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SUMMARY

A controller design approach for large space structures is presented,
which consists of a primary attitude controller and a secondary or damping-
enhancement controller. The secondary controller, which uses several
Annular Momentum Control Devices (AMCD's), is shown to make the closed-loop
system asymptotically stable under relatively simple conditions. The primary
controller using torque actuators (or AMCD's) and colocated attitude and
rate sensors is shown to be stable. It is shown that the same AMCD's can be
used for simultaneous actuation of primary and secondary controllers.

Numerical results are obtained for a large, thin, completely free plate model.

INTRODUCTION

Future utilization of space is expected to require large space structures (LSS)
in Tow Earth and/or geosynchronous orbits. Examples of such future missions
include: electronic mail system, Earth observation systems, solar power
satellites, and space manufacturing facilities, requiring large antennas,
antenna platforms, and solar arrays. These missions will be feasible because
of the availability of the space Shuttle for relatively inexpensive‘trénsportation
into Tow-Earth orbits. Shuttle capability can be expanded by augmenting
a low-Earth to geosynchronous orbit transportation system.

To establish these structures in space at minimum cost will require that
their weight be minimized. As a result, these structures will tend to have
extremely low-frequency, 1ichtly damped structural modes which are closely-~

spaced in the frequency domain. Structural parameters (i.e., frequencies,
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damping ratios and mode shapes) are usually difficult to determine a priori.
For these reasons, control systems design for LSS is a complex and challenging
problem. Two types of control systems will be required for LSS: (i) large-
angle maneuvering in order to reorient the LSS, and (ii) pointing the LSS in
space with the required precision in attftude and shape. The objective of
this report is to develop and investigate a controller design methodology for
pointing control of LSS.

The basic problems in pointing control of LSS have been well known for
several years in the context of control of conventional spacecraft, which are
relatively rigid, but which have sufficient flexibility to necessitate con-
sideration in the design process. However, structural flexibility is the most
dominant characteristic of LSS, making LSS a new class of spacecraft. Because
of pointing requirements it is necessary to have LSS closed-loop rigid-body
bandwidth higher than a number of structural mode frequenices. Because of the
high order of the LSS state vector (resulting from a large number of dominant structural
modes), a practical controller can be designed to actively control only a
few of the structural modes. Stabi]ify of the system is not assured with
low-order controllers, because of control "spillover" (i.e., unwanted forcing
of the uncontrolled or "residual" modes by the control input) and observation
"spillover" (i.e., unwanted contribution of the residual modes to sensor outputs)
(ref. 1). These problems were considered in references 2, 3 and several
methods for designing reduced-order controllers based on Linear-Quadratic-
Gaussian (LQG) control theory were proposed and discussed in reference 3.

Stability of the closed-loop system designed using these methods is heavily



dependent on the inherent damping present in the residual modes (ref. 2).

As mentioned previously, inherent damping ratios of residual modes are
difficult--if not impossible--to predict. Therefore, it is highly desirable

to enhance modal damping of LSS with a robust "secondary" or "damping
enhancement" controller. The controller design methodology proposed and
investigated in this report takes this approach. The proposed design con-

sists of a two-level control system which includes a primary attitude controller
and a robust secondary controller.

Direct velocity feedback controllers (ref. 4) have been proposed in the
literature for damping enhancement in LSS. In particular, "member damper"
controllers (ref. 5) and low-authority structural controllers (ref. 6) with
guaranteed Lyapunov stability, have been proposed. In this report, the use
of several Annular Momentum Control Devices (AMCD's) for damping enhancement
is proposed and investigated. (See ref. 7 for a description of AMCD.) The
secondary controller makes the closed-loop system asymptotically stable under
certain relatively simple conditions. Primary attitude controller design is
considered using either torque actuatdrs or AMCD's. When the torque actuators
are colocated with attitude and rate sensors, the closed-loop system is
stable. It is proved that the same AMCD's can be used to accomplish
simultaneous primary and secondary controller actuation. The overall control
system is shown to be stable for the case when actuators are colocated with
sensors. Numerical results are obtained for a large, thin, completely free,

flat plate in order to demonstrate and evaluate the controller design methods.



MODEL INVESTIGATION
Mathematical Models of LSS
A large space structure is a highly oscillatory distributed parameter
system. A class of large space structures is described by the partial dif-

ferential equation:

A {w(A t)} . A 31 wls t); b ) 2o (s t) = £(5.4) (1)
1 ? 2)ot ’ 2 ’ ’

ot
where A] is a linear operator consisting of partial derivatives of the
deflection function w(s,t) with respect to space variables s, A, s
a linear operator describing the inherent structural damping in the LSS,
and functions m(s) and f(s,t) denote the mass distribution and the
applied (generalized) force distribution. Assuming zero damping (A2 = null
operator), it is possible to obtain the following normal-coordinate representa-
tion using the property of orthogonality of eigenfunctions of A], and

using appropriate boundary conditions:

m
" 2 _
gt w;q; = E

$, .u (i=1,2,...,») (2)
i k=1 ki“k

where q; is the modal amplitude of the ith mode, Uy s k=1,2,...m represent
the input which is assumed to consist of generalized point-forces (i.e.,
forces and moments). Qki denotes the value of the ith "mode shape" at the
location of kth actuator. The model consists of an infinite number of modes.

