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INTRODUCTION 

Carbon fiber reinforced composite materials with thermosetting polyimide 

matrices are attractive for a variety of elevated temperature mechanical. 
. ! 

and structural applications (refs. 1, 2). These lightweight composites are 

strong and stiTf and typically hav~ more thermal sta,bilit,Y than do similar 

composites with epoxy resin matrices. Such composites, however, tend to be flaw 

sensitive and have low impact resistance, characteristics" which are thought to 

result from the use of "a brittle matrix. One possible method of overcoming 

these characteristics is to use a th"er'1loplastic matrix. A thermoplastic 

polyimide, then, might provide thermally stable composites with flaw tolerance 

and high impact ~esistance (ref .. 3). 

T~e use of a thermoplastic matrix in a continuous fiber composite, however, 

presents two problems. One problem arises in impregnating the collimated 

fibers with the polymer to obtain a prepreg tape. As solvent resistance would 

be needed in many applica"tions, the use of a solvent to dissolve the polymer 

and facilitate prepregging would be difficult. Moreover, tbe solvent would 

have to be removed before or during the molding of the prepreg into a laminate. 

A hot-melt prepregging system would be more desirable, in which case the melt flow 

properties of the polymer would be very important. The second problem in 
. '. . 

thermoplastic matrix composite fabrication aris~s when the prep reg tape is 

stacked and molded together under heat and pressure. Again, the polymer must 

flow~ " But, since ahi~h glass t~ansition temperature (Tg) is"of value in 

"composite applications, and since molding is performed above Tg, the 

required moldi~g temperatures" can become very high. Th~se molding temperatures 

can "be lowered somewhat by" using high pressures to obtain sufficient flow • 

. Th~ highpr~~sure approach is tif limi~ed value, however, because excessive 

pressures may l~ad to fiber "breakage and/or misalignment, and will require 
. ~., 

extremely large forces "to" mold large comppsite parts. 
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Both of these problems, one associated with prepregging, the other 

associated with molding, concern the flow of the thermoplastic. Therefore, 

measurements have been made of three experimental thermoplastic polyimides 

(taken as model polymers without regard to thermal stability) with the 

objective of relating these properties to required composite processing 

parameters. The flow properties were measured with a capillary rheometer. 

Two of the polymers were fabricated with carbon fibers into unidirectional 

laminates for short beam shear tests. 
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CHARACTERISTIC TEMPERATURES, K, OF THERMOPLASTIC POLYIMIDES 

The three experimental thermoplastic polyimides were supplied in pellet 

form by the Rohm and Haas Company.* These amorphous polyaliphatic imides (which 

are not as thermally stable as aromatic polyimides) were intended for use in 

injection molded parts, not as the matrix for continuous fiber composites. The 

polymers were designated, for the purpose of this investigation, according to 

their Vicat softening temperature (ref. 4) as reported by the supplier. 

In order to estimate a temperature range for testing and processing, the 

glass transition temperature {Tg} of each polymer was measured with a torsional 

braid analyzer (TBA, ref. 5). The braids were dried at 425 K in a nitrogen 

atmosphere for 1 hour before testing at a rise rate of 3 K/min beginning at 

300 K. Initial TBA tests with a given braid showed a slightly lower (3-10 K) 

Tg than did subsequent tests, suggesting that the as-received polymers con

tained some residual solvent. Thermogravimetric analyses {TGA, ref. 6} of the 

polymers were made in a static air atmosphere at a temperature rise rate of 

5 K/min beginning at 300 K. The weight-temperature curves and the temperature 

for 10 percent weight loss were similar for all three polymers, suggesting that· 

they had similar degradation mechanisms. With the TBA results providing a 

lower range (440-500 K} and the TGA results providing an upper bound (650 K), a 

test and processing range of 500-600 K was selected for the polymers. 

