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SUMMARY

A controller design approach for large space structures is presented,

which consists of a primary attitude controller and a secondary or damping-

. enhancement controller. The secondary controller, which uses several

Annular MomentumControl Devices (AMCD's), is shown to make the closed-loop

system asymptotically stable under relatively simple conditions. The primary

controller using torque actuators (or AMCD's) and colocated attitude and

rate sensors is shown to be stable. It is shown that the same AMCD's can be

used for simultaneous actuation of primary and secondary controllers.

Numerical results are obtained for a large, thin, completely free plate model.

INTRODUCTION

Future utilization of space is expected to require large space structures (LSS)

in low Earth and/or geosynchronous orbits. Examples of such future missions

include: electronic mail system, Earth observation systems, solar power

satellites, and space manufacturing facilities, requiring large antennas,

antenna platforms, and solar arrays. These missions will be feasible because

of the availability of the space Shuttle for relatively inexpensive transportation

into low-Earth orbits. Shuttle capability can be expanded by augmenting

a low-Earth to geosynchronous orbit transportation system.

To establish these structures in space at minimum cost will require that

their weight be minimized. As a result, these structures will tend to nave

extremely low-frequency, lightly damped structural modes which are close|y-

spaced in the frequency domain. Structural parameters (i.e., frequencies,



dampingratiosand mode shapes)are usuallydifficultto determinea priori.

For these reasons,controlsystemsdesign for LSS is a complexand challenging

problem. Two types of controlsystemswill be requiredfor LSS: (i) large-

angle maneuveringin order to reorientthe LSS, and (ii)pointingthe LSS in

space with the requiredprecisionin attitudeand shape. The objectiveof

this report is to developand investigatea controllerdesignmethodologyfor

pointingcontrolof LSS.

The basic problemsin pointingcontrolof LSS have been well known for

severalyears in the contextof controlof conventionalspacecraft,which are

relativelyrigid,but which have sufficientflexibilityto necessitatecon-

siderationin the design process. However,structuralflexibilityis the most

dominantcharacteristicof LSS, making LSS a new class of spacecraft. Because

of pointingrequirementsit is necessaryto have LSS closed-looprigid-body

bandwidthhigher than a numberof structuralmode frequenices. Becauseof the

high order of the LSS state vector (resultingfrom a large number of dominantstructural

modes),a practicalcontrollercan be designedto activelycontrolonly a

few of the structuralmodes. Stabilityof the system is not assuredwith

low-ordercontrollers,becauseof control"spillover"(i.e.,unwantedforcing

of the uncontrolledor "residual"modes by the controlinput) and observation

"spillover"(i.e.,unwantedcontributionof the residualmodes to sensor outputs)

(ref. l). These problemswere consideredin references2, 3 and several

methodsfor designingreduced-ordercontrollersbased on Linear-Quadratic-

Gaussian(LQG) controltheorywere proposedand discussedin reference3.

Stabilityof the closed-loopsystem designedusing these methods is heavily
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dependenton the inherentdampingpresentin the residualmodes (ref. 2).

As mentionedpreviously,inherentdamping ratiosof residualmodes are

difficult--ifnot impossible--topredict. Therefore,it is highly desirable

. to enhance modal dampingof LSS with a robust "secondary"or "damping

enhancement"controller. The controllerdesignmethodologyproposedand

investigatedin this reporttakes this approach. The proposeddesign con-

sists of a two-levelcontrolsystemwhich includesa primaryattitudecontroller

and a robust secondarycontroller.

Directvelocityfeedbackcontrollers(ref. 4) have been proposedin the

literaturefor dampingenhancementin LSS. In particular,"memberdamper"

controllers(ref. 5) and low-authoritystructuralcontrollers(ref. 6) with

guaranteedLyapunovstability,have been proposed. In this report,the use

of severalAnnularF1omentumControlDevices (AMCD's)for dampingenhancement

is proposedand investigated. (See ref. 7 for a descriptionof AMCD.) The

secondarycontrollermakes the closed-loopsystem asymptoticallystable under

certainrelativelysimpleconditions. Primaryattitudecontrollerdesign is

consideredusing either torque actuatorsor AMCD's. When the torque actuators

are colocatedwith attitudeand rate sensors,the closed-loopsystem is

stable. It is proved that the same AMCD's can be used to accomplish

simultaneousprimaryand secondarycontrolleractuation. The overallcontrol

system is shown to be stable for the case when actuatorsare colocatedwith

sensors. Numericalresultsare obtainedfor a large,thin, completelyfree,

flat plate in order to demonstrateand evaluatethe controllerdesignmethods.
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MODELINVESTIGATION

Mathematical Models of LSS

A large space structure is a highly oscillatory distributed parameter

system. A class of large space structures is described by the partial dif-

ferential equation:

A1 (s,t + A2 m(S,t) + m(s) @t-_2-m(s,t) = f(s,t) (I)

where A1 is a linear operator consisting of partial derivatives of the

deflection function m(s,t) with respect to space variables s, A2 is

a linear operator describing the inherent structural damping in the LSS,

and functions m(s) and f(s,t) denote the mass distribution and the

applied (generalized) force distribution. Assuming zero damping (A2 = null

operator), it is possible to obtain the following normal-coordinate representa-

tion using the property of orthogonality of eigenfunctions of AI, and

using appropriate boundary conditions:

m

{ii + mi2qi = _ @kiUk (i=1,2,...,oo) (2)k=l

where qi is the modal amplitude of the ith mode, uk, k=l,2,...m represent

the input which is assumed to consist of generalized point-forces (i.e.,

forces and moments). @ki denotes the value of the ith "mode shape" at the °

location of kth actuator. The model consists of an infinite number of modes.

Since real-life LSS will have some structural damping, a more realistic
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representationcan be obtainedby addingthe term 2Pimi to the left-hand

sideof equation(2),where Pi and mi denotedampingratioand natural

frequencyof the ithmode. The "observations"or sensoroutputs,which

consistof positionand angulardisplacements,are givenby

oo

Yk = _" _kiqi (3)i=l

where _ki denotesthe ithmode-shapeevaluatedat the locationof the kth

sensor. The modesin equation(2)alsoconsistof rigid-bodymodes. It is

customaryto separatetherigid-bodymodesfromthe structuralmodes,and

also to truncatethemodelat ne structuralmodes. For practicalLSS,

it is usuallynot possibleto analyticallyobtainthemodelof the formof

equations(1)and (2). The standardtechniqueis to usethe finiteelement

methodto obtaina model. Establishedcomputerprogramssuchas SPARand

NASTRANare availablefor thispurpose. Finiteelementstructuralmodels

alsohavethe sameformas the normal-coordinatemodel(i.e.,eqs. (2)and (3)).