Since real-Tife LSS will have some structural damping, a more realistic




representation can be obtained by adding the term 2piwi to the Teft-hand
side of equation (2), where p; and w, denote damping ratio and natural
frequency of the ith mode. The "observations" or sensor outputs, which

consist of position and angular displacements, are given by

no™8§

Ve = B %9y | (3)

.

i=1
where ¥y denotes the ith mode-shape evaluated at the location of the kth
sensor. The modes in equation (2) also consist of rigid-body modes. It is
customary to separate the rigid-body modes from the structural modes, and
also to truncate the model at e structural modes. For practical LSS,
it is usually not possible to analytically obtain the model of the form of
equations (1) and (2). The standard technique is to use the finite element
method to obtain a model. Established computer programs such as SPAR and
NASTRAN are available for this purpose. Finite element structural models
also have the same form as the normal-coordinate model (i.e., egs. (2) and (3)).
For the purpose of this investigation, it was necessary to choose an
appropriate model of a LSS as a medium for control law development. After
consultation with the NASA technical monitor, a finite element model of a
30.48 m x 30.48 m x 2.54 mm (100 ft x 100 ft x 0.1 in.), completely free
aluminum plate was selected for this purpose. This model was developed in
reference 8 using the SPAR program. A finite element mesh of 24 x 24 equal

square plate elements was used to obtain modal frequencies and mode shapes



(with respect to force and torque inputs)which were computed(ref. 8) for the
first 44 modes. Table I gives the rigid-body parameters and the first 44 modal
frequencies for this model. Values of the mode-shapes at all 625 nodes are
given in reference 8. Rotation about only two axes (x and y axes in

fig. 1), and translation in the z-direction were considered in the model since

they suffice to demonstrate the principles. Thus the LSS model is given by:

(i) Rigid-body motion:

e nT nf
¢
mi = ¢ f,; (5)
s'S i=1 1

where o = (¢S,es)T denotes the rigid-body attitude vector about x and y axes;

z denotes z-axis translation of the LSS center of mass; Is and mg denote the

two-dimensional LSS inertia matrix and LSS mass; fi and Tj denote applied

forces and torques (i=1,2,..,n¢; j=1,2,..,nT); R, denotes the coordinates

of point of application of force 'fi' It should be noted that the rigid-body trans-
lation zg is not of interest in investigations of the LSS attitude control problem.
Equation (5) is included here for completeness, and will be used only in equation (7).v



(i1) Flexible motion (assuming no inherent damping)

) T
q+Ag= OLf + ol (6)

-dimensional modal amplitude vector; A is a positive
%)

where q 1is the q

definite nq X N
@t are ng X N q

and torque inputs, and f and T denote vectors consisting of fi and

matrix (usually diagonal, with entires = w3T). O and

and np X n “mode shape matrices corresponding to force

Ti’ respectively.

(iii) Sensor outputs:
Sensed z-axis translation is given by (ignoring noise)

- T
Zn, =z % RZ X 0+ $gq (7)

where RZ is the coordinate (vector) of the sensor location, ¢f is the

Ngx mode shape vector at the sensor location. Sensed LSS attitude

(¢m,6m) is given by

I
@ o |9t
ml=1%+ TX q (8)
& O ¢ty '
where ¢tx’¢ty are the Ngx1 mode shape vectors at the x and y axis

attitude sensor locations.



Controllability and Observability of LSS Model

The LSS variables to be controlled are: rigid-body attitude and
rate (aS and &S), and structural modal amplitudes and rates (q,é).
Control inputs are point forces or torques, and observations (sensor outputs)
normally consist of an attitude sensor (e.g., sun sensor or star tracker),
and an attitude rate sensor (e.g., rate gyro). Let Ai (i=1,2,...,nq) denote
the ith eigenvalue of A (Ai = wiz where w; is the frequency of the ith
mode). The following theorem gives the necessary and sufficient conditions of
controllability of the system defined by equations (4) and (6), with respect
to the torque vector T (or force vector f).

Theorem 1.- The system given by equations (4) and (6) is controi]ab]e
with respect to T(f) iff (if and only if): (i) the rigid-body system
(eq. (4)) is controllable with respect to T, and (ii) for the flexible part, for

i=1,2,...,n

q’ if (a) }i is a simp]e eiggqva]ue, ¢£(j,i) # 0 for some Jj e [1.n,]

(b) if As has multiplicity Mo then rank of the ng X uj block of 4

(ne x w; block) corresponding to A, is wu;.
f i i

j Similar results hold for force inpqt f.

Outline of proof.- It has been proved in reference 9 that the system

given by equation (6) is completely controllable if conditions (iia) and

(iib) hold. Considering the composite system given by equations (4) and (6),

results of reference 10 can be applied in a straightforward manner to

complete the proof. 5
Equation (6) does not include the damping term, which, although small,

will always be present in practical LSS. When damping is represented,

equation (6) becomes:




T

§+ D4+ g = olf + 0T (7)

where D = DT >0 dis the n_xn_ damping matrix. If the system is

controllable for D = 0, it 3111 Ee controllable for D > 0, for sufficiently
small D (because of the continuity property). However, stabilizability of
the system is more important, especially while designing LQG regulators.
The following theorem gives sufficient condition for stabilizability.

Theorem 2.- The system given by equations (4) and (6) is stabilizable
for D#0 if it is controllable for D = 0.

Outline of proof.- By applying the results of reference 10, it can be

proved that the system is stabilizable if condition (i) of theorem 1 is
satisfied, and if the system of equation (6) is stabilizable. If the

system of equation (6) is controllable, then there exfsts a rate feedback
gain such that the closed-loop system (with D # 0) is asymptotically stable
(ref. 6). Thus the system of equation (6) is stabilizable for D # 0.

This completes the proof.

Since observability is the dual concept of controllability, theorems 1 and 2
can be used to also investigate observability. The plate model selected for the
LSS study has a number of modes with repeated natural frequencies (multiplicity = 2).
Using theorem 1 it is evident that at least two actuators will be required
for controllability (necessary condition). It is straightforward to check
controllability (and observability) with respect to given actuator (sensor)

locations by applying theorem 1.