*Use of commercial products or names of manufacturers in this report does 
not constitute official endorsement of such products or manufacturers, either 
expressed or implied, by the National Aeronautics and Space Administration. 
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CHARACTERISTIC TEMPERATURES, K, 

OF THERMOPLASTIC POLYIMIDES· 

POLYMER 
VICAT 

SOFTENING 
GLASS 

TRANS iliON 
10% 

WT LOSS 

V-167 

V-200 

V-230 

440 

473 

503 

442 

477 

504 

651 

655 

653 

*AMORPHOUS POLYALIPHATIC IMIDE SUPPLIED BY ROHM AND HAAS 



FLOW CURVES OF POLYIMIDE V-167 

The flow properties of all three polymers were measured with a capillary 

rheometer (ref. 7). As capillaries with length-to-diameter ratios of 33 or 66 

were used, no end correction in the data was required. For the V-167 polymer, 

a 90 K range of test temperature was investigated, the lowest temperature 

(510 K) being that for which flow measurements could be made on the rheometer. 

Below 510 K, the plunger pressure necessary to push the polymer through the 

capillary exceeded the rheometer load range. At 600 K, for the lowest strain 

rates «10 sec- l ), the compressibility of the polymer was such that the slow 

motion of the plunger was accommodated without polymer flow through the 

capillary. 

Molding pressures associated with typical commercial autoclaves (-1.4 MPa) 

would, with the capillaries employed in this study, correlate with stresses in 

the 103-104 Parange. Commercial molding presses would correlate with higher 

stresses, say in the 104~105 Pa range. Most of the measured stresses for the 

V-167 were within or exceeded these stresses. Hence, processing in conven

tional facilities would require high temperatures and low strain rates 

(i.e., long times). 
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FLOW CURVES OF POLYIMIDE V-200 

Fewer measurements were made on the V-200 compared to the V-167. The 

lower test temperature (575 K) was chosen so that the pressures required for 

flow were within the rheometer load range. The upper test temperature (590 K) 

was used because at 600 K, the polymer crackled and sputtered" and released 

fumes which were assumed to be residual solvent. However, for these two 

temperatures and a given strain rate, the flow stress for the V-200 was higher 

than that of the V-167. Such higher stresses are consistent with the higher 

Tg of the V-200 relative to the V-167. 

7 



co 

FLOW CURVES OF POL YIMIDE V-200 
107 

106 

STRESS, 5 
Pa 10 

104 
~ 

o 575 K 

~ 590 K 

3 10 I I I I I 

10
0 

10
1 

10
2 

103 104 

S TRA I N RATE, sec-1 



FLOW CURVES OF POLYIMIDE V-230 

The test temperatures for the V-230 were restricted for the same reasons 

as those described previously for the V-200. However, the V~230 data generally 

. fell between the 575 and 590 K curves of the V-200. The 575 K data had a con-

siderable amount of scatter which seemed to be influenced by the capillaries 

and drive gears used in the tests. Such scatter made an accurate loc~ti~n 

and shape of the flow curve very difficult, and thus may be one reason the 

575 K curve for the V-230 fell below that for the V-200. By contrast, the 

590 K curve for the V-230 generally was above that of the V-200 as would be 

expected due to the higher Tg. The apparent compressibility effect also was 

observed with th~ 590 K data at the lowest str~in rat~s. 
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VISCOSITY OF POLYIMIDE V-167 

The apparent viscosity of the polymers was calculated by dividing the 

flow stress by the strain rate. As the strain rate was calculated from the 

volumetric flow data and was not corrected to obtain the wall rate, the vis

cosity is an apparent rather than a true viscosity (ref. 8). The apparent 

viscosity for the V-167 showed a generally pseudo-plastic response with a low 

strain rate reversal in the 600 K curve due to the previously mentioned~om

pressibi1ity. The curvature in the 575 K curve may have been a manifestation 

of compressibility which would have become obvious if tests had been made at 

even lower strain rates. 

For comparison purposes, an epoxy resin at room temperature typically 

will have a viscosity of 15-25 Pa-sec. These data show that thermoset-like 

flow, in prepregging for example, might be obtained for the V-167 at-high 

temperatures and high strain rates (with the associated high pressures). By 

contrast, the molding ofoa composite material generally takes place at very 

low strain rates and low pressures. Consequently, the apparent viscosity 

would be higha~d very long times would be required to obtain adequate flow 

in the V-167. 
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VISCOSITY OF POLYIMIDE V-200 

The limited apparent viscosity data for V-200 showed distinct trends, 

with apparent Newtonian response at the lower strain rates and the two curves 

(at 575 and 590 K) essentially merging at the higher strain rates. 
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VISCOSITY OF. POLYIMIDE V-230 

The apparent viscosity curve of V-230 at 590 K reflected the compressi

bility effects noted in previous discussions. The considerable scatter in 

the 575 K data apparently was influenced by the capillaries and the drive 

gears used in the tests. 