Forthe purposeof thisinvestigation,it was necessaryto choosean

appropriatemodelof a LSS as a mediumforcontrollaw development.After

consultationwith theNASAtechnicalmonitor,a finiteelementmodelof a

30.48m x 30.48m x 2.54mm (lO0ft x lO0ft x O.l in.),completelyfree

aluminumplatewas selectedfor thispurpose.Thismodelwas developedin

reference8 usingthe SPARprogram.A finiteelementmeshof 24 x 24 equal

squareplateelementswas usedto obtainmodalfrequenciesand modeshapes



(with respect to force and torque inputs)which were computedCref. 8) for the

first 44 modes. Table I gives the rigid-body parameters and the first 44 modal

frequencies for this model. Values of the mode-shapes at all 625 nodes are

given in reference 8. Rotation about only two axes (x and y axes in

fig. I), and translation in the z-direction were considered in the model since

they suffice to demonstrate the ,principles. Thus the LSS model is given by:

°

(i) Rigid-body motion:

nT nf

"" : Tj + _ Ri x fi (4)Isis j_l i:l

nf

msZs= _" fi (5)i=l

where as = (¢s,Os)T denotes the rigid-body attitude vector about x and y axes;

zs denotes z-axis translation of the LSS center of mass; I s and ms denote the

two-dimensional LSS inertia matrix and LSS mass; fi and Tj denote applied

forces and torques (i=l,2,..,nf; j:l,2,..,nT); Ri denotes the coordinates

of point of application of force fi" It should be noted that the rigid-body trans-

lation zs is not of interest in investigations of the LSS attitude control problem. .

Equation (5) is included here for completeness, and will be used only in equation (7).



(ii) Flexiblemotion (assumingno inherentdamping)

+Aq=_f+@ (6)

where q is the nq-dimensionalmodalamplitudevector; A is a positive

definitenq x nq matrix(usuallydiagonal,withentires= mi2). @f and

,_ @t are nf x nq and nT x nq modeshapematricescorrespondingto force

• and torqueinputs,and f and T denotevectorsconsistingof fi and

Ti, respectively.

(iii)Sensoroutputs:

Sensedz-axistranslationis givenby (ignoringnoise)

Zm = Zs + Rz x _s + ¢_q (7)

where Rz is the coordinate(vector)of the sensorlocation,@f is the

nqxI modeshapevectorat the sensorlocation.SensedLSS attitude

(@m,0m) is givenby

• (o,

where @tx,Qty are the nqxI mode shape vectorsat the x and y axis

attitudesensor locations.



Controllability and Observability of LSS Model

The LSS variables to be controlled are: rigid-body attitude and

rate (as and _s), and structural modal amplitudes and rates (q,q).

Control inputs are point forces or torques, and observations (sensor outputs)

normally consist of an attitude sensor (e.g., sun sensor or star tracker),

and an attitude rate sensor (e.g., rate gyro). Let _i (i:l,2,...,nq) denote

the ith eigenvalue of A (_i _i 2 where _i is the frequency of the ith

mode). The following theorem gives the necessary and sufficient conditions of

controllability of the system defined by equations (4) and (6), with respect

to the torque vector T (or force vector f).

Theorem I.- The system given by equations (4) and (6) is controllable

with respect to T(f) iff (if and only if): (i) the rigid-body system

(eq. (4)) is controllable with respect to T , and (ii) for the flexible part, for

i=l,2,...,nq,if (a) _i is a simpleeigenvalue,_t(J,i)_ 0 for some j _ [l,nt]

(b) if _i has multiplicity _i' then rank of the nt x _i block of ¢t

(nf x _i block) correspondingto _i is _i" Similar resultshold for force input f.

Outlineof proof.-It has been proved in reference9 that the system

given by equation (6) is completelycontrollableif conditions(iia)and

(iib) hold. Consideringthe compositesystem given by equations(4) and (6),

resultsof referencelO can be appliedin a straightforwardmanner to

completethe proof. _

Equation(6) does not includethe dampingterm, which, althoughsmall,

will always be presentin practicalLSS. When dampingis represented,

equation(6) becomes:



+ +Aq= + T (7)

where D = DT_O is the nq x nq dampingmatrix. If the system is

" controllablefor D = O, it will be controllablefor D > O, for sufficiently

small D (becauseof the continuityproperty). However,stabilizabilityof

the system is more important,especiallywhile designingLQG regulators.

The followingtheoremgives sufficientconditionfor stabilizability.

Theorem2.- The systemgiven by equations(4) and (6) is stabilizable

for D _ 0 if it is controllablefor D : O.

Outlineof proof.-By applyingthe resultsof referencelO, it can be

provedthat the system is stabilizableif condition(i) of theoreml is

satisfied,and if the system of equation(6) is stabilizable. If the

system of equation (6) is controllable,then there exists a rate feedback

gain such that the closed-loopsystem (with D # O) is asymptoticallystable

(ref. 6). Thus the system of equation (6) is stabilizablefor D # O.

This completesthe proof.

Since observabilityis the dual conceptof controllability,theoremsl and 2

can be used to also investigateobservability. The plate model selectedfor the

LSS study has a numberof modes with repeatednaturalfrequencies(multiplicity= 2).

Using theoreml it is evidentthat at least two actuatorswill be required

for controllability(necessarycondition). It is straightforwardto check

controllability(andobservability)with respectto given actuator (sensor)

locationsby applyingtheoremI.



Actuatorand SensorModels

The controllerdesign approachproposedin this report uses several

AnnularMomentumControlDevices (AMCD's)for dampingenhancement,and torque

actuatorsor AMCD's for primaryattitudecontrol. An AMCD (fig. 2)

consistsof a rotatingthin rim which is suspendedin three or more non-

contactingelectromagneticactuatorsand driven by a noncontactingelectro-

magneticspin motor (ref. 7). The bandwidthof AMCD sensorsand actuatorsis

very high--ofthe order of hundredsof Hertz--therefore,AMCD sensorsand

actuatorscan be assumedto be without phase lag. In the AMCD model, only

x and y axis rim rotationsand z-axisrim translationneed be considered.