Actuator and Sensor Models

The controller design approach proposed in this report uses several
Annular Momentum Control Devices (AMCD's) for damping enhancement, and torque
actuators or AMCD's for primary attitude control. An AMCD (fig. 2)
consists of a rotating thin rim which is suspended in three or more non-
contacting electromagnetic actuators and driven by a noncontacting electro-
magnetic spin motor (ref. 7). The bandwidth of AMCD sensors and actuators is
very high--of the order of hundreds of Hertz--therefore, AMCD sensors and
actuators can be assumed to be without phase lag. In the AMCD model, only
X and y axis rim rotations and z-axis rim translation need be considered.
The basic linearized AMCD equations of motion may be found in references 11
and 12. Since AMCD's are assumed to be relatively small (bf the order of
2 m rim diameter), the rims can be assumed to be rigid. Torque actuators and
attitude/rate sensors (used for primary controlier) are assumed to be linear and
to have infinite-bandwidths. This assumption is justified in case of sensors
since sensor bandwidths are expected to be several decades higher than LSS
closed-loop rigid-body bandwidth, and modal frequencies of interest. Effects
of finite bandwidth and nonlinearities in torque actuators are not considered

in this report in order to be able to obtain certain fundamental results.

A TWO-LEVEL CONTROLLER DESIGN APPROACH
The controller design approach proposed in this report consists of a
primary and a secondary controller. The function of the secondary controller
is to enhance damping in LSS structural modes without attempting to control

rigid-body modes. The secondary controller should be robust--that is, it

10



should be stable regardless of parameter inaccuracies. A secondary controller
consisting of several AMCD's is proposed in this report. The advantages of
using AMCD's are: (i) precise knowledge of modal frequencies and mode shapes
is not required, (ii) the closed-loop system is Lyapunov-stable (asymptotically
stable under certain conditions) regardless of parameter inaccuracies and
regardless of number of modes in the mbde], as will be shown later,

(iii) associated weight pena]ty is small, and (iv) the secohdary controlier
using AMCD's imparts gyroscopic stability to LSS. The last feature may be
useful during initial phases of deployment, assembly or initial in-orbit
parameter estimation, before the primary attitude controller is activated or
even designed.

Secondary controller design using a single AMCD was investigated in
references 13 and 14, with the latter reference containing more detailed
stability results. The case with several AMCD's was investigated in
reference 15. Although the sufficient conditions obtained in reference 15 for
Lyapunov stability are easy to satisfy, those for asymptotic stability (AS)
are difficult to satisfy in practice. Simpler sufficient conditions for AS

are presented in this report.

SECONDARY CONTROLLER USING AMCD'S
Mathematical Model of LSS/AMCD's
It is assumed that v (>1) AMCD's are used on an LSS of mass me s

inertia matrix I_ (two-dimensional), and n_ structural bending modes.

S q
The AMCD rims are assumed to be relatively small (=2 m) in diameter; therefore,
they can be considered to be rigid. Only x and Yy axis rotations and
z-axis translations are considered, which suffices to present the principles.

1



The location of nominal rim center position of the ith AMCD in the LSS

I 2. (>3) represent the mass, rim

coordinates is (xk, yi). mai, r ar® Y

i
radius, transverse-axis inertia matrix, and number of actuator stations for

the ith AMCD. C]i represents 2 x Zi moment-arm matrix of the AMCD

actuator stations, and CZi isa 1 x zi vector consisting of all unity
entires. €5 represents the Z axis displacement of the ith AMCD rim

center from the corresponding point on the LSS. Let ac = (¢S, es)

denote the LSS attitude vector about the x and y axes, and Qi = (¢ai’ eai)
denote the rim attitqde vector for the ith rim. The actuator stations are
assumed to produce only axial (z-axis) forces. (Only radial rim centering is
accomplished by radial actuator forces and is of no consequence in the

present analysis.)

From the basic principles of dynamics the combined AMCD/LSS equations

of motion can be written as:

AX + Bx + Cx = Yf (9)
T T T T T\T
X = (as, °‘a1 - ocs,...,aav = Qgs Eyseres €50 ) (10)

where q denotes the n -Vector of modal amplitudes of the LSS

q
- T T T, T
f - (F-I, Fz,ol.’ F\)) (]])
F, = (fq, f. f0 )T i=1,2,..0,v (12)
i i1? 22t 125 2T
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fik being the axial force at actuator station k of the ith
AMCD.
A is a (n] X n]) symmetric positive definite coefficient

matrix (where =g + 3v + 2):

(3v +2) x (3v + 2)

0 I

. —

I den i i i
nqxnq otes the nqan identity matrix

- - o -1 -1 -1
I | -Ig ) "I P I
o | T T o
-1 | I " 1y Iy ) Is | Is et g,
. -1 -1 R -1 -1 -1
Is l Is Is + Ia2 Is l Is C1 Is Cv
: l |
A.. = [ ] . L] L L ] L)
1 | l
[ 3 I L] e L ] I L ] [ 3
a1 -1 -1 al -1
- I . . . e o o
_Ij__|___5_____________~is__+_1iv_lis_f‘_____is_';j’_
T, -1 T -1 . ] , Ty -1
'Clls l c1Is CvIs l
| |
| R 1 1
;IS +Ma +{M‘}
[ ] l L] [ ] I
.l T T. -1
-tyls Z1ls : : Zuls | |

13 O a3)




where ¢ = [C],---, CV]T, L, = (yi, - xi), M, = diag. (ma seees M )
and

{M;]}ij =1 /mg

; W. | W, W ) | 0 |
=1 | 172 Vo |
w] I w] 0 T T
l | |
| W | 0 | 0
| e | |
B = l | l | - (14)
' | ) | l
y | . y | I
R R L
0 I 0 I 0 l 0
I | |
S
T

where D =D > 0 denotes the n_ x nq LSS damping matrix.

q

W, = (15)

14



Hi being the angular momentum of the ith rim about the Z axis.

O3y +2) X (3v +2) | 0 |

ol L (16)

Where A =.KT> 0 is the LSS modal frequency matrix (usually diagonal,

with squared modal frequencies as its entries).

02x2 0 0
C]] 0 0
0 C]2 0
°2xz
0 0 C]
Vv A
Y= e — = |—— - (17)
Ca1 0 0 Tnoxs,
0 sz 0
f _________ °___3&
T T T
_"¢1 =% —2 d
Ix%

15 -



o, (i=1,2,...5 V) represents the Li X nq mode shape matrix for actuator
\Y
locations of the ith AMCD, & = ¢

A
22, and n, = n_ + 3v(= i .
i1 j 2 q v(= in eq. (17)

denotes equality by definition).