; 
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VISCOSITY-TEMPERATURE-STRAIN RATE CURVES FOR POLYIMIDE V-167 

Curves of apparent viscosity as a function of temperature for selected 

strain rates were constructed by cross-plotting the apparent viscosity-strain 

rate data for the V-167. The curves showed fairly uniform flow behavior 

without obvious processing IIwindows. 1I The dip in the 5 and 10 sec- l curves 

appeared to be related to the compressibility behavior previously described. 

This dip represented the only possible processing advantage which could be 

found for the V-167. Curves such as these, together with the flow curves, 

would be useful in connection with melt prepregging and molding. For example, 

the prepregging might be considered a coating or calendering operation, in 

which case the viscosity and extent of Newtonian flow would be important 

(ref. 9). Such properties would also be of value in the molding process 

which could be treated as a case of flow (of polymer) through a porous medium 

(the fibers) as described in reference 10. However, no such analysis was 

made inasmuch as the dati had shown that high pressures, high temperatures, 

and/or long times were required to obtain adequate flow with these polymers. 
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PROCESSING CONDITIONS FOR POLYIMIDE-CARBON FIBER LAMINATES 

Two of the polymers (V-167 and V-230) were fabricated with Celion 6000 

carbon fiber into 8-ply unidirectional laminates. No attempt was made to 

obtain optimum laminates. Rather, the purpose was to test the applicability 

of some of the information obtained in this investigation. As melt prepregging 

equipment was not available, a solution prepregging procedure was used. The 

prepreg was dried at 425 K for 0.5 hour to approximate a melt prepreg condi

tion. Two molding temperatures were selected: 540 K which was a temperature 

lower than the dip in the viscosity-temperature curve for the V-167; 583 K 

which was a temperature in the dip region. These temperatures were 22 and 

32 percent highe~ than the V-167 Tg. The 583 K temperature was used for the 

V-230, a temperature which was 16 percent higher than Tg. Long molding times 

(for thermoplastics) of 1 and 2 hours were used. Although both a molding 

press {for the V-167} and an autoclave {for the V-230} were used, the pressure 

was limited to that (1.4 MPa) which could be obtained in the autoclave. 
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PROCESSING CONDITIONS FOR 

THERMOPLASTIC POLYIMIDE-CARBON FIBER LAMINATES· 

POLYMER 

V-167 

V-230 

METHOD TEMPERATIJRE, K TIME, hr 

PRE S S (A) 540 (1. 22 T 9 ) 2 

PRESS (B) 

AUTOCLAVE 

583 (1. 33 T9) 

583 (1. 16 T9) 

1 

1 

* ALL LAM INATES OF CEllON 6000 MOLDED UNDER 1. 4 MPa PRESSURE 
AFTER DRYING AT 425 K FOR 0.5 hr 
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SHORT BEAM SHEAR STRENGTH OF POLYIMIDE-CARBON FIBER LAMINATES 

The short beam shear strength of the laminates had a room temperature 

average of 57 MPa, very close to the 55 MPa value for a thermosetting polyi

mide, carbon fiber (PMR l5/HTS), 8-ply unidirectional laminate (ref. 9). 

However, the coefficient of variation was generally much higher than that 

(-0.05) in reference 9. For the V-167, the higher molding temperature and 

shorter time did not provide noticeably better laminates. The strength 

decreased to -85 percent of the 300 K value at 350 K (-0.79 Tg), but then 

dropped considerably to -34 percent at 425 K (-0.96 Tg). By contrast, the 

strength of the V-230 laminates, which appeared to be poorly consolidated, was 

affected very little by temperature even though the 425 K test temperature 

was 0.84 Tg for that polymer. While no attempt was made to obtain the IIbestli 

laminates, the laminates showed that it is possible to use thermoplastic 

polyimides as carbon fiber composite material matrices if high molding tempera

tures and long times are employed. However, processing conditions for these 

experimental thermoplastic polyimide composites investigated in this study 

were at the extremes of pressures and times which are typically utilized in 

conventional autoclave consolidation. 
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SHORT -BEAM SHEAR STRENGTH 
-....... 

