^^^^TS

where subscripts LE and TE denot! the airfoil leading and trailing edges, res-

pectively. For the nonlifting symmetric-airfoil problem studied, the flow is

symmetric about n = 0; consequently, only half the flox field is modeled.

Thus,

0n=0, fora=0 and ^:Sti LF or E2! tiTE.	 (36)

The uniform onset flow in the far field is assumed to be undisturbed; i.e. ,

acoustic waves originating at the airfoil do not have sufficient time to reach

the outer boundaries. Thus,

(u, v) - (1, 0),

13



K

0, -
0,r .

-t

-0

r

or
V= 0, =0,

U- o f -St 

Hence,

(mc,m,,)=(l,0), for l = 7l. and ^ =f t ma .	 (37)

where the subscripts "max" denote the far-field boundaries of the compu-

tational mesh. In Fig. 2, the boundary conditions are marked on a sketch of	 !

the computational space.

RGO 1752 002W

Figure 2 — Boundary Conditions in the Computational Grid.

Implementation

(Codes UFL03 and UFL04)

The algorithm was coded for the pulsating-airfoil sample problem to be

described below. A version (UFL03) using the origintil untransformed equa-

tions was written, as well as a version (UFL04) employing the time-varying

coordinates. For UFL03. the airfoil boundary conditions were applied on the

slit. y = 0 (mean chordline); whereas, in UFLO4, they were applied on the

= 0 line coincident with the instantaneous airfoil surface position.

14
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5- RESULTS

Sample Problem

A problem that has been analyzed by several researchers is that of com-
puting unsteady pressures on a parabolic-arc airfoil which successively
thickens and thins during its travel, as shown in Fig. 3. The Mach number
for this example is 0.85. The equations governing the variation of thickness
are

TH=10110-15(T )+ 6 (15	 (15)3' 0`T_-15,

TH = 10 ^l0-15(
3015 T)+6 `305

 T)'
10	

15sT-30,

TH = O, 30sT,
	 (38)

where TH is the midcord thickness ratio and T is time, mePsured in chord-

lengths traveled. Consequently, the airfoil initially has zero thickness, grows

to its maximum thickness of 108 after traveling 15 chordlengths and returns to

S Ix, 0 - THW • Solxl
SO W -• 10% THICK BICIRCULAR ARC AIRFOIL

0
	

15	 30

t. CHORDLENGTHS TRAVELED
R 801 1 752-003W

Figure 3. - Pulsating Parabolic -Arc A irfoil.
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zero thickness after traveling a totall of 30 chordlengths. During the course of
this travel, the variation of thickness causes an interesting flow-structure.

A strong shocy wave forms on the airfoil ad it thickens; subsequently, as the
airfoil thins, the shock propagates rapidly upstream and leaves the airfoil
nose to enter the oncoming flow. The numerical computation of this extensive
shock motion is a rigorous test for unsteady transonic aerodynamic codes. It
might be noted that, because of their basic theoretical limitations, the methods
of Ref. 1-5 are unable to handle such cases of large shock motion.

The computational grid used consists of 152 points in the streamwise di-
rection and 40 in the stream-normal direction. To facilitate comnari@nne , the
grid is patterned after that of Ref. 15. In the streamwise direction, the
grid is uniform over the interval that extends from one chordlength upstream
of the airfoil nose to the trailing edge; to either side of this interval, the grid
is smoothly stretched to the boundaries located more than 30 chordlengths from
the airfoil. In the stream-normal direction, the grid is uniform from the air-
foil surface to a distance of 0.2 chordlengths; beyond this point, the grid is
stretched smoothly to a boundary also more than 30 chordlengths from the air-
foil. The minimum grid spacing is roughly 0.02 chordlengths in each direc-
tion. From studies of grid variation, it was concluded that the solution 46

sen:itiv- to the choice of grids but that the present choice is adequate because
it combines a fine-grid structure near the airfoil with boundaries sufficiently
far removed for the present calculations. Appendix A presents the actual
mesh used.