Let aik be the axial centering error at actuator station k of

the ith AMCD. The & x 1 centering error vector & 1is given by

= =Y X (18)

Closed-Loop Stability

Consider a control law of the type

f= Kp6 + Kré (19)

Where Kp and Kr are real symmetric positive definite £ x & proportional
and rate gain matrices.

It was proved in reference 15 that the closed-loop system given by
equations (9) and (19) has at least two zero eigenvalues for all Kp and
Kr' The zero eigenvalues correspond to o which represents LSS rigid-body
attitude. Defining:

16




p = (ocT S T aZ - (X.ST, Epseres e\),qT).r (20)

IO LUEN LRI

x?
1}

T

Equation (9) (excluding as) can be expressed as:

where

>
"

x=AX+Bf
0n2><n2 I On2><2 l In2><n2
I |
__________ R N
0(3v+2)xn |
S N Al i B A8
n x3v| A

17

(21)

(22)

(23)




(Imxm denotes the mxm identity matrix)

——————— (24)

oot
n

It was proved in reference 15 that the closed-loop system is Lyapunov-

stable if Ky >0, K. >0, and is asymptotically stable if:

(i) Kp > 0, Kr >0, (ii) ; Hi # 0, (iii) 2 z.nq-+3v, (iv) rank (y) = nq + 3v.
However, conditions (iii) and (iv) are difficult to satisfy in practice.

In order to obtain the least restrictive (necessary and sufficient) conditions,
it is first proved that the control law of Equation (19) is optimal with
respect to a certain linear quadratic performance index. )

. Define the matrices

R
nKp Kpn

0 pA + pzyR-]YT

18



where A = 2 diag. (O(3v+2),D), and p>0 (scalar). vy is given by (17).

- -
nKpR

0
nyx%

R

Theorem 3.~ The optimal control law (provided that it exists) which

minimizes the performance function
J = .f (x7 Qx + 27 s + £IRF) dt | (26)
(]

is given by equation (19).
Proof.- The proof can be obtained by comparing equation (11) with
the standard solution of the LQ regulator problem (eq. (26)).

It can be shown that the Riccati matrix is given by

I~ . =
T.(0 o0
nkpn® + (0 A) 0

(27)

19



T+ diag (0,0)] > 0.

It has been proved in reference 15 that the matrix [nKpn
Therefore, P > 0.

Stability results.- Well established stability properties of the closed-

Toop optimal LQ regulator can be used for investigating the asymptotic stability
of the system. The AMCD/LSS system consists of the two subsystems represented

by the following set of equations:

S1: Xy = A]x.I + B,f (28)
Spi Xy = AgXy + Bof (29)
where
Xq = (aT -« aT - 0.y € € x
1 ay s’ "7 s’ ~1°? v s ?
v
T T T T . o T
aa] = Ogsees Gy = Ogs E7sees ev) (30)
x, = (a', 4T (31)
_ - - -
03yx3y | 502 I3uxay 0
A_I = S P + _________ , B_I = e e e - =
0 | -1 -1 (0
(3v+2)x3v -A] B1 A] <L)
L - - -

20



where A] and B] represent the top 3v x 3v submatrices of A and B,

and L 1is the 3v x & matrix consisting of the top 3v rows of n.

0 I [ 0

Since &, >3 for all i and actuators are at distinct locations, rank
(L) = 3V. Equation (29) can be transformed into the controllable canonical

form:

_Fa i GZZJ 0
where the dimension of " is ne (<2 nq) and that of ry is 2nq - N
Gys 05 O and Y are appropriately dimensioned matrices.

Theorem 4.- The optimal control law for the problem in Theorem 1 exists,
and the system of equation (22) with the control law of equation (19) is
asymptotically stable, iff (if and only if) all the following conditions

are satisfied.

21



(a) the pair (ﬁz, §2) is stabilizable.

Vv
(b) = W, #0
i=1
(c)
[ 8.2i0.A, | 0 | @)
175997 L
| |
rank = —— =n.+3v+2
| | ¢
0 TS (17 SO v
| ©°

for all i (i=1,2,..., v) for which Q; # 0, where 2. = spin velocity of
the ith AMCD rim.

Proof.- From linear-quadratic optimal regulator theory, it is well known
that the control law of equation (19) makes the closed-Toop system asymptotically
stable if and only if (1) (A, B) is stabilizable, where A=A - B R’ ST,
and (2) (A, C) is detectable, where Q = C CV (ref. 16). Also, P is
positive definite if and only if (A&, C) is observable; thus statement (2)
above is true sin;e P > 0. Stabilizability of (K, §) is equivalent to
that of (A, B) (ref. 17), which is equivalent to (1) stability of Gy
and (2) controllability of the composite system consisting of equation (28)

and the equation:

22



ry = o " + Yf

This composite system is controllable if and only if (a]1, y) s

controllable and rank (c) = ne + 6v + 2 where

~ -~

A1 = A Tigur2)x(6v+2)

Oy = Al V]
11 i"nxn,

and where Ai is the ith eigenvalue of K] (ref. 10). Aséuming’the AMCD
rims to be thin it can be verified that the eigenvalues of Al are:

0, iZjQi, where Qi is the spin velocity of the ith rim. The proof can be
completed by using elementary matrix operations.

These necessary and sufficient conditions are not straightforward to
apply. The following corollary gives sufficient conditions for asymptotic
stability which are more easily applicable. |

Corollary 1.- The system of equation (22) with the control law of
equation (19) is asymptotically stable if ali the three conditions given
below are satisfied: (a) the LSS structural model, i.e., the pair (52, §2)

Y
is stabilizable, (b) 151 W; # 0, and (c) the LSS does not have an undamped

structural mode with frequency 20; (i=1,2,...5 V).