The basic linearizedAMCD equationsof motion may be found in referencesII

and 12. Since AMCD's are assumedto be relativelysmall (of the order of

2 m rim diameter),the rims can be assumedto be rigid. Torque actuatorsand

attitude/ratesensors (used for primarycontroller)are assumedto be linearand

to have infinite-bandwidths.This assumptionis justifiedin case of sensors

since sensor bandwidthsare expectedto be severaldecadeshigher than LSS

closed-looprigid-bodybandwidth,and modal frequenciesof interest. Effects

of finitebandwidthand nonlinearitiesin torque actuatorsare not considered

in this report in order to be able to obtain certainfundamentalresults.

A TWO-LEVELCONTROLLERDESIGNAPPROACH

The controllerdesignapproachproposedin this report consistsof a

primaryand a secondarycontroller. The functionof the secondarycontroller

is to enhancedampingin LSS structuralmodes withoutattemptingto control

rigid-bodymodes. The secondarycontrollershouldbe robust--thatis, it
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shouldbe stableregardlessof parameterinaccuracies.A secondarycontroller

consistingof severalAMCD'sis proposedin thisreport. The advantagesof

usingAMCD'sare: (i)preciseknowledgeof modalfrequenciesand modeshapes

" is not required,(ii)theclosed-loopsystemis Lyapunov-stable(asymptotically

stableundercertainconditions)regardlessof parameterinaccuraciesand

regardlessof numberof modesin themodel,as willbe shownlater,

(iii)associatedweightpenaltyis small,and (iv)thesecondarycontroller

usingAMCD'simpartsgyroscopicstabilityto LSS. The lastfeaturemay be

usefulduringinitialphasesof deployment,assemblyor initialin-orbit

parameterestimation,beforethe primaryattitudecontrolleris activatedor

evendesigned.

Secondarycontrollerdesignusinga singleAMCDwas investigatedin

references13 and 14,with the latterreferencecontainingmoredetailed

stabilityresults.The casewithseveralAMCD'swas investigatedin

reference15. Althoughthe sufficientconditionsobtainedin reference15 for

Lyapunovstabilityare easyto satisfy,thoseforasymptoticstability(AS)

aredifficultto satisfyin practice.SimplersufficientconditionsforAS

are presentedin thisreport.

SECONDARYCONTROLLERUSINGAMCD'S

MathematicalModelof LSS/AMCD's

It is assumedthat _ (_l)AMCD'sare usedon an LSSof mass ms,

inertiamatrix Is (two-dimensional),and nq structuralbendingmodes.

The AMCDrimsare assumedto be relativelySmall(:2m) in diameter;therefore,

theycan be consideredto be rigid. Only x and y axisrotationsand

z-axistranslationsareconsidered,whichsufficesto presentthe principles.
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The location of nominal rim center position of the ith AMCDin the LSS

coordinates is (x k, yi ). mai, r i, lai, hi (>__3) represent the mass, rim

radius, transverse-axis inertia matrix, and number of actuator stations for

the ith AMCD. Cli represents 2 x hi moment-arm matrix of the AMCD

actuator stations, and C2i is a 1 x hi vector consisting of all unity

entires. €i represents the Z axis displacement of the ith AMCDrim

center from the corresponding point on the LSS. Let as = (@s' es)

denote the LSS attitude vector about the x and y axes, and _ai : (@ai' 8ai)

denote the rim attitude vector for the ith rim. The actuator stations are

assumed to produce only axial (z-axis) forces. (Only radial rim centering is

accomplished by radial actuator forces and is of no consequence in the

present analysis.)

From the basic principles of dynamics the combined AMCD/LSSequations

of motion can be written as:

A_ + Bx + Cx : Yf (9)

T cTl T T _ cT, el""' Eg,qT)T (lO)x = (_ , - O_s,...,O_a

where q denotes the nq-vector of modal amplitudes of the LSS

f : (FT, FT,..., FT_)T (ll) "

= )T •
Fi (fil' fi2""' fi_i i=l,2,...,'v (12)

12



fik beingthe axialforceat actuatorstation k of the ith

AMCD.

A is a (nI x nl) symmetricpositivedefinitecoefficient

. matrix(where nI = nq + 3u + 2):

Al(3_+ 2) x (3u+ 2)
0

A=

0
Inqxnq

m

Inqxnq denotesthe nqXnq identitymatrix
u

is-I _is"I .... is-I -Is-l_l• . -Is-l_u

_is-I is-l+ i-l -l - Is-l_val is . . . is-l is l_l " " "

is-I is-I - -I . . is-I is-l_l _v_ is l + ia2 is_l

A_l .....

_is-l Is-l . . . is-l+ ia -l is-l_l . . . isl

_Is-ITT+ Ma-I+ (_Fsl}

T -l Tls-I T -I I-_I s _ • . . _I s
I

13 (13)



where _ = [_I""' _]T, _i : (Yi' - xi)' Ma : diag. (mal,..., ma )
and

{Msl}ij: 1 /ms

B m

:_I Wi W1W2 " " W 0 0i

W1 W1 0

• W2 . 0 0

B : (14)

W_ 0 W_

0 0 0 0

0 0 0 D

where D = DT _ 0 denotes the nq x nq LSS damping matrix•

m

0 Hi

Wi : (15)

-Hi 0
-

14



Hi being the angularmomentumof the ith rim about the Z axis.

" 0(3v + 2)X (3v + 2) I 0

I
C : - (16)

I

0 I Anq x nq_m

Where A =AT> 0 is theLSS modalfrequencymatrix(usuallydiagonal,

withsquaredmodalfrequenciesas its entries).

m

02x2 0 " ' 0

Cll 0 " " 0

0 Cl2 0

F_ qoo cx,..... I-/ (17)
C21 0 " " 0 Lnn2x_,j

0 C22 " " 0

0 " " " C2v

T T

-@T -@Z -@v
_ - nIx]_

15



¢i (i:I,2,..., _) represents the £i x n mode shape matrix for actuatorq

locations of the ith AMCD, £ : Y £I, and n2 = n + 3_(--&in eq. (17)i=l q
denotes equality by definition).