OF THERMOPLASTIC POLYIMIDE-CARBON FIBER LAMINATES 

GLASS TEST TEMPERATURE, K 
POLYMER TRANS ITION 

TEM PERATURE, K 300 350 425 

V-167 (A) 442 57 L 132) * 50 L 084) 20 (.075) 

( B ) 442 62 (.073) 51 L 045) 21 L 072) 

V-230 504 52 L 225) 60 L 091) 50 (. 164) 

*STRENGTH MPa AVERAGE OF 8 TESTS WITH COEFFICIENT OF VARIATION 
SHOWN IN PARENTHES IS 
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CONCLUDING REMARKS 

The flow properties of .three experimental thermoplastic polyimides were 

measured using a capillary rheometer. The softening temperature to degradation 

temperature range of "the polymers was about 440 to 650 K. All of the polymers 

retained small amounts of solvent as indicated by an increase in Tg as the 

polymers. were dried. The flow properties showed that all three polymers had 

very high apparent viscosity, and would require high pressures, high 

temperatures and/or long times to obtain adequate flow in prepregging and 

molding. The pressures required for laminate fabrication generally were 

higher than those obtainable in commercial autoclaves and many commercial 

presses, so commercial processing would have to be done at high temperature 

and/or long times. 

Although not developed for such application, two of the polymers were 

combined with carbon fibers by solution prepregging. The prepregs were molded 

into laminates at selected temperatures and times, guided by the results from 

the flow measurements. These laminates had room temperature short beam shear 

strengths similar to those of carbon fiber laminates with a thermosetting 

polyimide matrix. However, the strength exhibited considerable scatter, 

and given the difficult processing, these polyimides probably would not be 

suitable for continuous fiber composites. 
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Plunger 
speed,* 
em/min 

TABLE 1.- PLUNGER FORCE FOR EXPERIMENTAL 

THERMOPLASTIC POLYIMIDE V-167 

Plunger force, kg, at 
temperature of . . . K 

510 525 550 575 600 

Capillary 242 - length 1.0080 in., diameter 0.0302 in. 

0.012 212 82 22 1.0 1.9 
.04 274 148 61 13 2.1 
.06 430 230 41 23 3.0 
.12 328 265 129 42 8.2 
.2 602 332 94 63 15 
.4 392 317 188 84 35 
.6 846 469 162 120 44 

1.2 693 568 159 . 159 73 
2 1160 524 241 215 107 
4 875 688 553 292 153 
6 1320 645 356 298 186 

20 200 830 493 408 287 

Capillary 279 - length 1.9981 in., diameter 0.0301 in. 

0.012 256 104 32 7.5 4.5 
.04 334 242 121 29 8.1 
.06 560 358 112 39 9.2 
.12 630 346 262 109 27 
.2 773 535 254 121 33 
.4 780 660 393 260 78 
.6 1245 724 447 236 98 

1.2 1290 774 720 376 160 
2 ---- 1100 636 446 237 
4 1670 948 ·1175 710 339 
6 ---- 1863 840 623 420 

20 ---- 2000 1090 793 623 

* Drive gear ratio 1/5 used for 0.012, 0.04, 0.12, 0.4, 
1.2, and 4 em/min.; ratio 1/1 used for 0.06,0.2,0.6,2, 
6, and 20 em/min. 
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TABLE 2.- PLUNGER FORCE FOR EXPERIMENTAL 

THERMOPLASTIC POLYIMIOE V-200 

Plunger force, kg, 
Plunger at temperature 
speed,* of . . . K 
em/min 

575 590 

Capillary 242* 

0.06 62 6.6 
.2 132 20 
.6 250 57 

2 358 158 
6 488 296 

20 668 405 

Capillary 279* 

0.06 180 27 
.2 360 81 
.6 569 229 

2 816 488 
6 1028 775 

20 1480 1068 

*Orive gear ratios and capillary 
dimensions same as in Table 1. 
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TABLE 3.- PLUNGER FORCE FOR EXPERIMENTAL 