23



Proof.- Since ijZQi is not an eigenvalue of 1 it remains to be

proved only that (Theorem 2)

rank [%] + jZQiA]

(E):l =3y +2 (33)

for Qi # 0.

Or equivé]ent]y that

-1 . -1 0\| _ :
rank {%] By * j2q, | Ay (Li] =3v + 2 (34)

By applying e]ehentany row operations and using the fact thaf rank
(C]i) =2, (i=1,2,..., v), the rank of the matrix in equation (34) can be shown to
be 3v+2 for ; # 0. Thus from Theorem 4, the system is asymptotically
stable.

The following corollary generalizes the sufficient conditions which were
derived in reference 15. It should be noted that they are too restrictive
since they require a large number of actuators, and are given here only for
completeness.

Corollary 2.- The system in equation (22) with the control law of
equation (19) is asjmptotica]]y stable if all four conditions given below are

satisfied:

24



(a) The LSS structural model, i.e., the pair (Rz, 52) is stabilizable;

5 v
(b) Wi # 05 (c) 22 n. + 3v, and (d) rank (y) = n. + 3v.
1

Proof.- Since rank (y) = n. *+ 3v, rank [jt:] = n, + 3v. Condition (c)

of Theorem 4 is satisfied if for A = ijzni,

[~ , 0 ]
By = My (L)
l
rank |— — — — — — — I—-—-—- = nC + 3v.+ 2
0 oy
i IR

Y
if the two top rows of B1->\A1 are independent for A = i_ZjQi.

Since rank [:L:] = 3y, condition (c) of Theorem 4 is satisfied

It can be verified that this is indeed the case,

The sufficient condifions in corollary 1 are less restrictive than those
in corollary 2 because the former do not require a large number of actuators.

It should be noted that, in addition to strutural damping enhancement,
the secondary controller also imparts gyroscopic stability to the LSS
(rigid-body attitude). This feature should be useful during assembly and
during initial operations (such as parameter identification) in a newly
deployed or assembled LSS, before the primary controller is activated, or

even designed.

25



PRIMARY ATTITUDE CONTROL SYSTEM
The secondary control systeh increases modal damping and thus controls
the shape of LSS. It also aids in primary controller design by reducing the
effect of "spillovers." 1In this report, primary attitude controller design
is considered using torque actuators and AMCD's. A primary attitude control

system using torque actuators is considered first.

Primary Controller Using Torque Actuators
Assuming that the primary attitude control is accomplished using
o (>1) two-axis torque actuators distributed on the LSS, the LSS equations of

motion (without secondary controiler) are given by:

Agkg + Bex YeiTy (35)

o
+ =
s * CeXs f

i=1

where x = (aST, qT)T, A, = diag. (I, Inqan), B, = diag. (0, D),
CS = diag. (0, A).

Ioxo Ty

Yti > Ty = (36)
T
Qmi Tyi
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Sni being the 2 x nq “torque.mode-shape matrix" corresponding to

Tocation of actuator 1. Ty; and Tyi are the x and y axis torques.

Colocated actuators and sensors.- Assuming that o, two-axis attitude

and rate sensors are also located at the same points as the torque actuators,

the measured attitude vector - and the measured attitude rate vector

a i at location i (ignoring noise) are given by:

o=yl x (37)
T x | (38)

Denoting T = [Yt]""’ YtOJ’ T= (T]T,..TOT)T, o, = [am'T,..., amaT]T
T o T]T

4 = [amrl seves O equations (35), (37), and (38) can be written as:

AR, + Bx. + Coxg = IT : (39)
_ T

o = T Xg (40)
= ple

G = T Xg (41)
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Choosing the control law

T = -(Gp a. + G, amr) (42)

where Gp and Gr are 20 x 20 positive definite symmetric matrices.

For example, a simple control law for controlling the rigid-body attitude

would be:

(43)

for i=1,2,..., 0, where Pg and W (k = x,y) denote the desired rigid-
body damping ratio and natural frequency. In this case Gp and Gr will
be block-diagonal matrices.

The closed-Toop equations become:

. Tye T -
AKX, + (BS + IG T )xs + (CS + FGpF )xS =0 (44)
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Finally, the AMCD loops may be closed using equations (18) and (19).
Theorem 5.- The system of equation (44) is stable in the sense of
Lyapunov if Gp >0, G. > 0.
Proof.- Considering a Lyapunov function:

TTx +x T Ax (45)

V{xgs Xg) = X5 Coxg + Xg Ag s

T

where E; Co + PGpP . It can be shown that E; > 0, and that:

<o
]
]
xXe
—l
o
>
A
o
o

(46)

T.g 0).

(since E; =B, +TGT
Thus, the primary control law using colocated torque actuators and
attitude and rate sénsors gives a stable closed-loop system. The controller

is robust because it is stable regardless of parameter inaccuracies. ' In
addition to controlling rigid-body modes, the "colocated" primary controller
also increases damping in some of the structural modes, depending on the
Tocations of torque actuators. The secondary controller consisting of

AMCD's can be added in order to enhance modal damping and improve the overall
performance. When the secondary controller is included, it can be shown that

the overall closed-loop system is Lyapunov stable if G, > 0, Gr >0,

P

Kp >0 and K, 3_07
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Noncolocated actuators and sensors.- Stability of the closed-loop

system is no longer guaranteed when actuators and sensors of the primary
controller are not colocated. This is because of control and observation
"spillovers." In reference 3, the following controller design approaches
based on LQG control theory were investigated:

1. Truncation: In this method, the residual (uncontrolled) structural
modes are merely iﬁnored in the design process.

2. Modified Truncation (or Model Error Sensitivity Suppression,
Reference 18): The effect of control input on selected residual modes is
included in the performance function in ; quasi-static sense.

3. Use of Higher-Order Estimator: In this method, the staté estimator
estimates more modal amplitudes and rates than are fed back.