Let aik be the axial centering error at actuator station k of

the ith AMCD. The £ x 1 centering error vector 6 is given by

: (_II"'" al_l""' _vl""' av£v)T

: - Tx (18)

Closed-Loop Stability

Consider a control law of the type

f : Kp6 + Kr# (19)

Where Kp and Kr are real symmetric positive definite £ x £ proportional

and rate gain matrices.

It was proved in reference 15 that the closed-loop system given by

equations (9) and (19) has at least two zero eigenvalues for all Kp and

Kr. The zero eigenvalues correspond to ms which represents LSS rigid-body

attitude. Defining:

16



p = ( T _sT T _sT, T T_a 1 - ""' _a - el,..., E ,q ) (20)

R : (pT,_T)T: (pT,_sT, _T)T (21)

Equation(9) (excludingas) can be expressedas:

x = A R + B f (22)

where

On2xn2 l On2x2 I In2xn2
l l

= _- L (23)

_0(3_+2)xn2_ I
_A-l _--l "- -A-l

_n^x3_l A7 l B
\ H 1 # I

17



(Imxm denotesthe m×m identitymatrix)

On2x_

= (24)

A-l (02×__

\nn2x_,/
m

It was provedin reference15 thatthe closed-loopsystemis Lyapunov-

stabl'eif Kp > O, Kr _ O, and is asymptoticallystableif:

(i)Kp > O, Kr > O, (ii)_ Hi # O, (iii)_nq+3_, (iv)rank (_)= nq + 3_.l
However,conditions(iii)and (iv)are difficultto satisfyin practice.

In orderto obtainthe leastrestrictive(necessaryand sufficient)conditions,

it is firstprovedthatthecontrollaw of Equation(19)is optimalwith

respectto a certainlinearquadraticperformanceindex.

Definethematrices

nKpRKpnT 0

Q = (25)

0 pA + p2yR-IyT

18



where a = 2 diag.(0(3_+2),D),and p > 0 (scalar). y is givenby (17).

m

nKpR

R = PKr-l, and S =

OnIx_
B

Theorem3.-The optimalcontrollaw (providedthat it exists)which

minimizesthe performancefunction

O0

J : (RT QR + 2RT Sf + fTRf)dt (26)

is givenby equation(Ig).

Proof.-The proofcan be obtainedby comparingequation(ll)with

the standardsolutionof the LQ regulatorproblem(eq. (26)).

Itcan be shownthatthe Riccatimatrixis givenby

m

nK/+ioo) o
P = p (27)

0 A
m

19



It has been proved in reference 15 that the matrix [nKpnT + dia_ (O,A)] > O.
Therefore, P > O.

Stability results.- Well established stability properties of the closed-

loop optimal LQ regulator can be used for investigating the asymptotic stability

of the system• The AMCD/LSSsystem consists of the two subsystems represented

by the following set of equations:

Sl: _I = AlXl + Blf (28)

S2: x2 = A2x2 + B2f (29)

where

x_:COa_Os_ ,_a_ Os_,_' _ _T• .. --

_, ,aa_ _• as'_I"" _u) (3o)_al v

x2 : (qT, (_T)'E (31)

m _ B

03_x3v J 03,_x2 13vx3_ 0

-t- "glm_

A1-- ,

_ I

2O



where Al and Bl representthe top 3_ x 3_ submatricesof A and B,

and L is the 3_ x _ matrixconsistingof the top 3_ rowsof n.

R _ N

0 Inqxnq 0

A2-- g 2 :

-A -D _@T
-- m _ m

Since hi _ 3 for all i and actuatorsare at distinctlocations,rank

(L)= 3_. Equation(29)can be transformedintothe controllablecanonical

form:

.... T-rlJ _I1 _I2
!

= + f

• I

r21 0 _22 0

wherethedimensionof rI is nc (_2 nq) and thatof r2 is 2nq - nc.

all' _12' _22 and _ areappropriatelydimensionedmatrices.

Theorem4.- Theoptimalcontrollawfor the problemin Theoreml exists,

and the systemof equation(22)with the controllawof equation(19)is

asymptoticallystable,iff (ifandonly if) all the followingconditions

are satisfied.

21



(a) the pair (A2'B2) is stabilizable.

V

(b) _. Wi # 0i=l

(c)

-Bl+2J_iAl I 0 I (_)-

I {
rank nc + 3v + 2I I

0 I _ll-+2JRiIncxnc I
_ I I _

forall i (i=l,2,...,v) forwhich Ri # O, where _i = spinvelocityof

the ithAMCD rim.

Proof.-Fromlinear-quadraticoptimalregulatortheory,it is well known

thatthecontrollaw of equation(19)makesthe closed-loopsystemasymptotically

stableif and onlyif (1) (A,B) is stabilizable,where A = A - B R-l ST,

and (2) (2,C) is detectable,where Q = C _T (ref.16). Also, P is

positivedefiniteif and only if (A,C) is observable;thusstatement(2)

aboveis truesince P > O. Stabilizabilityof (A,B) is equivalentto

thatof (A,B) (ref.17),whichis equivalentto (1)stabilityof _22

and (2)controllabilityof thecompositesystemconsistingof equation(28)

and the equation:

22



rl = all rl + _f

. This composite system is controllable if and only if (all, 4) is

controllable and rank (c) = nc + 6_ + 2 where

B

A1 - _i I(6_+2)x(6_+2) 0 B1

c : (32)

0 all - _ilncxn c

and where _i is the ith eigenvalue of A1 (ref. I0). AsSuming the AMCD

rims to be thin it can be verified that the eigenvalues of A1 are:

0, ±2j_ i, where _i is the spin velocity of the ith rim. The proof can be

completed by using elementary matrix operations.

These necessary and sufficient conditions are not straightforward to

apply. The following corollary gives sufficient conditions for asymptotic

stability which are more easily applicable.

Corollary I.- The system of equation (22) with the control law of

equation (19) is asymptotically stable if all the three conditions given

below are satisfied: (a) the LSS structural model, i.e., the pair (A2' B2)

is stabilizable, (b) Z Wi _ 0, and (c) the LSS does not have an undampedi:l

structural mode with frequency 2_i (i=1,2,..., _).