THERMOPLASTIC POLYIMIOE V-230 

Plunger force, kg, 
Plunger at temperature 
speed,* of . . . K 
cm/min 

575 590 

Capillary 242* 

0.012 6.5 11 
.04 16 22 
.06 113 22 
.12 61 64 
.2 251 71 
.4 150 148 
.6 445 183 

1.2 289 308 
2 850 356 
4 618 641 
6 1115 580 

20 1620 840 

Capillary 279* 

0.012 4.3 20 
.04 23 29 
.06 88 41 
.12 85 119 
.2 260 160 
.4 167 278 
.6 750 425 

1.2 638 666 
2 1560 1508 
4 1780 1440 
6 ---- ----

20 ---- ----

*Orive gear ratios and capillary 
dimensions same as in Table 1. 
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EVALUATION OF SEVERAL ULTRASONIC FLOWMETER 

TRANSDUCERS IN CRYOGENIC ENVIRONMENT 

W. Clayton Moughon 
Langley Research Center 

SUMMARY 

In Langley Research Center's National Transonic Facility, the flow of 
large quantities of liquid nitrogen (450 Kg-sec-l ) will be measured using 
an ultrasonic flowmeter. The sensing mechanism employed uses piezoelectric 
transducers which cause an interaction of acoustic waves with the moving 
fluid to measure fluid velocity (ref. 1). This paper summarizes the result 
of thermal cycle tests (295 K to 77 K) performed on various ultrasonic flow
meter transducers from four manufacturers to determine their suitability and 
reliability for this critical measurement. The tests were performed at a 
pathlength of 66 cm which simulates that of the NTF flowmeter. Although one 
Millis Research transducer failed after 51 thermal cycles, test results 
disclose that all transducers tested have the potential for meeting NTF 
requirements. However, the epoxied-lead metauiobate displayed the strongest 
signals and the least signal loss per thermal cycle. 

INTRODUCTION 

Ultrasonic flowmeters are completely nonintrusive and therefore offer 
no impedance to fluid flow, have no moving parts, and cover a wide flow 
range of 100:1 or greater. They are an ideal device for liquid flow 
measurements. When first used to measure cryogenic fluids however, they 
proved to be somewhat unreliable because of the inability of the piezoelectric 
sensors to withstand, for practical periods, the rigors of repeated extreme 
temperature cycling (295 K to 77 K). This problem was first experienced by 
Langley researchers in the development of the Shuttle pogo flowmeter and only 
after concentrated efforts by American and French engineers was the 
ultrasonic flowmeter rendered useful in the measurement of lox and LN2' 
Because of its desirable features the ultrasonic flowmeter was selected for 
measuring and controlling the NTF LN2 flow. To assure its suitability for 
this application, laboratory durability tests were conducted using 18 ultra
sonic transducers, all candidates for the NTF flowmeter (fig. 1). The 
purpose of this paper is to report the results of these laboratory tests 
which included several different type transducers (American and French), 
under simulated NTF flow conditions in order to determine their long-term 
reliability. Identification of commercial products in this report is used 
to adequately describe the model. The identification of these commercial 
products does not constitute official endorsement, expressed or implied, of 
such products or manufacturers by the National Aeronautics and Space 
Administration. 



Test Apparatus 

Test apparatus included an open-top rectangular tank constructed of 
3-mm-thick aluminum plate 135-cm long, 33-cm deep, and 33-cm wide (fig. 2). 
A smaller tank was also constructed 120~cm long, 22-cm deep, and 17-cm wide 
and this was placed inside the 1arger;tank with 8 cm of insulation separating 
the two tanks (figs. 2 and 3). The small inner' tank was the actual test 
chamber and both tanks were filled with liquid nitrogen. A po1yviny1ch1oride 
(PVC) adaptor was constructed for holding the transducers. The transmission 
path1ength was approximately 66 cm. A pulse-echo device (fig. 3) was used 
to excite the transducer and measure the;return signal in order to determine 
the active life of the crystal and its ability to generate adequate flow 
sensitive signals without distortion or ringing. All signals were monitored 
and measured on a dual-beam oscilloscope. Transducer A was tested·first 
and then connections Cl and C2 were. switched and transducer.Bwas tested. 