4. Selective Modal Suppression: Observation spillover for selected
residual modes is reduced or eliminated by using such devices as»phase-
Tock-Toops.

5. Polynomial Estimators: Observation spillover is explicitly
estimated by representing it as a polynomial in time.

These methods typically result in a controller which consists of a linear
regulator and a Kalman-Bucy filter for state estimation. It was reported
in reference 3 that, when a sufficient number of sensor outputs are available,
better resuits are obtained using direct sensor feedback (DSF) than using
state estimators. Of the methods considered in reference 3, method 5 was
reported to be unsatisfactory. ' Preliminary numerical resuits obtained by

applying methods 1 to 4 to the plate mode (discussed previously) indicated
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that the modified truncation { or Model Error Sensitivity Suppression (MESS)}
method was the most promising method. Therefore, only the truncation method
(being the most straightforwardj and MESS method (being the most promising)
are discussed in this report. As stated earlier, DSF was reported to result
in better performance; therefore DSF is used in this report instead of
state estimators. As a simple but important special case, it is assumed in
the following analysis that the primary controller controls only rigid-body
attitude, without attempting to actively control any structural modes.
This assumption is justified to some extent because structural modes will be
controlled by the secondary controller. In order to simplify implementation,
the primary control law is constrained to require feedback of only measured
attitude and rate (measured attitude and rate includes contributions of
rigid-body and structural modes). It should be noted that this sbecia] case
is included only for the purbose of demonstration and that primary controller
design using truncafion or MESS methods is not restricted to active control
of rigid-body modes only.

MESS method - a special case: Assuming that the primary controller
is to be designed to control only rigid-body modes o [=(¢S,es)], and
- for the case with a single 2-axis torque actuator,>consider the !

control law given by

T S R AR . ot {50, ) (47)
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where w;, p; (i = x,y) denote the desired rigid-body bandwidth and
damping ratio, and Ogme W denote the measured attitude and rate vectors;
Ri = I/Zwi. If control spillover were absent (i.e., if the actuators could

force only rigid-body modes), this control law would minimize the performance

function
r - — — —
N I P W o 2RT 0
Jd. = Jo& T o. + o T
0 A S 4 S S -1
0 “’y Ry 0 pyRy
L _ | N
_ _ _ _ ~
2
T Rxwx 0 T Rx 0
+ Zas T+T T ? dt (48)
2
0 R R
) Yy 0 R J

This can be verified along the lines of reference 6. However, because of
flexibility, the control input also forces structural modes. The model error
sensitivity suppression method requires augmentation of a quadratic function

of the forcing terms corresponding to a few selected structural modes,

to the performance function in equation (48). If modes k1,...kp are

selected for augmentation, denoting the mode shapes (for the kth mode)iat the actuator

location by dyk and ¢yk’ the modified performance function becomes
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P ¢xk ¢xkq’yk
J=3,+ }E: Q1" T (49)

where Qk is a positive weighting coefficient. The effect of addition of
this term to the performance function is to modify the control weighting
matrix. The optimal control law for this type of performance index requires
feedback only of measured attitude and rate. A modified state estimator can
be similarly designed for generating estimates of rigid-body attitude and

rate.

Primary Attitude Control Using AMCD's

Instead of torque actuators, AMCD's can be used for primary ‘
attitude contrd]. In particular, the AMCD's used for implementing a secondary
controller can be simultaneously used for the actuation of the primary attitude
controlier. Primary attitude control is accomplished by torquing against
AMCD momenta. In this dual control mode, however, the relative rotation
angles between the LSS and the AMCD's (i.e., O, = Os: i=1,2,.., V) .cannot be
controlled simultaneously with LSS rigid-body attitude ag (controllability
of AMCD/rigid-body modes is discussed in reference 12). This‘entails that
the control law of equation (19) for the secondary controller should be
redesigned to exclude feedback of (aai - 0

). However, the rates (&a - )
i
must be zero in steady-state and must be fed back. That is, the position

feedback gain must be redesigned to control only €55 the motion of the AMCD

33



rim centers relative to the LSS, and AMCD rim transverse rotation angles are
allowed to be nonzero in steady-state. Provided that relative angles,

a, - o, are sufficiently small (so that the actuator gap limits are not
i

exceeded), the AMCD's can be used in this dual control mode.

Columns of the 2 x Zi matrix C]i are given by (yij’ - xij)’
J=1,2,.00 21. Since actuators of each AMCD are located along a circle,
columns 1 and 2 are linearly independent, and columns 3 through 21 can
be expressed as linear combinations of the first two columns. That is,

C]i can be expressed as:
Cqi = e[, ! 1,] 4 (50)

where ¢ is the 2 x 2 matrix formed by the first two columns of

Cii» I, is the 2 x 2 identity matrix, and T; is a2 X (g - 2)

matrix. If K_ 1is designed as follows:

P

r r ~ r r T
s 1 Y . 1
Kp = diag <--I-.> e es (--I‘) Kp diag <-I> . ens <-\I)> . (51)

where K. s a (2-2v)x(2-2v)| positive definite matrix, and diag. ( ) denotes

p
a block-diagonal matrix, it can be verified that the resulting coefficient matrix
multiplying (ag - az,..., al - al T in equation 19 (after substituting for 4
1 v

from equation 18) 1is zero. Defining
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h=(c, q)T | (52)

the resulting closed-loop system is the form:

h o ol h
N SR (R U I (53)

where ars Op are appropriately dimensioned matrices.
Theorem 6.- The system defined by equation (53) is stable in the sense

of Lyapunov if K_> 0 and K, > 0.