23



Proof.-Since ±j2Ri is not an eigenvalueof all, it remainsto be

provedonlythat (Theorem2)

rank 1 +-J2_iAl I : 3_ + 2 (33)

for _i i O.

Or equivalentlythat

rank Bl ± J2_i IAl-l = 3_ + 2 (34)
I

By applyingelementar_row operationsand usingthe factthatrank

(Cli)= 2, (i=l,2,...,v), the rankof the matrixin equation(34)can be shownto

be 3_ + 2 for _i _ O. Thus fromTheorem4, the systemis asymptotically

stable.

The followingcorollarygeneralizesthesufficientconditionswhichwere

derivedin reference15. It shouldbe notedthattheyare too restrictive

sincetheyrequirea largenumberof actuators,and are givenhereonlyfor

completeness.

Corollary2.- The systemin equation(22)with the controllawof

equation(19)is asymptoticallystableif all fourconditionsgivenbeloware

satisfied:
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(a) The LSS structuralmodel, i.e., the pair (A2'B2) is stabilizable;

(b) Z Wi # O; (c)_n c + 3_, and (d) rank (y) = nc + 3v.
l

Proof.-Since rank (y)= nc+ 3v, rank I_] = nc + 3v. Condition(c)

of Theorem 4 is satisfiedif for _ = ±j2Ri,

I
rank I = nc + 3_ + 2

o lIn m

Since rank |_| : 3_ condition (c)of Theorem 4 is satisfied
L d

if the two top rows of BI-_A 1 are independent for _ : _ 2j_ i,

It can be verified that this is indeed the case.

The sufficient conditions in corollary 1 are less restrictive than those

in corollary 2 because the former do not require a large number of actuators.

It should be noted that, in addition to strutural damping enhancement,

the secondary controller also imparts gyroscopic stability to the LSS

(rigid-body attitude). This feature should be useful during assembly and

during initial operations (such as parameter identification) in a newly

deployed or assembled LSS, before the primary controller is activated, or

even designed.
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PRIMARYATTITUDECONTROLSYSTEM

The secondarycontrolsystemincreasesmodaldampingand thuscontrols

theshapeof LSS. It alsoaids in primarycontrollerdesignby reducingthe

effectof "spillovers."In thisreport,primaryattitudecontrollerdesign

is consideredusingtorqueactuatorsand AMCD's. A primaryattitudecontrol

systemusingtorqueactuatorsis consideredfirst.

PrimaryControllerUsingTorqueActuators

Assumingthatthe primaryattitudecontrolis accomplishedusing

(_l) two-axistorqueactuatorsdistributedon theLSS,the LSSequationsof

motion(withoutsecondarycontroller)are givenby:

a

As_s+ BsXs+ CsXs= i=l_ YtiTi (35)

where Xs = (_sT, qT)T, As = diag.(Is, Inq×nq),Bs = diag.(0,D),
Cs = diag.(0,A).

I
12x2 Txi

Yti = _ ' Ti = (36)

__mi _ TyiJ

-o o. _. _. •
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_mi beingthe 2 x n "torquemode-shapematrix"correspondingtoq

locationof actuator i. Txi and Tyi are the x and y axistorques.

Colocatedactuatorsand sensors.-Assumingthat o, two-axisattitude

" and ratesensorsare alsolocatedat the samepointsas the torqueactuators,

themeasuredattitudevector _mi and the measuredattituderatevector

_mri at location i (ignoringnoise)are givenby:

T
mmi = Yti Xs (37)

T
mmri: Yti Xs (38)

• T, TT
DenotingF = [Ytl""' Yt(_' T = (TIT,.TT)T, _m = Jam! ""' _ma-]

_mr = [_mrlT'''''_mrT]T equations(35),(37),and (38)can be writtenas:

As_s + BsXs + CsXs = rT (39)

_m = rTxs (40)

_mr = rTxs (41)
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Choosingthe controllaw

T : -(Gp am + Gr _mr) (42) =

where Gp and Gr are 2o x 2o positivedefinitesymmetricmatrices.

Forexample,a simplecontrollawfor controllingthe rigid-bodyattitude

wouldbe:

m m

°I (I °1l sx2
Ti = _ Is _mri+ _mi

\0 2PymsyJ rosy2/

(43)

for i=l,2,...,o, where Psk and msk (k= x,y) denotethe desiredrigid-

bodydampingratioand naturalfrequency.In thiscase Gp and Gr will

be block-diagonalmatrices.

The closed-loopequationsbecome:

AsRs + (Bs + FGrrT)Rs + (Cs + FGpFT)xs = 0 (44)
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Finally,the AMCDloopsmay be closedusingequations(18)and (19).

Theorem5.-The systemof equation(44)is stablein the senseof

" Lyapunov if Gp > O, Gr_O.

Proof.- Considering a Lyapunov function:

V(xs, Xs) : xsTCsXs + XsT AsXs (45)

where _s : Cs + FGpFT" It canbe shownthat C-s > O, and that:

= -XsT l_sXs < 0 • (46)

(sinceBs = Bs + £GrFT_ 0).

Thus,the primarycontrollawusingcolocatedtorqueactuatorsand

attitudeand ratesensorsgivesa stableclosed-loopsystem. The controller

is robustbecauseit is stableregardlessof parameterinaccuracies.In

additionto controllingrigid-bodymodes,the "colocated"primarycontroller

also increasesdampingin someof the structuralmodes,dependingon the

locationsof torqueactuators.The secondarycontrollerconsistingof

AMCD'scan be addedin orderto enhancemodaldampingand improvethe overall

performance.Whenthe secondarycontrolleris included,it can be shownthat

the overallclosed-loopsystemis Lyapunovstableif Gp > O, Gr _ O,

Kp > 0 and Kr _0.
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Noncolocatedactuatorsand sensors.-Stabilityof the closed-loop

systemis no longer guaranteedwhen actuatorsand sensorsof the primary

controllerare not colocated. This is becauseof controland observation

"spillovers." In reference3, the followingcontrollerdesign approaches

based on LQG controltheorywere investigated:

I. Truncation: In this method,the residual (uncontrolled)structural

modes are merely ignoredin the design process.