Unless otherwise noted, all calculations using either UFL03 or UFL04 were
performed with a time step of ,T = 0.02 chordlengths traveled and an artifical
viscosity coefficient of e = 0. 15. Runs varying these parameters are described
in separate subsections below.

UFL03 and UFL04 Results

Using UFL03, a time history of the flow about the pulsating airfoil was
calculated. The resulting pressure coefficient distributions for six time slices
are shown in Fig. 4. At the first time slice, the flow is subcritical. During
the next two, a shock forms, strengthens, and moves aft. A slight re-expan-
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sion occurring behind the shock can be seen in Fig. 4, Sheet 1. It should be

noted that a significant lag occurs between the time that the airfoil reaches

maximum thickness (T = 15) and the point at which maximum shock strength

is attained (T = 18.25). In the next three time slices (note that different

scales are used) , the shock moves rapidly forward, while diminishing in

strength, and leaves the airfoil.

To determine the effect of applying the boundary conditions on the slit

rather than the actual airfoil surface, results of UFLO3 and UFLO4 are com-

pared in Fig. 5. To obtain a more dramatic difference, a 15% airfoil was used

in place of the 10% airfoil previously studied; consequently, different time

slices are shown. At the early time slices (Fig. 5, Sheet 1 and 2) , during

which the shock is formed, the results are practically identical. At later times

noticeable differences occur. Compar;ng time T = 15 (Fig. 5, Sheet 2) with

T = 25 (Fig. 5, Sheet 3) and time T = 25 with T = 30 (Fig. 5, Sheet 3), one

sees that the shock speeds computed by UFLO3during these time intervals are

greater than those computed by UFLO4 (in which the boundary conditions ar-

correctly applied on the airfoil surface). A comparison of time T = 30 with '1 =

35 indicates thPt this trend persists even after the airfoil has returned to

zero thickness.

Comparison With Other Methods

Only one ocher operational code (Ref. 15) exists that solves the un-

steady-potential-flow equations in conservation form with boundary conditions

correctly applie-i on the instantaneous airfoil surface. (The method of Ref. 14

uses a primitive-variable formulation rather than introducing the potential

function itself. Consequently, vorticity is numerically created in the flow

field and degenerates the solution accuracy, particularly behind strong

shocks. ) Thus, comparisons between results of the present method and Ref. 15

serve as a check on the correctness of both. Furthermore, since Ref. 14 and

15 give comparisons with other, less exact formulations (Ref. 10 and 13),

we will omit such investigations here.

n .
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F-)r the li t %- thick pulsating airfoil, results of UFL04 and Goorjian's
method (Ref. 15) are shown in Fig. S. The UFL04 results are so labeled in the
plot legend; the Goorjian results are labeled "Ref. 15". As can be seen,
agreement in generally good; however, t. ,re are several minor discrepancies.
During shock formation, UFL04 predicts a slightly weaker, farther aft shock.
Since the shock-location difference is only one mesh width (see Fig. 6, Sheet
3), it is consi(!ered insignificant. During shock propagatiun, the Goorjian-
method shock is smeared over larger distances and attenuates more rapidly
than that of UFL04. The better shoc'c resolution of the present method is
considered to be due to the use of artifical viscosity in lieu of artificial com-
pressibility as used by Goorjian. Some of the remaining disparity is due to
the use of slightly Different grids in the `wo methods. Also, the calculations
were performed with different time steps. The effect of this parsmeter in
UFL04 is discussed in a following subsection in which it is established that
the time step used is adequate for accurate solutions; consequently, only
small discrepancies can be attributed to this facto:. In summary, the com-
parisons show that the present me z hod and that of Ref. 1.5 give almost equiv-

alent results for the sample problem. The only significant difference in the
solutions is the degree of shock smearing and, in this aspect , the present
program appears to perform somewhat oetter.