P

Qutline of proof.- The proof is similar to that of Theorem 2 (part a)

in reference 15, except that it is additionally necessary to prove that

C2K CZT > 0 (positive definite) for the specially structured K_ of

p p
equation (51). This can be proved by establishing that zTCZKpCZTz can

be zero for some z # 0 if and only if

[riT, -1] CZi =0 (i=1,2,..., v) (54)

Using the fact that actuators for each AMCD are located along a circle, it

can be proved that equation (54) cannot hold. Therefore,

T
CZKpCZ >0
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This type of secondary controller essentially provides rate feedback
for modal damping enhancement. The only function of position gain is to
keep the AMCD rim centers at their nominal positions. Additional force
commands can now be superimposed on the electromagnetic actuators in order to

produce the desired primary control torque for controlling «a Since AMCD's

.
are small compared to the LSS, the effect of control moments generated in this
manner would approximate point-torque actuators. If an attitude sensor and

a rate sensor are located on the LSS at the nominal position of the center of
each AMCD, this configuration would approximate colocated torque actuators

and attitude/rate sensors, and should therefore have the associated Lyapunov-
stability property. In this configuration, the AMCD's must have sufficiently
large momenta in order to exert the magnitude of torque required to achieve
the desired rigid-body bandwidth (without exceeding the e]ectromagnetic
actuator gap limits). Separate AMCD's may also be used for primary control
actuation. The position gains for the rim suspension control system should be
structured as discussed above to retain the closed-loop stability properties

of the structural modes. For orbital applications it will be necessary to

gimbal the AMCD's for primary controller actuation.

NUMERICAL RESULTS
For the purpose of demonstration of the primary and secondary controller
design methods, the 44-mode finite element model of a 30.48 m x 30.48 m x 2.54 mm
(100 ft x 100 ft x 0.1 in.), completely free, aluminum plate (discussed earlier)
was used. The inherent damping ratios of all the structural modes were

assumed to be zero. The AMCD's were chosen to have rims having 1.79 m
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diameter and 34 kg mass, suspended in four equally spaced electromagnetic
actuators and spinning at 5000 RRM. Secondary controller design was considered
first.

Three AMCD's, centered at coordinates (4.44 m, -8.26 m), (-12.06 m,
-0.635 m) and (14.6 m, -14.6 m) were used for the secondary controller (in
the coordinate system with axes parallel to the plate edges and origin at the
plate center). Gain matrices Kp and Kr were assumed to be diagonal, with

entries k., k corresponding to the ith AMCD. Keeping the position gains

P r.

i
constant at kp] = 146 N/m, kp2 = 14.6 N/m, kp3 = 14.6 N/m, rate gains (kri)
were increased for the three AMCD's, starting with zero rate gains. With
kr2 = kr3 = 0, the gain kr] was first increased starting from zero. Keeping

kr] _constant at its nominal value of 5636 N-sec/m, and with kr3 =0, kr2
was next increased from zero. Finally, with kr] and kr2 fixed at their
nominal values (kr] as above and kr2 = 2050 N-sec/m), kr3 was increased from
0. As shown in the root loci of figure 3, damping ratios of thé Structural
modes increase, the lowest damping ratio being 0.07 for nominal gains (i.e.,
position gains, kr]’ k‘,,2 as above, and kr3 = 7174 N-sec/m). The root loci
turn back towards the imaginary axis for higher rate gains. Although only the
first seven modes are shown in figure 3, all modes exhibit similar behavior.
Addition of each AMCD generally improves the closed loop damping ratios. Damp-
ing enhancement in different modes depends on the values of the mode shapes at
the AMCD actuator locations. ‘

Primary controller design using two-axis torque actuators and attitude/rate
sensors was next considered. As discussed in the previous section, the primary

controller was to be designed to control only rigid-body attitude, without

attempting to actively control any structural modes.
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Secondary controller gains (when used) were set at their nominal values
given above. Numerical results were ohtained using either a single torque
actuator (2-axis) located at the center of the plate, or three torque actua-
tors placed at the locations of AMCD centers given previously. Both colocated
and noncolocated actuators/sensors cases were considered. For the noncolocated
case, a single torque actuator located at the plate center was used, and the
attitude and rate sensors were located at (15.24 m, 0 m). The "evaluation" or
"truth model" for the noncolocated case was assumed to consist of rigid-body
modes and the first seven structural modes. Numerical results were obtained for

the following cases.
1. single primary actuator with noncolocated sensors - truncation method;
2. single primary actuator with noncolocated sensors - MESS method;
3. single primary actuator with colocated sensors; and
4. three distributed primary actuators with colocated sensors.
Numerical results for cases 1 through 4 were first obtained without the

secondary controller, and then with the secondary controller (K. and Kr being

P
at their nominal values). The objective was to vary the primaryvcontro1]er
position and rate feedback gains (or weighting coefficients Qk in the case of
MESS method) in order to get the highest rigid-body closed-loop bandwidth W
with the restriction that the rigid-body damping ratio (prb) does not fall below
0.5 . Closed-Toop damping ratios of the structural modes must also be reasonably
high in order to obtain satisfactory shape/vibration control. Figure 4 shows a

bar graph of w__ , the maximum rigid-body bandwidth achieved such that

max
Prb > 0.5, and of Psmin’ which represents the lowest closed-loop damping ratio
for structural modes. Since the purpose of these computations was to gain some
insight into performance of the methods discussed, formal numerical optimization

routines were not used for obtaining w__ ; rather, it was accomplished by

max
varying the parameters mentioned above and observing the trends. When the

secondary controller was not used, computations revealed that it was
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not possible to obtain a stable design for the noncolocated case with either

truncation or MESS methods, as indicated by zero value of w in figure 4.

max
With the secondary controller included, however, stable designs were obtained
for the noncolocated case, with the MESS method causing slight improvement
over the truncation method. For the colocated cases, although closed-loop
stability is guaranteed, it is possible to have zero closed-Toop damping for
some structural modes (with no secondary controller), as indicated by the
results for case 3. In addition, because of interaction of structural modes,
the maximum achievable rigid-body closed-loop bandwidth is also Timited with
this type of control law, although all eigenvalues are guaranteed to be in the

closed left-half of the complex plane. The highest w (about 0.05 rad/sec)

max
was obtained using three distributed torque actuators with colocated sensors,
when the secondary controller was included. It should be possible to

increase it further by using additional AMCD's in the secondary controller.