2. ModifiedTruncation(or Model Error SensitivitySuppression,

Reference18): The effect of controlinput on selectedresidualmodes is

includedin the performancefunctionin a quasi-staticsense.

3. Use of Higher-OrderEstimator: In this method,the state estimator

estimatesmore modal amplitudesand rates than are fed back.

4. SelectiveModal Suppression: Observationspilloverfor selected

residualmodes is reducedor eliminatedby using such devicesas phase-

lock-loops.

5. PolynomialEstimators: Observationspilloveris explicitly

estimatedby representingit as a polynomialin time.

These methodstypicallyresult in a controllerwhich consistsof a linear

regulatorand a Kalman-Bucyfilter for state estimation. It was reported

in reference3 that, when a sufficientnumberof sensoroutputsare available,

better resultsare obtainedusing direct sensor feedback (DSF) than using

state estimators. Of the methodsconsideredin reference3, method 5 was

reportedto be unsatisfactory. Preliminarynumericalresultsobtainedby

applyingmethods l to 4 to the plate mode (discussedpreviously)indicated'
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that the modified truncation {or Model Error Sensitivity Suppression(MESS)}

method was the most promising method. Therefore, only the truncation method

(being the most straightforward) and MESSmethod (being the most promising)

- are discussed in this report. As stated earlier, DSFwas reported to result

in better performance; therefore DSFis used in this report instead of

state estimators. As a simple but important special case, it is assumedin

the following analysis that the primary controller controls only rigid-body

attitude, without attempting to actively control any structural modes.

This assumption is justified to someextent because structural modeswill be

controlled by the secondary controller. In order to simplify implementation,

the primary control law is constrained to require feedback of only measured

attitude and rate (measuredattitude and rate includes contributions of

rigid-body and structural modes). It should be noted that this special case

is included only for the purpose of demonstration and that primary controller

design using truncation or MESSmethods is not restricted to active control

of rigid-body modesonly.

MESSmethod - a special case: Assumingthat the primary controller

is to be designed to control only rigid-body modes as [=(@s,Ss)], and

for the case with a single 2-axis torque actuator, consider the

control law given by

[TT;]I<:x01( xx. T = : Is _sm+ _ ms (47)
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where mi' Pi (i= x,y) denotethe desiredrigid-bodybandwidthand

dampingratio,and _sm' msm denotethe measuredattitudeand ratevectors;

Ri = I/2mi. If controlspilloverwere absent(i.e.,if theactuatorscould

forceonlyrigid-bodymodes),thiscontrollawwouldminimizethe performance

function

o

m 1 1 m

mx4Rx 0 px2Rs-1 0

Jo = So_ T as + &sT
o o p

Rxmx2 0 Rx 0

+ 2_sT T + TT T dt (48)

o 7 o Ry

This canbe verifiedalongthe linesof reference6. However,becauseof

flexibility,thecontrolinputalsoforcesstructuralmodes. The modelerror

sensitivitysuppressionmethodrequiresaugmentationof a quadraticfunction

of the forcingtermscorrespondingto a few selectedstructuralmodes,

to the performancefunctionin equation(48). If modes kl,...kp are

selectedfor augmentation,denotingthe modeshapes(forthe kthmode)iatthe actuator

locationby @xk and Cyk'themodifiedperformancefunctionbecomes
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kp[ IJ Jo + k_kl QkTT @xk2 @xk@yk

= T (49)

where Qk is a positiveweightingcoefficient.The effectof additionof

thistermto the performancefunctionis to modifythecontrolweighting

matrix. The optimalcontrollaw for thistypeof performanceindexrequires

feedbackonlyof measuredattitudeand rate. A modifiedstateestimatorcan

be similarlydesignedfor generatingestimatesof rigid-bodyattitudeand

rate.

PrimaryAttitudeControlUsingAMCD's

Insteadof torqueactuators,AMCD'scan be usedfor primary

attitudecontrol. In particular,theAMCD'susedfor implementinga secondary

controllercan be simultaneouslyusedforthe actuationof theprimaryattitude

controller.Primaryattitudecontrolis accomplishedby torquingagainst

AMCDmomenta. In thisdual controlmode,however,the relativerotation

anglesbetweentheLSSand theAMCD's (i.e., %i - %, i=l,2,..,v)icannotbe

controlledsimultaneouslywith LSSrigid-bodyattitudeas (controllability

of AMCD/rigid-bodymodesis discussedin reference12). Thisentailsthat

thecontrollawof equation(19)for the secondarycontrollershouldbe

_ redesignedto excludefeedbackof (_ai- as). However,therates (&ai- &s)
mustbe zero in steady-stateand mustbe fed back. That is,the position

feedbackgainmustbe redesignedto controlonly €i, themotionof theAMCD
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rim centersrelativeto the LSS, andAMCD rim transverserotationangles are
4

allowedto be nonzeroin steady-state. Providedthat relativeangles,

_ai - _s are sufficientlysmall (so that the actuatorgap limits are not
exceeded),the AMCD's can be used in this dual controlmode.

Columnsof the 2 x £i matrix Cli are given by (Yij'- xij)'

j=l,2,...,_i" Since actuatorsof each AMCD are locatedalong a circle,

columnsl and 2 are linearlyindependent,and columns3 through _i can

be expressedas linearcombinationsof the first two columns. That is,

Cli can be expressedas:

Cli = ci[12! ri] (50)

where ci is the 2 x 2 matrix formedby the first two columnsof

Cli, 12 is the 2 x 2 identitymatrix,and ri is a 2 X(_ i - 2)

matrix. If Kp is designedas follows:

where Kp is a (_-2v)x(_-2_){positivedefinitematrix, and diag. ( ) denotes

a block-diagonalmatrix, it can be'verifiedthat the resultingcoefficientmatrix

multiplying(Jal T T T T" ""' _a_ -_s ) in equation 19 (aftersubstitutingfor 6

from equation18) is zero. Defining
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h = (€T, qT)T (52)

the resulting closed-loop system is the form:

where _I' _2 are appropriately dimensioned matrices.

Theorem6.- The system defined by equation (53) is stable in the sense

of Lyapunov if Kp > 0 and Kr _0.