PROCEDURE 

Eighteen candidate ultrasonic transducers were selected from the 
following manufacturers: Panametrics, Millis, ONERA, and MAP CO , Inc. 
Ea.ch transducer was installed (in pairs) in an adapter with a. transmission 
path1ength (66 cm) equal to that of the NTF flowmeter. This adapter was 
then lowered into a styrofoam insulated tank and filled with LN2. After 
reaching 77 K, the transducers were then excited with a pulse-echo device 
and the signal strength measured on a dual beam oscilloscope. After allowing 
transducers to soak for from 1 to 4 hours, the signal strength was measured 
again. The adaptor was then removed and allowed to come to ambient 
temperature. This, procedure was repeated a number of times (Table 1) until 
the testing was completed. 

RESULTS 

Panametrics Transducers 

Two 15-cm-1ong transducers, 1 MHz epoxied PZT crystal (lead-zirconate
titanate) were ,thermally cycled. No.1 was cycled 82 times and No.2, 
58 times. After all tests, both transducers remained active although the 
signal level was about 20 dB down from 1.5 Vpp. The attenuated signals 
were nevertheless of sufficient strength to trigger established electronic 
processing circuits. Two 5-cm-1ong transducers, 2 MHz epoxied K-81 crystal 
(lead metaniobate), were also thermally cycled. No.3 was cycled 77 times 
and No.4, 67 times. After all tests, signals were strong at approximately. 
2 to 2~5 Vpp. 

Two other 5-cm-1ong transducers, 2 MHz soldered PZT crystals (lead 
metaniobate), were then thermally cycled. No.5 was cycled 54 times and 
No.6, 58 times. After all tests signals were strong at approximately 
1 to 2.5 Vpp. (See Table 1.) 
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All six transducers remained active after all thermal cycle tests. 

Millis Research Transducers 

The Millis Research Transducers are unique in that the crystal is 
bonded to a graphite damping material and the stainless steel transducer 
tip by a thermal diffusion method which was developed by Millis Research 
Corp. This technique involves tinning both sides of the crystal, the 
transducer tip, and the damping material with a special solder mixture 
(proprietary) and producing the bond in a high temperature welding 
machine. 

Initially six l5-cm long, 1 MHz, PZT soldered transducers were thermally 
cycled. No. 1 and No. 2 were each cycled 60 times and retained strong 
output signals between 0.9 and 1.2 Vpp. No. 3 was thermally cycled 
51 times and retained strong transmission signals between 1.0 and 1.5 Vpp. 
During testing, No. 4 suffered a separated crystal at the transducer tip. 
The stainless steel cover (transducer tip) oil canned and separated from 
the crystal which blocked acoustic transmission although the crystal itself 
remained active. No. 5 and No. 6 were cycled 59 times and retained a 
strong signal between 0.7 Vpp and 1.1 Vpp. (See Table 1.) 

ONERA Transducers 

Four ONERA transducers (Office Nationale D'Etudes et des Recherches 
Aerospatiales of France), 2 MHz PZT (lead-zirconate-titanate), electron beam 
welded tips, were all thermally cycled 35 times and none showed any 
degradation of the signal between 2 Vpp and 3 Vpp. These transducers were 
a later generation than those used in the Shuttle pogo flowmeters designed 
by ONERA to investigate pogo-induced flow oscillation in the Shuttle lox 
feed lines. (See Table 1.) 

MAP CO 

The MAPCO transducers were thermal cycled 10 times and maintained 
clean output signals of 1.5 Vpp throughout testing (Table 1). 

It is interesting to note that these (same) transducers were originally 
in a (prototype) ultrasonic flowmeter being tested with LN2 at the National 
Bureau of Standards, Boulder, Colorado. During testing (June 1978) the 
electronics failed and had to be returned to the manufacturer for redesign. 
This took over 1 year. Meanwhile, the flowmeter body (with transducers) 
was left in the line at NBS while other testing continued. A meter was 
connected to the transducers to monitor their activity. During this period 
the transducers were thermal cycled over 150 times with no loss of signal. 
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CONCLUSION 