In all the cases considered, addition of secondary controller caused

significant improvement. For investigating the use of the same AMCD's in
primary and secondary controllers, preliminary numerical results were obtained
for the case where attitude and rate sensors were located on the LSS at the AMCD
center nominal locations. There was very little difference in the damping-
enhancement characteristics in spite of using the specially structured Kp
matrix. The overall closed-loop system was asymptotically stable even though the
actuators/sensors in this case are only approximately colocated. However, it
will be necessary to have larger total angular momentum in order to get a

rigid-body closed-loop bandwidth of the order of 0.05 rad/sec.
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PERFORMANCE EVALUATION

After primary and secondary‘contr011ers are designed to obtain satisfactory
closed-loop dynamics (based on the known model parameters), the next step is
evaluate the closed-loop performance in the presence of disturbances (such
as gravity gradient, geomagnetic torques, solar pressure, etc.) and sensor/
actuator noise. Gravity gradient and geomagnetic torque are slowly varying
disturbances which need not be considered for investigating dynamic performance.
(Depending on the LSS orbital configuration, they must be compensated for
by using slowly varying input bias torques; however, they were not considered
in this report since the scope of this investigation is limited to fine-
pointing control over relatively short segments of time.) In the presence of
disturbances and sensor/actuator noise,which can be described by zero-mean
white noise, the overall closed-loop equations can be expressed as:
+ B,V | (55)

X = AX
c c’c

where Xe is the n-dimensional state vector and v 1is a s-dimensional zero-

mean white-noise with covariance intensity matrix V, which represents
disturbances as well as sensor/actuator noise. AC is the closed-loop

system matrix, and Bc is the effective noise input matrix. Bandlimited
white noise can also be represented by this formulation by incorporating the
associated filter dynamics in AC and Bc‘ The covariance of Xe evolves
according to the equation:
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T T

Z=ACZ+ZAC +BCVBC (56)

where I = E[chcT].

In steady-state, £ = 0, and the resulting Lyapunov matrix equation can
be solved for T (steady-state value of E£) using one of the many available
numerical methods. The method used in this report is that given in reference 19
since it was found to have good convergence properties. Closed-loop performance
can be evaluated by examining elements of Z. The x and y axis RMS
pointing error at a particular point the LSS surface is given by:
T

Dreor=rlIy | | (57)

z:
9% = ®x y -Gy by

where the total attitude angles (¢ about x-axis and 6 about y-axis)

T T
x X¢ and 6 = cy e

various points of interest on the LSS can be computed in this manner. It should

are given by ¢ = ¢ The RMS (1 o) and 3o-errors at
be noted that it is necessary to have knowledge of the LSS parameters,
disturbances and sensor/actuator noise in order to obtain reliable error

estimates in this manner.

CONCLUDING REMARKS
A controller design approach for large space structures was presented,
which consists of a primary attitude controller and a secondary or damping-

enhancement controller. The primary controller uses either torque actuators
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or Annular Momentum Control Devices (AMCD's) to control rigid body modes
(and possibly some structural modes). The secondary controller uses several
AMCD's and is shown to make the closed-loop system asymptotically stable
under relatively simple conditions, regardless of parameter inaccuracies

and number of structural modes in the model. The primary controller using
torque actuators and colocated attitude and rate sensors is

stable in the sense of Lyapunov (using positive definite feedback of measured
attitude and nonnegative definite feedback of measured rate). A method for
structuring the position feedback matrix was given, which permits the use of
the same AMCD's for the actuation of primary and secondary controllers.
Generic stability results, as well as numberical results obtained for a
large, thin, completely free plate indicate that a control system»consisting
of a primary controller using several colocated actuators and sensors
distributed on the LSS, and a secondary controller using several AMCD's,

holds significant promise.
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TABLE I.- COMPUTED NATURAL FREQUENCIES OF
PLATE STRUCTURAL MODEL

MODE " FREQ(RAD/SEC) FREQ(HZ)
1 «54999E-01 «B7534E-02
2 «80024E-01L «12736E-01
3 «99111E-01 +15774E-01
4 «14211E400 0 22618E-01
5 +14211E+00 +22618E-01
6 024G48E+00 +39707E-01
7 «24948E+00 +39707E-01
8 +26008E+00 +41392E-01
9 «2B2B6E+00 +45018E=01

10 «31515E+00 «50157E-01

11 «43068E+00 ¢ 68545E=01

12 +43068E+00 «68545E=-01

13 «47824E+00 «76114E=01

14 +50003E+00 «79583E~-01

15 «53689E+00 +85449E-01

16 +53689E+00 «B5449E-01

17 062422E+00 «99347E-01

18 «65958E+00 +10497E+00

19 «68808E+00 +10951E+00

20 +80973E+00 «12887E+00

21 «B0OG73E+00 «12887E+00

22 «8337LE+00 «13269E400

23 «BT377E+00 « 13906E+00

24 «BT7982E+00 +14003E400

25 «87982E+00 «14003E+00

26 «99216E400 «15791E+00

27 «99216E+00 +15791E+00

28 #11483C+01 «18275E+00

29 «11922E+01 «18974E+00

30° +11996E€+01 «19093E+00

31 «12194E+01 «19407E+400

32 ¢12250E401 « 19497400

33 +12532E+01 +19946E+00

34 012532E+01 «19946E+402

35 «13742E+01 #21872E+00

36 «14082E+01 «22412E400

37 «14871E+01 2 23668E+00

38 014871E+01 0 2366BE+00

39 016059E+01 +25558E+00

40 +16059E+01 «25558E+00

41 W16972E+401 227012E+00
42 «16972E+01 0 27012E+J0

43 «17111E+01 ¢ 27233E+00
44 «17523E+01 « 278895400
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Figure 1.- Location of joints for plate structural model
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Figure 2.- AMCD/LSS configuration
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Figure 4.- Numerical results for primary attitude controller
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