Outline of proof.- The proof is similar to that of Theorem2 (part a)

in reference 15, except that it is additionally necessary to prove that

C2KpC2T > 0 (positive definite) for the specially structured Kp of

equation (51). This can be proved by establishing that zTC2KpC2Tz
can

be zero for some z _ 0 if and only if

[ri T, -I] cTi : 0 (i:I,2,..., _) (54)

Using the fact that actuators for each AMCDare located along a circle, it

" can be proved that equation (54) cannot hold. Therefore,

C2KpC2T > 0
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This type of secondary controller essentially provides rate feedback

for modal damping enhancement. The only function of position gain is to

keep the AMCDrim centers at their nominal positions. Additional force

commandscan now be superimposed on the electromagnetic actuators in order to

produce the desired primary control torque for controlling as. Since AMCD's

are small compared to the LSS, the effect of control moments generated in this

manner would approximate point-torque actuators. If an attitude sensor and

a rate sensor are located on the LSS at the nominal position of the center of

each AMCD: this configuration would approximate colocated torque actuators

and attitude/rate sensors, and should therefore have the associated Lyapunov-

stability property. In this configuration, the AMCD's must have sufficiently

large momenta in order to exert the magnitude of torque required to achieve

the desired rigid-body bandwidth (without exceeding the electromagnetic

actuator gap limits). Separate AMCD's may also be used for primary control

actuation. The position gains for the rim suspension control system should be

structured as discussed above to retain the closed-loop stability properties

of the structural modes. For orbital applications it will be necessary to

gimbal the AMCD's for primary controller actuation.

NUMERICALRESULTS

For the purpose of demonstration of the primary and secondary controller

design methods, the 44-mode finite element model of a 30.48 m x 30.48 m x 2.54 mm

(I00 ft x I00 ft x 0.I in.), completely free, aluminum plate (discussed earlier)

was used. The inherent damping ratios of all the structural modes were

assumed to be zero. The AMCD'swere chosen to have rims having 1.79 m
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diameterand 34 kg ma_, _us.pendedin four equallyspaced electromagnetic

actuatorsand spinnin_at 5QQQ RPM. Secondarycontrollerdesignwas considered

first.

. Three AMCD's, centeredat coordinates(4.44 m, -8.26 m), (-12.06m,

-0.635m) and (14.6m, -34.6 _} were used for the secondarycontroller(in

the coordinatesystemwith axes parallelto the plate edges and origin at the

plate center). Gain matrices Kp and Kr were assumedto be diagonal,with

entries kpi, correspondingto the ith AMCD. Keepingthe positiongains

constantat kpl = 146 N/m, kp2 = 14.6 N/m, kp3 = 14.6N/m, rate gains (kri)

were increasedfor the threeAMCD's, startingwith zero rate gains. With

kr2 = kr3 = O, the gain krl was first increasedstartingfrom zero. Keeping

krl constantat its nominalvalue of 5636 N-sec/m,and with kr3 = O, kr2

was next increasedfrom zero. Finally,with krl and kr2 fixed at their

nominalvalues (krl as above and kr2 = 2050 N-sec/m), kr3 was increasedfrom

O. As shown in the root loci of figure3, dampingratios of the structural

modes increase,the lowestdampingratio being 0.07 for nominalgains (i.e.,

position gains,krl, kr2 as above, and kr3 = 7174 N-sec/m). The root loci

turn back towardsthe imaginaryaxis for higher rate gains. Although only the

first seven modes are shown in figure3, all modes exhibitsimilarbehavior.

Addition of each AMCD generallyimprovesthe closed loop dampingratios. Damp-

ing enhancementin differentmodes dependson the values of the mode shapes at

the AMCD actuator locations.

Primary controllerdesign using two-axistorque actuatorsand attitude/rate

sensorswas next considered. As discussedin the previoussection,the primary

controllerwas to be designedto controlonly rigid-bodyattitude,without

attemptingto activelycontrolany structuralmodes.
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Secondary controller gains (when used) were set at their nominal values

given above. Numerical results were obtained using either a single torque

actuator (2_axis) located at the center of the plate, or three torque actua-

tors placed at the locati'ons of AMCDcenters given previously. Both colocated

and noncolocated actuators/sensors cases were considered. For the noncolocated

case, a single torque actuator located at the plate center was used, and the

attitude and rate sensors were located at (15.24 m, 0 m). The "evaluation" or

"truth model" for the noncolocated case was assumed to consist of rigid-body

modes and the first seven structural modes. Numerical results were obtained for

the following cases.

I. single primary actuator with noncolocated sensors - truncation method;

2. single primary actuator with noncolocated sensors - MESSmethod;

3. single primary actuator with colocated sensors; and

4. three distributed primary actuators with colocated sensors.

Numerical results for cases 1 through 4 were first obtained without the

secondary controller, and then with the secondary controller (Kp and Kr being

at their nominal values). The objective was to vary the primary controller

position and rate feedback gains (or weighting coefficients Qk in the case of

MESSmethod) in order to get the highest rigid-body closed-loop bandwidth _rb

with the restriction that the rigid-body damping ratio (Prb) does not fall below

0.5 . Closed-loop damping ratios of the structural modes must also be reasonably

high in order to obtain satisfactory shape/vibration control. Figure 4 shows a

bar graph of mmax' the maximumrigid-body bandwidth achieved such that

Prb _ 0.5, and of Psmin' which represents the lowest closed-loop damping ratio

for structural modes. Since the purpose of these computations was to gain some

insight into performance of the methods discussed, formal numerical optimization

routines were not used for obtaining mmax; rather, it was accomplished by

varying the parameters mentioned above and observing the trends. When the

secondary controller was not used, computations revealed that it was
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not possible to obtain a stable design for the noncolocated case with either

truncation or MESSmethods, as indicated by zero value of mmax in figure 4.

With the secondary controller included, however, stable designs were obtained

for the noncolocated case, with the MESSmethod causing slight improvement

over the truncation method. For the colocated cases, although closed-loop

stability is guaranteed, it is possible to have zero closed-loop damping for

some structural modes (with no secondary controller), as indicated by the

results for case 3. In addition, because of interaction of structural modes,

the maximumachievable rigid-body closed-loop bandwidth is also limited with

this type of control law, although all eigenvalues are guaranteed to be in the

closed left-half of the complex plane. The highest mmax (about 0.05 rad/sec)

was obtained using three distributed torque actuators with colocated sensors,

when the secondary controller was included. It should be possible to

increase it further by using additional ANCD's in the secondary controller.