Eighteen ultrasonic flow transducers were thermally cycled between 
295 kelvin and 77 kelvin repeatedly and their signal strength measured at 
simulated NTF conditions. The data show that the transducers performed 
satisfactorily and would be suitable" for NTF cryogenic measurements. 
Since the NTF flowmeter will be occasionally subjected to thermal cycling 
these tests were performed to determine the endurance and reliability of 
the transducers when subjected to extreme temperature differences. Because 
of these favorable test performances it is felt that. the problem of 
transducer reliability in cryogenic ultrasonic flowmeters has been virtually 
eliminated. 
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APPENDIX A 

TRANSDUCER MANUFACTURERS 

Panametrics--Panametrics, Inc., 1~altham, MA 

}lillis--Ml1l1s Research Laboratory, Boston, MA 

ONERA--Office National D'Etudes et des Recherches Aerospatiales, 
Chalillion, France 

MAPCO--Mid-American Pipeline Company, Tulsa, OK 
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MANUFACTURER SIN 

Mill is 1 

Mill is 2 
Mi 11 is 3 
Mi 11 is 4 

Mi 11 is 5 
Mi 11 is 6 
Panametrics 1 
Panametrics 2 
Panametrics 3 
Panametrics 4 
Panametrics 5 
Panametrics 6 
ONERA 1 

ONERA 2 
ONERA 3 
ONERA 4 
MAPCO 1 
MAPCO 2 

TRANSDUCER IDENTIFICATION 

MATERIAL 

BONDING 
TECHNIQUE CRYSTAL DAMPING 

Thermal Diffusion *LZT Graphite 

Thermal Diffusion LZT Graphite 
Thermal Diffusion LZT Graphite 
Thermal Diffusion LZT Graphite 

Thermal Diffusion LZT Graphite 
Thermal Diffusion LZT Graphite 
Epoxied LZT Graphite 
Epoxied LZT Graphite 
Epoxied **L~l Graphite 
Epoxied LM Graphite 
Soldered LM Graphite 
Soldered L~l Graphi te 
Adhesive 

Methacryl ate LZT Lucite 
Adhes. Meth. LZT Lucite 
Adhes. Meth. LZT Lucite 
Ester Anerobic Glue LZT Lucite 
Oil Seal Unknown Oil Sea 1 
Oil Seal Unknown Oil Seal 

~-- ----

* Lead Zirconate Titanate 
** Lead Metaniobate 

HOUSING 

Stainless 
Steel 

St. Steel 
St. Steel 
St. Steel 

St. Steel 
St. Steel 
St. Steel 
St. Steel 
St. Steel 
St. Steel 
St. Steel 
St. Steel 

St. Steel 
St. Steel 
St. Steel 
St. Steel 

Teflon 
Teflon 
--

SIZE 

TRANSMIT 
FREQUENCY LENGTH DIAMETER 

1 MHZ 15 cm 20 mm 

1 MHZ 15 cm 20 nm 
1 MHZ 15 cm 20 mm 
1 MHZ 15 cm 20 mm 

1 MHZ 15 cm 20 mm 
1 MHZ 15 cm 20 mm 
1 t·1HZ 15 cm 20 mm 
1 MHZ 15 cm 20 mm 
2 MHZ 5 cm 20 mm 
2 MHZ 5 cm 20 mm 
2 MHZ 5 cm 20 mm 
2 MHZ 5 cm 20 mm 

2 MHZ 7 cm 10 mm 
2 MHZ 7 cm 10 mm 
2 MHZ 7 cm 10 mm 
2 MHZ 7 cm 10 mm 

1.5 MHZ 12 cm 27 mm 
1.5 MHZ 12 cm 27 mm 

Table 1. Specification and Test Results for 18 Ultrasonic 
Transducers Tested for the National Transonic 
Facility Flowmeter. 

TEST RESULTS 

OUTPUT IN VOLTS (pp) 

NUMBER 
THERMAL FIRST FINAL 
CYCLES TEST TEST 

60 1.2 1.0 

60 1.0 .90 
51 1.5 1.0 
51 Separated 

Crysta 1 NA 
59 1.1 0.6 
59 1.0 0.7 
82 1.5 1.35 
58 1.5 1.35 
77 2.6 2.5 
67 2.1 2.0 
54 1.2 1.0 
58 2.5 2.5 

35 2.0 2.0 
35 2.7 2.7 
35 2.6 2.6 
35 2.2 2.1 
10 1.5 1.5 
10 1.6 1.5 
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