Stability, Accuracy, and Computing Time

To determine the effect of the time step on the stability and accuracy
of the difference scheme, both UFL03 and UFL04 were rerun varying this
parameter. The results of these it,vestigations are summarized in Fig. 7 and
8(UFLO3) and Fig. 9 and 10 (UFL04), where the computed pressures are
compared at two time slices. In UFL04, the time step was successfully varied
from 0.01 to 0.20 chordlenghts traveled w:thou: introducing numerical insta-
bility. Larger time steps were r_ot attempted. In UFL03, the time step was
varied from 0.01 to 0.065. Since trends similar to those of L'FL)4 were
found, the larger step , 0. 20, was .,ot run. It is concluded that the algorithm
has excellent stability and that the introduction of the time-varying coordinates
(UFL04) does not degrade this quality.
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From inspection of Fig. 7 through 10, conclusions on the effect of time

step on solution accuracy can be made. As can be seen, reasonable results

were obtained for ^ T as large as 0.033. With ,^ T = 0.065, however, the com-

puted shock speed during propagation is significantly less than it should be

and , with A T = 0. 20, the results correlate poorly altogether with those of

the other runs.

As mentioned previously, the results of Fig. 6 were obtained with AT =

0.030. Figures 16 and 18 show that the effects of using a smaller step are

quite small. Thus, the step used in the comparison studies was adequate.

Studies discussed in the neat subsection indicate that a smaller amount

of artificial viscosity can be successfully used. Since, for non-zero mesh

widths, the artificial viscosity terms in (26) and (27) can be thought of as

error terms of order ^ T , any reduction in these terms should improve accu-

racy for a given step size. Thus, it is likely that, by reducing the amount
of artificial viscosit y , accurate solutions could be obtained with a somewhat

larger step size than the 0.033 discussed above.

The computational time required for the algorithm is roughly 7.0 x 10-5

seconds per time step per grid point on the CDC 7600 computer. For the sam-

ple problem with LT = 0.033, the time required for a time history of 32 chord-

lengths tra-eled is about 6 minutes.

Effect of Artificial Viscosity

To determine the amount of artificial viscosity necessary to sharply re-

solve shocks. variations of the parameter a were made in the sample problem.

The results of this investigation are shown in Fig. 11 for a single point in the

time history. It can be seen from this figure that the value 0.15 used in all

previous calculations can be varied by approx:imhte;v 20% without introducing;

excessive overshoots or smearing near the shock. As expected. varintions of

L have no effect away from the shock.
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6 - CONCLUSIONS AND RECOMMENDATIONS

An accurate algcrithm with excellent numerical stability has been devel-

oped for the two-dimensional unsteady full-potential equation in conservation

form, using time-varying sheared-rectilinear, body-conforming coordinates.

The method has been demonstrated on the highly nonlinear transonic flow

arising from an airfoil with pulsating thickness. The results of this demon-

stration have been verified by comparison with those reported in Ref. 15.

Two recommendations are made to increase the accuracy and efficiency

of the procedure. The first is to introduce switched artificial viscosity as

discussed in the THEORY section. This change would localize the artificial-

viscosity terms to regions where they are needed, thereby improving the ac-

curacy for a given time step. Consequently, larger time steps could be used

with a resultant decrease in computing time. The second suggestion ;s to

modify the manner in which the operators D,PL, and D„OD„ in (26 ) and

t27) are evaluated. A three-point scheme could be constructed in place of a

five-point scheme. To accomplish this, densities midway between mesh points

would be evaluated by averaging the values from the two adjacent nodes.

This modification would result in reducing the system in (31) from block-fivr-

diagonal to block- three-diagonal. It can be shown that the computingz time

required to solve the smaller-band •.,vidth system is roughly half that required

for the larger system.

To enable the method to handle realistic blunt-nosed airfoils, it is further

recommender: that the code be modified to use a curvilinear coor ,+ inate trans-

formation. In particular, a parabolic (C-mesh) transformation is suggested.

Additional efforts should then be focused on extensions to the case of a lift

ing airfoil and improved treatment of the far-field boundary conditions.
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