In all the cases considered, addition of secondary controller caused

significant improvement. For investigating the use of the same AMCD's in

primary and secondary controllers, preliminary numerical results were obtained

for the case where attitude and rate sensors were located on the LSS at the AMCD

center nominal locations. There was very little difference in the damping-

enhancement characteristics in spite of using the specially structured Kp

matrix. The overall closed-loop system was asymptotically stable even though the

actuators/sensors in this case are only approximately colocated. However, it

will be necessary to have larger total angular momentumin order to get a

rigid-body closed-loop bandwidth of the order of 0.05 rad/sec.
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PERFORmaNCEEVALUATION

After primary and secondary controllers are designed to obtain satisfactory

closed-loop dynamics (based on the known model parameters), the next step is

evaluate the closed-loop performance in the presence of disturbances (such

as gravity gradient, geomagnetic torques, solar pressure, etc.) and sensor/

actuator noise. Gravity gradient and geomagnetic torque are slowly varying

disturbances which need not be considered for investigating dynamic performance.

(Depending on the LSS orbital configuration, they must be compensated for

by using slowly varying input bias torques; however, they were not considered

in this report since the scope of this investigation is limited to fine-

pointing control over relatively short segments of time.) In the presence of

disturbances and sensor/actuator noise,which can be described by zero-mean

white noise, the overall closed-loop equations can be expressed as:

_c = AcXc + BcV (55)

where xc is the n-dimensional state vector and v is a s-dimensional zero-

mean white-noise with covariance intensity matrix V, which represents

disturbances as well as sensor/actuator noise. Ac is the closed-loop

system matrix, and Bc is the effective noise input matrix. Bandlimited

white noise can also be represented by this formulation by incorporating the

associated filter dynamics in Ac and Bc. The covariance of xc evolves

according to the equation:
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= AcS + S AcT + Bc V BcT (56)

• _[XcXcTwhere S = ].

In steady-state, _ = O, and the resulting Lyapunovmatrix equation can

be solved for ] (steady-state value of S) using one of the manyavailable

numerical methods. The method used in this report is that given in reference 19

since it was found to have good convergence properties. Closed-loop performance

can be evaluated by examining elements of S. The x and y axis RMS

pointing error at a particular point the LSSsurface is given by:

oz= _xTF. z Tx _x'°y : Cy 7.¢y (57)

where the total attitudeangles (@ about x-axis and e about y-axis)

are given by @ = CxTxc and 0 = CyTxc. The RMS (l o) and 3o-errorsat '

variouspoints of intereston the LSS can be computedin thismanner. It should

be noted that it is necessaryto have knowledgeof the LSS parameters,

disturbancesand sensor/actuatornoise in order to obtain reliableerror

estimatesin this manner.

CONCLUDINGREMARKS

A controllerdesignapproachfor large space structureswas presented,

which consistsof a primaryattitudecontrollerand a secondaryor damping-

. enhancementcontroller. The primarycontrolleruses either torqueactuators
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or AnnularMomentumControlDevices (AMCD's)to controlrigid body modes

(and possiblysome structuralmodes). The secondarycontrolleruses several

AMCD's and is shown to make the closed-loopsystem asymptoticallystable

under relativelysimple conditions,regardlessof parameterinaccuracies

and numberof structuralmodes in the model. The primary controllerusing

torque actuatorsand colocatedattitudeand rate sensorsis

stable in the sense of Lyapunov(usingpositivedefinitefeedbackof measured

attitudeand nonnegativedefinite feedbackof measured rate). A method for

structuringthe positionfeedbackmatrix was given,which permitsthe use of

the same AMCD's for the actuationof primaryand secondarycontrollers.

Genericstabilityresults,as well as numbericalresultsobtainedfor a

large, thin, completelyfree plate indicatethata controlsystem consisting

of a primarycontrollerusing severalcolocatedactuatorsand sensors

distributedon the LSS, and a secondarycontrollerusing severalAMCD's,

holds significantpromise.
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TABLE I.- COMPUTEDNATURALFREQUENCIESOF
PLATESTRUCTURALMODEL

MODE "FREQ(RAD/SEC) FREQ(HZ)
i .54999E-01 ,87534E-02
2 ,80024E-01 ,12736E-01
3 .99111E-01 ,15774E-01
4 ..14211E+00 .Z2618E-OI
5 .14211E+00 ,Z2618E-OI
6 ,2kgk8E+O0 .39707E-01
7 ,Z4948E+O0 ,39707E-01
8 ,26008E+00 .41392E-01
9 .28286E+00 ,45018E-01

I0 ,31515E+00 ,50157E-01
ii .43068_+00 ,68545E-01
12 ,43068E.O0 ,68545E-01
13 .47824E+00 ,76114E-01
14 ,50003E+00 ,79583E-01
15 ,53689E+00 .85449E-01
16 .fi3689E.O0 .B5449E-OI
17 ,62422E+00 ,gQ347E-OI
18 ,65958E+00 ,lOkgTE+O0
19 .68808E+00 .10951E+00
20 ,80973E+00 .12887E+00
21 ,80973E+03 .12887E+00
ZZ ,BB37IE+O0 .13269E+00
23 ,87377E+00 ,13906E+00
24 ,87982E+00 ,14003E+00
Z5 .87982E.00 ,14003E+00
26 .9921bE+00 .157glE.O0
27 ,gg216E.O0 ,15791E+00
28 ,11483E+01 ,18275E+00
Z9 ,I1922E+01 .18974E+O0
30 ,I1996E+01 .19093E+00
31 ,12194E+01 ,19407E+00
3Z ,IZ250E+OI ,19497E+00
33 .12532E+01 .19946E+00
34 ,12532E.OL .19946E.03
35 ,13742E.01 ,21872E+00
36 ,14082E+01 ,22412E+00
37 .14871E+OL ,23668E.00
38 °14871E+01 ,2366BE+00
39 ,16059E+01 ,25558E+00
40 ,16059E+OL .25558E+00
41 °IbgT2E+01 ,27012E+00
42 ,1697ZE+01 .27012E+30
43 ,17111E+01 ,27233E+00
44 ,17523E+01 ,27889E+O0
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Figure I.- Location of joints for plate structural model
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